JP6452098B2 - Large diameter CZ single crystal growth apparatus and growth method thereof - Google Patents

Large diameter CZ single crystal growth apparatus and growth method thereof Download PDF

Info

Publication number
JP6452098B2
JP6452098B2 JP2017069022A JP2017069022A JP6452098B2 JP 6452098 B2 JP6452098 B2 JP 6452098B2 JP 2017069022 A JP2017069022 A JP 2017069022A JP 2017069022 A JP2017069022 A JP 2017069022A JP 6452098 B2 JP6452098 B2 JP 6452098B2
Authority
JP
Japan
Prior art keywords
temperature
crucible
crystal growth
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017069022A
Other languages
Japanese (ja)
Other versions
JP2018150219A (en
Inventor
佑吉 堀岡
佑吉 堀岡
航三 藤原
航三 藤原
福田 哲生
哲生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tohoku University NUC
Priority to JP2017069022A priority Critical patent/JP6452098B2/en
Priority to CN201810203214.7A priority patent/CN108570706B/en
Publication of JP2018150219A publication Critical patent/JP2018150219A/en
Application granted granted Critical
Publication of JP6452098B2 publication Critical patent/JP6452098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶の成長装置並びに単結晶成長方法に関するものである。  The present invention relates to a single crystal growth apparatus and a single crystal growth method.

単結晶の成長装置並びに単結晶成長方法において、半導体シリコンウエーハの材料や、シリコン単結晶型太陽電池の材料ウエーハとなる材料単結晶の製造には、一般的にCZ法が用いられてきた。  In the single crystal growth apparatus and the single crystal growth method, the CZ method has been generally used for manufacturing a semiconductor single wafer material and a single crystal material used as a single wafer for a single crystal silicon solar cell.

しかし、使用するルツボの直径と結晶の直径の関係をみると、Φ200mm単結晶ではルツボの内径が600mm、Φ300mm単結晶では内径1000mm程度以上の内径のルツボを使用している。つまり、ルツボ径の3分の1程度の直径の単結晶を引上げるのが一般的であった。
従って、単結晶の口径が大きくなると口径の大きなルツボが入る炉が必要となる。ルツボが大きくなるとグラファイトルツボ、ヒーター、保温筒すべてが大きくなり、単結晶製造装置が大型化し、大型装置の導入というコストアップ要因が発生する欠点があった。
However, looking at the relationship between the diameter of the crucible used and the diameter of the crystal, a crucible having an inner diameter of about 600 mm or more is used for a Φ200 mm single crystal and an inner diameter of the crucible is about 600 mm for a Φ300 mm single crystal. That is, it was common to pull up a single crystal having a diameter of about one third of the crucible diameter.
Therefore, when the diameter of the single crystal is increased, a furnace in which a crucible having a large diameter is contained is required. When the crucible becomes large, the graphite crucible, the heater, and the heat insulating cylinder all increase, and there is a drawback that the single crystal manufacturing apparatus becomes large and the cost increases due to the introduction of a large apparatus.

また、小型ルツボで大型結晶を成長させると、ルツボ壁からの結晶成長が起きやすく、この場合、成長中の結晶と逆転するルツボからの結晶が固化し繋がることにより、結晶の落下、それによる融液漏れの原因となり、水素爆発などの大事故の可能性を有していた。  In addition, when a large crystal is grown with a small crucible, crystal growth from the crucible wall tends to occur. In this case, the crystal from the crucible that is reverse to the growing crystal is solidified and connected, so that the crystal falls and melts. This could cause liquid leakage and could cause a major accident such as a hydrogen explosion.

特開2000−281481JP2000-281814 特開2008−254946JP 2008-254946 A

堀岡佑吉著「単結晶製造プロセスにおける計装制御の実際 工業技術社「計装」1985年3月号別冊P1−P9HORIOKA Yukichi, “Practical Instrumentation Control in Single-Crystal Manufacturing Process” Kogyo Kogyosha “Instrumentation” March 1985 issue, separate pages

特許文献1では、大型結晶の成長のため、小口径用と大口径用の2つの直径計測カメラを用いていた。しかしながら、大型結晶の成長では最も大きな課題となるルツボ壁からの結晶成長について何も対策されていない。一方、温度センサの位置については、特許文献2のように、ルツボ底の温度を測るまたは、非特許文献1のように、ヒーター外壁温度の測定や、2色温度計による融液表面の温度を計測するなどして結晶成長の制御を行っていた。このように、ルツボ径の3分の1程度の結晶成長を行うのであれば、上記対策で十分であった。それでも、単結晶とルツボ壁の結晶が繋がり、結晶の落下事故は、頻度は少ないとしても生じることがあり、その場合の炉内部品の損傷による損害は大きかった。
本発明が解決しようとする問題点は、ルツボ径で制約されてきた成長する結晶の直径を大口径とする点にある。従来、ルツボ径の3分の1程度の径の単結晶を成長するのが一般的であった。例えば、半導体用単結晶を成長させるCZ炉において、直径200mmの単結晶の成長には内径600mmのルツボを使用してきた。直径300mmの単結晶の成長の場合には内径900mmのルツボを使用してきた。従って内径600mmのルツボからたとえば半導体プロセス装置のシリコンパーツ用の直径380mmの単結晶を成長させることは無かったため、大きな直径の単結晶成長が必要になるとルツボを大型化、従って炉内部品が大型化し、単結晶成長炉の設備全体が大型化することになり、結晶の大型化はすぐに設備投資が必要になり、コスト上昇が伴っていた。
In Patent Document 1, two diameter measuring cameras for a small diameter and a large diameter are used for growing a large crystal. However, no measures are taken for crystal growth from the crucible wall, which is the biggest problem in the growth of large crystals. On the other hand, with respect to the position of the temperature sensor, the temperature at the bottom of the crucible is measured as in Patent Document 2, or the temperature of the melt surface is measured by a heater outer wall temperature or a two-color thermometer as in Non-Patent Document 1. The crystal growth was controlled by measuring. In this way, the above measures are sufficient if crystal growth of about one third of the crucible diameter is performed. Even so, the single crystal and the crucible wall crystal were connected, and crystal dropping accidents could occur even if infrequent, and the damage caused by damage to the in-furnace parts in that case was significant.
The problem to be solved by the present invention is that the diameter of the growing crystal, which has been restricted by the crucible diameter, is made large. Conventionally, it has been common to grow a single crystal having a diameter of about one third of the diameter of the crucible. For example, in a CZ furnace for growing a semiconductor single crystal, a crucible having an inner diameter of 600 mm has been used to grow a single crystal having a diameter of 200 mm. In the case of growing a single crystal having a diameter of 300 mm, a crucible having an inner diameter of 900 mm has been used. Therefore, since there was no growth of a single crystal having a diameter of 380 mm for a silicon part of a semiconductor process device, for example, from a crucible having an inner diameter of 600 mm, the crucible was increased in size when a large-diameter single crystal was required, and thus the in-furnace part was increased in size. As a result, the entire equipment of the single crystal growth furnace was increased in size, and the increase in the size of the crystal required immediate capital investment, which was accompanied by an increase in cost.

前述の問題点を解決するために本発明は、ルツボと融液の境界を監視する温度センサを設け、前記の境界について常時温度監視を行うことで、ルツボからの結晶成長を監視し、結晶成長時においてルツボ壁に結晶核が発生しない温度の維持をすることができる一方、万が一ここに結晶成長を検知した場合でも、昇温によるルツボ壁からの結晶成長を抑え、又は核の溶解ができるため、大口径結晶の安全な結晶成長が行える。すなわち、同一ルツボから大口径結晶が安全に製造できるため、著しくコストの低減ができる利点がある。本発明によれば、ルツボ内径の80%程度の直径の単結晶が得られる。  In order to solve the above-mentioned problems, the present invention provides a temperature sensor for monitoring the boundary between the crucible and the melt, and constantly monitors the temperature of the boundary to monitor the crystal growth from the crucible. While it is possible to maintain a temperature at which no crystal nuclei are generated on the crucible wall at any time, even if crystal growth is detected here, crystal growth from the crucible wall due to temperature rise can be suppressed or nuclei can be dissolved. Therefore, safe crystal growth of large-diameter crystals can be performed. That is, since a large diameter crystal can be produced safely from the same crucible, there is an advantage that the cost can be significantly reduced. According to the present invention, a single crystal having a diameter of about 80% of the inner diameter of the crucible can be obtained.

