WO2022009794A1 - Power converting system, control method for same, and railway vehicle equipped with same - Google Patents

Power converting system, control method for same, and railway vehicle equipped with same Download PDF

Info

Publication number
WO2022009794A1
WO2022009794A1 PCT/JP2021/025122 JP2021025122W WO2022009794A1 WO 2022009794 A1 WO2022009794 A1 WO 2022009794A1 JP 2021025122 W JP2021025122 W JP 2021025122W WO 2022009794 A1 WO2022009794 A1 WO 2022009794A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening means
power
contactor
storage battery
overhead wire
Prior art date
Application number
PCT/JP2021/025122
Other languages
French (fr)
Japanese (ja)
Inventor
正登 安東
健志 篠宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022009794A1 publication Critical patent/WO2022009794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power conversion system that also uses electric power from a storage battery, a control method of the system, and a railroad vehicle equipped with the system.
  • the electric power for driving the vehicle in the railway drive system is supplied from the overhead line. Since the power of the overhead line is supplied from the substation, if an accident occurs at the substation, the overhead line will be cut off. Therefore, when the overhead line fails, electric power cannot be supplied to the motor drive inverter device, and the vehicle cannot move.
  • storage batteries for emergency driving are being installed in vehicles for the purpose of moving to the nearest station in the event of an overhead line power outage.
  • the storage battery can absorb the regenerative power generated when the vehicle brakes, which can contribute to energy saving.
  • the voltage of the overhead line and the voltage of the storage battery may differ.
  • the charge / discharge of the storage battery is controlled by converting DC-DC power using a chopper device. That is, the chopper device is connected between the overhead wire and the storage battery.
  • the chopper device controls the charge / discharge power by the switching operation using the semiconductor element, it may accidentally fail.
  • the chopper device fails, the storage battery cannot be charged and discharged, so that the vehicle cannot run in an emergency.
  • Patent Document 1 discloses the following techniques as a technique for dealing with this problem. That is, "a one- or multi-phase bidirectional chopper circuit having a first external connection portion, a second external connection portion, a high voltage terminal, and a low voltage terminal, and a storage battery device in which the main circuit is connected to the low voltage side terminal. , The first contactor provided in the path for electrically connecting the high voltage terminal and the first external connection portion, and the path for electrically connecting the main circuit of the storage battery device and the low voltage side terminal.
  • the second contactor, the third contactor provided in the path for electrically connecting the main circuit of the storage battery device and the first external connection portion, and the main circuit of the storage battery device and the second external connection portion are electrically connected. It is a technique characterized in that it is provided with a fourth contactor provided in a path connected to.
  • Patent Document 1 makes it possible to supply electric power from a storage battery to a power conversion device (inverter device) without going through a chopper device during emergency driving, but as will be described later, a contact device to be connected. There is a problem that an excessive current flows in the storage battery at the time of switching, and the life of the storage battery or the contact device is shortened.
  • the power conversion system transfers DC power from the overhead wire via the first opening means, the second opening means, and the first filter reactor.
  • An inverter device that converts AC power to drive a motor, and DC power converted from overhead wire to DC via a first opening means, a third opening means, and a second filter reactor, and then via a third reactor. It is provided with a chopper device for controlling the electric power of the storage battery, a first contact device connected between the chopper device and the storage battery, and a second contact device connected between the first opening means and the storage battery. It is characterized in that it controls the opening and closing of the first to third opening means and the opening and closing of the first and second contactors in response to the failure detection of the chopper device and the power failure detection of the overhead wire.
  • FIG. 1 shows the schematic structure of the railroad vehicle which concerns on this invention. It is a figure which shows the circuit structure of the power conversion system which concerns on Example 1 of this invention. It is a figure which shows the timing chart at the start of an emergency run. It is a figure which shows the operation flowchart of the power conversion system which concerns on Example 1.
  • FIG. It is a figure which shows the timing chart of the power conversion system which concerns on Example 1.
  • FIG. It is a figure which shows the circuit structure of the power conversion system which concerns on Example 2 of this invention. It is a figure which shows the circuit structure of the power conversion system which concerns on Example 3 of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a railway vehicle according to the present invention.
  • electric power is supplied from the overhead wire 1 to the vehicle 8 via the current collector 7.
  • the electrical components for driving the railway vehicle according to the first embodiment are an inverter device 6, a chopper device 9, a contactor box 10, a filter reactor box 15, and a storage battery 20.
  • each electrical component is shown in the form of a separate box in FIG. 1, a part or all of the electrical components may be stored in an integrated box to increase the mounting density.
  • the voltage value of the overhead wire 1 is DC 600V, DC 750V, DC 1500V, DC 3000V, or the like.
  • FIG. 2 is a diagram showing a circuit configuration of the power conversion system according to the first embodiment of the present invention.
