JP7002974B2 - 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 - Google Patents

電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 Download PDF

Info

Publication number
JP7002974B2
JP7002974B2 JP2018055289A JP2018055289A JP7002974B2 JP 7002974 B2 JP7002974 B2 JP 7002974B2 JP 2018055289 A JP2018055289 A JP 2018055289A JP 2018055289 A JP2018055289 A JP 2018055289A JP 7002974 B2 JP7002974 B2 JP 7002974B2
Authority
JP
Japan
Prior art keywords
layer
water
catalyst
conductive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055289A
Other languages
English (en)
Other versions
JP2019169315A (ja
Inventor
佑太 金井
武 梅
義彦 中野
大志 深沢
広貴 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2018055289A priority Critical patent/JP7002974B2/ja
Publication of JP2019169315A publication Critical patent/JP2019169315A/ja
Application granted granted Critical
Publication of JP7002974B2 publication Critical patent/JP7002974B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明の実施形態は、電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体に関する。
固体高分子型燃料電池(PEFC:Polymer Electrolyte Membrane Fuel Cell)はプロトン伝導性の高分子電解質膜を用いることを特徴としており、この電解質膜の両側のうち、アノード側供給される燃料である水素と、カソード側供給される酸化剤である酸素(若しくは空気)を電気化学的に反応させることにより発電させる装置である。ほかの燃料電池と比較して100℃以内の低温で作動可能であり、反応生成物が水であり、環境への負荷が少ないことから、家庭用定置電源や燃料電池自動車(FCV)として実用化が急がれている。しかし、本格普及には、各電極の触媒層に含まれる貴金属触媒の量の大幅削減が必要である。
PEFCの触媒層には、一般的に、カーボンブラック担体に貴金属触媒材料を担持させたカーボン担持触媒が使用されている。FCVとして使用した場合、起動及び停止によって、触媒層に含まれるカーボン担体が腐食し、それにより、貴金属触媒層、さらに膜電極接合体(MEA:Membrane Electrode Assembly)の劣化が促進される。そのため、高耐久性かつ、高反応面積を持つ貴金属触媒層の開発は貴金属触媒使用量の大幅削減に不可欠である。特許文献1には、スパッタリングまたは蒸着によって形成したカーボンレス触媒層を開発し、担体の腐食による劣化が回避できる。そして、造孔材料と貴金属触媒材料を含む触媒層前駆体を形成し、その後造孔材料を除去して空孔を含んだ触媒層を作製し、高反応面積を持つ触媒を達成しようとしている。しかし、同様な触媒量で、この構造の厚みは従来のカーボンブラック担持貴金属触媒の1/10~1/100であり、水の影響が受けやすい、発電環境によって、セルの起電力を低下することがあり、触媒のロバスト性を向上する必要である。
固体電解質膜のプロトン伝導度は膜内の水分によって変化し、水分量が少ないと伝導度を下がってしまう。つまり、高い電池特性を得るためには、飽和状態あるいは飽和に近い状態に含水させることが重要とされている。一方、カソード側で生成した水が滞留し、触媒層が水で埋まってしまうと、酸化ガスの拡散が阻害されるフラッディングにより発電性能が低下する。したがって、燃料電池において、水の管理は非常に重要であり、水の排出および電解質膜の保湿を両立させる必要がある。
従来、PEFCのガス拡散層(GDL)としては、高温でグラファイト化させたカーボンペーパーやカーボン繊維を編んで作られるカーボンクロスにフッ素樹脂で撥水化処理した導電性多孔シートに、フッ素樹脂とカーボンブラック粒子の混合インクを塗布して作成した撥水マイクロポーラス層(MPL)を持つ構造などが用いられてきた。しかし、この撥水MPLにより、電池反応により生じた生成水の一部が撥水されて触媒側に押戻され、フラッディングを起こし、電池反応が妨げられ、起電力を低下させる要因になる。
燃料電池の水分管理層(撥水MPL)の表面に水膜が形成されることを防止することを目的として、燃料電池の酸化極(カソード)において、生成水調整層と反応層との間に中間層を配置し、この中間層は撥水剤と親水剤とを有し、生成水調整層側から反応層に向けて撥水性材料の濃度が小さくなる撥水剤濃度に勾配が設けられている燃料電池が知られている。
ガス拡散層上に、吸水性コアと撥水性多孔シェルからなるコア-シェル構造を有する粉体からなるMPLを形成することで、MPL内の液水によるフラッディングを回避し、高いロバスト性を持つ燃料電池が知られている。
水分管理層は、カーボン粉末及び親水と撥水を有する材料を混合したインクやペーストなどをガス拡散層に塗布する必要があり、カーボン粉末や親水剤、撥水剤がガス拡散層へ必要以上に染み込んでしまい、ガス拡散が低下しやすく、また、撥水性を持つガス拡散層の水分管理機能も妨げられ、長期的に水分排出としての作用を発揮できないという問題があった。
また、撥水性を持つ水分管理層は生成水の一部を電極側に押戻し、担体がない多孔体構造を持つ積層貴金属触媒構造の場合、水のフラッティングを更に発生しやすい、特に、1A/cm以上の高電流密度で運転するときに、水の効率的な排出が燃料電池の性能を十分に発揮するための極めて重要なポイントである。
特開2012-204221号公報
本発明の実施形態は、低湿度条件下において性能の高い電極、電極を用いた膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体を提供する。
多孔体構造または空隙層を含む積層構造を有する複数の触媒ユニットを含む触媒層と、導電性材料と親水性材料を含む保水層と、ガス拡散層と、導電性材料と水性材料を含む疎水性水分管理層を含む。保水層は、触媒層とガス拡散層の間に配置され、疎水性水分管理層は、保水層とガス拡散層の間に配置され、保水層は、触媒層と疎水性水分管理層の間に配置されている。触媒ユニットのサイズは、50nm以上2μm以下である。導電性材料の平均一次粒子径は、10nm以上300nm以下である。触媒ユニットのサイズに対する保水層の導電性材料の平均一次粒子径の比の値が0.005以上6以下である。
電極の断面図。 電極の断面図。 触媒層の断面図。 触媒ユニットの低倍率透過型顕微鏡写真。 保水層の断面図。 保水層の断面SEM像。 保水層の断面SEM像。 実施形態の膜電極接合体の模式図。 実施形態の電気化学セルの模式図。 実施形態のスタックの模式図。 実施形態の燃料電池の模式図。 実施形態の車両の模式図。 実施形態の飛翔体の模式図。