本発明による単結晶成長方法は、単結晶成長炉の炉内のルツボ壁と融液の境界の温度計測センサにより測定することができる。このセンサにより、ルツボ壁からの結晶成長が生じた場合、逸早くその結晶成長を捉え、成長を抑えるとともに、成長の解消ができ、また、成長した結晶直径と同一の結晶成長が行える。  The single crystal growth method according to the present invention can be measured by a temperature measurement sensor at the boundary between the crucible wall and the melt in the furnace of the single crystal growth furnace. With this sensor, when crystal growth from the crucible wall occurs, the crystal growth can be quickly grasped, the growth can be suppressed, the growth can be eliminated, and the same crystal growth as the grown crystal diameter can be performed.

前項(0009)において、単結晶成長方法を用いて、ルツボ内径の80%程度の大型結晶を製造することができる。
また前記温度計測センサを融液面の垂直方向に摺動し、融液表面レベルを確認することができる。
In the preceding item (0009), a large crystal having about 80% of the inner diameter of the crucible can be manufactured by using the single crystal growth method.
The temperature measurement sensor can be slid in the direction perpendicular to the melt surface to check the melt surface level.

また前項(0009)において、温度計測センサを融液面の垂直方向に摺動し、融液表面レベルを確認することができる。この液面位置情報を用い、融液面のレベル制御に用いれば、融液面制御の精度向上が測れる。従来、融液面の制御には、レーザー光を融液表面で反射させその反射光位置による融液表面の計測法などが有ったが、融液面の振動や揺らぎの影響で精度が悪く実用化されていない。      In the previous item (0009), the temperature measurement sensor can be slid in the direction perpendicular to the melt surface to check the melt surface level. If this liquid surface position information is used to control the melt surface level, the accuracy of the melt surface control can be improved. Conventionally, there has been a method for measuring the melt surface by reflecting the laser beam on the melt surface and measuring the melt surface based on the position of the reflected light. Not put into practical use.

また前項(0009)において、温度計測センサを縦方向、横方向に摺動し、融液とルツボの接触する境界部分について、ルツボの円周方向の温度分布計測を行ってもよい。計測した領域の温度分布でルツボ壁からの結晶成長が生じる温度限界を越えない加熱ヒーターの温度制御を行なうことができる。また、一端ルツボ壁からの結晶成長が生じてもさらなる過冷却状態になる前に温度域を高温側に調整することが可能である。      In the preceding paragraph (0009), the temperature measurement sensor may be slid in the vertical direction and the horizontal direction, and the temperature distribution measurement in the circumferential direction of the crucible may be performed on the boundary portion where the melt and the crucible contact. It is possible to control the temperature of the heater so as not to exceed the temperature limit at which crystal growth from the crucible wall occurs based on the measured temperature distribution in the region. Moreover, even if crystal growth occurs from the crucible wall at one end, the temperature range can be adjusted to the high temperature side before further supercooling occurs.

また、前項(0012)において、単結晶成長炉に複数の計測窓を設け、それぞれの計測窓に温度計測センサを具備し、それぞれの温度センサを独自に縦方向、横方向に摺動し、融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測しても良い。特に結晶成長とともに、成長した結晶が視野を妨げる場合に複数の観察窓にそれぞれ具備された複数のセンサ出力が効果的に機能できる。
また、摺動動作を行う代わりにライン状にセンサを並べたラインセンサを用いても良い。この場合は、位置情報はラインセンサの各素子の位置情報を用い、さらにプログラムによって領域情報を解析し、ルツボ壁からの結晶成長の予知、成長の解消を行っても良い。またエリアセンサを用いて領域情報を捉えてもよい。
In the preceding paragraph (0012), the single crystal growth furnace is provided with a plurality of measurement windows, and each measurement window is provided with a temperature measurement sensor, and each temperature sensor is independently slid in the vertical and horizontal directions to be melted. You may measure the temperature distribution of the circumference of a crucible about the part which a liquid and a crucible contact. In particular, when the grown crystal obstructs the visual field, the plurality of sensor outputs respectively provided in the plurality of observation windows can function effectively together with the crystal growth.
Moreover, you may use the line sensor which arranged the sensor in the line form instead of performing sliding operation | movement. In this case, the position information of each element of the line sensor may be used as the position information, and the region information may be analyzed by a program to predict the crystal growth from the crucible wall and eliminate the growth. In addition, area information may be captured using an area sensor.

前項(0011)において、融液レベルを確認して把握した融液表面レベルを常に所定レベルに維持制御してもよい。      In the preceding item (0011), the melt surface level obtained by confirming the melt level may be always maintained and controlled at a predetermined level.

また前項(0011)において、温度計測センサを融液面と平行方向に摺動し、結晶の直径を測ってもよい。この場合、最初に結晶の一方の側面位置にセンサ位置を合わせ、次に他の一方の側面までセンサを平行移動した時の移動量が直接結晶直径に相当する。レンズ系を通し、領域センサで結晶直径を測る方法はあるが、焦点距離、倍率の影響を受け、直径測定精度が悪いため本発明を用いることで精度改善が測れる。さらに温度センサのビューアーの倍率を上げ、ジャストフォーカス時に回転結晶の特徴をつかみ、回転する結晶の同一位置で直径計測を行うことで測定精度の向上が測れる。      In the preceding paragraph (0011), the diameter of the crystal may be measured by sliding the temperature measurement sensor in a direction parallel to the melt surface. In this case, the amount of movement when the sensor position is first aligned with the position of one side surface of the crystal and then the sensor is translated to the other side surface directly corresponds to the crystal diameter. Although there is a method of measuring the crystal diameter with a region sensor through a lens system, the accuracy of the diameter measurement is poor due to the influence of the focal length and magnification, so that accuracy improvement can be measured by using the present invention. Furthermore, the measurement accuracy can be improved by increasing the magnification of the temperature sensor viewer, grasping the characteristics of the rotating crystal during just focus, and measuring the diameter at the same position of the rotating crystal.

さらに前項(0015)において、温度計測センサの融液面からの距離を常に焦点距離上に設定するために前記温度計測センサを移動させてもよい。      Furthermore, in the previous item (0015), the temperature measurement sensor may be moved in order to always set the distance from the melt surface of the temperature measurement sensor to the focal length.

前項の(0009)〜(0016)のいずれか一項において、単結晶成長を行うルツボは溌液性を持ったシリカガラスルツボを使用するとよい。      In any one of the above items (0009) to (0016), it is preferable to use a silica glass crucible having liquid crystallinity as a crucible for performing single crystal growth.

前項(0009)において、単結晶成長炉の炉内の結晶成長中にルツボ壁と融液の境界を温度計測するセンサは、結晶成長中にルツボ壁面からの結晶成長を監視することができる。      In the preceding paragraph (0009), the sensor for measuring the temperature of the boundary between the crucible wall and the melt during crystal growth in the furnace of the single crystal growth furnace can monitor crystal growth from the crucible wall surface during crystal growth.

前項(0018)において、温度計測センサがルツボ壁面からの結晶成長を検知した時は、瞬時に温度設定値を規定温度、例えば1450℃の設定温度を10℃上げると同時に直径低減を抑えるため、成長レートを0から0.5mm/minの低速域成長レートに保持し、ルツボ壁からの成長結晶を溶解した後、先に規定温度上昇した温度設定の80%までの温度を下降させ、徐々に成長レートを上げて再度それまで成長した直胴部と同一直径の結晶成長を継続することができる単結晶成長方法である。      In the preceding paragraph (0018), when the temperature measurement sensor detects crystal growth from the crucible wall surface, the temperature setting value is instantaneously increased by a specified temperature, for example, a set temperature of 1450 ° C. by 10 ° C. The rate is maintained at a low rate growth rate of 0 to 0.5 mm / min, and the growth crystal from the crucible wall is melted. This is a single crystal growth method capable of continuing the crystal growth of the same diameter as that of the straight body portion that has been grown up to a higher rate.

前項(0013)において、温度計測センサで計測したルツボの円周方向の温度分布から温度の高い高温部と低い低温部を判定し、ルツボ回転に変調をかけ、ルツボからの結晶成長がある部分は前記高温部をゆっくり通過させることができる単結晶成長方法である。
通常、ヒーターの電極近傍の温度が高くなる。ルツボ壁からの結晶成長は、周回する毎に低温部で成長、高温部で溶解が生じるため、高温部の通過時間を長く(ゆっくり)、低温領域を短く(早く)通過させることでルツボからの結晶成長を止めるまたは溶解させることができる。
In the previous section (0013), the high temperature part and the low low temperature part are determined from the temperature distribution in the circumferential direction of the crucible measured by the temperature measurement sensor, the crucible rotation is modulated, and the part where there is crystal growth from the crucible is This is a single crystal growth method capable of slowly passing through the high temperature part.
Usually, the temperature in the vicinity of the heater electrode increases. The crystal growth from the crucible wall grows in the low temperature part and melts in the high temperature part each time it goes around, so the passage time of the high temperature part is long (slowly) and the low temperature region is short (fast) to pass from the crucible. Crystal growth can be stopped or dissolved.

