JP7006636B2 - Silicon single crystal manufacturing equipment - Google Patents

Silicon single crystal manufacturing equipment Download PDF

Info

Publication number
JP7006636B2
JP7006636B2 JP2019037335A JP2019037335A JP7006636B2 JP 7006636 B2 JP7006636 B2 JP 7006636B2 JP 2019037335 A JP2019037335 A JP 2019037335A JP 2019037335 A JP2019037335 A JP 2019037335A JP 7006636 B2 JP7006636 B2 JP 7006636B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal manufacturing
silicon
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037335A
Other languages
Japanese (ja)
Other versions
JP2020138892A (en
Inventor
晋 尼ヶ▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2019037335A priority Critical patent/JP7006636B2/en
Priority to CN202010129767.XA priority patent/CN111636097A/en
Publication of JP2020138892A publication Critical patent/JP2020138892A/en
Application granted granted Critical
Publication of JP7006636B2 publication Critical patent/JP7006636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶製造装置に関する。 The present invention relates to a silicon single crystal manufacturing apparatus.

チョクラルスキー法(CZ法)によるシリコン単結晶の引き上げは、メインチャンバ内に坩堝を設置し、坩堝内に投入されたシリコンを加熱して融液状態とし、シリコン融液に種結晶を着床させ、引き上げワイヤーにより種結晶を上方に引き上げることにより行われる。引き上げられたシリコン単結晶は、メインチャンバの上部に設けられたプルチャンバ内に収納され、ゲートバルブによりメインチャンバを密閉した後、プルチャンバを移動させて引き上げ装置から取り出される。 To pull up a silicon single crystal by the Czochralski method (CZ method), a crucible is installed in the main chamber, and the silicon put into the crucible is heated to make it into a melt state, and the seed crystal is implanted in the silicon melt. It is done by pulling the seed crystal upward with a pulling wire. The pulled-up silicon single crystal is housed in a pull chamber provided in the upper part of the main chamber, the main chamber is sealed by a gate valve, and then the pull chamber is moved and taken out from the pull-up device.

シリコン単結晶の引き上げに際しては、坩堝内のシリコン融液表面の温度が重要なパラメータの一つであり、融液表面の温度を正確に測定をすることにより、シリコン単結晶の品質を精密に制御することが可能となる。
従来、特許文献1には、プルチャンバの上部に放射温度計と二次元温度計を配置し、
これら二つの温度計を用いて、シリコン融液表面の温度を測定する技術が開示されている。
The temperature of the silicon melt surface in the crucible is one of the important parameters when pulling up the silicon single crystal, and the quality of the silicon single crystal is precisely controlled by accurately measuring the temperature of the melt surface. It becomes possible to do.
Conventionally, in Patent Document 1, a radiation thermometer and a two-dimensional thermometer are arranged above the pull chamber.
A technique for measuring the temperature of the surface of a silicon melt using these two thermometers is disclosed.

特開2014-218402号公報Japanese Unexamined Patent Publication No. 2014-218402

しかしながら、特許文献1に記載の技術では、シリコン融液表面から温度計までの測定距離が大きくなってしまう。特に放射温度計は、測定距離が長くなると、測定可能な測定スポット径が大きくなり、スポット内の平均温度が表示されることが原因で、測定値がばらつくという課題がある。
また、測定距離が長くなると、放射温度計がメインチャンバ、プルチャンバ内で乱反射した放射熱などの外乱を拾ってしまい、シリコン融液表面の温度を正確に測定できないという課題がある。
However, in the technique described in Patent Document 1, the measurement distance from the surface of the silicon melt to the thermometer becomes large. In particular, the radiation thermometer has a problem that when the measurement distance is long, the diameter of the measurement spot that can be measured becomes large and the average temperature in the spot is displayed, so that the measured value fluctuates.
Further, when the measurement distance becomes long, the radiation thermometer picks up disturbances such as radiant heat diffusely reflected in the main chamber and the pull chamber, and there is a problem that the temperature of the silicon melt surface cannot be accurately measured.

本発明の目的は、シリコン単結晶の品質を高精度に制御可能なシリコン単結晶製造装置を提供することにある。 An object of the present invention is to provide a silicon single crystal manufacturing apparatus capable of controlling the quality of a silicon single crystal with high accuracy.

