JP7001811B2 - Power converter and control method of power converter - Google Patents

Power converter and control method of power converter Download PDF

Info

Publication number
JP7001811B2
JP7001811B2 JP2020507374A JP2020507374A JP7001811B2 JP 7001811 B2 JP7001811 B2 JP 7001811B2 JP 2020507374 A JP2020507374 A JP 2020507374A JP 2020507374 A JP2020507374 A JP 2020507374A JP 7001811 B2 JP7001811 B2 JP 7001811B2
Authority
JP
Japan
Prior art keywords
power
carrier frequency
power conversion
power supply
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020507374A
Other languages
Japanese (ja)
Other versions
JPWO2019181162A1 (en
Inventor
佑太 大浦
聡 稲荷田
健人 望月
欣剛 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2019181162A1 publication Critical patent/JPWO2019181162A1/en
Application granted granted Critical
Publication of JP7001811B2 publication Critical patent/JP7001811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Rectifiers (AREA)

Description

本発明は、電力変換装置および電力変換装置の制御方法に関する。 The present invention relates to a power conversion device and a control method for the power conversion device.

電動機を駆動するための電力変換装置を搭載した鉄道車両が普及している。電力変換装置は、一般に架線から供給された単相交流電力を直流電力に変換するコンバータと、変換された直流電力を電源として電動機を駆動するインバータとより構成される。コンバータは半導体素子(例えばIGBT)をスイッチング動作させているが、この動作に伴う高調波の影響が架線に伝搬し、架線を介して接続されている鉄道インフラ(信号装置など)に悪影響を及ぼす。 Railroad vehicles equipped with a power conversion device for driving an electric motor have become widespread. The power conversion device is generally composed of a converter that converts single-phase AC power supplied from an overhead wire into DC power, and an inverter that drives an electric motor using the converted DC power as a power source. The converter operates a semiconductor element (for example, an IGBT) in a switching operation, and the influence of the harmonics associated with this operation propagates to the overhead line, which adversely affects the railway infrastructure (signal device, etc.) connected via the overhead line.

特許文献1には、鉄道車両に発電ユニットを設け、架線以外の発電ユニットからも交流電力の供給を受けることができる鉄道車両が記載されている。そして、電力変換装置内のコンバータが複数の交流電源とそれぞれ接続されており、架線と接続する手段とエンジンにより駆動される発電機と接続する手段を有し、コンバータは接続された交流電源に応じた電力変換動作を行うことが開示されている。 Patent Document 1 describes a railway vehicle in which a power generation unit is provided in the railway vehicle and AC power can be supplied from a power generation unit other than the overhead wire. The converter in the power converter is connected to each of a plurality of AC power supplies, and has a means for connecting to an overhead wire and a means for connecting to a generator driven by an engine, and the converter responds to the connected AC power supply. It is disclosed that the power conversion operation is performed.

特開2014-140294号公報Japanese Unexamined Patent Publication No. 2014-14294

複数の交流電源に応じた電力変換動作を行うコンバータのスイッチング動作について、各交流電源によらない同じスイッチング動作を採用することで制御を簡易化することができる。しかし、例えば、架線と接続した場合は、鉄道インフラへの高調波の影響やスイッチング素子への熱影響を考慮し、一方、発電機と接続した場合は、発電機に対する電流の含有高調波量やスイッチング素子への熱影響を考慮しなければならない。これらを考慮しなければ、鉄道インフラに対する誘導障害、高調波電流による発電機の動作効率の低下、スイッチング素子の短寿命化といった問題を招くことになる。特許文献1に記載された鉄道車両では、こうした点を考慮していないため、コンバータのスイッチング動作による高調波の影響を防ぐことができない問題がある。 Control can be simplified by adopting the same switching operation that does not depend on each AC power supply for the switching operation of the converter that performs the power conversion operation according to a plurality of AC power supplies. However, for example, when connected to an overhead wire, the influence of harmonics on the railway infrastructure and the thermal influence on the switching element are taken into consideration, while when connected to a generator, the amount of harmonics contained in the current to the generator and the amount of harmonics contained in the generator. The thermal effect on the switching element must be considered. If these are not taken into consideration, problems such as inductive interference to the railway infrastructure, deterioration of the operating efficiency of the generator due to the harmonic current, and shortening of the life of the switching element will occur. Since the railway vehicle described in Patent Document 1 does not take these points into consideration, there is a problem that the influence of harmonics due to the switching operation of the converter cannot be prevented.

本発明による電力変換装置は、第一の交流電源または第二の交流電源と接触器を介して接続され、前記第一の交流電源から供給される第一の交流電力または前記第二の交流電源から供給される第二の交流電力をキャリア周波数に基づく電力変換動作により直流電力に変換する電力変換回路と、前記第一の交流電源または前記第二の交流電源との接続状態を監視し、前記第一の交流電源から前記第一の交流電力が供給されている場合には、前記キャリア周波数を、前記第一の交流電源に応じて予め定められた第一のキャリア周波数帯から選択し、前記第二の交流電源から前記第二の交流電力が供給されている場合には、前記キャリア周波数を、前記第二の交流電源に応じて予め定められた第二のキャリア周波数帯から選択するように制御する駆動制御部と、を備えることを特徴とする。
本発明による電力変換装置の制御方法は、第一の交流電源から供給される第一の交流電力または第二の交流電源から供給される第二の交流電力をキャリア周波数に基づく電力変換動作により直流電力に変換する電力変換回路への前記第一の交流電源または前記第二の交流電源の接続状態を監視し、前記第一の交流電源が接触器を介して電力変換回路に接続されている場合には、前記電力変換動作を、前記第一の交流電源に応じて予め定められた第一のキャリア周波数帯から選択された第一のキャリア周波数で行なわせ、前記第二の交流電源が接触器を介して前記電力変換回路に接続されている場合には、前記電力変換動作を、前記第二の交流電源に応じて予め定められた第二のキャリア周波数帯から選択された第二のキャリア周波数で行なわせることを特徴とする。
The power conversion device according to the present invention is connected to a first AC power source or a second AC power source via a contact device, and is supplied from the first AC power source as the first AC power or the second AC power source. The connection state between the power conversion circuit that converts the second AC power supplied from the source into DC power by the power conversion operation based on the carrier frequency and the first AC power supply or the second AC power supply is monitored, and the above-mentioned When the first AC power is supplied from the first AC power source , the carrier frequency is selected from the first carrier frequency band predetermined according to the first AC power source, and the carrier frequency is selected. When the second AC power is supplied from the second AC power source, the carrier frequency is selected from the second carrier frequency band predetermined according to the second AC power source. It is characterized by including a drive control unit for controlling.
In the control method of the power conversion device according to the present invention, the first AC power supplied from the first AC power supply or the second AC power supplied from the second AC power supply is DC-converted by a power conversion operation based on the carrier frequency. When the connection state of the first AC power supply or the second AC power supply to the power conversion circuit to be converted into power is monitored, and the first AC power supply is connected to the power conversion circuit via a contactor. Is to perform the power conversion operation at a first carrier frequency selected from a predetermined first carrier frequency band according to the first AC power source, and the second AC power source is a contactor. When connected to the power conversion circuit via , the power conversion operation is performed on the second carrier frequency selected from the second carrier frequency band predetermined according to the second AC power supply. It is characterized by having it done in.