本発明の単結晶成長装置は、炉内のルツボ壁と融液の境界の温度を計測する温度計測センサを持ちこの温度センサの出力は、結晶成長制御、ルツボの位置制御に利用できる。      The single crystal growth apparatus of the present invention has a temperature measurement sensor for measuring the temperature at the boundary between the crucible wall and the melt in the furnace, and the output of this temperature sensor can be used for crystal growth control and crucible position control.

前項(0021)において、単結晶成長装置は結晶成長に用いるルツボ内径の80%程度の直径の大型結晶を製造することができる。ルツボ壁からの結晶成長の危険を気にせず単結晶成長作業が進められるため、結晶成長を促す過冷却の度合いも大きく制御できる。      In the preceding item (0021), the single crystal growth apparatus can produce a large crystal having a diameter of about 80% of the inner diameter of the crucible used for crystal growth. Since the single crystal growth operation can proceed without worrying about the risk of crystal growth from the crucible wall, the degree of supercooling that promotes crystal growth can be greatly controlled.

前項(0022)において、本発明の単結晶成長装置は、前記温度計測センサを融液面の垂直方向に摺動可能に設けられており、融液表面レベルを確認することができる。融液の表面位置は、直接結晶成長中の直径検出、直径制御に係る。特に光学的に直径を像として捉え直径制御を行う場合には顕著な差が生じる。      In the preceding paragraph (0022), in the single crystal growth apparatus of the present invention, the temperature measurement sensor is provided so as to be slidable in the direction perpendicular to the melt surface, and the melt surface level can be confirmed. The surface position of the melt is directly related to diameter detection and diameter control during crystal growth. In particular, when the diameter is optically controlled as an image and diameter control is performed, a significant difference occurs.

また、前項(0021)に係る本発明の単結晶成長装置は、前記温度計測センサは縦方向、横方向に摺動可能に設けられており、これにより融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測することができる。ルツボの円周方向には温度分布があるため、温度の高い部分、低い部分の把握は、ルツボ壁面からの結晶成長においてそれぞれの場所の滞留時間によって大きく左右される。      In the single crystal growth apparatus of the present invention according to the preceding item (0021), the temperature measurement sensor is provided so as to be slidable in the vertical direction and the horizontal direction. The temperature distribution in the circumferential direction can be measured. Since there is a temperature distribution in the circumferential direction of the crucible, grasping of the high temperature portion and the low temperature portion greatly depends on the residence time of each place in crystal growth from the crucible wall surface.

またさらに、前項(0024)に係る本発明の単結晶成長装置は、複数の計測窓が設けられているとともに、それぞれの計測窓に具備した温度計測センサを縦方向、横方向に摺動可能にもうけられており、これにより融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測することができる。
単結晶の成長時には、種結晶や肩部分、直胴部分それぞれにルツボ壁面を見ようとするセンサの影になる場合がある。従って場合によって最適場所からの温度監視を行う場合、複数の観察窓を通して計測することができると良い。
Furthermore, the single crystal growth apparatus of the present invention according to the preceding item (0024) is provided with a plurality of measurement windows, and the temperature measurement sensor provided in each measurement window can be slid in the vertical and horizontal directions. Thus, the temperature distribution in the circumferential direction of the crucible can be measured for the portion where the melt and the crucible contact.
During the growth of a single crystal, it may become the shadow of a sensor trying to see the crucible wall on each of the seed crystal, shoulder, and straight body. Therefore, when the temperature is monitored from the optimum place in some cases, it is preferable that measurement can be performed through a plurality of observation windows.

またさらに、前項(0009〜0020)に係る本発明の単結晶成長装置は、種結晶回転数を10±0.5rpmとし且つ、ルツボ回転を8±2rpmとする。
ルツボ回転、種結晶回転が低速回転の場合、ルツボ壁からの結晶成長が生じやすい。また一方、種結晶の回転が相対的に遅い場合も結晶の稜線部分が急成長することがある。たとえば種結晶回転数5±0.5rpm、ルツボ回転を4±0.5rpmとそれぞれ回転を下げると前記ルツボからの結晶成長や単結晶の稜線部の急成長が生じやすい。ルツボの底方向からの低温対流が単結晶直下に巻き上がるため、前記条件である種結晶回転数を10±0.5rpmとし且つ、ルツボ回転を8±2rpmとすることが単結晶成長に適切である。
Furthermore, the single crystal growth apparatus of the present invention according to the preceding item (0009 to 0020) has a seed crystal rotation speed of 10 ± 0.5 rpm and a crucible rotation of 8 ± 2 rpm.
When the crucible rotation and the seed crystal rotation are low-speed rotation, crystal growth from the crucible wall tends to occur. On the other hand, even when the rotation of the seed crystal is relatively slow, the ridge line portion of the crystal may grow rapidly. For example, if the rotation of the seed crystal is reduced to 5 ± 0.5 rpm and the crucible rotation to 4 ± 0.5 rpm, crystal growth from the crucible and rapid growth of the ridge line portion of the single crystal are likely to occur. Since low-temperature convection from the bottom of the crucible rolls up just below the single crystal, it is appropriate for the single crystal growth that the seed crystal rotation speed which is the above condition is 10 ± 0.5 rpm and the crucible rotation is 8 ± 2 rpm. is there.

前項(0023)に係る本発明の単結晶成長装置は、温度計測センサで把握した融液表面レベルを常に所定レベルに維持制御することができる。
ルツボ壁面と融液界面中心を観察している場合、センサの照準のずれが生じないようにルツボ昇降速度を制御する。ルツボの内面形状は大きくバラツキを持っているため、データの取集には、回転速度に同期させ、検出した信号は移動平均法等でスムージングするのが望ましい。
The single crystal growth apparatus of the present invention according to the preceding item (0023) can always maintain and control the melt surface level grasped by the temperature measurement sensor at a predetermined level.
When observing the crucible wall surface and the melt interface center, the crucible ascending / descending speed is controlled so as not to cause a deviation in the aim of the sensor. Since the inner shape of the crucible has a large variation, it is desirable to synchronize with the rotational speed for data collection and smooth the detected signal by a moving average method or the like.

また、前項(0023)に係る本発明の単結晶成長装置は、前記温度計測センサは融液面と平行方向に摺動可能に設けられており、これにより結晶の直径を測ることができる。
温度計測センサの摺動移動は、前記ルツボ壁と融液の境界上に温度センサの位置決めするのに有効である。
In the single crystal growth apparatus of the present invention according to the preceding item (0023), the temperature measurement sensor is provided so as to be slidable in a direction parallel to the melt surface, whereby the diameter of the crystal can be measured.
The sliding movement of the temperature measurement sensor is effective for positioning the temperature sensor on the boundary between the crucible wall and the melt.

さらに、前項(0028)に係る本発明の単結晶成長装置は、温度計測センサの融液面からの距離を常に焦点距離上に設定するための移動機構を有する。
焦点距離の調整は、焦点上にある照準リングがくっきりと見えているかで判断できる。従って前記焦点距離の調整機構が、重要である。
Furthermore, the single crystal growth apparatus of the present invention according to the preceding item (0028) has a moving mechanism for always setting the distance from the melt surface of the temperature measurement sensor on the focal length.
The adjustment of the focal length can be determined based on whether the aiming ring on the focus is clearly visible. Therefore, the focal length adjustment mechanism is important.

また、前項(0021〜0029)に係る本発明の単結晶成長装置において、ルツボは溌液性を持ったシリカガラスツボである。
溌液ルツボを使用により、ルツボ壁に対し、シリコン融液が凸面で接するため、ルツボの上方向ほど温度が下がるため、ルツボからの結晶成長を抑える上で有利である。また、境界線もはっきりするため、計測しやすい利点がある。
Moreover, in the single crystal growth apparatus of the present invention according to the preceding paragraphs (0021 to 0029), the crucible is a silica glass crucible having a liquid crystallinity.
By using the molten crucible, the silicon melt comes into contact with the crucible wall with a convex surface, so that the temperature decreases in the upward direction of the crucible, which is advantageous in suppressing crystal growth from the crucible. Also, since the boundary line is clear, there is an advantage that it is easy to measure.