本発明のシリコン単結晶製造装置は、メインチャンバと、ゲートバルブと、プルチャンバと、前記メインチャンバに配置された坩堝内のシリコン融液表面の温度を測定する融液表面温度測定部とを備え、前記融液表面温度測定部は、前記ゲートバルブおよび前記プルチャンバの間に配置され、外周面に開口が形成された筒状部と、放射熱を透過する材料から構成され、前記筒状部の開口に設けられる窓部と、前記筒状部の内側に配置され、前記シリコン融液表面から放射された放射熱を、前記窓部に導く導熱部と、前記筒状部の外側に配置され、前記窓部を介して前記導熱部から導かれた放射熱を測定する放射温度計とを備えていることを特徴とする。 The silicon single crystal manufacturing apparatus of the present invention includes a main chamber, a gate valve, a pull chamber, and a melt surface temperature measuring unit for measuring the temperature of the silicon melt surface in a pit arranged in the main chamber. The melt surface temperature measuring unit is arranged between the gate valve and the pull chamber, and is composed of a tubular portion having an opening formed on the outer peripheral surface and a material that transmits radiant heat, and the opening of the tubular portion. A heat guiding portion that is arranged inside the tubular portion and guides radiant heat radiated from the surface of the silicon melt to the window portion, and is arranged outside the tubular portion. It is characterized by including a radiation thermometer that measures the radiant heat guided from the heat guide portion via the window portion.

本発明によれば、メインチャンバおよびプルチャンバの間に融液表面温度測定部が配置される。したがって、前述した特許文献1に記載の技術と比較して放射温度計の測定距離を短くでき、計測スポット径を小さくしてシリコン融液表面の温度を正確に測定できる。そして、この温度測定結果に基づいて、シリコン単結晶の品質を高精度に制御できる。 According to the present invention, a melt surface temperature measuring unit is arranged between the main chamber and the pull chamber. Therefore, as compared with the technique described in Patent Document 1 described above, the measurement distance of the radiation thermometer can be shortened, the measurement spot diameter can be reduced, and the temperature of the silicon melt surface can be accurately measured. Then, based on this temperature measurement result, the quality of the silicon single crystal can be controlled with high accuracy.

本発明のシリコン単結晶製造装置において、前記導熱部は、前記筒状部に挿通され、当該挿通方向に移動自在な支持部材によって支持されていることが好ましい。 In the silicon single crystal manufacturing apparatus of the present invention, it is preferable that the heat conductive portion is inserted into the tubular portion and supported by a support member that is movable in the insertion direction.

本発明によれば、支持部材をその挿通方向に進退させることにより、導熱部を筒状部の径方向に移動させることができる。よって、シリコン融液表面上で計測スポットを移動させることにより、坩堝径方向の温度分布を容易に測定できる。また、径方向で任意の位置の温度を測定できる。 According to the present invention, the heat guiding portion can be moved in the radial direction of the tubular portion by advancing and retreating the support member in the insertion direction thereof. Therefore, by moving the measurement spot on the surface of the silicon melt, the temperature distribution in the crucible radial direction can be easily measured. In addition, the temperature at any position can be measured in the radial direction.

本発明のシリコン単結晶製造装置において、前記筒状部の外周面には、当該筒状部の外周方向に沿って複数の開口が形成され、前記複数の開口は、前記窓部、前記導熱部および前記放射温度計が着脱自在に配置可能に構成され、前記窓部が設けられる開口以外の開口は、蓋部によって塞がれていることが好ましい。 In the silicon single crystal manufacturing apparatus of the present invention, a plurality of openings are formed on the outer peripheral surface of the tubular portion along the outer peripheral direction of the tubular portion, and the plurality of openings are the window portion and the heat guiding portion. It is preferable that the radiation thermometer is detachably arranged and the openings other than the opening provided with the window portion are closed by the lid portion.

本発明によれば、窓部、導熱部および放射温度計を複数の開口のいずれかに移動させることができ、シリコン融液表面の所望の位置の温度を測定できる。また、窓部が設けられない開口が蓋部で塞がれることにより、メインチャンバ内の放射熱が外部に漏れることを抑制でき、シリコン融液表面の温度測定を一層正確に行うことができる。 According to the present invention, the window portion, the heat guide portion and the radiation thermometer can be moved to any of a plurality of openings, and the temperature at a desired position on the surface of the silicon melt can be measured. Further, since the opening to which the window portion is not provided is closed by the lid portion, the radiant heat in the main chamber can be suppressed from leaking to the outside, and the temperature of the silicon melt surface can be measured more accurately.

本発明の一実施形態に係るシリコン単結晶製造装置の概略構成を示す縦断面図。The vertical sectional view which shows the schematic structure of the silicon single crystal manufacturing apparatus which concerns on one Embodiment of this invention. 前記シリコン単結晶製造装置を構成するゲートバルブの横断面図。The cross-sectional view of the gate valve constituting the silicon single crystal manufacturing apparatus. 前記シリコン単結晶製造装置を構成する融液表面温度測定部の縦断面図。The vertical sectional view of the melt surface temperature measuring part constituting the silicon single crystal manufacturing apparatus. 前記融液表面温度測定部の横断面図。The cross-sectional view of the melt surface temperature measuring part.