以下、図面を参照して、本発明の実施形態について詳細に説明する。
(第1実施形態)
第1実施形態は、電極に関する。第1実施形態の電極は、燃料電池に用いられることが好ましい。第1実施形態の電極は、燃料電池の燃料極(アノード)として用いられることがより好ましい。すなわち、実施形態の電極は、燃料電池用電極又は燃料電池の燃料極用電極として用いられることが好ましい。図1と図2に電極100の断面図を示す。電極100は、触媒層10、保水層20、撥水性水分管理層30、ガス拡散層40を含む。電極100は、触媒層10、保水層20、撥水性水分管理層30、ガス拡散層40からなることが好ましい。触媒層10は、触媒ユニット11を含む。保水層20は、導電性材料21及び親水性材料22を含む。図2は、導電性材料21が粒子状である場合の電極の断面図である。
電極100を燃料電池に用いることで、燃料電池の環境温湿度に対するロバスト性を大きく向上することができる。一般的に、多孔体構造または空隙層を含む積層構造を持つ触媒ユニット11を用いた燃料電池は、触媒層10の担体がないため、触媒層10の厚さが非常に薄く、高湿の環境で発電するとき、特に高電流密度で運転するときに、生成水が排出し難いので、セル内に生成水が滞留する。そのため、酸素(空気)の取り込みが困難となりフラディングと呼ばれる出力低下現象を引き起こす。そこで、触媒層10で形成した生成水を保水層10で吸収し、疎水性水分管理層30及びガス拡散層40を介して効率的に排出することで、触媒層10と保水層の界面に水膜を形成することにより発生するフラッディングを回避しつつ、適度な相対湿度を維持する。この結果、高いロバスト性を発現する。本発明におけるロバスト性とは、燃料電池に供給される酸化ガス、または燃料ガス、もしくはその両方の湿度を上昇したときに、上記のような現象による出力変動が起こることであり、この変動を小さく抑制し、安定運転できることを目指している。
(触媒層)
触媒層10は、図2の電極100の断面図に示すように多孔体構造または空隙層を含む積層構造を持つ触媒ユニット11を含む。触媒ユニット11は、貴金属元素を含むことが好ましい。貴金属元素が電極の触媒として作用する。触媒層10は、担体を含まない。触媒層10には、空孔が含まれる。
触媒ユニット11の触媒材料は、例えば、Pt、Ru、Rh、Os、Ir、Pd及びAuなどの貴金属元素からなる群より選択される少なくとも1種を含む。このような触媒材料は、触媒活性、導電性および安定性に優れている。前述の金属は、酸化物として用いることもでき、2種以上の金属を含む複合酸化物または混合酸化物であってもよい。
好適な貴金属元素は、電極100が使用される反応に応じて適宜選択することができる。例えば、燃料電池用の場合、Pt1-uで示される組成を有する触媒が望ましい。ここで、uは、0<u≦1であり、元素Mは、Co、Ni、Fe、Mn、Ta、W、Hf、Si、Mo、Ti、Zr、Nb、V、Cr、AlおよびSnよりなる群より選択される少なくとも1種である。この触媒は、0原子%より多く90原子%以下のPt、および10原子%以上100原子%未満の元素Mを含んでいる。
電極100において、触媒ユニット11の平均サイズは、50nm以上2μm以下が好ましい。サイズが小さすぎる触媒ユニット11は、製造が困難である。サイズが大きすぎる触媒ユニットも製造が困難である。ガス供給、生成物排出の物質移動をスムーズに行うため、触媒ユニットのサイズとして、さらに好ましくは0.1μm以上1μm以下であることが望ましい。そして、触媒層1の平均厚さ、すなわち、触媒ユニット11の平均高さは0.05μm以上3μm以下であることが好ましい。
ここで、図2を参照して、触媒ユニット11のサイズと高さの求め方を説明する。図2は、模式図であるが、実際には走査型電子顕微鏡(Scanning Electron Microscope: SEM)で、断面を撮影した画像から求める。図3は、図2の仮想線L2の位置における面方向の触媒層の断面図である。図3の断面には、触媒層10中の触媒ユニット11を示していない。SEMによる観察部位は、図3に示される触媒層10の面内に9個の観察スポット(A1~A9)を指定し、この9個の観察スポットを含む断面領域である。
各スポットは、正方形状で少なくとも5mmの領域を有する。そして、図3に示すように、電極長さD1と電極幅D2(D1≧D2)とした場合、触媒層10の幅方向に対向する2辺からそれぞれ内側にD3(=D1/10)の距離のところに仮想線を引き、触媒層10の長さ方向に対向する2辺からそれぞれ内側にD4(=D2/10)の距離のところに仮想線を引き、さらに、触媒層10の中心を通る幅方向に平行な仮想線を引き、触媒層10の中心を通る長さ方向に平行な仮想線を引き、仮想線の交点9点を中心とする領域を観察スポットA1~A9とする。SEMによる観察断面は、図3の面に対して垂直方向である。観察範囲は、触媒ユニット11のサイズに応じて調整する。断面が確認できる触媒ユニット11の数が10以上20以下の断面を1つの観察領域となるように観察面積を調整する。
まず、触媒ユニット11の高さを求める基準線L1を定める。50nm間隔で、触媒ユニット11と接している保水層20の点(接点)を定める。接点の近似直線を基準線L1とする。基準線L1を求める接点は、10以上とする。接点が10未満の場合は、観察スポット内で、観察領域をずらして、再度基準線L1を求める。
次に基準線から、各触媒ユニット11の高さを求める。基準線L1に対して垂直方向の高さ(H~H)を求める。そして、高さの半分の位置(例えば、H/2)における基準線L1と平行な方向の触媒ユニット11の幅(S~S)が各触媒ユニット11の幅となる。S~Sの平均値が各撮影スポットにおける触媒ユニット11の幅であり、9つの観察スポットの触媒ユニット11の幅の平均値が触媒ユニット11のサイズである。
多孔体構造を持つ触媒ユニット11の空孔は、平均径が3nm以上400nm以下であり、微細な空隙を含むスポンジ状である。触媒ユニット11の長辺と短辺の比率(長辺:短辺)の平均は、1:1以上、10:1以下であることが望ましい。
また、空隙層を含む積層構造を持つ触媒ユニット11は、シート状触媒と空隙層が交互に並んだ構造を有する。シート状触媒の平均厚さは、典型的には、4nm以上30nm以下である。空隙層の厚さは、典型的には、4nm以上30nm以下である。触媒ユニットの厚さ方向の長さ長辺とし、触媒ユニットの長辺と短辺の比率(長辺:短辺)の平均は、1:1以上10:1以下である。
図4(A)と図4(B)に多孔体構造を持つ触媒ユニットと空隙層を含む積層構造を持つ触媒ユニットの低倍率透過型顕微鏡写真をそれぞれ示す。図4(A)は多孔体構造の触媒ユニットであり、図4(B)は空隙層を含む積層構造を持つ触媒ユニットをそれぞれ示した。触媒材料が担体に担持された場合は、触媒は一般的にナノサイズの粒子状であるが、多孔体構造を持つ触媒ユニットの場合は触媒自体が微細な空隙を含むスポンジ状である。空隙層を含む積層構造を持つ触媒ユニットの場合は、触媒はナノシート状になる。スポンジ状またはナノシート状の触媒を用いることによって電極100を用いた燃料電池等の特性を向上させることが可能である。
電極触媒反応は触媒の表面において生じるため、触媒の形状は触媒表面の原子配列、電子状態に影響を及ぼす。空隙層を含む積層構造を持つ触媒ユニットの場合は、隣接のナノシート同士は部分的に一体化することが望ましい。メカニズムはまだ完全に解明されていないが、電極反応のためのプロトン伝導または水素原子伝導をよりスムーズに達成できると考えられるためである。