  • the electric power conversion system according to the first embodiment two systems, a system for driving the electric motor 5 and a system for controlling the electric power of the storage battery 20, are mounted.
  • the configuration of the power conversion system according to the first embodiment will be described below.
  • the system for driving the motor 5 drives the motor 5 by converting the DC power supplied from the overhead wire 1 into AC power via the circuit breaker 11, the contactor 14a, the filter reactor 15a, and the inverter device 6.
  • the circuit breaker 11 and the contactor 14a are used as opening means.
  • the inverter device 6 is composed of a discharge circuit composed of a filter capacitor 18a, a resistor 16a and a switching element 17a, a logic unit (not shown) that generates a gate command for the switching elements Q1 to Q6 and the switching elements Q1 to Q6. ing.
  • the electric motor 5 may be either an induction motor or a permanent magnet synchronous motor.
  • an induction motor a plurality of induction motors can be driven by one inverter device, and in the case of a permanent magnet synchronous motor, one permanent magnet synchronous motor is driven by one inverter device.
  • the motor 5 becomes a generator.
  • the regenerative power generated by the electric motor 5 returns to the overhead wire 1 via the inverter device 6, the filter reactor 15a, the contactor 14a, and the circuit breaker 11. This regenerative power is consumed as power running power of another vehicle via the overhead wire 1.
  • the system that controls the power of the storage battery 20 converts the DC power supplied from the overhead wire 1 into DC power via the circuit breaker 11, the contactor 14b, the filter reactor 15b, the chopper device 9, and the contactor 19, and raises and lowers the DC power.
  • the storage battery 20 is charged via the pressure reactor 15c.
  • a contactor is used as the opening means 14b.
  • the chopper device 9 is composed of a discharge circuit composed of a filter capacitor 18b, a resistor 16b and a switching element 17b, switching elements Q7 and Q8, and a logic unit (not shown) that generates a gate command for these switching elements Q7 and Q8. Has been done.
  • the storage battery 20 can be charged not only by the electric power from the overhead wire 1 but also by the regenerative electric power of the electric motor 5.
  • the contactor 19 When discharging the electric power of the storage battery 20, the contactor 19, the buck-boost reactor 15c, the chopper device 9, the filter reactor 15b, and the contactor 14b are used.
  • the electric power from the storage battery 20 is converted into AC electric power by the inverter device 6 to drive the electric motor 5.
  • the low potential side of the inverter device 6 and the chopper device 9 is connected to the rail 2 via the wheel 3. Further, the electric motor 5 is mounted on the bogie 4, and the bogie 4 supports the vehicle 8.
  • the switching elements Q1 to Q6 of the inverter device 6 include diodes in antiparallel.
  • Switching elements Q1 and Q2 are connected in series to form a U phase
  • switching elements Q3 and Q4 are connected in series to form a V phase
  • switching elements Q5 and Q6 are connected in series to form a W phase.
  • the switching elements Q7 and Q8 of the chopper device 9 are connected in series, and both have diodes in antiparallel.
  • the antiparallel diode included in the switching element Q17a of the inverter device 6 and the switching element 17b of the chopper device 9 may be omitted.
  • each switching element requires a counter-parallel diode, but when the switching elements have a body diode such as a MOSFET, the anti-parallel diode is not connected to each switching element.
  • the body diode of the MOSFET itself may be used.
  • a 2in1 package mounted in the same package may be used as the two switching elements (for example, Q1 and Q2) connected in series.
  • a voltage control type switching element such as a MOSFET or an IGBT or a current control type switching element such as a thyristor
  • a current control type switching element such as a thyristor
  • the semiconductor material of the switching element and the antiparallel diode Si (silicon), SiC (silicon carbide) or GaN (gallium nitride), which is a semiconductor having a wider bandgap than Si, may be used.
  • the wide bandgap semiconductor can reduce the generated loss as compared with Si, the inverter device 6 and the chopper device 9 can be miniaturized.
  • PWM Pulse Width Modulation
  • the initial charge of the filter capacitor 18a is performed using the contactor 12a and the resistor 13a, which are charging circuits. With the contactor 14a open, the contactor 12a is turned on, and initial charging is performed via the resistor 13a.
  • the filter capacitor 18a and the filter reactor 15a form a filter circuit to reduce the noise current flowing from the inverter device 6 to the overhead wire 1.
  • the resistor 16a and the switching element 17a form a discharge circuit, and by turning on the switching element 17a, the energy stored in the filter capacitor 18a is consumed by the resistor 16a, and the voltage of the filter capacitor 18a is set to 0V. Discharge up to.