[実施形態]
以下、本発明の一実施形態について説明する。
〔シリコン単結晶製造装置の構成〕
図1に示すように、シリコン単結晶製造装置1は、MCZ(Magnetic field applied Czochralski)法に用いられる装置である。シリコン単結晶製造装置1は、メインチャンバ2と、ゲートバルブ3と、融液表面温度測定部4と、プルチャンバ5とを備えている。
[Embodiment]
Hereinafter, an embodiment of the present invention will be described.
[Structure of silicon single crystal manufacturing equipment]
As shown in FIG. 1, the silicon single crystal manufacturing apparatus 1 is an apparatus used in the MCZ (Magnetic field applied Czochralski) method. The silicon single crystal manufacturing apparatus 1 includes a main chamber 2, a gate valve 3, a melt surface temperature measuring unit 4, and a pull chamber 5.

メインチャンバ2の内部には、坩堝21、ヒータ22、熱遮蔽体23、冷却筒24などが配置されている。坩堝21には、シリコン融液Mが収容される。メインチャンバ2の外部には、一対の電磁コイル25が設けられている。 Inside the main chamber 2, a crucible 21, a heater 22, a heat shield 23, a cooling cylinder 24, and the like are arranged. The silicon melt M is housed in the crucible 21. A pair of electromagnetic coils 25 are provided outside the main chamber 2.

ゲートバルブ3は、メインチャンバ2の上端に設けられている。ゲートバルブ3は、図2にも示すように、弁箱31と、弁体32と、旋回軸33と、連結部材34と、旋回駆動部35とを備えている。
弁箱31は、内部に弁体32を収容可能に構成されている。弁箱31は、メインチャンバ2の上端に着脱自在に固定される。弁箱31は、メインチャンバ2への固定時に上側に位置する上開口311と、下側に位置する下開口312とを備えている。
弁体32は、下開口312を閉塞可能な円板状に形成されている。旋回軸33は、その一部が弁箱31内に位置するように、弁箱31に回転自在に設けられている。
連結部材34は、弁体32の上部と旋回軸33とを連結する。旋回駆動部35は、弁箱31の外部に配置されている。
旋回駆動部35は、旋回軸33における弁箱31外に位置する部分に連結され、当該旋回軸33を回転させることで、図2に実線で示すようにメインチャンバ2の上部を閉塞する閉塞位置と、二点鎖線で示すようにメインチャンバ2の上部を開放する開放位置との間で、弁体32を旋回させる。
The gate valve 3 is provided at the upper end of the main chamber 2. As shown in FIG. 2, the gate valve 3 includes a valve box 31, a valve body 32, a swivel shaft 33, a connecting member 34, and a swivel drive unit 35.
The valve box 31 is configured to accommodate the valve body 32 inside. The valve box 31 is detachably fixed to the upper end of the main chamber 2. The valve box 31 includes an upper opening 311 located on the upper side and a lower opening 312 located on the lower side when fixed to the main chamber 2.
The valve body 32 is formed in a disk shape capable of closing the lower opening 312. The swivel shaft 33 is rotatably provided in the valve box 31 so that a part thereof is located in the valve box 31.
The connecting member 34 connects the upper portion of the valve body 32 and the swivel shaft 33. The swivel drive unit 35 is arranged outside the valve box 31.
The swivel drive unit 35 is connected to a portion of the swivel shaft 33 located outside the valve box 31, and by rotating the swivel shaft 33, a closed position that closes the upper part of the main chamber 2 as shown by a solid line in FIG. And the open position where the upper part of the main chamber 2 is opened as shown by the alternate long and short dash line, the valve body 32 is swiveled.

融液表面温度測定部4は、図1,3,4に示すように、環状円板部41と、筒状部42と、測定ユニット43と、蓋部44とを備えている。 As shown in FIGS. 1, 3 and 4, the melt surface temperature measuring unit 4 includes an annular disk portion 41, a tubular portion 42, a measuring unit 43, and a lid portion 44.

環状円板部41は、筒状部42の上端に設けられており、筒状部42は、ゲートバルブ3の上端に設けられている。環状円板部41は、ステンレスなどの金属で構成されている。環状円板部41は、外形が円形で、その下端内形と同形の開口が形成されている。 The annular disk portion 41 is provided at the upper end of the tubular portion 42, and the tubular portion 42 is provided at the upper end of the gate valve 3. The annular disk portion 41 is made of a metal such as stainless steel. The annular disk portion 41 has a circular outer shape, and has an opening having the same shape as the inner shape of the lower end thereof.