また、図4(C)の低倍率透過型顕微鏡写真に示したように積層構造内部のナノシートを多孔質化することによってより高い特性が得られる。ガス拡散と水管理を向上できるためである。積層構造内部のナノシートの間に繊維状カーボンを含む多孔質ナノカーボン層(図4(D)の低倍率透過型顕微鏡写真)またはナノセラミックス材料層を配置した方が、耐久性、ロバスト性をより向上できる。主要な電極反応を寄与する触媒は多孔質ナノカーボン層に含有される繊維状カーボンに殆ど担持されていないため多孔質ナノカーボン層を含む積層構造ユニットは担体レスと考えている。
ここで、水分の排出など物質の移動がよりスムーズになるため、触媒層10の空孔率は、50Vol.%以上90Vol.%以下であることが好ましい。また、触媒層10の空孔率がこの範囲内であれば、貴金属の利用効率を低下させることなく、物質を十分に移動させることができる。
この触媒ユニット11に、親水性の材料を表面に付着させて親水性を付与してもよい。親水性の材料は親水性のポリマーであることが好ましく、更に、プロトン伝導性を持つアイオノマーであることがより好ましい。親水性アイオノマーを貴金属表面に付着させることによって触媒ユニット11のプロトン伝導または触媒と他部材との密着性を促進することができる。
(保水層)
保水層20は、触媒層10と疎水性水分管理層30の間に配置された保水性のある多孔質な層である。保水層20は、導電性材料21と親水性材料22が混合層である。保水層20は、触媒層10と疎水性の水分管理層30との間に配置されていることで、低湿度条件下でも電解質膜の乾燥を防ぐことができる。保水層20が無く疎水性の水分管理層30が触媒層10と接している構成では、燃料電池の電解質膜が乾燥しやすい。また、疎水性の水分管理層30が無く保水層20がガス拡散層と接している場合は、保水層20からの排水性が悪くフラッディングが発生しやすいという点が問題となる。
保水層20の厚さは、1.00μm以上100μm以下が好ましい。保水層20が1.00μm未満であると、ドライアップを保水層20によって防ぐ効果が十分ではない。また、保水層20の厚さが100μmを超えると、ガス拡散性が低下し、さらに、電気抵抗が増加してしまう(電極100の電気抵抗が増加してしまう)ことが好ましくない。保水層20の厚さは、断面観察により求められる。
保水層20の空孔率は、30%以上80%以下が好ましい。保水層20の空孔率が低すぎると、ガス拡散性が低下してしまう。保水層20の空孔率が高すぎると、保水層20の機械的強度が低下してしまう。また、保水層20の空孔率が高すぎると、保水層20による調湿能力が低下してしまう。保水層20の空孔率は、単位体積あたりの保水層20のすきまの割合を百分率で表したものである。空孔率は保水層20のみかけ体積V(m)、保水層20の質量m(kg)、保水層20の構成物質の密度ρ(kg/m)、から計算により求めることができる。すなわち、(空孔率)=1-m/ρ×Vである。
保水層20のみかけ体積V(m)、保水層20の質量m(kg)はそれぞれノギスや質量計を用いて求めることができる。また、保水層20の構成物質の密度ρ(kg/m)は材料の組成分析等から求めることができる。
導電性材料21としては、導電性粒子、導電性繊維、又は、導電性粒子及び導電性繊維が好ましい。導電性粒子としては、炭素粒子(カーボンブラック)が好ましい。導電性繊維としては、炭素繊維が好ましい。これらの材料は、導電性に優れ、かつ、微細な物が入手可能である。導電性材料21の平均一次粒径は、10nm以上300nm以下が好ましい。導電性粒子21の平均一次粒径は、25nm以上200nm以下、30nm以上150nm以下、30nm以上100nm以下がさらにより好ましい。導電性繊維は、長辺と短辺の比(長辺/短辺)が10以上のものであり、長辺と短辺の比が10未満は、導電性粒子とする。
炭素粒子としては、例えば、ケッチェンブラック(商標)、アセチレンブラック、バルカン(商標)、活性炭等が使用できる。炭素繊維としては、例えば、単層カーボンナノチューブや多層カーボンナノチューブが使用できる。
触媒ユニット11のサイズと導電性粒子21の平均一次粒径は、以下の関係を満たすことが、保水性の観点から好ましい。触媒ユニット11のサイズに対する導電性粒子21の平均一次粒径([導電性材料21の平均一次粒径]/触媒ユニット11のサイズ)は、0.005以上6以下が好ましい。触媒ユニット11のサイズに対する導電性粒子21の平均一次粒径が0.005未満であると、触媒ユニット11に対して導電性材料21が小さすぎるため、ガスの拡散が阻害されてしまう。また、触媒ユニット11のサイズに対する導電性粒子21の平均一次粒径が6より大きいと、保水層20内の空孔が大きくなり、保水層20の保水性が低下してしまったり、保水層20と触媒ユニット11の接触面積が少なくなり、電極100の電気抵抗が増加してしまったりすることが好ましくない。他にも、また、触媒ユニット11のサイズに対する導電性粒子21の平均一次粒径が6より大きいと、保水層20上に触媒ユニット11を形成することが困難となることも好ましくない。触媒ユニット11のサイズに対する導電性粒子21の平均一次粒径は、より好ましくは、0.05以上1.00以下である。
導電性粒子(導電性材料21)の平均一次粒径は、各粒子の内接円直径と外接円直径の平均値から求められる。導電性繊維(導電性材料21)の平均一次粒径は、導電性繊維の直径から求められる。平均一次粒径は、図5の断面図に示す保水層の9つの観察スポットA10~A18の面を含むSEM画像から求めた値の平均値とする。図5は、図2の仮想線L3の位置における面方向の保水層の断面である。図5の断面には、保水層10中の導電性材料21及び親水性材料22を示していない。保水層20の厚さの半分の位置の断面をSEMで観察することが好ましい。
各スポットは、正方形状で少なくとも5mmの領域を有する。そして、図5に示すように、電極長さD5と電極幅D6(D5≧D6)とした場合、保水層20の幅方向に対向する2辺からそれぞれ内側にD7(=D5/10)の距離のところに仮想線を引き、保水層20の長さ方向に対向する2辺からそれぞれ内側にD8(=D6/10)の距離のところに仮想線を引き、さらに、保水層20の中心を通る幅方向に平行な仮想線を引き、保水層20の中心を通る長さ方向に平行な仮想線を引き、仮想線の交点9点を中心とする領域を観察スポットA10~A18とする。
図6のSEM像を参照して、炭素粒子(導電性粒子)の平均一次粒径の測定方法について説明する。図6は、観察スポット各観察スポットにおいて撮影したSEM像である。図6のSEM像に対角線を引き、その対角線上にある炭素粒子を選ぶ。選んだ炭素粒子のうち、一次粒子径が測定可能な粒子を選別する。選別した一次粒子の内接円直径と外接円直径を求め、内接円直径と外接円直径の平均値を一次粒子径とする。選別したすべての粒子の一次粒径を求め、その平均値を観察スポットの炭素粒子の一次粒子径とする。9つの観察スポットの炭素粒子の一次粒子径の平均値を導電性材料21の平均一次粒子径とする。SEMの撮影倍率は、導電性材料21の粒径に応じて変更する。具体的には、平均一次粒径が100nm以下の場合は、10万倍で、平均一次粒径が100nmより大きい場合は、1万倍とする。
図7のSEM像を参照して、炭素繊維(導電性繊維)の平均一次粒径の測定方法について説明する。図7は、観察スポット各観察スポットにおいて撮影したSEM像である。図7のSEM像に対角線を引き、その対角線上にある炭素繊維を選ぶ。そして、選んだ炭素繊維のうち、対角線と炭素繊維が交差する角度が70度以上110度以下の炭素繊維を選別する。選別した炭素繊維の直径を一次粒子径とする。選別したすべての炭素繊維の一次粒子径を求め、その平均値を観察スポットの炭素繊維の一次粒子径とする。9つの観察スポットの炭素繊維の一次粒子径の平均値を導電性材料21の平均一次粒径とする。なお、導電性材料21に導電性粒子と導電性繊維の両方が含まれる場合、導電性粒子と導電性繊維の二つの平均一次粒径を求める。そして、導電性粒子の平均一次粒径と導電性繊維の平均一次粒径の平均値を導電性材料21の平均一次粒径とする。SEMの撮影倍率は、導電性材料21の粒径に応じて変更する。具体的には、平均一次粒径が100nm以下の場合は、5万倍で、平均一次粒径が100nmより大きい場合は、5千倍とする。