また、前項(0021)に係る本発明の単結晶成長装置は、結晶成長中にルツボ壁面からの結晶成長を前記温度計測センサで監視することができる。
ルツボ壁面からの結晶成長があれば、温度センサに対して急激な信号変化が生じる。これは、シリカガラス表面からの結晶成長が発生した信号であり、この信号を検出した場合、瞬時に規定温度、例えば1450℃の温度設定に対し10℃の温度上昇を行うとともに、引上げ速度の低速化を行い、結晶径の低下を防止する。その後ルツボ壁面からの結晶成長を溶解した後は、結晶の直径制御システムに依存する制御により、直径の不良を生じることは無い。
Further, the single crystal growth apparatus of the present invention according to the preceding item (0021) can monitor the crystal growth from the crucible wall surface with the temperature measuring sensor during crystal growth.
If there is crystal growth from the crucible wall, a rapid signal change occurs with respect to the temperature sensor. This is a signal indicating that crystal growth has occurred from the surface of the silica glass. When this signal is detected, the temperature is instantaneously increased by 10 ° C. to a specified temperature, for example, 1450 ° C., and the pulling rate is low. To prevent a decrease in crystal diameter. Thereafter, after the crystal growth from the crucible wall surface is melted, a defect in diameter is not caused by the control depending on the crystal diameter control system.

また、前項(0031)に係る本発明の単結晶成長装置は、ルツボ壁面からの結晶成長を検知した時、瞬時に温度設定値を規定値、例えば、1450℃の設定温度に対し、10℃上げると同時に結晶の直径低減を抑えるため、成長レートを0から0.5mm/minの成長レートに保持し、ルツボ壁からの成長結晶を溶解し、溶解完了後徐々に成長レートを上げて結晶成長を継続するように自動的に調整することができる単結晶成長装置である。
これは、急激な温度上昇に対し、直径マイナス不良をなくことを目的に作業が進行する。
The single crystal growth apparatus of the present invention according to the preceding item (0031) instantaneously raises the temperature set value by 10 ° C. with respect to a specified value, for example, 1450 ° C. set temperature, when crystal growth from the crucible wall surface is detected. At the same time, in order to suppress the reduction of the crystal diameter, the growth rate is maintained at a growth rate of 0 to 0.5 mm / min, and the growth crystal from the crucible wall is melted. It is a single crystal growth apparatus that can be automatically adjusted to continue.
This is because the work proceeds for the purpose of eliminating a minus minus defect with respect to a rapid temperature rise.

また、前項(0026)に係る本発明の単結晶成長装置は、計測したルツボの円周方向の温度分布から温度の高い高温部と低い低温部を判定し、ルツボ回転に変調をかけ、ルツボからの結晶成長がある部分は前記高温部をゆっくり通過させるように調整する。ルツボ回転に変調信号を加えルツボ壁から成長した結晶部分を、高温領域を長い時間(ゆっくり)、低温領域を短い時間で(早く)通過させることでルツボ壁からの結晶成長を溶解し、再び通常の結晶成長状態に戻すことができる。  In addition, the single crystal growth apparatus of the present invention according to the preceding item (0026) determines a high temperature part and a low temperature part where the temperature is high from the measured temperature distribution in the circumferential direction of the crucible, modulates the crucible rotation, The portion where there is crystal growth is adjusted so that the high temperature portion passes slowly. Crystal growth from the crucible wall is dissolved by passing a high temperature region for a long time (slowly) and a low temperature region for a short time (faster) by applying a modulation signal to the crucible rotation and passing through the crystal part. The crystal growth state can be restored.

さらに、前項(0009)に係る本発明の単結晶製造方法は、前記温度計測センサを直線状に配列することにより、前記温度計測センサの位置移動をすることなく温度分布を測定することができる。
ラインセンサ型温度センサを用いることで、温度センサの位置移動が不要となり、位置移動機構の簡素化、制御プログラムの簡素化が行える。
Furthermore, the single crystal manufacturing method of the present invention according to the preceding item (0009) can measure the temperature distribution without moving the position of the temperature measurement sensor by arranging the temperature measurement sensors in a straight line.
By using the line sensor type temperature sensor, it is not necessary to move the position of the temperature sensor, and the position moving mechanism can be simplified and the control program can be simplified.

また、前項(0021)に係る本発明の単結晶成長装置は、直線上に配列した温度センサを用い、温度センサの位置移動をすることなく温度分布を測定する。
1点を計測する温度センサの場合は、Xテーブル移動で線上領域の監視することができるが、直線上に配列した温度センサを使用すれば、位置移動操作が不要となる。
Further, the single crystal growth apparatus of the present invention according to the preceding item (0021) uses temperature sensors arranged on a straight line, and measures the temperature distribution without moving the position of the temperature sensor.
In the case of a temperature sensor that measures one point, the area on the line can be monitored by moving the X table, but if a temperature sensor arranged on a straight line is used, a position moving operation becomes unnecessary.

さらに、前項(0021)に係る本発明の単結晶成長装置は、前記温度計測センサはマトリクス状に配列されており、これにより前記温度計測センサの位置移動をすることなく温度分布を測定することができる。領域を計測する温度センサの場合は、XYテーブル移動でエリア領域の監視することができるが、マトリクス状に配列した温度センサを使用すれば、位置移動操作することなく領域の温度分布が計測可能となる。  Furthermore, in the single crystal growth apparatus of the present invention according to the preceding item (0021), the temperature measurement sensors are arranged in a matrix, and thereby the temperature distribution can be measured without moving the position of the temperature measurement sensor. it can. In the case of a temperature sensor that measures an area, the area area can be monitored by moving the XY table. However, if temperature sensors arranged in a matrix are used, the temperature distribution of the area can be measured without moving the position. Become.

本発明は、ルツボと融液の境界温度を測定することにより、ルツボ壁からの結晶成長を抑止することができるとともに、ルツボの内径の2分の1以上の大型結晶を成長する時に発生することがあるルツボ壁からの結晶成長が生じたとしても、早期に前記成長を検出ことができる。  The present invention can suppress the crystal growth from the crucible wall by measuring the boundary temperature between the crucible and the melt, and occurs when growing a large crystal having a half or more of the inner diameter of the crucible. Even if crystal growth from a certain crucible wall occurs, the growth can be detected at an early stage.

また、前記ルツボ壁からの結晶成長を消滅させ、再び安全に且つ大型結晶成長できるとともに、センサ移動で融液レベルの検知、制御などを行うことで、ルツボに対し大型結晶を成長させるとき、相対的に融液レベルの変化も大きくなるため、正確な融液レベル制御ができる利点がある。当該発明によれば、大型結晶の落下事故を防止でき、小型炉で大型結晶の成長が行える。  In addition, crystal growth from the crucible wall can be eliminated, and large crystals can be grown safely and again, and when a large crystal is grown on the crucible by detecting and controlling the melt level by moving the sensor, In particular, since the change in the melt level also becomes large, there is an advantage that accurate melt level control can be performed. According to the invention, it is possible to prevent a large crystal from being dropped and to grow a large crystal in a small furnace.

図1はルツボ壁と融液の境界を計測するセンサと当該計測結果に基づき結晶成長の制御を示した説明図である。(実施例1)FIG. 1 is an explanatory view showing a sensor for measuring the boundary between the crucible wall and the melt and control of crystal growth based on the measurement result. (Example 1) 図2はルツボ壁からの結晶成長を捉えたセンサ出力信号をオシロスコープにより観察した信号について示した説明図である。(実施例2)FIG. 2 is an explanatory diagram showing a signal obtained by observing a sensor output signal capturing crystal growth from the crucible wall with an oscilloscope. (Example 2) 図3はルツボ壁と融液の境界近傍に温度センサの照準を合わせた時の照準位置と温度データの実施例である。FIG. 3 is an example of the aiming position and temperature data when aiming the temperature sensor near the boundary between the crucible wall and the melt.

結晶成長炉の観察窓を通してルツボの壁と融液の界面位置を当該温度センサの照準の中心に位置するように設置し、当該センサの設置位置は、成長する結晶やルツボ上昇により経時的にも光路の遮断が生じることがなくまた炉内構造物による光路の遮断がない場所を選定し設置することで、ルツボ壁からの結晶成長の監視を可能とし、万が一にルツボの壁からの結晶成長があればいち早くこれを感知することができる。  The interface between the crucible wall and the melt is positioned at the center of the aim of the temperature sensor through the observation window of the crystal growth furnace. By selecting and installing a location where the optical path is not blocked by the furnace structure, it is possible to monitor the crystal growth from the crucible wall. This can be detected as soon as possible.