本発明によれば、コンバータのスイッチング動作による高調波の影響を防ぐことができる。 According to the present invention, it is possible to prevent the influence of harmonics due to the switching operation of the converter.

駆動システムの構成を示す図である。It is a figure which shows the structure of a drive system. 駆動システムを列車に搭載した場合の構成例を示す図である。It is a figure which shows the configuration example when the drive system is mounted on a train. 駆動制御装置の構成を示す図である。It is a figure which shows the structure of the drive control device. 駆動制御装置内の動作指令部の動作を示すフローチャートである。It is a flowchart which shows the operation of the operation command part in a drive control device. 駆動制御装置内のPWMコンバータ制御部の動作を示すフローチャートである。It is a flowchart which shows the operation of the PWM converter control part in a drive control device. (A)(B)架線用コンバータ制御部によるキャリア周波数がエンジン用コンバータ制御部によるキャリア周波数よりも小さい値の場合の態様を説明する図である。(A) (B) It is a figure explaining the mode in the case where the carrier frequency by the overhead wire converter control unit is smaller than the carrier frequency by the engine converter control unit. (A)(B)架線用コンバータ制御部によるキャリア周波数がエンジン用コンバータ制御部によるキャリア周波数よりも大きい値の場合の態様を説明する図である。(A) (B) It is a figure explaining the mode in the case where the carrier frequency by the overhead wire converter control unit is larger than the carrier frequency by the engine converter control unit. コンバータの変形例を示す図である。It is a figure which shows the modification of the converter. コンバータの変形例を示す図である。It is a figure which shows the modification of the converter.

図1は、駆動システム9の構成を示す図である。図1に示すように本実施形態の駆動システム9は、主変圧器11を介して集電装置1と接続されている。集電装置1は、変電所と接続されることで単相交流電源として機能する架線(図示しない)から単相交流電力を取り込み、主変圧器11の高圧側の巻線に出力する。主変圧器11の低圧側には巻線が二つ配置されており、各巻線には架線からの単相交流電力が降圧されて供給される。主変圧器11の高圧側の巻線の他端はレール19に接続される。 FIG. 1 is a diagram showing a configuration of a drive system 9. As shown in FIG. 1, the drive system 9 of the present embodiment is connected to the current collector 1 via the main transformer 11. The current collector 1 takes in single-phase AC power from an overhead wire (not shown) that functions as a single-phase AC power source when connected to a substation, and outputs it to the winding on the high-voltage side of the main transformer 11. Two windings are arranged on the low voltage side of the main transformer 11, and the single-phase AC power from the overhead wire is stepped down and supplied to each winding. The other end of the winding on the high voltage side of the main transformer 11 is connected to the rail 19.

駆動システム9は、エンジンおよびこのエンジンにより駆動される発電機からなり、三相交流電力を供給する三相交流電源として機能する発電ユニット6と、電力変換装置7と、発電ユニット6の三相交流出力と電力変換装置7との間に接続された接触器13と、主変圧器11と電力変換装置7との間に接続された接触器12とを備える。 The drive system 9 consists of an engine and a generator driven by the engine, and is a power generation unit 6 that functions as a three-phase AC power source that supplies three-phase AC power, a power conversion device 7, and a three-phase AC of the power generation unit 6. It includes a contact device 13 connected between the output and the power conversion device 7, and a contact device 12 connected between the main transformer 11 and the power conversion device 7.

電力変換装置7は、電源用電力変換回路21および22と、電源用電力変換回路21、22の直流側に接続されて直流電圧を平滑する平滑コンデンサ3と、電動機駆動用変換回路4と、駆動制御装置20とを備える。電源用電力変換回路21、22は、それぞれ、自己消弧能力を有する半導体素子(例えばIGBT)とダイオードとが逆並列に接続された接続体を二個直列接続して構成されたスイッチング回路を二相分備えており、交流電力を直流電力に変換する。以下では、電源用電力変換回路21および電源用電力変換回路22をまとめて、コンバータとも称する。電動機駆動用変換回路4は、複数の半導体素子の組合せにより構成され、平滑コンデンサ3の両端の電圧を電圧源として、主電動機5を駆動する。駆動制御装置20は、電源用電力変換回路21、22のスイッチング動作を制御する。 The power conversion device 7 is driven by a power conversion circuit 21 and 22 for power supply, a smoothing capacitor 3 connected to the DC side of the power conversion circuit 21 and 22 for power supply to smooth the DC voltage, and a conversion circuit 4 for driving an electric motor. A control device 20 is provided. The power conversion circuits 21 and 22 for power supplies are two switching circuits configured by connecting two connectors in which a semiconductor element (for example, an IGBT) having a self-extinguishing ability and a diode are connected in antiparallel to each other in series. It has a diode and converts AC power into DC power. Hereinafter, the power supply power conversion circuit 21 and the power supply power conversion circuit 22 are collectively referred to as a converter. The motor drive conversion circuit 4 is composed of a combination of a plurality of semiconductor elements, and drives the traction motor 5 using the voltage across the smoothing capacitor 3 as a voltage source. The drive control device 20 controls the switching operation of the power supply conversion circuits 21 and 22.