保水層20に含まれる導電性材料21の比率が低いと電気抵抗が大きくなってしまい好ましくない。また、保水層20に含まれる導電性材料21の比率が高いと、保水効果が充分に発揮されずに好ましくない。そこで、保水層20に含まれる導電性材料21の比率は、0.01g/cm以上2.00g/cm以下が好ましく、0.10g/cm以上1.00g/cm以下がより好ましい。
導電性材料21の導電性は4端子法により測定できる。
導電性材料21が炭素系材料である場合、炭素成分分析法によって、導電性材料21の分析をすることができる。導電性材料21が炭素系材料以外であれば、誘導結合プラズマ質量分析法によって、分析することができる。
親水性材料22としては、親水性の樹脂を用いることが好ましい。樹脂を用いることで、導電性材料21を固定し、保水層20の構造が保持される。親水性の樹脂としては、プロトン導電性を有する親水性のフッ素樹脂が好ましく、具体的には、ナフィオン(商標)、フレミオン(商標)、アシプレックス(商標)などを用いることが好ましい。
保水層20には、親水性材料22が含まれるが、少なすぎると、疎水性になってしまい水分を保持する能力が低く、多すぎると、ガス拡散性が低下してMEAの発電特性の低下を招く恐れがある。そこで、保水層20に含まれる親水性材料22の比率は、0.0005g/cm以上2.0000g/cm以下が好ましく、0.002g/cm以上1.000g/cm以下がより好ましい。
また、保水層20中の親水性材料22に対する導電性材料21の質量比率([親水性材料の質量]/[導電性材料の質量])は、0.05以上2.0以下が好ましい。質量比率が0.05未満であると、疎水性になってしまい水分を保持する能力が低くなってしまう。また、質量比率が2.0を超えると、電極の電気抵抗が大きくなってしまい好ましくない。より好ましい親水性材料22に対する導電性材料21の質量比率は、0.1以上1.0以下である。
親水性材料22は、保水層20を削り取り、溶媒に溶解させて、導電性材料21と親水性材料22に分離させて、分析をすることで、親水性材料の定性、定量分析をすることができる。分離させた親水性材料22は、HPLC (High Performance Liquid Chromatography), LC/MS(Liquid Chromatography/ Mass Spectrometry), LC/MS/MS(Liquid Chromatography / Tandem Mass Spectrometry), LC/TOF-MS(Liquid Chromatography/ Time-of-flight mass spectrometry), GC/MS (Gas Chromatography /Mass Spectrometry )、GC/MS/MS(Gas Chromatography / Tandem Mass Spectrometry), GC/TOF-MS (Gas Chromatography/ Time-of-flight mass spectrometry),IC(Ion Chromatography), IC/MS (Ion Chromatography / Mass Chromatography ) 1H-NMR (1H Nuclear Magnetic Resonance), 13C-NMR (13C Magnetic Resonance)などを用いて分析することができる。
(疎水性水分管理層)
疎水性水分管理層30は、保水層20とガス拡散層40の間に配置された多孔質な疎水性の層である。疎水性水分管理層30は、導電性材料と撥水性材料を含む。保水層20とガス拡散層40の間に疎水性水分管理層30があることで保水層側に水を押し戻し、保湿効果が高まることが好ましい。かかる効果は、保水層20と疎水性水分管理層30を併用することによって生じる。
疎水性水分管理層30の導電性材料は、保水層20の導電性材料21と同様である。疎水性水分管理層30の導電性材料の平均一次粒径は、10nm以上300nm以下が好ましい。
疎水性水分管理層30の撥水性材料は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、4フッ化エチレン・6フッ化プロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂が好ましい。
疎水性水分管理層30に含まれる撥水性材料は、0.01g/cm以上1.00g/cm以下が好ましい。撥水性材料の量が少ないと、水管理能力が低くなり好ましくない。撥水性材料の量が多いと疎水性水分管理層の電気伝導性が低くなり好ましくない。
また、疎水性水分管理層30中の撥水性材料に対する導電性材料の質量比率([撥水性材料の質量]/[導電性材料の質量])は、0.05以上2.0以下が好ましい。質量比率が0.05未満であると、水管理能力が低くなってしまう。また、質量比率が2.0を超えると、電極の電気抵抗が大きくなってしまい好ましくない。より好ましい撥水性材料に対する導電性材料の質量比率は、0.1以上1.0以下である。
疎水性水分管理層30の分析方法は、保水層20と同様である。
(ガス拡散層)
ガス拡散層40は、ガス拡散層は多孔質の基材である。ガス拡散層40は、撥水性であることが好ましい。ガス拡散層40としては、カーボン基材を用いることが好ましい。カーボン基材としては、カーボンフェルト、カーボンペーパー、又は、カーボンクロスが好ましい。ガス拡散層には、撥水性材料を含んでもよい。撥水性材料としては、撥水性材料は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、4フッ化エチレン・6フッ化プロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂が好ましい。
ガス拡散層40の厚さとしては、30μm以上500μm以下が好ましい。ガス拡散層40が薄すぎると、強度が低いため好ましくない。また、ガス拡散層40が厚すぎるとガス拡散性が低いため好ましくない。
次に、電極100を形成する方法について一例を挙げて説明する。
まず、電極100作製するために用いる基板に、転写層を形成するためのペーストを塗布する。この基板及び転写層は、電極100の作製過程で分離される。なお、親水性材料22を含ませた転写層の少なくとも一部が、保水層20に含まれてもよい。基板としては、耐賛成及び耐熱性に優れる無機材料又は有機材料を使用することができる。基板は、具体的には、カプトン、PTFEなどのポリマーフィルム、耐酸性金属、石英、シリカなどのセラミックス基体が好ましい。
乾燥させて基板上に転写層を形成させたら、転写層上に触媒ユニット11を含む触媒層10を形成させる。転写層は、例えば、カーボン粒子またはカーボン繊維を含む多孔質層である。転写層は、触媒層形成後に親水性材料22を含ませることで、親水性材料22を含んだ転写層の少なくとも一部が保水層20として利用することも出来る。そこで、転写層に用いる材料は、保水層20の導電性材料21の平均一次粒子径等の条件を満たすことが好ましい。触媒ユニット11は、触媒として機能する材料と造孔剤を交互に保水層20上に形成して造孔剤を除去するか、触媒として機能する材料と造孔剤を混合して保水層20上に形成して造孔剤を除去する方法などがある。膜電極接合体を形成する場合は、触媒層10の形成後、触媒層10の面に電解質膜をホットプレス等で接合させる。