これにより、成長中の結晶と、ルツボ壁からの結晶成長を接触、固化することを防止できる。前記ルツボ壁からの結晶成長を検出した後、例えば設定温度を1450℃である時に設定温度を10℃上昇することにより、ルツボ壁からの結晶成長を溶解することができる。急激な温度上昇は成長中の結晶の直径が痩せて口径が小さくなることを防止するため、成長レートを0から0.5mm/minの低速域成長レートに保持し、ルツボ壁からの成長結晶を溶解した後、先に規定温度上昇した温度設定の80%までの温度を下降させ、徐々に成長レートを上げて再度それまで成長した直胴部と同一直径の結晶成長を継続することができる単結晶成長方法である。  Thereby, it is possible to prevent the growing crystal and the crystal growth from the crucible wall from contacting and solidifying. After detecting the crystal growth from the crucible wall, the crystal growth from the crucible wall can be dissolved by increasing the set temperature by 10 ° C. when the set temperature is 1450 ° C., for example. A rapid temperature rise prevents the diameter of the growing crystal from becoming thin and the aperture from becoming smaller, so the growth rate is maintained at a low rate growth rate of 0 to 0.5 mm / min. After melting, the temperature can be lowered to 80% of the temperature setting previously raised by the specified temperature, and the growth rate can be gradually increased to continue crystal growth of the same diameter as the straight body portion that has been grown up to that point. This is a crystal growth method.

例えば先に設定温度を1450℃である時に設定温度を10℃上昇したから、結晶が溶解した後は8℃下げ、再び元の直径に戻ったところで結晶成長を継続すればよい。
当該温度センサの設置により大型結晶の成長を容易にすることができる。前記温度センサを設け、大型結晶の成長をルツボの口径を大口径化することなしに実現を目的とする。
For example, since the set temperature was raised by 10 ° C. when the set temperature was 1450 ° C., the crystal growth may be continued when the crystal is melted and lowered to 8 ° C. and returned to the original diameter again.
By installing the temperature sensor, the growth of large crystals can be facilitated. An object of the present invention is to provide the temperature sensor and realize the growth of large crystals without increasing the diameter of the crucible.

図1は、本発明装置の1実施例の模式図であって、1は、温度センサ、2は温度センサから得た光量を電気信号に変換する変換部、4は結晶成長の制御部である。また、11は結晶成長炉の観察窓であり、この観察窓を通して1のセンサの照準が8の石英ルツボ内面と融液13の内接する9の境界部位を捉えており、7の結晶成長が行われている間の9の境界部位の温度変化を捉える温度検出機構である。  FIG. 1 is a schematic diagram of an embodiment of the apparatus of the present invention, where 1 is a temperature sensor, 2 is a conversion unit that converts the amount of light obtained from the temperature sensor into an electrical signal, and 4 is a crystal growth control unit. . Reference numeral 11 denotes an observation window of the crystal growth furnace, and through this observation window, the aim of the sensor 1 captures the boundary portion of the quartz crucible inner surface 8 and the inner portion of the melt 13 so that the crystal growth of 7 is performed. This is a temperature detection mechanism that captures the temperature change at the nine boundary sites during the break.

また、温度センサ1の光学系センサ部で捉えた光量を光ファイバにより変換器2へ導き、光量を温度に相当する電気信号に変換する変換器2を経由して表示器に至る。表示器3は黒体炉で校正された実温度表示ができる他、発光体の放射率の設定ができる。変換器2からは、出力端子に抵抗を接続することにより、0〜20mAの電流出力や、0〜1Vまたは0〜5Vの電圧出力が得られる。
ヒーター電源5は、交流電源を電力制御装置により電圧信号0〜5Vで出力電力を0〜最大電力に調整する機能がある。この電力制御装置への入力信号に加減信号を繋ぎ込むことで、炉の加熱ヒーター10に加える電力調整ができる。炉の温度制御機構は、前記電力制御装置によって行うことができる。炉内の温度は、別に設けられた炉内温度センサにより、設定温度を常に一定にすることができる。
Further, the light quantity captured by the optical system sensor unit of the temperature sensor 1 is guided to the converter 2 by an optical fiber, and reaches the display device via the converter 2 that converts the light quantity into an electrical signal corresponding to the temperature. The indicator 3 can display the actual temperature calibrated in the black body furnace, and can set the emissivity of the luminous body. From the converter 2, a current output of 0 to 20 mA and a voltage output of 0 to 1 V or 0 to 5 V can be obtained by connecting a resistor to the output terminal.
The heater power supply 5 has a function of adjusting the output power to 0 to the maximum power with the voltage signal 0 to 5 V using an AC power supply by a power control device. By connecting an adjustment signal to the input signal to this power control device, the power applied to the furnace heater 10 can be adjusted. The temperature control mechanism of the furnace can be performed by the power control device. The temperature inside the furnace can be kept constant by a furnace temperature sensor provided separately.

単結晶7の成長は、多結晶原料を溶解した融液13に種結晶(シード)を取り付けたシードチャック6を下降させる昇降機構により、種結晶先端を溶融に浸けることができる。前記炉内温度制御機構は、種結晶が解け落ちることなく、また急速に成長する過冷却状態にすることが無い設定温度に調整することができる。種結晶は、設定温度により融液13の温度になじませた後、シードチャック6を徐々に上方向に回転しながら引上ることができる。  In the growth of the single crystal 7, the tip of the seed crystal can be immersed in the melting by an elevating mechanism that lowers the seed chuck 6 in which the seed crystal (seed) is attached to the melt 13 in which the polycrystalline raw material is dissolved. The in-furnace temperature control mechanism can be adjusted to a set temperature at which the seed crystal does not melt and does not enter a supercooled state in which the seed crystal rapidly grows. The seed crystal can be pulled up while gradually rotating the seed chuck 6 upward after the temperature of the melt 13 is adjusted to the set temperature.

種結晶の成長工程では、種結晶の直径を10から3mm程度に絞りながらまた、成長速度を0.5から5mm/minの成長速度に調整しながら引上げることで種結晶内の転移欠陥を無転移化することができる。単結晶では、その軸方位により、稜線が現れる。例えば軸方位<111>の結晶では円周方向120度毎に3本の稜線が現れる。軸方位<100>結晶では円周方向90度毎に4本の稜線が現れる。無転移化された結晶の稜線は盛り上がり、その形状変化で単結晶が無転移化されたことがわかる。  In the growth process of the seed crystal, the transition defects in the seed crystal are eliminated by pulling up while adjusting the diameter of the seed crystal to about 10 to 3 mm and adjusting the growth rate to a growth rate of 0.5 to 5 mm / min. Can be metastasized. In a single crystal, a ridgeline appears depending on the axial orientation. For example, in a crystal having an axial orientation <111>, three ridge lines appear every 120 degrees in the circumferential direction. In the axial orientation <100> crystal, four ridge lines appear every 90 degrees in the circumferential direction. The ridgeline of the non-transitioned crystal rises, and it can be seen that the single crystal has become non-transitional due to its shape change.

無転移化が確認されたら、一端種結晶の引上げ速度を落とし、単結晶の直径が増加し、目的製品直径になるまで成長を徐々に進める肩工程を経て、目的直径に近づいたら徐々にシードチャック6の上昇速度を速め、目的直径を維持した直径の単結晶7となる直径制御を行う。同時に前記の電力制御機構によってプログラムされた温度に従って直径に対し適切な温度制御を行うことができる。単結晶7の成長にともない、融液13が単結晶直径と溶融を保持するルツボの内径比率によって下がるが、その融液13の低下分を同時にルツボ軸12の上昇で補償することで、融液13のレベルを一定位置に保つことができる。ルツボ軸12は、通常シードチャック6と逆転方向に回転しており、移動とともに昇降するので、炉底部での真空シールを磁性流体シールおよび溶接ベローズを用いて行う。  If no transition is confirmed, the pulling speed of the seed crystal is reduced, the diameter of the single crystal increases, and a growth process is gradually performed until the target product diameter is reached. The diameter of the single crystal 7 having a diameter maintaining the target diameter is controlled by increasing the ascent speed of 6. At the same time, appropriate temperature control can be performed on the diameter according to the temperature programmed by the power control mechanism. As the single crystal 7 grows, the melt 13 decreases depending on the single crystal diameter and the inner diameter ratio of the crucible that holds the melt. By compensating for the decrease in the melt 13 by the rise of the crucible shaft 12 at the same time, Thirteen levels can be kept in a fixed position. Since the crucible shaft 12 normally rotates in the reverse direction with the seed chuck 6 and moves up and down as it moves, vacuum sealing at the bottom of the furnace is performed using a magnetic fluid seal and a welding bellows.