図2は、駆動システム9を列車に搭載した場合の構成例を示す図である。図2では、図1に示した4つの駆動システム9が4つの車両に搭載された実施形態を示している。この実施形態においては、先頭及び後尾車両に集電装置1及び主変圧器11をそれぞれ搭載し、各集電装置1からスイッチ15、16を介して各主変圧器11に架線からの単相交流電力が供給される。そして、先頭側の2つの駆動システム9は、先頭車両に搭載された主変圧器11から単相交流電力(巻線2つ分)を受ける。後尾側の2つの駆動システム9は、後尾車両に搭載された主変圧器11から単相交流電力(巻線2つ分)を受ける。また、図2に示した電力変換装置(Traction Converter)7は、図1で示した電源用電力変換回路21、22と平滑コンデンサ3と電動機駆動用変換回路4と駆動制御装置20とを含む。 FIG. 2 is a diagram showing a configuration example when the drive system 9 is mounted on a train. FIG. 2 shows an embodiment in which the four drive systems 9 shown in FIG. 1 are mounted on four vehicles. In this embodiment, the current collector 1 and the main transformer 11 are mounted on the leading and trailing vehicles, respectively, and the current collector 1 is connected to each main transformer 11 via switches 15 and 16 via a single-phase alternating current from an overhead wire. Power is supplied. Then, the two drive systems 9 on the leading side receive single-phase AC power (for two windings) from the main transformer 11 mounted on the leading vehicle. The two drive systems 9 on the tail side receive single-phase AC power (for two windings) from the main transformer 11 mounted on the tail vehicle. Further, the power converter 7 shown in FIG. 2 includes power supply power conversion circuits 21 and 22 shown in FIG. 1, a smoothing capacitor 3, a motor drive conversion circuit 4, and a drive control device 20.

図3は、駆動制御装置20の構成を示す図である。駆動制御装置20は、状態監視部26と、動作指令部27と、PWMコンバータ制御部28を備えている。
状態監視部26は、図示省略した上位の制御ユニットと接続され、電力変換装置7に架線からの単相交流電力が供給されているか、または発電ユニット6からの三相交流電力が供給されているかを監視する。そして、電力変換装置7に接続されている交流電源が架線であり、架線からの単相交流電力が電力変換装置7に供給されているときには、交流電源が架線状態を示す信号261を動作指令部27へ出力する。一方、電力変換装置7に接続されている交流電源が発電ユニット6であり、発電ユニット6からの三相交流電力が電力変換装置7に供給されているときには、交流電源がエンジン状態を示す信号262を動作指令部27へ出力する。さらに状態監視部26は、架線からの単相交流電力でコンバータを起動するときには、架線でのコンバータスタートを指示する信号263を動作指令部27へ出力し、発電ユニット6からの三相交流電力でコンバータを起動するときには、エンジンでのコンバータスタートを指示する信号264を動作指令部27へ出力する。
FIG. 3 is a diagram showing the configuration of the drive control device 20. The drive control device 20 includes a condition monitoring unit 26, an operation command unit 27, and a PWM converter control unit 28.
The state monitoring unit 26 is connected to a higher-level control unit (not shown), and whether the power conversion device 7 is supplied with single-phase AC power from the overhead wire or is supplied with three-phase AC power from the power generation unit 6. To monitor. When the AC power supply connected to the power conversion device 7 is an overhead wire and the single-phase AC power from the overhead wire is supplied to the power conversion device 7, the AC power supply sends a signal 261 indicating the overhead wire state to the operation command unit. Output to 27. On the other hand, when the AC power supply connected to the power conversion device 7 is the power generation unit 6 and the three-phase AC power from the power generation unit 6 is supplied to the power conversion device 7, the AC power supply indicates the engine state signal 262. Is output to the operation command unit 27. Further, when the state monitoring unit 26 starts the converter with the single-phase AC power from the overhead line, the state monitoring unit 26 outputs a signal 263 instructing the converter start on the overhead line to the operation command unit 27, and uses the three-phase AC power from the power generation unit 6. When starting the converter, a signal 264 instructing the converter start in the engine is output to the operation command unit 27.

動作指令部27は、状態監視部26から入力される信号261~264の組み合わせに応じて、架線用スイッチング動作信号271またはエンジン用スイッチング動作信号272をPWMコンバータ制御部28へ出力する。具体的には、交流電源が架線状態を示す信号261と、架線でのコンバータスタートを指示する信号263とが入力されている場合は、これらの入力信号に応じて、架線用スイッチング動作信号271をPWMコンバータ制御部28への出力信号とする。一方、交流電源がエンジン状態を示す信号262と、エンジンでのコンバータスタートを指示する信号264とが入力されている場合は、これらの入力信号に応じて、エンジン用スイッチング動作信号272をPWMコンバータ制御部28への出力信号とする。 The operation command unit 27 outputs the overhead wire switching operation signal 271 or the engine switching operation signal 272 to the PWM converter control unit 28 according to the combination of the signals 261 to 264 input from the condition monitoring unit 26. Specifically, when the signal 261 indicating the overhead wire state of the AC power supply and the signal 263 indicating the converter start on the overhead wire are input, the overhead wire switching operation signal 271 is generated in response to these input signals. It is an output signal to the PWM converter control unit 28. On the other hand, when the AC power supply inputs the signal 262 indicating the engine state and the signal 264 indicating the converter start in the engine, the PWM converter control of the engine switching operation signal 272 according to these input signals. It is an output signal to the unit 28.

PWMコンバータ制御部28は、架線用スイッチング動作信号271に応答して、電源用電力変換回路21、22をキャリア周波数=FCOHL [Hz]で駆動する架線用コンバータ制御部281を備える。さらに、エンジン用スイッチング動作信号272に応答して、電源用電力変換回路21、22をキャリア周波数=FCENG [Hz]で駆動するエンジン用コンバータ制御部282を備える。なお、キャリア周波数=FCOHL [Hz]は、鉄道インフラに設置されている装置の動作周波数と重畳しない周波数であり、かつコンバータを構成する半導体素子の熱影響が許容以上にならない周波数である。キャリア周波数=FCENG [Hz]は、発電機に対する高調波電流量が許容以上にならない周波数であり、かつコンバータを構成する半導体素子の熱影響が許容以上にならない周波数である。The PWM converter control unit 28 includes an overhead line converter control unit 281 that drives the power supply power conversion circuits 21 and 22 at a carrier frequency = F COHL [Hz] in response to the overhead line switching operation signal 271. Further, the engine converter control unit 282 for driving the power supply power conversion circuits 21 and 22 at the carrier frequency = F CENG [Hz] in response to the engine switching operation signal 272 is provided. The carrier frequency = F COHL [Hz] is a frequency that does not overlap with the operating frequency of the equipment installed in the railway infrastructure, and the thermal influence of the semiconductor elements constituting the converter does not exceed the permissible frequency. Carrier frequency = F CENG [Hz] is a frequency at which the amount of harmonic current for the generator does not exceed the permissible level, and the thermal effect of the semiconductor elements constituting the converter does not exceed the permissible level.