  • the switching elements Q7 and Q8 of the chopper device 9 are controlled so that the input / output power of the storage battery 20 becomes a desired value. For example, assuming that the voltage of the overhead wire 1 is DC 1500V and the voltage of the storage battery 20 is 800V, the chopper device 9 steps down the voltage of the overhead wire 1 (1500V) to the voltage of the storage battery 20 (800V) when charging the storage battery 20. It functions as a step-down chopper, and the buck-boost reactor 15c functions as a step-down reactor.
  • the chopper device 9 functions as a boost chopper that boosts the voltage (800V) of the storage battery 20 to the voltage (1500V) of the overhead wire 1, and the buck-boost reactor 15c functions as a boost reactor. ..
  • the voltage of the overhead wire 1 is ideally a constant DC voltage, but the voltage fluctuates according to the number of vehicles connected to the overhead wire 1. Even in this case, the storage battery 20 can be charged by controlling the chopper device 9.
  • the switching operation of the switching elements Q7 and Q8 pulsed AC power is output from the filter capacitor 18b.
  • the initial charge of the filter capacitor 18b is performed by using the contactor 12b and the resistor 13b, which are charging circuits. That is, with the contactor 14b open, the contactor 12b is turned on and initial charging is performed via the resistor 13b.
  • the filter capacitor 18b and the filter reactor 15b form a filter circuit to reduce the noise current flowing from the chopper device 9 to the overhead wire 1. Further, the resistor 16b and the switching element 17b form a discharge circuit, and by turning on the switching element 17b, the energy stored in the filter capacitor 18b is consumed by the resistor 16b, and the voltage of the filter capacitor 18b is transferred to the overhead wire. It discharges to a voltage of 1 or less (for example, 0V).
  • the function of the chopper device 9 will be described.
  • the electric motor 5 operates as a generator, and the regenerative power generated thereby is consumed as power running power of another vehicle via the overhead wire 1.
  • electric energy can be efficiently used and energy can be saved.
  • the regenerative power cannot be returned to the overhead line 1, and if it is converted to heat using the mechanical brake, the energy efficiency will decrease. In this case, since the regenerative power can be charged to the storage battery 20 via the chopper device 9, the energy previously consumed as heat can be recovered, and the energy efficiency can be improved.
  • the chopper device 9 also has an emergency running function. If an accident occurs at a substation (not shown), which is the power supply source of the overhead line 1, the overhead line 1 will be cut off. Since the power source of the inverter device 6 is lost due to the power failure of the overhead wire 1, the motor 5 cannot be driven and the vehicle 8 cannot be operated.
  • the chopper device 9 and the storage battery 20 are provided, so that the power of the storage battery 20 can be converted via the chopper device 9 and the inverter device 9 even if the overhead wire 1 has a power failure. , Electric power can be supplied to the electric power 5. That is, even if the overhead wire 1 has a power failure, the vehicle 8 can be operated by using the electric power of the storage battery 20.
  • the switching elements Q1 to Q8 mounted on the inverter device 6 and the chopper device 9 since the switching element is a semiconductor, it may accidentally fail. If the chopper device 9 fails, it becomes impossible to supply the electric power of the storage battery 20 to the inverter device 6, so that the emergency running function is lost.
  • a contactor 21 for directly connecting the storage battery 20 to the overhead wire is provided.
  • the voltage level of the overhead wire 1 and the storage battery 20 are different, such as 1500 V for the voltage of the overhead wire 1 and 800 V for the voltage of the storage battery 20, will be described.
  • FIG. 3 is a diagram showing a timing chart at the start of emergency running.
  • the contactors 14a, 14b, 19 and the circuit breaker 11 are turned on.
  • the contactors 14a, 14b, 19 and the circuit breaker 11 are opened, and the contactor 21 is turned on.
  • the filter capacitor 18a of the inverter device 6 is charged to 1500V, while the voltage of the storage battery 20 is 800V.
  • the power conversion system according to the present invention includes a failure determination unit 22 of the chopper device 9 in addition to the contactor 21. If the chopper device 9 fails, the electric power of the storage battery 20 cannot be supplied to the inverter device 6, so that the emergency running function is lost. Therefore, when the failure determination unit 22 of the chopper device 21 detects a failure and starts emergency running, the power of the storage battery 20 is supplied to the inverter device 6 by turning on the contactor 21. If the chopper device 9 is normal, the contactor 21 is in an open state during emergency driving. In order to make these operation modes function, in addition to the failure determination unit 22, an emergency travel determination unit 23 for detecting emergency travel and a contactor input control unit 21 for controlling contactor input are provided. ..
  • the advantage of opening the contact device 21 is that when the voltage of the storage battery 20 is lower than the overhead wire 1, the voltage of the storage battery 20 is converted into DC-AC power by the inverter device 6 to drive the electric motor 5, which occurs when the vehicle runs at high speed.
  • the counter electromotive force is relatively higher than the voltage of the filter capacitor 18a, and the output torque of the electric motor 5 is lowered. Therefore, the contactor 21 is opened, and the storage battery 20 is used for emergency running via the chopper device 9.