図2は、単結晶成長炉の炉内のルツボ壁と融液の境界に照準を合わせた温度計測センサがルツボ回転に同期して検知するルツボ壁からの結晶成長を捉えたセンサ信号である。ここでは、ルツボが3回転したときのルツボ壁から成長した結晶を検知した鋸波をオシロスコープで捉えた例である。
照準は観察領域を目視で確認するビューアーがついており、その中に同心の4重の輪として焦点が合った状態で明確に見ることができる仕組みになっている。
FIG. 2 is a sensor signal that captures crystal growth from the crucible wall that is detected in synchronization with the rotation of the crucible by a temperature measurement sensor that is aimed at the boundary between the crucible wall and the melt in the furnace of the single crystal growth furnace. Here, it is an example in which a sawtooth wave that has detected a crystal grown from a crucible wall when the crucible rotates three times is captured by an oscilloscope.
The aim is equipped with a viewer that visually confirms the observation area, and it is structured so that it can be clearly seen as a concentric quadruple ring in it.

ルツボ壁から成長した結晶を検知した後、1450℃を示す炉のセットポイントを規定値、例えば10℃昇温することにより、ルツボからの結晶成長を止め、時間とともに前記結晶を溶解した。その間、結晶成長レートは0.01〜0.5mm/minの成長速度に抑え、結晶径の低下を抑えた。  After detecting the crystal grown from the crucible wall, the crystal growth from the crucible was stopped by raising the temperature of the set point of the furnace showing 1450 ° C., for example, 10 ° C., and the crystal was dissolved over time. Meanwhile, the crystal growth rate was suppressed to a growth rate of 0.01 to 0.5 mm / min to suppress a decrease in crystal diameter.

当該温度センサには、ジャパンセンサー株式会社のファイバ型放射温度計FTK−A700A−50L11)とパラメータ設定器PWC1を用いた。
このジャストフォーカス時のセンサビーム径はφ1.7mmであり、焦点距離は500mmとなっているため、センサの対物距離を500mmとする調整も重要である。また、測定温度範囲は700〜2000℃であるが、炉内観察窓には、直接裸眼で結晶成長を観察できる遮光フィルタを通しているために、温度表示は相対値となるが、結晶成長制御には問題とならない。
As the temperature sensor, a fiber type radiation thermometer FTK-A700A-50L11) of Japan Sensor Co., Ltd. and a parameter setting device PWC1 were used.
Since the sensor beam diameter at the time of this just focus is φ1.7 mm and the focal length is 500 mm, it is important to adjust the sensor objective distance to 500 mm. Moreover, although the measurement temperature range is 700-2000 ° C., the temperature display is a relative value because the observation window in the furnace is passed through a shading filter that can directly observe crystal growth with the naked eye. It doesn't matter.

図3は、単結晶成長中の前記ルツボ壁と融液の境界近傍の当該温度センサ値を、照準を示す4重丸の位置関係と温度を示したものである。
円の内側から順に0.1mm、0.2mm、0.4mm、0.6mmの照準となっている。
焦点距離が焦点に合致しているかは、この円がはっきり見えるかどうかで判明する。そこで当該センサは、距離を調整し、焦点位置に前記境界位置に合わせることができる。
FIG. 3 shows the temperature sensor value in the vicinity of the boundary between the crucible wall and the melt during single crystal growth, and the positional relationship and temperature of a quadruple circle indicating the aim.
The sights are 0.1 mm, 0.2 mm, 0.4 mm, and 0.6 mm in order from the inside of the circle.
Whether the focal length is in focus is determined by whether this circle is clearly visible. Therefore, the sensor can adjust the distance to match the boundary position with the focal position.

図3からわかるように、前記境界の照準の中心が近づくほど温度が高くなり、前記境界上に照準の中心が来たとき、温度出力はピークになる。
この変化を用い、境界が常に照準の中心に来る位置にルツボの位置を合わせる制御をおこなうことで、従来のレーザー反射による液面検知よりも精度よく融液面の位置制御ができるため、光学系カメラによる単結晶直径制御の制度も向上させることができる。
As can be seen from FIG. 3, the temperature becomes higher as the center of the aim of the boundary approaches, and the temperature output peaks when the center of the aim reaches the boundary.
By using this change and controlling the position of the crucible to the position where the boundary is always at the center of the aim, the position of the melt surface can be controlled more accurately than conventional liquid level detection by laser reflection. The system of single crystal diameter control by camera can also be improved.

本発明の実験において使用したルツボ内径は165mmと小型の内径のルツボから最大132mmすなわち、直径の80%の結晶成長を行った。その実験中には、ルツボ壁からの結晶成長が有り、前記結晶を昇温により溶解消滅させ、引き続き単結晶成長を行い、結晶のボトム部までを単結晶成長を行えた。
実験では、ルツボ円周方向に60mm幅15mm程度のルツボ壁からの結晶成長が有ったが、設定温度1450℃に対し、10℃の昇温で前記結晶を溶解しえた。ルツボ径の違いにより既定温度は異なるが、同様の昇温、降温によって大型結晶の成長が行える。
従来はルツボ内径の3分の1程度の直径の結晶を成長するのが一般的であったが、その2倍以上の直径の結晶成長が行えたこととなる。
The inner diameter of the crucible used in the experiment of the present invention was 165 mm, and a crystal having a maximum inner diameter of 132 mm, that is, 80% of the diameter, was grown from a small inner diameter crucible. During the experiment, there was crystal growth from the crucible wall, and the crystal was dissolved and extinguished by heating, followed by single crystal growth and single crystal growth up to the bottom of the crystal.
In the experiment, there was crystal growth from a crucible wall having a width of about 60 mm and a width of about 15 mm in the circumferential direction of the crucible, but the crystal could be dissolved at a temperature increase of 10 ° C. with respect to the set temperature of 1450 ° C. Although the predetermined temperature varies depending on the crucible diameter, large crystals can be grown by the same temperature rise and fall.
Conventionally, a crystal having a diameter of about one third of the inner diameter of the crucible was generally grown, but a crystal having a diameter more than twice that was able to be grown.

前記温度センサを水平軸であるX軸上を自在に移動できるようにし、線上の温度分布を測定した。この操作で、直線上の温度分布が測定でき、領域内でのルツボ壁からの結晶成長を監視することが行えた。またさらに垂直軸であるY軸についても自在に移動するXYテーブルを用い、水平、垂直方向の領域内のルツボ壁からの結晶成長がより的確に把握することができた。  The temperature sensor was allowed to move freely on the X axis, which is a horizontal axis, and the temperature distribution on the line was measured. By this operation, the temperature distribution on the straight line could be measured, and the crystal growth from the crucible wall in the region could be monitored. Furthermore, using an XY table that freely moves about the Y axis, which is the vertical axis, the crystal growth from the crucible wall in the horizontal and vertical regions could be grasped more accurately.

ルツボ壁からの結晶成長の状態を、ルツボ回転、シード回転についてそれぞれ変更して観察すると、低速回転ほど成長速度が速く、高速回転ほど成長が遅いことがわかった。回転振動が少ない回転の範囲で種結晶回転数が10±0.5rpm且つ、ルツボ回転を8±2rpmとするとルツボ壁からの結晶成長を抑え易いことが判明した。
また、ルツボの回転時にルツボ壁からの結晶成長が早い低温部と遅い高温部が有り、低温部を早く通過させ、高温部をゆっくり通過させることで成長をおさえることができる。
When the state of crystal growth from the crucible wall was changed for each of the crucible rotation and the seed rotation, it was found that the growth rate was faster as the rotation speed was lower and the growth rate was slower as the rotation speed was higher. It has been found that crystal growth from the crucible wall can be easily suppressed when the seed crystal rotation speed is 10 ± 0.5 rpm and the crucible rotation is 8 ± 2 rpm in the range of rotation with little rotational vibration.
In addition, there are a low temperature portion where crystal growth from the crucible wall is fast and a slow high temperature portion when the crucible rotates, and the growth can be suppressed by passing the low temperature portion quickly and slowly passing the high temperature portion.

ルツボ壁からの結晶成長を通常のシリカガラスルツボと溌液性のある溌液ルツボを用いて観察したところ、溌液ルツボでは融液表面が凸面となり、通常ルツボでは凹面となるため、ルツボの上方向ほど温度が下がるため、通常ルツボではルツボ壁からの結晶成長を止めることが出来ず、尾を引くのに対し、溌液ルツボでは、一端発生したルツボ壁からの結晶成長を溶解し、消滅させることができた。また、この時の単結晶成長速度を0〜0.5mm/minとすることで、目標直径を下回ることなく単結晶成長がおこなえた。  Crystal growth from the crucible wall was observed using a normal silica glass crucible and a liquid-filled liquid crucible. As the temperature decreases in the direction, the crucible cannot normally stop crystal growth from the crucible wall, and it has a tail, while the liquid crucible melts and extinguishes the crystal growth from the crucible wall once generated. I was able to. Moreover, the single crystal growth could be performed without falling below the target diameter by setting the single crystal growth rate at this time to 0 to 0.5 mm / min.