次に、ガス拡散層40に疎水性水分管理層30を形成するためのペーストを塗布する。疎水性水分管理層30を形成するためのペーストには、導電性材料、撥水性材料及び溶媒を含む。ガス拡散層40に疎水性水分管理層30を形成するためのペーストを塗布したら、乾燥させて疎水性水分管理層30を形成させる。乾燥条件は、溶媒が揮発して、撥水性材料が疎水性水分管理層30に残るように温度等を調整する。疎水性水分管理層30を含まない電極を作成する場合は、この工程が省略される。
ガス拡散層40上に疎水性水分管理層30が形成された部材に保水層20を形成するためのペーストを塗布する。保水層20を形成するためのペーストには、導電性材料21、親水性材料22と溶媒を含む。基板に保水層20を形成するためのペーストを塗布して、乾燥させる。乾燥させる際に、溶媒が揮発して、親水性材料22が保水層20に残る条件になるように調整する。そして、保水層20、疎水性水分管理層30、ガス拡散層40の順に積層した部材を得る。
次に、基板上に転写層及び触媒層10が形成された部材に親水性材料22含む溶液を塗布することが好ましい。例えば、親水性材料22を0.1wt%含む溶液をスプレー塗布することが好ましい。親水性材料22の塗布により、転写層は、保水層20と同質な層となる。基板上に転写層及び触媒層10が形成された部材から触媒層10を剥離して、基板と、触媒層10を分離させる。親水性材料22を含ませた転写層は、触媒層10側に付着していてもよい。そして、触媒層10と、保水層20、疎水性水分管理層30、ガス拡散層40の順に積層した部材を貼り合わせ、触媒層10、保水層20、疎水性水分管理層30とガス拡散層40が順に積層した電極100を得る。貼り合わせる触媒層10に親水性材料22を含んだ転写層(保水層20)が含まれる場合、保水層20の厚さは、触媒層10側に付着した親水性材料22を含んだ転写層(保水層20)と保水層20、疎水性水分管理層30とガス拡散層40が順に積層した部材の保水層20の両方の厚さとなる。
造孔剤を除去する際には、酸性溶液を用いた洗浄、アルカリ溶液を用いた洗浄、または電解法などにより行うことができる。造孔剤の除去において、触媒活性を有する貴金属の流出を抑制するため、保水層20に触媒活性を有する貴金属を固定する処理を行ってもよい。例えば、造孔剤の除去前、すなわち、転写層上に触媒として機能する材料と造孔剤を形成させた後に、付着性を有するポリマー溶液を含浸させることができる。付着性を有するポリマー溶液としては、プロトン伝導性を有するアイオノマーといったポリマー溶液を用いることが好ましい。
部材の貼り合わせは、例えば、加熱および加圧することができる装置を用いて行われる。例えば、ホットプレス機またはロール・ツー・ロール方式を用いて行うことができる。その際、プレス温度は、触媒と電解質膜との結着剤として使用する高分子電解質膜のガラス転移温度以上であればよく、例えば、100℃~400℃とすることができる。プレス圧は、例えば、5kg/cm以上200kg/cm以下とすることができる。
上記構成の電極100は、多孔体構造を持つ積層貴金属触媒を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐ドライアップ性フラッディング性を向上させることができる。
(膜電極接合体)
次に、電極100を用いた膜電極接合体(MEA)について説明する。膜電極接合体は、実施形態の電極100を用いた膜電極接合体である。膜電極接合体は、燃料電池用として用いられることが好ましい。図8に膜電極接合体200の断面図を示す。膜電極接合体200は、アノード(燃料極)201、カソード(空気極)202と電解質膜203を含む。アノード201には、電極100を用いる。カソード202には、電極100の保水層20を除去した電極、電極100の疎水性水分管理層30を除去した電極のいずれかを用いることが好ましい。触媒層10の触媒ユニット11の間には、電解質膜203が存在してもよい。
膜電極接合体200が燃料電池に使用される場合、アノード201には水素等の燃料が供給され、カソード202には空気が供給される。カソード202では、空気中の酸素を原料として、燃料電池反応により水が発生する。そこで、少なくともアノード201に電極100を用いることが、膜電極接合体200を用いた燃料電池において、ドライアップを回避しつつ、適度な相対湿度を維持することでロバスト性を向上させる観点から好ましい。
電解質膜203は、イオン伝導性が要求される膜である。電解質膜203は、スルホン酸基を有するフッ素樹脂、タングステン酸とリンタングステン酸からなる群のうちのいずれか1種以上の電解質材料を含む。スルホン酸基を有するフッ素樹脂としては、例えば、ナフィオン(商標、デュポン)、フレミオン(商標、旭硝子)、およびアシプレック(商標、旭化成)などを用いることが好ましい。タングステン酸やリンタングステン酸などの無機物も電解質材料として好ましい。
電解質膜203の厚みは、得られる膜電極接合体200の特性を考慮して適宜決定すればよいが、好ましくは5μm以上300μm以下、より好ましくは5μm以上150μm以下のものが使用される。電解質膜203の厚みは、成膜時の強度及び膜電極接合体膜電極接合体200作動時の耐久性の観点から5μm以上であることが好ましく、膜電極接合体200作動時出力特性の観点から300μm以下であることが好ましい。
電解質膜203とアノードおよびカソードとの接合は、加熱および加圧することができる装置を用いて行われる。例えば、ホットプレス機を用いて行うことができる。その際、プレス温度は、電極と電解質膜203との結着剤として使用する電解質膜203のガラス転移温度以上であればよく、例えば、100℃以上400℃以下とすることができる。プレス圧は、使用する電極および電解質膜203の硬さに依存するが、例えば、5kg/cm以上200kg/cm以下とすることができる。なお、電解質膜203は、アノード201の作製において、基板から分離させる前に触媒層10側に電解質膜202を接合させてもよい。
上記構成の膜電極接合体200は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐ドライアップ性を向上させることができる。
(電気化学セル)
次に、電気化学セルについて説明する。電気化学セルは、膜電極接合体200を用いている。本実施形態にかかる電気化学セルの構成を、図9の電気化学セル300の模式図を用いて簡単に説明する。図9に示す電気化学セル300は、膜電極接合体200のアノード201、カソード202及び電解質膜203と、膜電極接合体200の両側に、ガスケット301、302を介して、集電板303、304と締め付け板305、306が取り付けられている。実施形態の電極100を用いることで実施形態の電気化学セル300は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させることができる。
(スタック)
次に、スタックについて説明する。スタックは、膜電極接合体200又は電気化学セル300を用いている。本実施形態にかかるスタックの構成を、図10のスタック400の模式図を用いて簡単に説明する。スタック400は、膜電極接合体200又は電気化学セル300を複数個、直列に接続した構成である。電気化学セルの両端に締め付け板401、402が取り付けられている。実施形態の電極100、101を用いることで実施形態のスタック400は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させることができる。
(燃料電池)