図4は、駆動制御装置内の動作指令部27の動作を示すフローチャートである。
ステップS41の処理において、交流電源が架線状態を示す信号261がON(信号有り)であり、かつ交流電源がエンジン状態を示す信号262がOFF(信号無し)であり、かつ架線でのコンバータスタートを指示する信号263がONであり、かつエンジンでのコンバータスタートを指示する信号264がOFFであるかを判定する。ステップS41で条件を満たした場合はステップS42の処理へ進む。
FIG. 4 is a flowchart showing the operation of the operation command unit 27 in the drive control device.
In the process of step S41, the signal 261 indicating the overhead wire state of the AC power supply is ON (with a signal), the signal 262 indicating the engine status of the AC power supply is OFF (no signal), and the converter is started on the overhead wire. It is determined whether the instructing signal 263 is ON and the signal 264 instructing the converter start in the engine is OFF. If the condition is satisfied in step S41, the process proceeds to step S42.

ステップS42では、架線用スイッチング動作信号271をONにし、エンジン用スイッチング動作信号272をOFFにする。ステップS41で条件を満たさない場合、ステップS43へ進む。 In step S42, the overhead line switching operation signal 271 is turned ON, and the engine switching operation signal 272 is turned OFF. If the condition is not satisfied in step S41, the process proceeds to step S43.

ステップS43では、交流電源が架線状態を示す信号261がOFFであり、かつ交流電源がエンジン状態を示す信号262がONであり、かつ架線でのコンバータスタートを指示する信号263がOFFであり、かつエンジンでのコンバータスタートを指示する信号264がONであるかを判定する。ステップS43で条件を満たした場合はステップS44の処理へ進む。 In step S43, the signal 261 indicating the overhead wire state of the AC power supply is OFF, the signal 262 indicating the engine status of the AC power supply is ON, and the signal 263 indicating the converter start on the overhead wire is OFF. It is determined whether the signal 264 instructing the converter start in the engine is ON. If the condition is satisfied in step S43, the process proceeds to step S44.

ステップS44では、架線用スイッチング動作信号271をOFFにし、エンジン用スイッチング動作信号272をONにする。ステップS43で条件を満たさない場合、ステップS45へ進む。 In step S44, the overhead line switching operation signal 271 is turned off, and the engine switching operation signal 272 is turned on. If the condition is not satisfied in step S43, the process proceeds to step S45.

ステップS45では、架線用スイッチング動作信号271をOFFにし、エンジン用スイッチング動作信号272をOFFにする。ステップS42、43、45の処理後に図4に示すフローチャートの処理を終了する。なお、図4に示すフローチャートは定期的に繰り返し処理を行う。 In step S45, the overhead line switching operation signal 271 is turned off, and the engine switching operation signal 272 is turned off. After the processing of steps S42, 43, 45, the processing of the flowchart shown in FIG. 4 is terminated. The flowchart shown in FIG. 4 is periodically and repeatedly processed.

図5は、駆動制御装置20内のPWMコンバータ制御部28の動作を示すフローチャートである。
ステップS51の処理において、架線用スイッチング動作信号271がON、かつエンジン用スイッチング動作信号272がOFFであるかを判定する。ステップS51の条件を満たせばステップS52へ移行する。
FIG. 5 is a flowchart showing the operation of the PWM converter control unit 28 in the drive control device 20.
In the process of step S51, it is determined whether the overhead wire switching operation signal 271 is ON and the engine switching operation signal 272 is OFF. If the condition of step S51 is satisfied, the process proceeds to step S52.

ステップS52では、架線用コンバータ制御部281を動作させ、キャリア周波数=FCOHL [Hz]を選択する。その後、ステップS53に移行して、キャリア周波数=FCOHL [Hz] のPWMパルス信号を出力し、電源用電力変換回路21、22をスイッチング動作させる。In step S52, the overhead wire converter control unit 281 is operated and carrier frequency = F COHL [Hz] is selected. After that, the process proceeds to step S53, a PWM pulse signal having a carrier frequency = F COHL [Hz] is output, and the power supply power conversion circuits 21 and 22 are switched.

ステップS51の条件を満たさない場合は、ステップS54へ移行する。ステップS54において、架線用スイッチング動作信号271がOFF、かつエンジン用スイッチング動作信号272がONであるかを判定する。ステップS54の条件を満たせば、ステップS55へ移行する。ステップS55では、エンジン用コンバータ制御部282を動作させ、キャリア周波数=FCENG [Hz]を選択する。その後、ステップS56に移行して、キャリア周波数=FCENG [Hz] のPWMパルス信号を出力し、電源用電力変換回路21、22をスイッチング動作させる。If the condition of step S51 is not satisfied, the process proceeds to step S54. In step S54, it is determined whether the overhead wire switching operation signal 271 is OFF and the engine switching operation signal 272 is ON. If the condition of step S54 is satisfied, the process proceeds to step S55. In step S55, the engine converter control unit 282 is operated and carrier frequency = F CENG [Hz] is selected. After that, the process proceeds to step S56, a PWM pulse signal of carrier frequency = F CENG [Hz] is output, and the power supply power conversion circuits 21 and 22 are switched.

ステップS54の条件を満たさない場合は、ステップS57へ移行する。ステップS57では、PWMパルス信号を出力しない。ステップS53、56、57の処理後に図5に示すフローチャートの処理を終了する。なお、図5に示すフローチャートは定期的に繰り返し処理を行う。 If the condition of step S54 is not satisfied, the process proceeds to step S57. In step S57, the PWM pulse signal is not output. After the processing of steps S53, 56, 57, the processing of the flowchart shown in FIG. 5 is terminated. The flowchart shown in FIG. 5 is periodically and repeatedly processed.

図6(A)(B)は、架線用コンバータ制御部281によるキャリア周波数=FCOHL [Hz]がエンジン用コンバータ制御部282によるキャリア周波数=FCENG [Hz]よりも小さい値の場合の態様を説明する図である。図6(A)(B)において横軸は周波数を示し、斜線で示す領域はコンバータのキャリア周波数と重畳した場合に影響が出る領域である。
図6(A)は、本発明の実施形態を適用しない場合を、図6(B)は、本発明の実施形態を適用した場合を示す。
6 (A) and 6 (B) show an embodiment in which the carrier frequency by the overhead wire converter control unit 281 = F COHL [Hz] is smaller than the carrier frequency by the engine converter control unit 282 = F CENG [Hz]. It is a figure explaining. In FIGS. 6A and 6B, the horizontal axis indicates the frequency, and the area indicated by the diagonal line is the area affected when superimposed on the carrier frequency of the converter.
FIG. 6A shows a case where the embodiment of the present invention is not applied, and FIG. 6B shows a case where the embodiment of the present invention is applied.