筒状部42は、平面視の外形が16角形で、内形が円形の筒状に形成されている。筒状部42は、例えば環状円板部41と同じ材料で構成されている。筒状部42における平面視で互いに隣り合わない8個の直線部分には、当該筒状部42の内外を貫通する開口421がそれぞれ設けられている。 The tubular portion 42 has a hexadecagonal outer shape in a plan view and a circular inner shape. The tubular portion 42 is made of the same material as, for example, the annular disk portion 41. Eight straight portions of the tubular portion 42 that are not adjacent to each other in a plan view are provided with openings 421 that penetrate the inside and outside of the tubular portion 42.

測定ユニット43は、閉塞部材431と、載置台432と、窓部433と、導熱部としてのミラー434と、支持部材435と、移動駆動部436と、放射温度計437とを備えている。
筒状部42の開口421には、当該開口を閉塞する閉塞部材431が設けられている。閉塞部材431は、8個の開口421のうちいずれか1つ、若しくは複数箇所に、着脱自在に固定される。閉塞部材431は、例えば筒状部42と同じ材料で構成されている。閉塞部材431には、上下に並ぶ2つの貫通孔が設けられている。下側の貫通孔には、ガイド筒部材438が設けられている。ガイド筒部材438は、その中心軸が水平面と平行になるように設けられている。
載置台432は、板状に形成され、筒状部42の下部から外側に延びるように固定されている。
窓部433は、シリコン融液Mの放射熱Hを透過する材料から構成されている。例えば、窓部433は、石英で構成されている。窓部433は、閉塞部材431の上側の貫通孔を塞ぐように固定されている。
The measuring unit 43 includes a closing member 431, a mounting table 432, a window portion 433, a mirror 434 as a heat guiding portion, a support member 435, a moving drive portion 436, and a radiation thermometer 437.
The opening 421 of the tubular portion 42 is provided with a closing member 431 that closes the opening. The closing member 431 is detachably fixed to any one or a plurality of of the eight openings 421. The closing member 431 is made of, for example, the same material as the tubular portion 42. The closing member 431 is provided with two through holes arranged one above the other. A guide cylinder member 438 is provided in the lower through hole. The guide cylinder member 438 is provided so that its central axis is parallel to the horizontal plane.
The mounting table 432 is formed in a plate shape and is fixed so as to extend outward from the lower part of the tubular portion 42.
The window portion 433 is made of a material that transmits the radiant heat H of the silicon melt M. For example, the window portion 433 is made of quartz. The window portion 433 is fixed so as to close the through hole on the upper side of the closing member 431.

ミラー434は、放射熱Hを反射する材料から構成されている。ミラー434は、例えばシリコンミラーで構成されている。
支持部材435は、棒状部435Aと、ミラー保持部435Bとを備えている。棒状部435Aは、外形がガイド筒部材438の内形と同じ形状に形成され、ガイド筒部材438に摺動自在に挿通されている。ミラー保持部435Bは、棒状部435Aにおける筒状部42内側の端部に設けられている。ミラー保持部435Bには、水平面とミラー434の反射面434Aとのなす角度が45°となるように、ミラー434が固定されている。
The mirror 434 is made of a material that reflects radiant heat H. The mirror 434 is composed of, for example, a silicon mirror.
The support member 435 includes a rod-shaped portion 435A and a mirror holding portion 435B. The rod-shaped portion 435A has an outer shape formed in the same shape as the inner shape of the guide cylinder member 438, and is slidably inserted into the guide cylinder member 438. The mirror holding portion 435B is provided at the inner end portion of the cylindrical portion 42 in the rod-shaped portion 435A. The mirror 434 is fixed to the mirror holding portion 435B so that the angle formed by the horizontal plane and the reflecting surface 434A of the mirror 434 is 45 °.

移動駆動部436は、載置台432上における平面視で支持部材435の棒状部435Aと重ならない位置に固定されている。移動駆動部436は、連結部材436Aを介して棒状部435Aにおける筒状部42外側の端部に固定されている。移動駆動部436は、棒状部435Aを介してミラー434を移動させる。
放射温度計437は、筒状部42外側の載置台432上における平面視で移動駆動部436と重ならない位置に固定されている。放射温度計437は、ミラー434の反射面434Aで反射された放射熱Hを測定する。
The moving drive unit 436 is fixed on the mounting table 432 at a position that does not overlap with the rod-shaped portion 435A of the support member 435 in a plan view. The moving drive unit 436 is fixed to the outer end of the cylindrical portion 42 in the rod-shaped portion 435A via the connecting member 436A. The movement drive unit 436 moves the mirror 434 via the rod-shaped portion 435A.
The radiation thermometer 437 is fixed at a position on the mounting table 432 on the outside of the tubular portion 42 so as not to overlap with the moving drive portion 436 in a plan view. The radiation thermometer 437 measures the radiant heat H reflected by the reflecting surface 434A of the mirror 434.