  • the voltage of the filter capacitor 18a of the inverter device 6 can be made equal to that of the overhead wire 1, and the output torque of the motor 5 can be improved.
  • FIG. 4 is a diagram showing an operation flowchart of the power conversion system according to the first embodiment.
  • the following sequence of the entire operation flow is executed by a control device (not shown) that controls the power conversion system according to the present invention, including the contactor closing control unit 21, the failure determination unit 22, and the emergency travel determination unit 23. do.
  • This control device may be realized by hardware or software, and may be configured to include a contactor closing control unit 21, a failure determination unit 22, and an emergency travel determination unit 23 as shown in FIG. good.
  • step 1000 the power conversion system is started.
  • step 1001 the inverter device 6 starts normal operation.
  • step 1002 the failure determination unit 22 monitors the state of the chopper device 9.
  • step 1003 the failure determination unit 22 detects whether or not the chopper device 9 is in a failure state. If it is not in a faulty state (No), the process returns to step 1002 and the monitoring of the state of the chopper device 9 is continued. If a failure state is detected (Yes), the process proceeds to step 1004.
  • step 1004 the contactor closing control unit 21 that receives the signal from the failure determination unit 22 opens the contactors 14b and 19.
  • the contactor closing control unit 21 that receives the signal from the failure determination unit 22 opens the contactors 14b and 19.
  • a large current flows from the overhead wire 1 to the chopper device 9 when the contactor 14b is turned on.
  • the contactor 19 is turned on, the chopper from the storage battery 20 Since a large current flows through the device 9, it is opened to avoid these.
  • the contactor 12b is in an open state.
  • step 1005 the emergency travel determination unit 23 detects the presence or absence of an emergency travel command for the inverter device 6.
  • the emergency running command is not detected (No)
  • the inverter device 6 continues the normal operation, and the emergency running determination unit 23 continues to detect the emergency running command. If an emergency travel command is detected (Yes), the process proceeds to step 1006.
  • step 1006 the contactor closing control unit 21 that received the signal from the emergency travel determination unit 23 opens the circuit breaker 11. This operation is for disconnecting the overhead wire 1 and the inverter device 6.
  • step 1007 the control unit (not shown) of the discharge circuit of the inverter device 6 turns on the switching element 17a for a predetermined time, and discharges the filter capacitor 18a using the resistor 16a.
  • the filter capacitor 18a is discharged from DC 1500V to 0V.
  • step 1008 the contactor charging control unit 21 inputs the contactors 12a and 21, so that the filter capacitor 18a is initially charged using the resistor 13a. For example, when the voltage of the storage battery 20 is DC 800V, the filter capacitor 18a is charged from 0V to DC 800V.
  • step 1009 the contactor closing control unit 21 throws in the contactor 14a and opens the contactor 12a.
  • the storage battery 20 and the filter capacitor 18a are directly connected.
  • step 1010 the emergency run of the inverter device 6 using the storage battery 20 is started.
  • step 1011 this operation flowchart ends.
  • FIG. 5 is a diagram showing a timing chart of the power conversion system according to the first embodiment.
  • the difference from the control mode according to the timing chart shown in FIG. 3 is that the switching element 17a and the contactor 12a are controlled.
  • the contactor 21 is inserted in a state where the voltage of the filter capacitor 18a and the voltage of the storage battery 20 are different, a large current flows through the storage battery 20 and the voltage of the filter capacitor 18a vibrates. Was there.
  • the timing chart shown below makes it possible to avoid the above situation.
  • the circuit breaker 11 and the contactor 14a are opened, and the filter capacitor 18a is used as an operation before the contactor 21 is turned on by using the switching element 17a and the resistor 16a. To discharge.
  • the contactor 12a is turned on together with the contactor 21, and the voltage of the filter capacitor 18a is charged to the voltage of the storage battery 20 using the resistor 13a.
  • the current flowing from the storage battery 20 into the filter capacitor 18a can be reduced as compared with the case of the timing chart shown in FIG.
  • the voltage of the filter capacitor 18a does not vibrate, and it is possible to avoid shortening the life of the storage battery 20 and the contactor 21.
  • the contactor 14a is turned on and the contactor 12a is opened to start the emergency running of the inverter device 6 using the storage battery 20.
  • the filter capacitor 18a is discharged to 0V, but it may be reduced to a level equivalent to the voltage of the storage battery 20 instead of 0V. If the voltage of the filter capacitor 18a and the voltage of the storage battery 20 are the same, the current flowing through the storage battery 20 can be reduced even if the contactor 21 is inserted without using the resistor 13a. Further, since the circuit for charging the filter capacitor 18a from the storage battery 20 and the circuit for charging the filter capacitor 18a from the overhead wire 1 share common parts, the power conversion system can be downsized by reducing the number of parts. ..