次に、燃料電池について説明する。燃料電池は、膜電極接合体200、電気化学セル300、又は、スタック400を用いている。本実施形態にかかる燃料電池の構成を、図11の燃料電池500の模式図を用いて簡単に説明する。燃料電池500は、MEA200と、燃料供給ユニット501と、酸化剤供給ユニット502とを有する。燃料電池500のアノードには、図示しない水素燃料タンクが接続し、水素が供給される。燃料電池500で用いられる。MEA200の代わりに、電気化学セル300又はスタック400を用いてもよい。実施形態の電極100実施形態の燃料電池500は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させることができる。燃料電池500の出力が低湿度条件下でも安定するため、多湿でも低湿でも燃料電池500の出力が安定する。燃料電池500で発電した電力は、図示しない蓄電池に蓄えることもできる。
(車両)
次に、車両について説明する。車両は、燃料電池500を用いている。本実施形態にかかる車両の構成を、図12の車両600の模式図を用いて簡単に説明する。車両600は、燃料電池500、車体601、モーター602、車輪603と、制御ユニット604を有する。燃料電池500、モーター602、車輪603と、制御ユニット604は、車体601に配置されている。燃料電池500のカソードとアノードは、負荷制御ユニット604を介して、負荷であるモーター602とつながっている。制御ユニット604は、燃料電池の500から出力した電力を変換したり、出力調整したりする。モーター602は燃料電池500から出力された電力を用いて、車輪603を回転させる。実施形態の電極100を用いることで実施形態の燃料電池500は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させることができる。したがって、燃料電池500の出力が低湿度条件下でも安定し、多湿でも低湿でも燃料電池500を用いた車両600の運転が安定する。
(飛翔体)
次に、飛翔体(例えば、マルチコプター)について説明する。飛翔体は、燃料電池500を用いている。飛翔体は、燃料電池500を用いている。本実施形態にかかる飛翔体の構成を、図13の飛翔体(クアッドコプター)700の模式図を用いて簡単に説明する。飛翔体700は、燃料電池500、機体骨格701、モーター702、回転翼703と制御ユニット704を有する。燃料電池500、モーター702、回転翼703と制御ユニット704は、機体骨格701に配置している。燃料電池500のカソードとアノードは、負荷制御ユニット704を介して、負荷であるモーター702とつながっている。制御ユニット704は、燃料電池の500から出力した電力を変換したり、出力調整したりする。モーター702は燃料電池500から出力された電力を用いて、回転翼703を回転させる。実施形態の電極100を用いることで実施形態の燃料電池500は、多孔体構造を持つ積層貴金属触媒を用いた電極を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させることができる。したがって、燃料電池500の出力が低湿度条件下でも安定し、多湿でも低湿でも燃料電池500を用いた飛翔体700の運転が安定する。
以下に、具体的な実施例により、本発明の実施形態の電極、膜電極接合体の製造方法を説明する。なお、後述する実施例は本発明の有数の実施形態の実施例であり、本発明は以下の実施例のみに限定されるものではない。
(実施例1)
まず、アノードを作製する。保水層を塗布するために保水層形成用カーボンペーストを作製した。平均長さ10μm、平均繊維直径150nmのVGCF(昭和電工)1.5gを131.6gの溶媒中で混合したあと、5%ナフィオン(商標)溶液を7.5g(Du Pont社製)を加えた。ここにジルコニアボールを加えた後、ペイントシェーカーで1時間分散させ、保水層形成用カーボンペーストを得た。次に基体としてMPL(疎水性水分管理層、炭素材料はCabot Vulcan XC 72、平均一次粒子径40nm、撥水剤はPTFEを使用)つきカーボンペーパーを用意した。この基体に、保水層形成用のカーボンペーストを5μmスプレー法により塗布し、ホットプレートで150℃、20分間、乾燥させ保水層を形成させた。このように保水層、MPLとガス拡散層が積層した部材を得た。
次に、転写層を作製するための、カーボンペーストを作製した。平均粒径30nmの0.2gのカーボンブラックを4gの溶媒中で混合し、超音波で10分分散させた後、30分間攪拌した。この混合物に、0.1gのグリセリンを加え、さらに超音波で30分分散させた後、2時間攪拌し、カーボンペーストを得た。
次に、転写基板である厚さ25μm、カプトンフィルムを準備した。これにカーボンペーストをエアースプレーで、厚みが5μmを到達まで塗布した。塗布したカーボンペーストをホットプレートで250℃、15分間、乾燥させて転写層を得た。
続いて、乾燥した転写層を用い、基体に対してPtのスパッタリングおよびCo、Niのスパッタリングを行い、Ptの0.15mg/cmのローディング量となるように触媒活性を有するPtと造孔剤を形成した。このように、上記転写層上に触媒を積層して形成した
その後、造孔剤を除去するために、酸処理を行なった。純水によって洗浄し、乾燥させ熱処理を行い、多孔体構造または空隙層を含む積層構造触媒ユニットを有する触媒層が担持されたカプトン基板を得た。
電解質膜としてのナフィオン211(Du Pont社製、商品名)を用いた。触媒層が担持されたカプトン基板(7.07cm×7.07cm)と電解質膜とを配置した。前記の触媒層が担持されたカプトン基板の接合体へ0.1wt%のナフィオンのアイオノマーの分散液を用いてエアースプレーで転写層の親水化処理を行った。その後、145℃に加熱するとともに、600kgf/cm加圧下で5分間保持するホットプレスを行うことにより、電解質膜とアノード側にある前記の触媒層が担持されたカプトン基板の接合体を得た。次に、カプトンフィルムを冷却した前記の接合体から剥離した。その後、前記の、保水層、ガス拡散層を張り付け、電解質膜付きのアノード電極とした。
続いて、カソード電極を作製する。基体としてMPL(疎水性水分管理層、炭素材料はCabot Vulcan XC 72、平均一次粒子径40nm、撥水剤はPTFEを使用)付きカーボンペーパーを用意した。MPLの面に対してスパッタリングおよびCo、Niのスパッタリングを行い、Ptの0.15mg/cmのローディング量となるように触媒活性を有するPtと造孔剤を形成した。このように、上記転写層上に触媒を積層して形成した。その後、造孔材を除去するために、酸処理を行なった。純水によって洗浄し、乾燥させ熱処理を行い、多孔体構造または空隙層を含む積層構造触媒ユニットを有する触媒層が担持されたMPLつきカーボンペーパーを用意した。これをホットプレスで電解質膜にはりつけ、電解質膜付きのカソード電極とした。そして、電解質膜付きのアノード電極と電解質膜付きのカソード電極を貼り合わせて膜電極接合体を作製した。
<発電特性評価>
続いて、作製した膜電極接合体を電子負荷装置を搭載した評価装置に設置したのちに、セル温度80℃、燃料(水素、ストイキ2、66%RH)をアノード側に供給した。また、酸化剤(空気、ストイキ2、66%RH)をカソード側に供給した。次に、電子負荷装置を定電流モードに設定し、前記MEAを含む単セルの電流を1A/cmで24時間保持し、コンディショニングを行った。セル温度80℃、燃料(水素、ストイキ2、30%RH)をアノード側に供給し、酸化剤(空気、ストイキ2、30%RH)をカソード側に供給し、I-V測定を評価した。電流密度が1A/cmのときの燃料電池のセル電圧が0.61Vであった。実施形態の電極を使用することで、燃料電池は良好な特性を示した。また、セル温度80℃、燃料(水素、ストイキ2、66%RH)をアノード側に供給し、酸化剤(空気、ストイキ2、66%RH)をカソード側にI-V測定を評価した。電流密度が1A/cmのときの燃料電池のセル電圧が0.66Vであった。実施形態の電極を使用することで、燃料電池は良好な特性を示した。また、コンディショニング後に湿度30%と湿度66%における膜電極接合体の電極の電気抵抗を測定した。抵抗[mΩ/cm]は、膜電極接合体を電流遮断法で測定する。湿度66%における膜電極接合体の抵抗は、48mΩ/cmと、十分に低い値であった。