蓋部44は、筒状部42と同じ材料で構成されている。蓋部44は、閉塞部材431と同形状であるが、閉塞部材431のような貫通孔を有さない。蓋部44は、筒状部42の8個の開口421のうち、測定ユニット43が設けられていない開口421に着脱自在に固定され、開口421を閉塞する。 The lid portion 44 is made of the same material as the tubular portion 42. The lid portion 44 has the same shape as the closing member 431, but does not have a through hole like the closing member 431. The lid portion 44 is detachably fixed to the opening 421 in which the measuring unit 43 is not provided among the eight openings 421 of the tubular portion 42, and closes the opening 421.

プルチャンバ5は、融液表面温度測定部4の環状円板部41の上部に設けられている。プルチャンバ5には、メインチャンバ2内にArガスなどの不活性ガスを導入するための図示しない導入部や、シリコン単結晶Sを引き上げるケーブル51を昇降および回転させる図示しない引き上げ駆動部などが設けられている。 The pull chamber 5 is provided above the annular disk portion 41 of the melt surface temperature measuring portion 4. The pull chamber 5 is provided with an introduction section (not shown) for introducing an inert gas such as Ar gas into the main chamber 2, a pull-up drive section (not shown) for raising / lowering and rotating the cable 51 for pulling up the silicon single crystal S, and the like. ing.

〔融液表面温度測定部を用いたシリコン単結晶の製造方法〕
次に、融液表面温度測定部4を用いたシリコン単結晶Sの製造方法について説明する。なお、本実施形態では、外周研削後の直胴部S2の直径が300mmのシリコン単結晶Sを製造する場合を例示するが、200mm、450mmあるいは他の大きさのシリコン単結晶Sを製造してもよい。また、抵抗率調整用のドーパントをシリコン融液Mに添加してもよいし、しなくてもよい。
[Manufacturing method of silicon single crystal using a melt surface temperature measuring unit]
Next, a method for manufacturing the silicon single crystal S using the melt surface temperature measuring unit 4 will be described. In this embodiment, a case where a silicon single crystal S having a diameter of a straight body portion S2 after peripheral grinding is manufactured is illustrated, but a silicon single crystal S having a diameter of 200 mm, 450 mm, or another size is manufactured. May be good. Further, a dopant for adjusting the resistivity may or may not be added to the silicon melt M.

まず、ミラー434が図1における実線で示す位置に存在している状態で、図示しない制御部が、メインチャンバ2内を減圧下の不活性ガス雰囲気に維持し、坩堝21を回転させるとともに、坩堝21に充填した多結晶シリコンなどの固形原料をヒータ22の加熱により溶融させ、シリコン融液Mを生成する。
このシリコン融液Mの生成後、まず、放射温度計437は、シリコン融液M表面における第1の測定点P1の温度を測定する。その後、制御部が移動駆動部436を駆動させ、ミラー434を図1に二点鎖線で示す2箇所の位置に順次移動させつつ、放射温度計437が、シリコン融液M表面における第2の測定点P2の温度と第3の測定点P3の温度とを測定する。このとき、第2の測定点P2および第3の測定点P3のうち一方のみの温度を測定してもよい。また、第1の測定点P1と第2の測定点P2との間や、第2の測定点P2と第3の測定点P3との間、あるいは第3の測定点P3よりも図1における右側の任意の位置の温度を測定してもよい。
そして、制御部は、第1~第3の測定点P1~P3の測定結果に基づいて、シリコン融液M表面の温度分布を検出する。制御部は、所望の温度分布になるようにヒータ22を制御してから、再度、第1~第3の測定点P1~P3の温度を測定し、所望の温度分布になるまで、ヒータ22の制御と第1~第3の測定点P1~P3の温度測定とを繰り返す。
First, with the mirror 434 present at the position shown by the solid line in FIG. 1, a control unit (not shown) maintains the inside of the main chamber 2 in an inert gas atmosphere under reduced pressure, rotates the crucible 21, and rotates the crucible. A solid raw material such as polycrystalline silicon filled in 21 is melted by heating the heater 22 to generate a silicon melt M.
After the generation of the silicon melt M, first, the radiation thermometer 437 measures the temperature of the first measurement point P1 on the surface of the silicon melt M. After that, the control unit drives the moving drive unit 436, and the mirror 434 is sequentially moved to the two positions shown by the two-dot chain line in FIG. 1, while the radiation thermometer 437 makes a second measurement on the surface of the silicon melt M. The temperature of the point P2 and the temperature of the third measurement point P3 are measured. At this time, the temperature of only one of the second measurement point P2 and the third measurement point P3 may be measured. Further, between the first measurement point P1 and the second measurement point P2, between the second measurement point P2 and the third measurement point P3, or on the right side of the third measurement point P3 in FIG. The temperature at any position of may be measured.
Then, the control unit detects the temperature distribution on the surface of the silicon melt M based on the measurement results of the first to third measurement points P1 to P3. The control unit controls the heater 22 so as to have a desired temperature distribution, then measures the temperatures of the first to third measurement points P1 to P3 again, and keeps the heater 22 until the desired temperature distribution is reached. The control and the temperature measurement of the first to third measurement points P1 to P3 are repeated.