図6(A)において、架線での拘束条件A1として、インフラ側の装置の動作周波数帯Iには、インフラ側の装置Aで使用している動作周波数帯aとインフラ側の装置Bで使用している動作周波数帯bが存在する。さらに、架線での拘束条件A1として、架線で動作するときのコンバータのスイッチング素子のキャリア周波数帯C1には、コンバータのキャリア周波数を高めた場合に生じる熱影響が許容以上になる領域s1が存在する。一方で、エンジンでの拘束条件A2として、発電機に流れる電流に高調波が含まれるキャリア周波数帯Eには、発電機に流れる電流の高調波量が許容以上になる領域eが存在する。さらに、エンジンで動作するときのコンバータのスイッチング素子のキャリア周波数帯C2には、コンバータのキャリア周波数を高めた場合に生じる熱影響が許容以上になる領域s2が存在する。本発明の実施形態を適用しない場合は、架線での拘束条件A1およびエンジンでの拘束条件A2を回避するキャリア周波数は存在しない。なお、発電機に流れる電流の高調波量は、発電機に流れる電流に含まれるコンバータのスイッチング動作によって発生する1次調波以上の高調波電流量のことを表し、発電機に前記電流が流れることにより発電機の発熱量が大きくなるが、その許容値が発電機仕様によって決められている。 In FIG. 6A, as the constraint condition A1 on the overhead wire, the operating frequency band I of the device on the infrastructure side is used in the operating frequency band a used in the device A on the infrastructure side and the device B on the infrastructure side. There is an operating frequency band b. Further, as a constraint condition A1 on the overhead wire, the carrier frequency band C1 of the switching element of the converter when operating on the overhead wire has a region s1 in which the thermal influence generated when the carrier frequency of the converter is increased becomes more than acceptable. .. On the other hand, as a constraint condition A2 in the engine, the carrier frequency band E in which harmonics are included in the current flowing through the generator has a region e in which the harmonic amount of the current flowing through the generator becomes more than acceptable. Further, in the carrier frequency band C2 of the switching element of the converter when operating in the engine, there is a region s2 in which the thermal influence generated when the carrier frequency of the converter is increased becomes more than acceptable. When the embodiment of the present invention is not applied, there is no carrier frequency that avoids the constraint condition A1 on the overhead wire and the constraint condition A2 on the engine. The harmonic amount of the current flowing through the generator represents the harmonic current amount of the first-order tuning or higher generated by the switching operation of the converter included in the current flowing through the generator, and the current flows through the generator. As a result, the calorific value of the generator increases, but the permissible value is determined by the generator specifications.

本発明の実施形態を適用した場合は、図6(B)に示すように、架線での拘束条件B1においては、キャリア周波数をキャリア周波数=FCOHL [Hz]に選択し、エンジンでの拘束条件B2においては、キャリア周波数をキャリア周波数=FCENG [Hz]に選択する。この場合は、単相交流電源である架線が集電装置1、主変圧器11および第一の接触器12を介して接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数=FCOHL [Hz]が、三相交流電源である発電ユニット6が第二の接触器13を介して接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数=FCENG [Hz]よりも小さい値である。これにより、鉄道インフラおよび発電機に対してコンバータのスイッチング動作による高調波の影響を防ぐことができる。When the embodiment of the present invention is applied, as shown in FIG. 6B, in the constraint condition B1 for the overhead wire, the carrier frequency is selected as the carrier frequency = F COHL [Hz], and the constraint condition in the engine is selected. In B2, the carrier frequency is selected as carrier frequency = F CENG [Hz]. In this case, the power conversion operation of the power supply power conversion circuits 21 and 22 when the overhead wire, which is a single-phase AC power supply, is connected via the current collector 1, the main transformer 11, and the first contactor 12. Carrier frequency = F COHL [Hz] is the carrier frequency of the power conversion operation of the power supply power conversion circuits 21 and 22 when the power generation unit 6 which is a three-phase AC power supply is connected via the second contactor 13. = F Less than CENG [Hz]. As a result, it is possible to prevent the influence of harmonics due to the switching operation of the converter on the railway infrastructure and the generator.

図7(A)(B)は、架線用コンバータ制御部281によるキャリア周波数=FCOHL [Hz]がエンジン用コンバータ制御部282によるキャリア周波数=FCENG [Hz]よりも大きい値の場合の態様を説明する図である。
図7(A)は、本発明の実施形態を適用しない場合を、図7(B)は、本発明の実施形態を適用した場合を示す。
7 (A) and 7 (B) show an embodiment in which the carrier frequency by the overhead wire converter control unit 281 = F COHL [Hz] is larger than the carrier frequency by the engine converter control unit 282 = F CENG [Hz]. It is a figure explaining.
FIG. 7A shows a case where the embodiment of the present invention is not applied, and FIG. 7B shows a case where the embodiment of the present invention is applied.

図7(A)において、架線での拘束条件A1として、インフラ側の装置の動作周波数帯Iには、インフラ側の装置Aで使用している動作周波数帯aとインフラ側の装置Bで使用している動作周波数帯bが存在する。さらに、架線での拘束条件A1として、架線で動作するときのコンバータのスイッチング素子のキャリア周波数帯C1には、コンバータのキャリア周波数を高めた場合に生じる熱影響が許容以上になる領域s1が存在する。一方で、エンジンでの拘束条件A2として、発電機に流れる電流に高調波が含まれるキャリア周波数帯Eには、発電機に流れる電流の高調波量が許容以上になる領域eが存在する。さらに、エンジンで動作するときのコンバータのスイッチング素子のキャリア周波数帯C2には、コンバータのキャリア周波数を高めた場合に生じる熱影響が許容以上になる領域s2が存在する。本発明の実施形態を適用しない場合は、架線での拘束条件A1およびエンジンでの拘束条件A2を回避するキャリア周波数は存在しない。 In FIG. 7A, as the constraint condition A1 on the overhead wire, the operating frequency band I of the device on the infrastructure side is used in the operating frequency band a used in the device A on the infrastructure side and the device B on the infrastructure side. There is an operating frequency band b. Further, as a constraint condition A1 on the overhead wire, the carrier frequency band C1 of the switching element of the converter when operating on the overhead wire has a region s1 in which the thermal influence generated when the carrier frequency of the converter is increased becomes more than acceptable. .. On the other hand, as a constraint condition A2 in the engine, the carrier frequency band E in which harmonics are included in the current flowing through the generator has a region e in which the harmonic amount of the current flowing through the generator becomes more than acceptable. Further, in the carrier frequency band C2 of the switching element of the converter when operating in the engine, there is a region s2 in which the thermal influence generated when the carrier frequency of the converter is increased becomes more than acceptable. When the embodiment of the present invention is not applied, there is no carrier frequency that avoids the constraint condition A1 on the overhead wire and the constraint condition A2 on the engine.