  • FIG. 6 is a diagram showing a circuit configuration of the power conversion system according to the second embodiment of the present invention. Since the configurations, functions, and operations of the inverter device 6 and the chopper device 9 are the same as those in the first embodiment, they will be omitted. Further, both the opening means 14a and the opening means 14b are contactors.
  • the contactor 12b and the resistor 13b are omitted as compared with the circuit configuration of the first embodiment shown in FIG. 2, but the circuit configuration of the second embodiment is also the same as that of the first embodiment shown in FIG. With the same operation flowchart, the same function as that of the first embodiment can be achieved. Further, since the contactor 12b and the resistor 13b can be omitted, the power conversion system can be further miniaturized.
  • FIG. 7 is a diagram showing a circuit configuration of the power conversion system according to the third embodiment of the present invention. Since the configurations, functions, and operations of the inverter device 6 and the chopper device 9 are the same as those in the first embodiment, they will be omitted.
  • the circuit breaker 11 is replaced with the contactor 14, and the contactors 14a and 14b are replaced with the switching elements Q9 and Q10, respectively, as compared with the circuit configuration of the first embodiment shown in FIG.
  • Example 3 The effect of the configuration of Example 3 will be described. If the inverter device 6 or chopper device 9 fails, or if the filter reactors 15a or 15b have a ground fault, an accident current flows from the overhead wire 1 and the substation (not shown) that supplies power to the overhead wire 1 loses power. .. In order to cut off this accident current, the circuit breaker 11 is mounted in the first embodiment, but the circuit breaker has a high allowable current, so the scale of the device is large. On the other hand, in the third embodiment, the switching elements Q9 and Q10 and the resistors 16a and 16b are provided in parallel with them.
  • Switching elements have a faster operating time than mechanical circuit breakers and contactors. Therefore, the switching elements Q9 and Q10 can be turned off before the fault current increases, and the fault current can be reduced by the resistors 16a and 16b. Since the reduced current is smaller than the accident current, it can be cut off by the contactor 14. As a result, a large circuit breaker becomes unnecessary, and the power conversion system can be further miniaturized.
  • the resistors 16a and 16b function as charging resistors for the filter capacitors 18a and 18b in addition to being resistors that reduce the fault current.
  • the switching element and the resistor are further connected in parallel with the switching elements Q9 and Q10.
  • a series circuit (not shown) may be connected. This makes it possible to switch between a resistor that reduces the fault current and a resistor that initially charges the filter capacitors 18a and 18b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

In relation to the supply of electric power from a storage battery to an inverter device during emergency running when a chopper device has malfunctioned, in order to resolve the problem that an excessive current flows to the storage battery when switching over a contactor that is to be connected, thereby causing the service life of the storage battery and the contactor to deteriorate, this power converting system is provided with an inverter device for driving a motor by converting direct-current power from an overhead wire into alternating-current power by way of a first opening means, a second opening means, and a first filter reactor, a chopper device for controlling the power of the storage battery by way of a third reactor, by direct current-direct current conversion of the direct-current power from the overhead wire by way of the first opening means, a third opening means, and a second filter reactor, a first contactor connected between the chopper device and the storage battery, and a second contactor connected between the first opening means and the storage battery, wherein opening and closing of the first to third opening means and the first and second contactors is controlled in accordance with malfunction detection of the chopper device and power failure detection of the overhead wire.

Description

電力変換システム、その制御方法およびそれを搭載した鉄道車両Power conversion system, its control method and railroad vehicle equipped with it
 本発明は、蓄電池からの電力も併用する電力変換システム、該システムの制御方法および該システムを搭載した鉄道車両に関する。 The present invention relates to a power conversion system that also uses electric power from a storage battery, a control method of the system, and a railroad vehicle equipped with the system.
 鉄道駆動システムにおける車両駆動用の電力は、架線から供給される。架線の電力は、変電所から供給されることから、変電所で事故が発生すると架線は停電する。そのため、架線が停電すると、モータ駆動用インバータ装置に電力を供給できず、車両は移動することができなくなる。 The electric power for driving the vehicle in the railway drive system is supplied from the overhead line. Since the power of the overhead line is supplied from the substation, if an accident occurs at the substation, the overhead line will be cut off. Therefore, when the overhead line fails, electric power cannot be supplied to the motor drive inverter device, and the vehicle cannot move.
 そこで近年では、架線停電時に最寄り駅まで移動することを目的として、車両に非常走行用の蓄電池が搭載されつつある。また、蓄電池は、車両がブレーキ時に発生する回生電力を吸収することができ、省エネルギー化にも貢献できる。 Therefore, in recent years, storage batteries for emergency driving are being installed in vehicles for the purpose of moving to the nearest station in the event of an overhead line power outage. In addition, the storage battery can absorb the regenerative power generated when the vehicle brakes, which can contribute to energy saving.