制御部は、シリコン融液M表面が所望の温度分布になると、電磁コイル25を制御して、シリコン融液Mに磁場を印加する。その後、制御部は、ミラー434が図1の実線で示す位置に存在している状態で、磁場の印加を継続したまま、肩部S1、直胴部S2、図示しないテール部を有するシリコン単結晶Sを引き上げる。
この引き上げの際、放射温度計437が第1の測定点P1の温度を所定のタイミングで測定する。制御部は、この温度測定結果に基づいて、シリコン融液Mの温度が肩部S1、直胴部S2、テール部の形成に適した温度になるように、ヒータ22を制御する。
When the surface of the silicon melt M has a desired temperature distribution, the control unit controls the electromagnetic coil 25 to apply a magnetic field to the silicon melt M. After that, the control unit is a silicon single crystal having a shoulder portion S1, a straight body portion S2, and a tail portion (not shown) while the mirror 434 is present at the position shown by the solid line in FIG. Raise S.
At the time of this pulling up, the radiation thermometer 437 measures the temperature of the first measurement point P1 at a predetermined timing. Based on this temperature measurement result, the control unit controls the heater 22 so that the temperature of the silicon melt M becomes a temperature suitable for forming the shoulder portion S1, the straight body portion S2, and the tail portion.

制御部は、シリコン単結晶Sがシリコン融液Mから切り離されると、シリコン融液Mへの磁場の印加を停止し、シリコン単結晶Sを冷却するようにヒータ22を制御する。制御部は、シリコン単結晶S全体がプルチャンバ5内に収容されたら、ゲートバルブ3の旋回駆動部35を制御して弁体32を閉塞位置に移動させる。その後、シリコン単結晶Sをプルチャンバ5から取り出す。 When the silicon single crystal S is separated from the silicon melt M, the control unit stops applying the magnetic field to the silicon melt M and controls the heater 22 so as to cool the silicon single crystal S. When the entire silicon single crystal S is housed in the pull chamber 5, the control unit controls the swivel drive unit 35 of the gate valve 3 to move the valve body 32 to the closed position. Then, the silicon single crystal S is taken out from the pull chamber 5.

〔実施形態の作用効果〕
上記実施形態によれば、メインチャンバ2とプルチャンバ5との間に融液表面温度測定部4を配置しているため、放射温度計437の測定距離を短くできる。したがって、計測スポット径を小さくして、シリコン融液表面の温度測定のバラツキを小さくすることができ、正確な温度測定結果に基づきシリコン単結晶Sの品質を高精度に制御できる。
計測スポット径が小さくなるので、計測位置の制限となる計測視野の干渉による視野欠けを抑制でき、坩堝21の径方向の測定位置を拡大できる。したがって、より広い範囲の温度分布を測定できる。
さらに、筒状部42に複数の開口421を形成しているため、測定したいシリコン融液M表面の位置に応じて、例えば図4に二点鎖線で示すように、測定ユニット43の配置位置変更、もしくは追加ができる。
また、測定ユニット43をユニット構造にしたので、測定位置変更が容易になる。
[Action and effect of the embodiment]
According to the above embodiment, since the melt surface temperature measuring unit 4 is arranged between the main chamber 2 and the pull chamber 5, the measuring distance of the radiation thermometer 437 can be shortened. Therefore, the diameter of the measurement spot can be reduced to reduce the variation in temperature measurement on the surface of the silicon melt, and the quality of the silicon single crystal S can be controlled with high accuracy based on the accurate temperature measurement result.
Since the diameter of the measurement spot becomes smaller, it is possible to suppress the field loss due to the interference of the measurement field of view, which limits the measurement position, and it is possible to expand the measurement position in the radial direction of the crucible 21. Therefore, a wider range of temperature distributions can be measured.
Further, since a plurality of openings 421 are formed in the tubular portion 42, the arrangement position of the measurement unit 43 is changed according to the position of the surface of the silicon melt M to be measured, for example, as shown by the alternate long and short dash line in FIG. Or can be added.
Further, since the measurement unit 43 has a unit structure, it is easy to change the measurement position.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
[Modification example]
The present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the gist of the present invention.