(比較例1)
アノード側に実施例1の保水層を使わず、MPL付きガス拡散層を使用した。このこと以外は実施例1と同様にして膜電極接合体を作製して評価を行った。セル温度80℃、燃料(水素、ストイキ2、30%RH)をアノード側に供給し、酸化剤(空気、ストイキ2、30%RH)をカソード側に供給し、I-V測定を評価した。電流密度が1A/cmのときの燃料電池のセル電圧が0.53Vであり、電解質膜の乾燥が見られた。実施例1と比較例1を比較するとセル電圧が15%の違いがあり、実施例1において、保水層を用いたことによるロバスト性の大きな向上が確認された。
(比較例2)
実施例1のアノード電極をカソード電極として用い、実施例1のカソード電極をアノード電極として用いて、膜電極接合体を作製し、実施例と同様に評価を行う。セル温度80℃、燃料(水素、ストイキ2、66%RH)をアノード側に供給し、酸化剤(空気、ストイキ2、66%RH)をカソード側に供給し、I-V測定を評価した。電流密度が1A/cmのときの燃料電池のセル電圧が0.54Vであり、フラッディングによる性能の低下があった。実施例1と比較例2を比較するとセル電圧が22%の違いがあり、保水層を用いたことによるロバスト性の大きな向上が確認された。
(実施例2~18、比較例3~14)
下記、表1と表2に示す条件で実施例1と同様に膜電極接合体を作製して、評価をした。表1には、触媒ユニット(多孔質構造を有するか空隙層を含む積層構造を有するか)、触媒層の高さ[μm]、導電性材料(導電性材料の種類、平均一次粒径[nm])、親水性材料(親水性材料の種類、保水層に含まれる親水性材料の比率[g/cm])、保水層の厚さ[μm]、触媒ユニットのサイズ[nm]に対する導電性材料の平均一次粒子径[nm]の比、アノード側電解質膜(材料、厚さ[μm])、カソード側電解質膜(材料、厚さ[μm])を示している。保水層の厚さは、作製時のペーストの厚さとし、親水性材料の比率[g/cm]は、作製時のペーストに含まれる導電性材料と親水性材料の比率から求める。評価した結果は、表3にまとめて示す。表2には、コンディショニング後の膜電極接合体の抵抗[mΩ/cm]とセル電圧[V](セル温度80℃、燃料(水素、ストイキ2、30%RH、または、水素、ストイキ2、66%RH)をアノード側に供給し、酸化剤(空気、ストイキ2、30%RH、または、空気、ストイキ2、66%RH)をカソード側に供給し、I-V測定を評価し、電流密度が1A/cmのときの燃料電池のセル電圧)である。コンディショニング後に、湿度30%と湿度66%における膜電極接合体を電流遮断法で、抵抗[mΩ/cm]を測定する。
Figure 0007002974000001
Figure 0007002974000002
Figure 0007002974000003
実施例2~18のように、導電性材料の平均一次粒子径が10nm以上から300nm以下の場合、高特性である。また、実施例2~18は触媒ユニットのサイズに対する保水層の導電性材料の一次粒子径の比の値が0.005以上6以下である。この場合、保水層により電解質膜の水分を保ち、抵抗を小さくできるために、特性が高い。比較例3~14のように導電性材料の平均一次粒子直径が300nmより大きい場合、低特性である。平均一次粒子直径が大きい場合、保水力がなく、電解質膜の水分を保てないため、抵抗が大きくなり、性能が低い。
実施例2、3、4は触媒ユニットサイズは同じだが、導電性材料の平均一次粒子径が異なる。実施例2、4は実施例3に比べてやや特性が低い。これは、保水層の導電性材料の一次粒子系が変わり、水分の排出や保水などの管理能力がやや低下したからである。しかしながら、実施例2、4は比較例3~14よりは高い特性である。
実施例6と比較例3は、触媒ユニットサイズは同じだが、導電性材料の平均一次粒子径が異なる。比較例3は実施例6と比較すると特性が低い。保水層の導電性材料の平均一次粒径が大きく、保水力がなく、電解質膜の水分を保てないため、抵抗が大きくなり、性能が低い。
実施例2~10では保水層の導電性材料にケッチェンブラックを使用している。これに対し、実施例11、12、13はそれぞれアセチレンブラック、バルカン、活性炭を使用している。カーボンの種類が異なっていても、適切な水分管理能力があり高特性である。
実施例2は触媒構造が積層構造であるが、実施例14は触媒構造が多孔質構造である。触媒構造が異なっていても、保水層の適切な水分管理能力があり高特性である。
実施例2は触媒の合金組成が、Pt、Ni、Coであるが実施例15の触媒の合金組成はPt、Al、Coである。合金組成が異なっていても保水層の適切な水分管理能力があり高特性である。
実施例2、16~18は保水層の厚さが異なる。保水層の厚さが大きくなると、水分の保持力が大きくなり、電解質膜や電解質膜/触媒層界面のプロトン伝導性を保てるため湿度30%RH条件における特性が向上する。一方、湿度66%RH条件においては、保水層の厚さが大きくなると、水分が過剰になりフラッディングが起こるため、特性がやや低下する。しかしながら、実施例2、16~18は比較例3~14に比べていずれの場合も高い特性である。
明細書中、一部の元素は、元素記号のみで表している。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない上述したこれら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100…電極、10…触媒層、11…触媒ユニット、20…保水層、21…導電性材料、22…親水性材料、30…疎水性水分管理層、40ガス拡散層、
200…膜電極接合体、201…カソード、202…アノード、203…電解質膜
300…電気化学セル、301…ガスケット、302…ガスケット、303…集電板、304…集電板、305…締め付け板、306…締め付け板
400…スタック、401…締め付け板、402…締め付け板
500…燃料電池、501…燃料供給ユニット、502…酸化剤供給ユニット
600…車両、601…車体、602…モーター、603…車輪、604…制御ユニット
700…飛翔体、701…機体骨格、702…モーター、703…回転翼、704…制御ユニット

Claims (16)

  1. 多孔体構造または空隙層を含む積層構造を有する複数の触媒ユニットを含む触媒層と、
    導電性材料と親水性材料を含む保水層と、
    ガス拡散層と、
    導電性材料と水性材料を含む疎水性水分管理層を含み、
    前記保水層は、前記触媒層と前記ガス拡散層の間に配置され、
    前記疎水性水分管理層は、前記保水層と前記ガス拡散層の間に配置され、
    前記保水層は、前記触媒層と前記疎水性水分管理層の間に配置され、
    前記触媒ユニットのサイズは、50nm以上2μm以下であり、
    前記導電性材料の平均一次粒子径は、10nm以上300nm以下であり、
    前記触媒ユニットのサイズに対する前記保水層の導電性材料の平均一次粒子径の比の値が0.005以上6以下である電極。
  2. 前記水性材料は、0.01g/cm以上1.00g/cm以下含まれる請求項1に記載の電極。