半導体用シリコンウエーハの単結晶材料や、シリコン単結晶を用いたシリコン部品、太陽電池用ウエーハに適用できる。  The present invention can be applied to single crystal materials for semiconductor silicon wafers, silicon parts using silicon single crystals, and wafers for solar cells.

1 温度センサ
2 変換器
3 表示器
4 制御部
5 ヒーター電源
6 シードチャック
7 単結晶
8 シリカガラスルツボ
9 境界線
10 加熱ヒーター
11 観察窓
12 ルツボ軸
13 融液
DESCRIPTION OF SYMBOLS 1 Temperature sensor 2 Converter 3 Display 4 Control part 5 Heater power supply 6 Seed chuck 7 Single crystal 8 Silica glass crucible 9 Boundary line 10 Heating heater 11 Observation window 12 Crucible shaft 13 Melt

Claims (24)

単結晶成長炉を用いた単結晶の成長方法において、
炉内のルツボ壁と融液との境界の温度を温度計測センサにより測定し、測定結果に基づいて結晶成長時における前記融液の設定温度および前記単結晶の成長レートを制御して前記ルツボ壁に結晶核が発生しない温度に維持し、前記ルツボ壁からの結晶成長を検知した場合、昇温により前記ルツボ壁からの結晶成長を抑止し、または前記ルツボ壁から成長した結晶の核を溶解することにより、ルツボ内径の80%以上の大型結晶を製造することを特徴とする単結晶成長方法。
In a method for growing a single crystal using a single crystal growth furnace,
The temperature of the boundary between the crucible wall and the melt in the furnace is measured by the temperature measuring sensor, wherein the crucible wall to control the set temperature and growth rate of the single crystal of the melt during crystal growth based on the measurement result When crystal growth from the crucible wall is detected, the crystal growth from the crucible wall is suppressed by increasing the temperature, or the crystal nucleus grown from the crucible wall is dissolved . A single crystal growth method characterized in that a large crystal having an inner diameter of 80% or more of the inner diameter of the crucible is manufactured.
請求項1において、前記温度計測センサを融液面の垂直方向に摺動し、融液表面レベルを確認することを特徴とした単結晶成長方法。   2. The single crystal growth method according to claim 1, wherein the temperature measurement sensor is slid in a direction perpendicular to the melt surface to check a melt surface level. 請求項1において、温度計測センサを縦方向、横方向に摺動し、融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測することを特徴とした単結晶成長方法。   2. The single crystal growth method according to claim 1, wherein the temperature distribution in the circumferential direction of the crucible is measured at a portion where the temperature measurement sensor slides in the vertical and horizontal directions and the melt and the crucible contact each other. 請求項3において、前記単結晶成長炉には複数の計測窓が設けられ、それぞれの計測窓に温度計測センサが備えられ、それぞれの温度センサを独自に縦方向、横方向に摺動し、融液とルツボとが接触する部分について、追跡しながらルツボの円周方向の温度分布を計測することを特徴とした単結晶成長方法。   4. The single crystal growth furnace according to claim 3, wherein the single crystal growth furnace is provided with a plurality of measurement windows, and each measurement window is provided with a temperature measurement sensor, and each temperature sensor is independently slid in the vertical direction and the horizontal direction to melt. A single crystal growth method characterized by measuring a temperature distribution in a circumferential direction of a crucible while tracking a portion where a liquid and a crucible contact. 請求項2において把握した融液表面レベルを常に所定レベルに維持制御することを特徴とする単結晶成長方法。   3. A method for growing a single crystal, wherein the melt surface level grasped in claim 2 is always maintained and controlled at a predetermined level. 請求項2において、前記温度計測センサを融液面と平行方向に摺動し、結晶の直径を測ることを特徴とした単結晶成長方法。 3. The single crystal growth method according to claim 2, wherein the temperature measuring sensor is slid in a direction parallel to the melt surface and the diameter of the crystal is measured. 請求項6において、前記温度計測センサの融液面からの距離が常に焦点距離上に位置するように前記温度計測センサを移動させることを特徴とした単結晶成長方法。   7. The single crystal growth method according to claim 6, wherein the temperature measurement sensor is moved so that the distance from the melt surface of the temperature measurement sensor is always on the focal length. 請求項1から請求項7のいずれか一項において、ルツボは溌液性を持ったシリカガラスルツボを使用することを特徴とする単結晶成長方法。   The single crystal growth method according to any one of claims 1 to 7, wherein the crucible uses a silica glass crucible having a liquid-cooling property. 請求項1から請求項8のいずれか一項において、ルツボ壁面からの結晶成長を検知した時は瞬時に温度設定値を規定温度上げると同時に結晶の直径低減を抑えるため、成長レートを0から0.5mm/minの成長レートに保持し、ルツボ壁からの成長結晶を溶解した後、先に規定温度上昇した温度設定の80%まで温度下降させ、徐々に成長レートを上げて規定直径の結晶成長を継続することを特徴とした単結晶成長方法。   In any one of Claims 1-8, when the crystal growth from the crucible wall surface is detected, the growth rate is set to 0 to 0 in order to instantaneously raise the temperature setting value to the specified temperature and suppress the reduction of the crystal diameter. After maintaining the growth rate of .5 mm / min and dissolving the growth crystal from the crucible wall, the temperature is lowered to 80% of the temperature setting where the specified temperature has been raised first, and the growth rate is gradually increased to grow the crystal with the specified diameter. A single crystal growth method characterized by continuing. 請求項4において計測したルツボの円周方向の温度分布から温度の高い高温部と低い低温部を判定し、ルツボ回転に変調をかけ、ルツボからの結晶成長がある部分は前記高温部をゆっくり通過させることを特徴とした単結晶成長方法。   The high temperature part and the low low temperature part are determined from the temperature distribution in the circumferential direction of the crucible measured in claim 4, the crucible rotation is modulated, and the part where crystal growth from the crucible passes slowly through the high temperature part. A method for growing a single crystal, characterized by comprising: 請求項1から10のいずれか一項において、種結晶回転数を10±0.5rpmとし且つ、ルツボ回転を8±2rpmとすることを特徴とする単結晶成長方法。   11. The single crystal growth method according to claim 1, wherein the seed crystal rotation speed is 10 ± 0.5 rpm and the crucible rotation is 8 ± 2 rpm. 単結晶成長炉内のルツボ壁と融液との境界の温度を計測する温度計測センサを持ち、
前記温度計測センサの測定結果に基づいて結晶成長時における前記融液の設定温度および単結晶の成長レートを制御して前記ルツボ壁に結晶核が発生しない温度に維持し、前記ルツボ壁からの結晶成長を検知した場合、昇温により前記ルツボ壁からの結晶成長を抑止し、または前記ルツボ壁から成長した結晶の核を溶解することにより、ルツボ内径の80%以上の直径の大型結晶を製造することを特徴とする単結晶成長装置。
It has a temperature measurement sensor that measures the temperature at the boundary between the crucible wall and the melt in the single crystal growth furnace,
Maintaining the temperature not set temperature of the melt at the time of measurement the crystal growth based on the measuring sensor and the crystal nuclei in the crucible wall growth rate control to single crystal occurs a temperature, crystals from the crucible wall When growth is detected, crystal growth from the crucible wall is suppressed by heating, or large crystals having a diameter of 80% or more of the inner diameter of the crucible are manufactured by melting the nucleus of the crystal grown from the crucible wall. A single crystal growth apparatus characterized by that.
請求項12において、前記温度計測センサは融液面の垂直方向に摺動可能に設けられており、これにより融液表面レベルを確認することを特徴とした単結晶成長装置。   13. The single crystal growth apparatus according to claim 12, wherein the temperature measurement sensor is provided so as to be slidable in a direction perpendicular to the melt surface, thereby confirming a melt surface level. 請求項12において、前記温度計測センサは縦方向、横方向に摺動可能に設けられており、これにより融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測することを特徴とした単結晶成長装置。   13. The temperature measurement sensor according to claim 12, wherein the temperature measurement sensor is provided so as to be slidable in a vertical direction and a horizontal direction. A single crystal growth device. 請求項14において、複数の計測窓が設けられているとともに、前記温度計測センサはそれぞれの計測窓に縦方向、横方向に摺動可能に設けられており、これにより融液とルツボの接触する部分について、ルツボの円周方向の温度分布を計測することを特徴とした単結晶成長装置。   15. A plurality of measurement windows are provided according to claim 14, and the temperature measurement sensor is provided in each measurement window so as to be slidable in the vertical and horizontal directions, whereby the melt and the crucible come into contact with each other. A single crystal growth apparatus characterized by measuring a temperature distribution in a circumferential direction of a crucible for a portion. 請求項13において把握した融液表面レベルを常に所定レベルに維持制御することを特徴とする単結晶成長装置。   The single crystal growth apparatus characterized in that the melt surface level grasped in claim 13 is always maintained and controlled at a predetermined level. 請求項13において、前記温度計測センサは融液面と平行方向に摺動可能に設けられており、これにより結晶の直径を測ることを特徴とした単結晶成長装置。   14. The single crystal growth apparatus according to claim 13, wherein the temperature measurement sensor is provided so as to be slidable in a direction parallel to the melt surface, thereby measuring the diameter of the crystal. 請求項17において、前記温度計測センサの融液面からの距離を常に焦点距離上に設定するための移動機構をさらに有することを特徴とした単結晶成長装置。   The single crystal growth apparatus according to claim 17, further comprising a moving mechanism for always setting a distance from the melt surface of the temperature measurement sensor to a focal length. 請求項12から18のいずれか一項において、ルツボは溌液性を持ったシリカガラスルツボであることを特徴とする単結晶成長装置。   The single crystal growth apparatus according to any one of claims 12 to 18, wherein the crucible is a silica glass crucible having a liquid crystallinity. 請求項12から19のいずれか一項において、ルツボ壁面からの結晶成長を検知したら瞬時に温度設定値を規定値上げると同時に結晶の直径低減を抑えるため、成長レートを0から0.5mm/minの成長レートに保持し、ルツボ壁からの成長結晶を溶解し、溶解完了後徐々に成長レートを上げて結晶成長を継続するように調整することを特徴とした単結晶成長装置。   20. The growth rate of 0 to 0.5 mm / min according to any one of claims 12 to 19 in order to increase the temperature set value instantaneously and simultaneously suppress a reduction in crystal diameter when crystal growth from the crucible wall surface is detected. The single crystal growth apparatus is characterized in that the growth crystal from the crucible wall is melted and adjusted so as to continue the crystal growth by gradually increasing the growth rate after the dissolution is completed. 請求項15において、計測したルツボの円周方向の温度分布から温度の高い高温部と低い低温部を判定し、ルツボ回転に変調をかけ、ルツボからの結晶成長がある部分は前記高温部をゆっくり通過させるように調整することを特徴とした単結晶成長装置。   In claim 15, a high temperature portion and a low low temperature portion are determined from the measured temperature distribution in the circumferential direction of the crucible, the crucible rotation is modulated, and the portion where there is crystal growth from the crucible slowly moves the high temperature portion. A single crystal growth apparatus characterized by adjusting so as to pass through. 請求項1において、前記温度計測センサを直線状に配列することにより、前記温度計測センサの位置移動をすることなく温度分布を測定することを特徴とした単結晶成長方法。   The single crystal growth method according to claim 1, wherein the temperature distribution is measured without moving the position of the temperature measurement sensor by arranging the temperature measurement sensors linearly. 請求項12において、前記温度計測センサは直線状に配列されており、これにより前記温度計測センサの位置移動をすることなく温度分布を測定することを特徴とした単結晶成長装置。   13. The single crystal growth apparatus according to claim 12, wherein the temperature measurement sensors are arranged in a straight line, thereby measuring a temperature distribution without moving the position of the temperature measurement sensor. 請求項12において、前記温度計測センサはマトリクス状に配列されており、これにより前記温度計測センサの位置移動をすることなく温度分布を測定することを特徴とした単結晶成長装置。   The single crystal growth apparatus according to claim 12, wherein the temperature measurement sensors are arranged in a matrix and thereby measure a temperature distribution without moving the position of the temperature measurement sensor.
JP2017069022A 2017-03-13 2017-03-13 Large diameter CZ single crystal growth apparatus and growth method thereof Active JP6452098B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017069022A JP6452098B2 (en) 2017-03-13 2017-03-13 Large diameter CZ single crystal growth apparatus and growth method thereof
CN201810203214.7A CN108570706B (en) 2017-03-13 2018-03-13 Growth device and growth method for large-caliber CZ single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069022A JP6452098B2 (en) 2017-03-13 2017-03-13 Large diameter CZ single crystal growth apparatus and growth method thereof