 蓄電池を搭載した鉄道駆動システムにおいて、架線の電圧と蓄電池の電圧とが異なる場合がある。この場合、チョッパ装置を用いて直流-直流電力変換することで、蓄電池の充放電は制御される。すなわち、架線と蓄電池との間にチョッパ装置が接続される構成となる。しかし、チョッパ装置は、半導体素子を用いたスイッチング動作により充放電電力を制御するため、偶発的に故障することがある。ここで、チョッパ装置が故障した場合には、蓄電池を充放電できなくなるため、車両は非常走行することができない。 In a railway drive system equipped with a storage battery, the voltage of the overhead line and the voltage of the storage battery may differ. In this case, the charge / discharge of the storage battery is controlled by converting DC-DC power using a chopper device. That is, the chopper device is connected between the overhead wire and the storage battery. However, since the chopper device controls the charge / discharge power by the switching operation using the semiconductor element, it may accidentally fail. Here, if the chopper device fails, the storage battery cannot be charged and discharged, so that the vehicle cannot run in an emergency.
 チョッパ装置を用いて蓄電池システムを制御する技術の中で、この問題に対処する技術として、例えば特許文献1には、以下の技術が開示されている。すなわち、「第1外部接続部と第2外部接続部と高電圧端子と低電圧端子とを備えた一又は複数相の双方向チョッパ回路と主回路が低電圧側端子と接続される蓄電池装置と、高電圧端子と第1外部接続部とを電気的に接続する経路に設けられた第1接触器と、蓄電池装置の主回路と低電圧側端子とを電気的に接続する経路に設けられた第2接触器と、蓄電池装置の主回路と第1外部接続部とを電気的に接続する経路に設けられた第3接触器と、蓄電池装置の主回路と第2外部接続部とを電気的に接続する経路に設けられた第4接触器とを備える」ことを特徴とする技術である。 Among the techniques for controlling the storage battery system using the chopper device, for example, Patent Document 1 discloses the following techniques as a technique for dealing with this problem. That is, "a one- or multi-phase bidirectional chopper circuit having a first external connection portion, a second external connection portion, a high voltage terminal, and a low voltage terminal, and a storage battery device in which the main circuit is connected to the low voltage side terminal. , The first contactor provided in the path for electrically connecting the high voltage terminal and the first external connection portion, and the path for electrically connecting the main circuit of the storage battery device and the low voltage side terminal. The second contactor, the third contactor provided in the path for electrically connecting the main circuit of the storage battery device and the first external connection portion, and the main circuit of the storage battery device and the second external connection portion are electrically connected. It is a technique characterized in that it is provided with a fourth contactor provided in a path connected to.
特開平2019-186985号公報Japanese Unexamined Patent Publication No. 2019-186985
 特許文献1に記載の技術では、非常走行時に、チョッパ装置を介することなく、蓄電池から電力変換装置(インバータ装置)へ電力を供給することを可能にするが、後述するように、接続する接触器の切り替え時に蓄電池に過大な電流が流れ、蓄電池や接触器の寿命を低下させるという課題が存在する。 The technique described in Patent Document 1 makes it possible to supply electric power from a storage battery to a power conversion device (inverter device) without going through a chopper device during emergency driving, but as will be described later, a contact device to be connected. There is a problem that an excessive current flows in the storage battery at the time of switching, and the life of the storage battery or the contact device is shortened.
 上記課題を解決するために、本発明に係る電力変換システムの代表例として、電力変換システムは、架線から第一の開放手段、第二の開放手段および第一のフィルタリアクトルを介して直流電力を交流電力に変換してモータを駆動するインバータ装置と、架線から第一の開放手段、第三の開放手段および第二のフィルタリアクトルを介して直流電力を直流直流変換して第三のリアクトルを介して蓄電池の電力を制御するチョッパ装置と、チョッパ装置と蓄電池との間に接続した第一の接触器と、第一の開放手段と蓄電池との間に接続した第二の接触器とを備え、チョッパ装置の故障検出および架線の停電検出に応じて第一から第三の開放手段の開閉および第一並びに第二の接触器の開閉を制御することを特徴とする。 In order to solve the above problems, as a typical example of the power conversion system according to the present invention, the power conversion system transfers DC power from the overhead wire via the first opening means, the second opening means, and the first filter reactor. An inverter device that converts AC power to drive a motor, and DC power converted from overhead wire to DC via a first opening means, a third opening means, and a second filter reactor, and then via a third reactor. It is provided with a chopper device for controlling the electric power of the storage battery, a first contact device connected between the chopper device and the storage battery, and a second contact device connected between the first opening means and the storage battery. It is characterized in that it controls the opening and closing of the first to third opening means and the opening and closing of the first and second contactors in response to the failure detection of the chopper device and the power failure detection of the overhead wire.