  3. 前記疎水性水分管理層に含まれる疎水性材料に対する前記疎水性水分管理層に含まれる前記導電性材料の質量比率([前記疎水性材料の質量]/[前記導電性材料の質量])は、0.05以上2.0以下である請求項1又は2に記載の電極。
  4. 前記保水層の厚さは、1μm以上100μm以下である請求項1ないし3のいずれか1項に記載の電極。
  5. 前記保水層の前記導電性材料は、導電性粒子、導電性繊維、又は、導電性粒子及び導電性繊維であり
    前記疎水性水分管理層の前記導電性材料は、導電性粒子、導電性繊維、又は、導電性粒子及び導電性繊維である請求項1ないし4のいずれか1項に記載の電極。
  6. 前記保水層の前記導電性材料は、炭素粒子、炭素繊維、又は、炭素粒子及び炭素繊維であり、
    前記疎水性水分管理層の前記導電性材料は、炭素粒子、炭素繊維、又は、炭素粒子及び炭素繊維である請求項1ないし5のいずれか1項に記載の電極。
  7. 前記親水性材料は、親水性樹脂である請求項1ないし6のいずれか1項に記載の電極。
  8. 前記保水層の前記導電性材料の平均一次粒子径は、25nm以上200nm以下であり、
    前記疎水性水分管理層の前記導電性材料の平均一次粒子径は、25nm以上200nm以下である請求項1ないし7のいずれか1項に記載の電極。
  9. 前記保水層の前記導電性材料の平均一次粒子径は、30nm以上100nm以下であり、
    前記疎水性水分管理層の前記導電性材料の平均一次粒子径は、30nm以上100nm以下である請求項1ないし8のいずれか1項に記載の電極。
  10. 前記保水層に含まれる前記親水性材料の比率は、0.0005g/cm以上2.000g/cm以下である請求項1ないし9のいずれか1項に記載の電極。
  11. 請求項1ないし10のいずれか1項に記載の電極を用いた膜電極接合体。
  12. 請求項11に記載の膜電極接合体を用いた電気化学セル。
  13. 請求項11に記載の膜電極接合体又は請求項12に記載の電気化学セルを用いたスタック。
  14. 請求項11に記載の膜電極接合体、請求項12に記載の電気化学セル、又は、請求項13に記載のスタックを用いた燃料電池。
  15. 請求項14に記載の燃料電池を用いた車両。
  16. 請求項14に記載の燃料電池を用いた飛翔体。
JP2018055289A 2018-03-22 2018-03-22 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 Active JP7002974B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055289A JP7002974B2 (ja) 2018-03-22 2018-03-22 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055289A JP7002974B2 (ja) 2018-03-22 2018-03-22 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体

Publications (2)

Publication Number Publication Date
JP2019169315A JP2019169315A (ja) 2019-10-03
JP7002974B2 true JP7002974B2 (ja) 2022-02-04

Family

ID=68108431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055289A Active JP7002974B2 (ja) 2018-03-22 2018-03-22 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体

Country Status (1)

Country Link
JP (1) JP7002974B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181488A (ja) 2015-03-25 2016-10-13 株式会社東芝 燃料電池用電極、燃料電池用膜電極複合体および燃料電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181488A (ja) 2015-03-25 2016-10-13 株式会社東芝 燃料電池用電極、燃料電池用膜電極複合体および燃料電池

Also Published As

Publication number Publication date
JP2019169315A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5488254B2 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
EP3520161B1 (en) Cathode electrode design for electrochemical fuel cells
US20070148531A1 (en) Catalyst electrode, production process thereof, and polymer electrolyte fuel cell
JP4133654B2 (ja) 固体高分子形燃料電池
JP7385014B2 (ja) 膜電極接合体
JP5297786B2 (ja) 固体高分子型燃料電池のアノード触媒層
JP2006252967A (ja) 燃料電池用固体高分子電解質膜、および、これを用いた燃料電池
JP5669432B2 (ja) 膜電極接合体、燃料電池および燃料電池の活性化方法
US11094954B2 (en) Electrode, membrane electrode assembly, electrochemical cell, stack, fuel cell, vehicle and flying object
US10873097B2 (en) Electrode for fuel cell, membrane electrode complex body for fuel cell, and fuel cell
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP5613181B2 (ja) 固体高分子型燃料電池用膜電極構造体および固体高分子型燃料電池
JP7116665B2 (ja) 触媒層
JP2006134752A (ja) 固体高分子型燃料電池および車両
JP5755833B2 (ja) 燃料電池用アノード触媒層
JP2020057516A (ja) 電極層ならびに当該電極層を用いた膜電極接合体および燃料電池
JP2006085984A (ja) 燃料電池用mea、および、これを用いた燃料電池
JP7002974B2 (ja) 電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体
JP2007250214A (ja) 電極触媒とその製造方法
JP2006079917A (ja) 燃料電池用mea、および、これを用いた燃料電池
WO2018069979A1 (ja) 触媒層の製造方法、触媒層、ならびに触媒前駆体および当該触媒前駆体の製造方法
JP2006079840A (ja) 燃料電池用電極触媒、および、これを用いた燃料電池用mea
JP5458774B2 (ja) 電解質膜−電極接合体
JP2005209615A (ja) ガス拡散層および固体高分子電解質型燃料電池
KR20220024743A (ko) 촉매화된 막

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228