Publications (2)

Publication Number Publication Date
JP2018150219A JP2018150219A (en) 2018-09-27
JP6452098B2 true JP6452098B2 (en) 2019-01-16

Family

ID=63573897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069022A Active JP6452098B2 (en) 2017-03-13 2017-03-13 Large diameter CZ single crystal growth apparatus and growth method thereof

Country Status (2)

Country Link
JP (1) JP6452098B2 (en)
CN (1) CN108570706B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006636B2 (en) * 2019-03-01 2022-01-24 株式会社Sumco Silicon single crystal manufacturing equipment
CN112179945A (en) * 2019-07-01 2021-01-05 上海梅山钢铁股份有限公司 Device and method for on-line monitoring of furnace wall defects of high-temperature reaction furnace
JP6775773B1 (en) * 2020-02-14 2020-10-28 Ftb研究所株式会社 Single crystal growth device, single crystal growth method and single crystal
CN113818075B (en) * 2021-09-24 2022-09-30 西安奕斯伟材料科技有限公司 Method, device and equipment for accurately adjusting ADC camera and computer storage medium
CN114371223B (en) * 2022-03-16 2022-09-20 浙江大学杭州国际科创中心 Silicon carbide crystal growth detection device and method and silicon carbide crystal growth furnace

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122940A (en) * 1980-03-04 1981-09-26 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for detecting melting time point
JPS6283393A (en) * 1985-10-08 1987-04-16 Mitsubishi Metal Corp Single crystal pulling-up device
JPH0825835B2 (en) * 1988-09-20 1996-03-13 東芝セラミックス株式会社 Single crystal pulling device
JPH02216424A (en) * 1989-02-17 1990-08-29 Fujitsu Ltd Thermocouple
JP3134415B2 (en) * 1991-11-11 2001-02-13 住友電気工業株式会社 Single crystal growth method
JPH11190662A (en) * 1997-12-26 1999-07-13 Sumitomo Sitix Corp Method of measuring surface temperature of molten liquid in single crystal pull-up furnace and device for the method
JP3741418B2 (en) * 2000-07-31 2006-02-01 東芝セラミックス株式会社 Silicon single crystal pulling device

Also Published As

Publication number Publication date
CN108570706A (en) 2018-09-25
JP2018150219A (en) 2018-09-27
CN108570706B (en) 2021-07-06

Similar Documents

Publication Publication Date Title
JP6452098B2 (en) Large diameter CZ single crystal growth apparatus and growth method thereof
CN101377008B (en) Silicon single crystal pulling method
CN104005083B (en) A kind of apparatus and method measuring single crystal growing furnace fusion silicon liquid level height
KR101579780B1 (en) Method of determining diameter of single crystal, process for producing single crystal using same, and device for producing single crystal
KR20080110865A (en) Method for measuring distance between reference reflector and melt surface, method for control the position of melt surface using same, and silicon single crystal producing apparatus
JP5577873B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface, control method for distance between bottom surface of heat shield member and raw material melt surface, method for producing silicon single crystal
JP2007077013A (en) Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
US20160312379A1 (en) Melt gap measuring apparatus, crystal growth apparatus and melt gap measuring method
CN108138355B (en) Single crystal manufacturing apparatus and method for controlling melt surface position
CN103649380A (en) Automatic vision system for a crystal growth apparatus
JP3704710B2 (en) Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
CN212582034U (en) Single crystal furnace
JP4325389B2 (en) Melt surface initial position adjusting device, melt surface initial position adjusting method, and single crystal manufacturing method
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
KR20010043549A (en) Crystal growth apparatus and method
JP4360163B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6836258B1 (en) Single crystal growth device, single crystal growth method and single crystal
JP6365674B2 (en) Method for producing single crystal
JPH08239293A (en) Control of diameter of single crystal
CN214361839U (en) Quartz pin and monocrystalline silicon growth device
JPH11130585A (en) Apparatus for pulling single crystal
KR101528063B1 (en) Apparatus for measuring the diameter of ingot, ingot growing apparatus having the same and method for ingot growing
WO2022118537A1 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, method for controlling distance between heat shield member lower end surface and raw material melt surface, and method for producing silicon single crystal
KR20150005385A (en) Method for auto seeding of sapphire ingot growth furnace
TWI785410B (en) Single crystal production system and single crystal production method

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6452098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250