本発明の実施形態を適用した場合は、図7(B)に示すように、架線での拘束条件B1においては、キャリア周波数をキャリア周波数=FCOHL [Hz]に選択し、エンジンでの拘束条件B2においては、キャリア周波数をキャリア周波数=FCENG [Hz]に選択する。この場合は、単相交流電源である架線が集電装置1、主変圧器11および第一の接触器12を介して接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数=FCOHL [Hz]が、三相交流電源である発電ユニット6が第二の接触器13を介して接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数=FCENG [Hz]よりも大きい値である。これにより、鉄道インフラおよび発電機に対してコンバータのスイッチング動作による高調波の影響を防ぐことができる。When the embodiment of the present invention is applied, as shown in FIG. 7B, in the constraint condition B1 for the overhead wire, the carrier frequency is selected as the carrier frequency = F COHL [Hz], and the constraint condition in the engine is selected. In B2, the carrier frequency is selected as carrier frequency = F CENG [Hz]. In this case, the power conversion operation of the power supply power conversion circuits 21 and 22 when the overhead wire, which is a single-phase AC power supply, is connected via the current collector 1, the main transformer 11, and the first contactor 12. Carrier frequency = F COHL [Hz] is the carrier frequency of the power conversion operation of the power supply power conversion circuits 21 and 22 when the power generation unit 6 which is a three-phase AC power supply is connected via the second contactor 13. = F Greater than CENG [Hz]. As a result, it is possible to prevent the influence of harmonics due to the switching operation of the converter on the railway infrastructure and the generator.

以上のように、本発明の実施形態を適用した場合は、架線での電力変換動作がもつ拘束条件を満足するためのキャリア周波数FCOHLのスイッチング動作と、エンジンでの電力変換動作がもつ拘束条件を満足するためのキャリア周波数FCENGのスイッチング動作とをそれぞれ制御することが可能となり、交流電源に応じてコンバータ(電源用電力変換回路21、22)のスイッチング動作を変更して、各交流電源での電力変換動作の異なる拘束条件を満足することができる。As described above, when the embodiment of the present invention is applied, the switching operation of the carrier frequency F COHL for satisfying the constraint condition of the power conversion operation in the overhead line and the constraint condition of the power conversion operation in the engine are applied. It is possible to control the switching operation of the carrier frequency F CENG to satisfy the above, and change the switching operation of the converter (power conversion circuits 21 and 22 for power supply) according to the AC power supply, and use each AC power supply. It is possible to satisfy the different constraint conditions of the power conversion operation.

次に、図8、図9を用いてコンバータの変形例について説明する。
図1では、電源用電力変換回路21および電源用電力変換回路22(コンバータ)は、半導体素子とダイオードとが逆並列に接続された接続体を二個直列接続して構成されたスイッチング回路を二相分備えた。図8に示す例では、主変圧器11の低圧側の一巻線に対して、図1に示したものと同様の電源用電力変換回路21が接続され、さらに一相分の電力変換回路23が接続された構成である。その他の構成は図1と同様である。
Next, a modification of the converter will be described with reference to FIGS. 8 and 9.
In FIG. 1, the power supply power conversion circuit 21 and the power supply power conversion circuit 22 (converter) are two switching circuits configured by connecting two connectors in which semiconductor elements and diodes are connected in antiparallel in series. I prepared for the phase. In the example shown in FIG. 8, a power conversion circuit 21 for power supply similar to that shown in FIG. 1 is connected to one winding on the low voltage side of the main transformer 11, and a power conversion circuit 23 for one phase is further connected. Is a connected configuration. Other configurations are the same as those in FIG.

また、図9に示す例では、主変圧器11の低圧側の一巻線に対して、図1に示したものと同様の電源用電力変換回路21が接続され、さらに、図8に示す実施形態の一相分の電力変換回路23に替わり、ダイオードが直列接続された電力変換回路24を適用したものである。その他の構成は図1と同様である。 Further, in the example shown in FIG. 9, a power conversion circuit 21 for power supply similar to that shown in FIG. 1 is connected to one winding on the low voltage side of the main transformer 11, and further, the implementation shown in FIG. Instead of the power conversion circuit 23 for one phase of the form, a power conversion circuit 24 to which a diode is connected in series is applied. Other configurations are the same as those in FIG.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置7は、単相交流電源である架線または三相交流電源である発電ユニット6と接触器12、13を介して接続され、架線から供給される単相交流電力または発電ユニット6から供給される三相交流電力を直流電力に変換する電力変換動作を行う電源用電力変換回路21、22(コンバータ)と、架線が接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数FCOHLと、発電ユニット6が接続されているときの電源用電力変換回路21、22の電力変換動作のキャリア周波数FCENGとをそれぞれ制御する駆動制御装置20と、を備える。これにより、コンバータのスイッチング動作による高調波の影響を防ぐことができる。
According to the embodiment described above, the following effects can be obtained.
(1) The power conversion device 7 is connected to a power generation unit 6 which is a single-phase AC power supply or a power generation unit 6 which is a three-phase AC power supply via contacts 12 and 13, and is supplied from the overhead wire. Power supply power conversion circuits 21 and 22 (converters) that perform a power conversion operation to convert the three-phase AC power supplied from 6 to DC power, and power supply power conversion circuits 21 and 22 when an overhead wire is connected. A drive control device 20 for controlling the carrier frequency F COHL of the power conversion operation and the carrier frequency F CENG of the power conversion operation of the power supply power conversion circuits 21 and 22 when the power generation unit 6 is connected is provided. .. This makes it possible to prevent the influence of harmonics due to the switching operation of the converter.