例えば、筒状部42に開口421を1個だけ設けてもよい。この場合、1個の開口421に測定ユニット43を着脱不能に固定してもよいし、着脱可能に固定してもよい。
ミラー434を移動不能に閉塞部材431または窓部433に固定してもよい。
複数の測定ユニット43を同時に複数の開口421のそれぞれに配置して、各放射温度計437で温度測定を行ってもよい。
環状円板部41を設けずに、筒状部42上にプルチャンバ5を直接固定してもよい。
上記実施形態では、シリコン融液Mへの磁場印加前、肩部S1形成時、直胴部S2形成時、テール部形成時の全てのタイミングで温度測定を行ったが、1つ以上3つ以下のタイミングで行ってもよい。シリコン融液Mへの磁場印加前に、1つの測定点のみの温度を測定してもよい。
電磁コイル25を有さない、いわゆるCZ法によるシリコン単結晶Sの製造に本発明を適用してもよい。
For example, only one opening 421 may be provided in the cylindrical portion 42. In this case, the measuring unit 43 may be fixed to one opening 421 in a detachable manner, or may be fixed in a detachable manner.
The mirror 434 may be immovably fixed to the closing member 431 or the window portion 433.
A plurality of measuring units 43 may be simultaneously arranged in each of the plurality of openings 421, and the temperature may be measured by each radiation thermometer 437.
The pull chamber 5 may be directly fixed on the tubular portion 42 without providing the annular disk portion 41.
In the above embodiment, the temperature was measured at all timings before the magnetic field was applied to the silicon melt M, when the shoulder portion S1 was formed, when the straight body portion S2 was formed, and when the tail portion was formed, but one or more and three or less were measured. It may be done at the timing of. The temperature of only one measurement point may be measured before the magnetic field is applied to the silicon melt M.
The present invention may be applied to the production of a silicon single crystal S by the so-called CZ method, which does not have an electromagnetic coil 25.

1…シリコン単結晶製造装置、2…メインチャンバ、3…ゲートバルブ、4…融液表面温度測定部、5…プルチャンバ、21…坩堝、42…筒状部、421…開口、433…窓部、434…ミラー(導熱部)、435…支持部材、437…放射温度計、H…放射熱、M…シリコン融液、S…シリコン単結晶。 1 ... Silicon single crystal manufacturing equipment, 2 ... Main chamber, 3 ... Gate valve, 4 ... Melt surface temperature measuring unit, 5 ... Pull chamber, 21 ... Radiation, 42 ... Cylindrical part, 421 ... Opening, 433 ... Window part, 434 ... Mirror (heat conducting part), 435 ... Support member, 437 ... Radiation thermometer, H ... Radiant heat, M ... Silicon melt, S ... Silicon single crystal.

Claims (3)

メインチャンバと、
ゲートバルブと、
プルチャンバと、
前記メインチャンバに配置された坩堝内のシリコン融液表面の温度を測定する融液表面温度測定部とを備え、
前記融液表面温度測定部は、
前記ゲートバルブおよび前記プルチャンバの間に配置され、外周面に開口が形成された筒状部と、
放射熱を透過する材料から構成され、前記筒状部の開口に設けられる窓部と、
前記筒状部の内側に配置され、前記シリコン融液表面から放射された放射熱を、前記窓部に導く導熱部と、
前記筒状部の外側に配置され、前記窓部を介して前記導熱部から導かれた放射熱を測定する放射温度計とを備えていることを特徴とするシリコン単結晶製造装置。
With the main chamber
With a gate valve
With a pull chamber,
It is provided with a melt surface temperature measuring unit for measuring the temperature of the silicon melt surface in the crucible arranged in the main chamber.
The melt surface temperature measuring unit is
A cylindrical portion arranged between the gate valve and the pull chamber and having an opening formed on the outer peripheral surface,
A window portion made of a material that transmits radiant heat and provided at the opening of the cylindrical portion, and a window portion.
A heat guiding portion that is arranged inside the tubular portion and guides radiant heat radiated from the surface of the silicon melt to the window portion.
A silicon single crystal manufacturing apparatus, which is arranged outside the tubular portion and includes a radiation thermometer for measuring radiant heat guided from the heat guide portion through the window portion.
請求項1に記載のシリコン単結晶製造装置において、
前記導熱部は、前記筒状部に挿通され、当該挿通方向に移動自在な支持部材によって支持されていることを特徴とするシリコン単結晶製造装置。
In the silicon single crystal manufacturing apparatus according to claim 1,
A silicon single crystal manufacturing apparatus, wherein the heat conducting portion is inserted through the tubular portion and supported by a support member that is movable in the insertion direction.
請求項1または請求項2に記載のシリコン単結晶製造装置において、
前記筒状部の外周面には、当該筒状部の外周方向に沿って複数の開口が形成され、
前記複数の開口は、前記窓部、前記導熱部および前記放射温度計が着脱自在に配置可能に構成され、
前記窓部が設けられる開口以外の開口は、蓋部によって塞がれていることを特徴とするシリコン単結晶製造装置。
In the silicon single crystal manufacturing apparatus according to claim 1 or 2.
A plurality of openings are formed on the outer peripheral surface of the tubular portion along the outer peripheral direction of the tubular portion.
The plurality of openings are configured so that the window portion, the heat guide portion, and the radiation thermometer can be detachably arranged.
A silicon single crystal manufacturing apparatus characterized in that an opening other than the opening provided with the window portion is closed by a lid portion.
JP2019037335A 2019-03-01 2019-03-01 Silicon single crystal manufacturing equipment Active JP7006636B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019037335A JP7006636B2 (en) 2019-03-01 2019-03-01 Silicon single crystal manufacturing equipment
CN202010129767.XA CN111636097A (en) 2019-03-01 2020-02-28 Silicon single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037335A JP7006636B2 (en) 2019-03-01 2019-03-01 Silicon single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2020138892A JP2020138892A (en) 2020-09-03
JP7006636B2 true JP7006636B2 (en) 2022-01-24