 本発明によれば、非常走行時に、チョッパ装置が故障であっても、蓄電池からインバータ装置に対して過電流等の不具合を伴うことなく安定した電力供給の下で非常走行が可能となる。 According to the present invention, even if the chopper device fails during emergency running, emergency running is possible under stable power supply without causing problems such as overcurrent from the storage battery to the inverter device.
本発明に係る鉄道車両の概略構成を示す図である。It is a figure which shows the schematic structure of the railroad vehicle which concerns on this invention. 本発明の実施例1に係る電力変換システムの回路構成を示す図である。It is a figure which shows the circuit structure of the power conversion system which concerns on Example 1 of this invention. 非常走行開始時のタイミングチャートを示す図である。It is a figure which shows the timing chart at the start of an emergency run. 実施例1に係る電力変換システムの動作フローチャートを示す図である。It is a figure which shows the operation flowchart of the power conversion system which concerns on Example 1. FIG. 実施例1に係る電力変換システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the power conversion system which concerns on Example 1. FIG. 本発明の実施例2に係る電力変換システムの回路構成を示す図である。It is a figure which shows the circuit structure of the power conversion system which concerns on Example 2 of this invention. 本発明の実施例3に係る電力変換システムの回路構成を示す図である。It is a figure which shows the circuit structure of the power conversion system which concerns on Example 3 of this invention.
 以下、本発明を実施するための形態として、実施例1~3について、図面を用いて説明する。
 図1は、本発明に係る鉄道車両の概略構成を示す図である。
 鉄道車両を加速するための力行動作では、架線1から集電装置7を介して車両8に電力が供給される。実施例1に係る鉄道車両を駆動するための電装品は、インバータ装置6、チョッパ装置9、接触器箱10、フィルタリアクトル箱15および蓄電池20である。
Hereinafter, Examples 1 to 3 will be described with reference to FIGS. 1 to 3 as a mode for carrying out the present invention.
FIG. 1 is a diagram showing a schematic configuration of a railway vehicle according to the present invention.
In the power running operation for accelerating a railroad vehicle, electric power is supplied from the overhead wire 1 to the vehicle 8 via the current collector 7. The electrical components for driving the railway vehicle according to the first embodiment are an inverter device 6, a chopper device 9, a contactor box 10, a filter reactor box 15, and a storage battery 20.
 なお、図1では各電装品を別箱の形態で記載しているが、電装品の一部もしくはすべてを一体箱に格納し、実装密度を高密度化してもよい。
 また、架線1の電圧値としては、直流600V、直流750V、直流1500V、直流3000V等である。
Although each electrical component is shown in the form of a separate box in FIG. 1, a part or all of the electrical components may be stored in an integrated box to increase the mounting density.
The voltage value of the overhead wire 1 is DC 600V, DC 750V, DC 1500V, DC 3000V, or the like.
 図2は、本発明の実施例1に係る電力変換システムの回路構成を示す図である。
 実施例1に係る電力変換システムとしては、電動機5を駆動するシステムと蓄電池20の電力を制御するシステムの二つのシステムが搭載されている。
FIG. 2 is a diagram showing a circuit configuration of the power conversion system according to the first embodiment of the present invention.
As the electric power conversion system according to the first embodiment, two systems, a system for driving the electric motor 5 and a system for controlling the electric power of the storage battery 20, are mounted.
 以下に、実施例1に係る電力変換システムの構成を説明する。
 電動機5を駆動するシステムは、架線1から供給された直流電力を、遮断器11、接触器14a、フィルタリアクトル15aおよびインバータ装置6を介して交流電力に変換することにより、電動機5を駆動する。実施例1では、遮断器11と接触器14aとを開放手段として用いる。
The configuration of the power conversion system according to the first embodiment will be described below.
The system for driving the motor 5 drives the motor 5 by converting the DC power supplied from the overhead wire 1 into AC power via the circuit breaker 11, the contactor 14a, the filter reactor 15a, and the inverter device 6. In the first embodiment, the circuit breaker 11 and the contactor 14a are used as opening means.
 インバータ装置6は、フィルタキャパシタ18a、抵抗器16aおよびスイッチング素子17aで構成される放電回路、スイッチング素子Q1~Q6、スイッチング素子Q1~Q6のゲート指令を生成する論理部(図示せず)から構成されている。 The inverter device 6 is composed of a discharge circuit composed of a filter capacitor 18a, a resistor 16a and a switching element 17a, a logic unit (not shown) that generates a gate command for the switching elements Q1 to Q6 and the switching elements Q1 to Q6. ing.