なお、状態監視部26、動作指令部27、PWMコンバータ制御部28、架線用コンバータ制御部281、エンジン用コンバータ制御部282は、それぞれ、状態監視手段、動作指令手段、コンバータ制御手段、架線用コンバータ制御手段、エンジン用コンバータ制御手段と置き換えてもよい。また、電力変換回路、駆動制御部は、それぞれ電力変換手段、駆動制御手段と置き換えてもよい。 The condition monitoring unit 26, the operation command unit 27, the PWM converter control unit 28, the overhead wire converter control unit 281 and the engine converter control unit 282 are the condition monitoring means, the operation command means, the converter control means, and the overhead wire converter, respectively. It may be replaced with a control means and a converter control means for an engine. Further, the power conversion circuit and the drive control unit may be replaced with the power conversion means and the drive control means, respectively.

本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.

1 集電装置
2 巻線
3 平滑コンデンサ
4 電動機駆動用変換回路
5 主電動機
6 発電ユニット
7 電力変換装置
9 駆動システム
11 主変圧器
12、13 接触器
20 駆動制御装置
21、22 電源用電力変換回路
26 状態監視部
27 動作指令部
28 PWMコンバータ制御部
281 架線用コンバータ制御部
282 エンジン用コンバータ制御部
1 Current collector 2 Winding 3 Smoothing condenser 4 Motor drive conversion circuit 5 Main motor 6 Power generation unit 7 Power conversion device 9 Drive system 11 Main transformer 12, 13 Contactor 20 Drive control device 21, 22 Power supply power conversion circuit 26 Status monitoring unit 27 Operation command unit 28 PWM converter control unit 281 Overhead converter control unit 282 Engine converter control unit

Claims (8)

第一の交流電源または第二の交流電源と接触器を介して接続され、前記第一の交流電源から供給される第一の交流電力または前記第二の交流電源から供給される第二の交流電力をキャリア周波数に基づく電力変換動作により直流電力に変換する電力変換回路と、
前記第一の交流電源または前記第二の交流電源との接続状態を監視し、前記第一の交流電源から前記第一の交流電力が供給されている場合には、前記キャリア周波数を、前記第一の交流電源に応じて予め定められた第一のキャリア周波数帯から選択し、前記第二の交流電源から前記第二の交流電力が供給されている場合には、前記キャリア周波数を、前記第二の交流電源に応じて予め定められた第二のキャリア周波数帯から選択するように制御する駆動制御部と、を備えることを特徴とする電力変換装置。
A first AC power connected to a first AC power source or a second AC power source via a contact device and supplied from the first AC power source or a second AC power supplied from the second AC power source. A power conversion circuit that converts power into DC power by power conversion operation based on the carrier frequency ,
The connection state with the first AC power supply or the second AC power supply is monitored, and when the first AC power is supplied from the first AC power supply , the carrier frequency is set to the first. Select from a predetermined first carrier frequency band according to one AC power supply, and when the second AC power is supplied from the second AC power supply, the carrier frequency is set to the first carrier frequency. A power conversion device including a drive control unit that controls to select from a second carrier frequency band predetermined according to an AC power source.
請求項1に記載の電力変換装置において、
前記駆動制御部は、前記第一の交流電源が接続されているときには、前記電力変換回路を前記第一のキャリア周波数の電力変換動作で駆動し、前記第二の交流電源が接続されているときには、前記電力変換回路を前記第一のキャリア周波数とは異なる前記第二のキャリア周波数の電力変換動作で駆動することを特徴とする電力変換装置。
In the power conversion device according to claim 1,
The drive control unit drives the power conversion circuit by the power conversion operation of the first carrier frequency when the first AC power supply is connected, and when the second AC power supply is connected. , A power conversion device, characterized in that the power conversion circuit is driven by a power conversion operation of the second carrier frequency different from the first carrier frequency.
請求項1または請求項2に記載の電力変換装置において、
前記第一の交流電力は、架線から供給される交流電力であり、
前記第二の交流電力は、エンジンの運転で発電機を駆動して発生する交流電力であり、
前記第一の交流電源が接続されているときの前記電力変換回路の電力変換動作のキャリア周波数が、前記第二の交流電源が接続されているときの前記電力変換回路の電力変換動作のキャリア周波数よりも小さい値であることを特徴とする電力変換装置。
In the power conversion device according to claim 1 or 2.
The first AC power is AC power supplied from an overhead wire.
The second AC power is AC power generated by driving a generator by operating an engine.
The carrier frequency of the power conversion operation of the power conversion circuit when the first AC power supply is connected is the carrier frequency of the power conversion operation of the power conversion circuit when the second AC power supply is connected. A power converter characterized by having a smaller value than.
請求項1または請求項2に記載の電力変換装置において、
前記第一の交流電力は、架線から供給される交流電力であり、
前記第二の交流電力は、エンジンの運転で発電機を駆動して発生する交流電力であり、
前記第一の交流電源が接続されているときの前記電力変換回路の電力変換動作のキャリア周波数が、前記第二の交流電源が接続されているときの前記電力変換回路の電力変換動作のキャリア周波数よりも大きい値であることを特徴とする電力変換装置。
In the power conversion device according to claim 1 or 2.
The first AC power is AC power supplied from an overhead wire.
The second AC power is AC power generated by driving a generator by operating an engine.
The carrier frequency of the power conversion operation of the power conversion circuit when the first AC power supply is connected is the carrier frequency of the power conversion operation of the power conversion circuit when the second AC power supply is connected. A power converter characterized by having a greater value than.
第一の交流電源から供給される第一の交流電力または第二の交流電源から供給される第二の交流電力をキャリア周波数に基づく電力変換動作により直流電力に変換する電力変換回路への前記第一の交流電源または前記第二の交流電源の接続状態を監視し、
前記第一の交流電源が接触器を介して電力変換回路に接続されている場合には、前記電力変換動作を、前記第一の交流電源に応じて予め定められた第一のキャリア周波数帯から選択された第一のキャリア周波数で行なわせ、
前記第二の交流電源が接触器を介して前記電力変換回路に接続されている場合には、前記電力変換動作を、前記第二の交流電源に応じて予め定められた第二のキャリア周波数帯から選択された第二のキャリア周波数で行なわせることを特徴とする電力変換装置の制御方法。
The first to a power conversion circuit that converts the first AC power supplied from the first AC power supply or the second AC power supplied from the second AC power supply into DC power by a power conversion operation based on the carrier frequency. Monitor the connection status of one AC power supply or the second AC power supply,
When the first AC power supply is connected to the power conversion circuit via a contactor, the power conversion operation is performed from the first carrier frequency band predetermined according to the first AC power supply. Have it done at the selected first carrier frequency,
When the second AC power supply is connected to the power conversion circuit via a contact device , the power conversion operation is performed in a second carrier frequency band predetermined according to the second AC power supply. A control method for a power converter, characterized in that it is performed at a second carrier frequency selected from.
請求項5に記載の電力変換装置の制御方法において、
前記第一のキャリア周波数と前記第二のキャリア周波数とは異なるキャリア周波数であることを特徴とする電力変換装置の制御方法。
In the control method of the power conversion device according to claim 5,
A method for controlling a power conversion device, characterized in that the first carrier frequency and the second carrier frequency are different carrier frequencies.
請求項5または請求項6に記載の電力変換装置の制御方法において、
前記第一の交流電力は、架線から供給される交流電力であり、
前記第二の交流電力は、エンジンの運転で発電機を駆動して発生する交流電力であり、
前記第一の交流電源が接続されているときの前記電力変換回路の電力変換動作の前記第一のキャリア周波数が、前記第二の交流電源が接続されているときの前記電力変換回路の電力変換動作の前記第二のキャリア周波数よりも小さい値であることを特徴とする電力変換装置の制御方法。
In the control method of the power conversion device according to claim 5 or 6.
The first AC power is AC power supplied from an overhead wire.
The second AC power is AC power generated by driving a generator by operating an engine.
The first carrier frequency of the power conversion operation of the power conversion circuit when the first AC power supply is connected is the power conversion of the power conversion circuit when the second AC power supply is connected. A method for controlling a power conversion device, characterized in that the value is smaller than the second carrier frequency of operation.
請求項5または請求項6に記載の電力変換装置の制御方法において、
前記第一の交流電力は、架線から供給される交流電力であり、
前記第二の交流電力は、エンジンの運転で発電機を駆動して発生する交流電力であり、
前記第一の交流電源が接続されているときの前記電力変換回路の電力変換動作の前記第一のキャリア周波数が、前記第二の交流電源が接続されているときの前記電力変換回路の電力変換動作の前記第二のキャリア周波数よりも大きい値であることを特徴とする電力変換装置の制御方法。
In the control method of the power conversion device according to claim 5 or 6.
The first AC power is AC power supplied from an overhead wire.
The second AC power is AC power generated by driving a generator by operating an engine.
The first carrier frequency of the power conversion operation of the power conversion circuit when the first AC power supply is connected is the power conversion of the power conversion circuit when the second AC power supply is connected. A method for controlling a power conversion device, characterized in that the value is larger than the second carrier frequency of operation.
JP2020507374A 2018-03-23 2019-01-18 Power converter and control method of power converter Active JP7001811B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018057294 2018-03-23
JP2018057294 2018-03-23
PCT/JP2019/001523 WO2019181162A1 (en) 2018-03-23 2019-01-18 Power conversion device and power conversion device control method