Family

ID=72279828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037335A Active JP7006636B2 (en) 2019-03-01 2019-03-01 Silicon single crystal manufacturing equipment

Country Status (2)

Country Link
JP (1) JP7006636B2 (en)
CN (1) CN111636097A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210820A (en) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 Crystal production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083859A1 (en) 2000-05-01 2001-11-08 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level
JP2002104896A (en) 2000-09-27 2002-04-10 Shin Etsu Handotai Co Ltd Method of growing single crystal and growing device
JP2008531444A (en) 2004-02-27 2008-08-14 ソーライクス・インコーポレイテッド A system for continuous growth in single crystal silicon.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825833B2 (en) * 1990-04-27 1996-03-13 東芝セラミックス株式会社 Method for producing silicon single crystal
JP3109950B2 (en) * 1993-11-01 2000-11-20 コマツ電子金属株式会社 Method for growing semiconductor single crystal
CN201195765Y (en) * 2008-05-15 2009-02-18 北京京运通科技有限公司 Flexible-axle monocrystalline silicon stove
CN104313682A (en) * 2014-11-17 2015-01-28 天津市环欧半导体材料技术有限公司 Heat field structure for fast increasing growth speed of czochralski silicon single crystal
CN204237887U (en) * 2014-11-26 2015-04-01 中国电子科技集团公司第十三研究所 Situ high pressure synthesizes multi-functional crystal growth system
JP6583142B2 (en) * 2016-05-25 2019-10-02 株式会社Sumco Method and apparatus for producing silicon single crystal
JP6452098B2 (en) * 2017-03-13 2019-01-16 Ftb研究所株式会社 Large diameter CZ single crystal growth apparatus and growth method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083859A1 (en) 2000-05-01 2001-11-08 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level
JP2002104896A (en) 2000-09-27 2002-04-10 Shin Etsu Handotai Co Ltd Method of growing single crystal and growing device
JP2008531444A (en) 2004-02-27 2008-08-14 ソーライクス・インコーポレイテッド A system for continuous growth in single crystal silicon.

Also Published As

Publication number Publication date
CN111636097A (en) 2020-09-08
JP2020138892A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
US9587325B2 (en) Method for calculating a height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
US9777395B2 (en) Silicon single crystal growing device and method of growing the same
CN112746312B (en) Growth method of low-stress crystal
JP7006636B2 (en) Silicon single crystal manufacturing equipment
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
KR102392494B1 (en) A method for estimating a convection pattern of a silicon melt, a method for estimating an oxygen concentration of a silicon single crystal, a method for manufacturing a silicon single crystal, and an apparatus for pulling a silicon single crystal
US4402786A (en) Adjustable heat shield assembly
JP6367469B2 (en) Seed chuck and ingot growth apparatus including the same
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP6981371B2 (en) Method for manufacturing silicon single crystal
JP6888568B2 (en) Method for manufacturing silicon single crystal
KR101759002B1 (en) Single crystal ingot growing apparatus
JP6365674B2 (en) Method for producing single crystal
KR101977365B1 (en) The solution growth reactor for single crystal growth including that function for opening and closing the head of hot-zone
US8821634B2 (en) High temperature furnace insulation
KR101528063B1 (en) Apparatus for measuring the diameter of ingot, ingot growing apparatus having the same and method for ingot growing
JP7061911B2 (en) Single crystal manufacturing method and single crystal manufacturing equipment
JP3860404B2 (en) Heat treatment equipment
JP2001278695A (en) Cz method pulling apparatus for single crystal
KR20200097059A (en) apparatus for growing monocrystalline silicon ingots
JP2018002517A (en) Seed crystal holding jig, and crystal growth apparatus using the jig
KR20000057021A (en) Single crystal conversion control
JPH05310493A (en) Apparatus for producing single crystal
CN107354505A (en) A kind of kyropoulos sapphire single crystal growing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7006636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150