Publications (2)

Publication Number Publication Date
JPWO2019181162A1 JPWO2019181162A1 (en) 2021-04-01
JP7001811B2 true JP7001811B2 (en) 2022-02-04

Family

ID=67988352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507374A Active JP7001811B2 (en) 2018-03-23 2019-01-18 Power converter and control method of power converter

Country Status (3)

Country Link
EP (1) EP3771085B1 (en)
JP (1) JP7001811B2 (en)
WO (1) WO2019181162A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105282A1 (en) 2011-01-31 2012-08-09 株式会社 日立製作所 Driving system, driving system for railroad-vehicle, and railroad-vehicle and multi-car train mounted with same
JP2013110939A (en) 2011-11-24 2013-06-06 Nagaoka Univ Of Technology Power conversion apparatus
JP2014057384A (en) 2012-09-11 2014-03-27 Panasonic Corp Power supply system including electrical equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121548A (en) * 1995-10-25 1997-05-06 Shinko Electric Co Ltd Switching controller of sine-wave pwm converter
JP3675124B2 (en) * 1997-09-18 2005-07-27 富士電機システムズ株式会社 Control device for pulse width modulation control converter
JP2000004503A (en) * 1998-06-15 2000-01-07 Toshiba Corp Electric car control device
WO2015079540A1 (en) * 2013-11-28 2015-06-04 三菱電機株式会社 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105282A1 (en) 2011-01-31 2012-08-09 株式会社 日立製作所 Driving system, driving system for railroad-vehicle, and railroad-vehicle and multi-car train mounted with same
JP2013110939A (en) 2011-11-24 2013-06-06 Nagaoka Univ Of Technology Power conversion apparatus
JP2014057384A (en) 2012-09-11 2014-03-27 Panasonic Corp Power supply system including electrical equipment

Also Published As

Publication number Publication date
JPWO2019181162A1 (en) 2021-04-01
WO2019181162A1 (en) 2019-09-26
EP3771085A4 (en) 2021-12-01
EP3771085B1 (en) 2023-03-15
EP3771085A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
TWI625021B (en) Power conversion system
EP2695763B1 (en) Traction power converter for multisystem rail vehicle
JP2017225280A (en) Power conversion system
JP2009219208A (en) Electric vehicle drive
US20100265740A1 (en) Improved self powered supply for power converter switch driver
CN108370221A (en) Power inverter
JP2008245521A (en) Electric vehicle control unit
JP5010645B2 (en) Electric vehicle control device
CN101179255B (en) H-bridge inverter of AC motor
JP2014207831A (en) Electric locomotive controller
JP5038339B2 (en) Power supply method and AC train power supply system
TWI670189B (en) Rail vehicle circuit system
JP7001811B2 (en) Power converter and control method of power converter
JP6786268B2 (en) Power storage system
JP6815762B2 (en) Power conversion system
EP2704302B1 (en) Switching a DC-to-DC converter
JP3675124B2 (en) Control device for pulse width modulation control converter
WO2022009794A1 (en) Power converting system, control method for same, and railway vehicle equipped with same
JP7019056B2 (en) Drive control device and drive control method, railway vehicle equipped with the drive control device
WO2023112220A1 (en) Power conversion device
JP7021411B2 (en) Power conversion system
US11975616B2 (en) Electric vehicle drive system and method for protecting electric vehicle control apparatuses
JP6584822B2 (en) Vehicle control apparatus and method
JP2016213941A (en) Vehicle control device and vehicle control method
JP2015095995A (en) Vehicle power conversion equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150