 電動機5の駆動により、図1に示す車輪3が回転し、車両8が前進または後進する。電動機5は、誘導電動機または永久磁石同期電動機のどちらでもよい。誘導電動機の場合は、複数の誘導電動機を1台のインバータ装置で駆動することができ、永久磁石同期電動機の場合は、1台の永久磁石同期電動機を1台のインバータ装置で駆動する。 By driving the motor 5, the wheels 3 shown in FIG. 1 rotate, and the vehicle 8 moves forward or backward. The electric motor 5 may be either an induction motor or a permanent magnet synchronous motor. In the case of an induction motor, a plurality of induction motors can be driven by one inverter device, and in the case of a permanent magnet synchronous motor, one permanent magnet synchronous motor is driven by one inverter device.
 車両8を減速するブレーキ動作時には、電動機5が発電機となる。電動機5が発電した回生電力は、インバータ装置6、フィルタリアクトル15a、接触器14a、遮断器11を介して架線1に戻る。この回生電力は、架線1を介して他の車両の力行電力として消費される。 When the brake operation for decelerating the vehicle 8 is performed, the motor 5 becomes a generator. The regenerative power generated by the electric motor 5 returns to the overhead wire 1 via the inverter device 6, the filter reactor 15a, the contactor 14a, and the circuit breaker 11. This regenerative power is consumed as power running power of another vehicle via the overhead wire 1.
 蓄電池20の電力を制御するシステムは、架線1から供給された直流電力を、遮断器11、接触器14b、フィルタリアクトル15b、チョッパ装置9および接触器19を介して直流電力に変換して、昇降圧リアクトル15c介して蓄電池20を充電する。実施例1では、開放手段14bとして接触器を用いる。 The system that controls the power of the storage battery 20 converts the DC power supplied from the overhead wire 1 into DC power via the circuit breaker 11, the contactor 14b, the filter reactor 15b, the chopper device 9, and the contactor 19, and raises and lowers the DC power. The storage battery 20 is charged via the pressure reactor 15c. In the first embodiment, a contactor is used as the opening means 14b.
 チョッパ装置9は、フィルタキャパシタ18b、抵抗器16bおよびスイッチング素子17bで構成される放電回路、スイッチング素子Q7およびQ8、これらスイッチング素子Q7およびQ8のゲート指令を生成する論理部(図示せず)で構成されている。なお、蓄電池20は、架線1からの電力だけでなく、電動機5の回生電力によっても充電が可能である。 The chopper device 9 is composed of a discharge circuit composed of a filter capacitor 18b, a resistor 16b and a switching element 17b, switching elements Q7 and Q8, and a logic unit (not shown) that generates a gate command for these switching elements Q7 and Q8. Has been done. The storage battery 20 can be charged not only by the electric power from the overhead wire 1 but also by the regenerative electric power of the electric motor 5.
 蓄電池20の電力を放電する場合は、接触器19、昇降圧リアクトル15c、チョッパ装置9、フィルタリアクトル15b、接触器14bを介する。蓄電池20からの電力は、インバータ装置6により交流電力に変換されて電動機5を駆動する。 When discharging the electric power of the storage battery 20, the contactor 19, the buck-boost reactor 15c, the chopper device 9, the filter reactor 15b, and the contactor 14b are used. The electric power from the storage battery 20 is converted into AC electric power by the inverter device 6 to drive the electric motor 5.
 電気的なグラウンドとしてインバータ装置6およびチョッパ装置9の低電位側は、車輪3を介してレール2に接続されている。また、電動機5は台車4に搭載されており、台車4は車両8を支持している。 As an electrical ground, the low potential side of the inverter device 6 and the chopper device 9 is connected to the rail 2 via the wheel 3. Further, the electric motor 5 is mounted on the bogie 4, and the bogie 4 supports the vehicle 8.
 以下、インバータ装置6およびチョッパ装置9の構成と動作を説明する。
 インバータ装置6のスイッチング素子Q1~Q6は、逆並列にダイオードを備えている。スイッチング素子Q1とQ2とを直列接続してU相を構成し、スイッチング素子Q3とQ4とを直列接続してV相を構成し、スイッチング素子Q5とQ6とを直列接続してW相を構成している。チョッパ装置9のスイッチング素子Q7とQ8とは、直列接続され、共に逆並列にダイオードを備えている。一方で、インバータ装置6のスイッチング素子Q17aおよびチョッパ装置9のスイッチング素子17bが備える逆並列ダイオードは、省略してもよい。
Hereinafter, the configuration and operation of the inverter device 6 and the chopper device 9 will be described.
The switching elements Q1 to Q6 of the inverter device 6 include diodes in antiparallel. Switching elements Q1 and Q2 are connected in series to form a U phase, switching elements Q3 and Q4 are connected in series to form a V phase, and switching elements Q5 and Q6 are connected in series to form a W phase. ing. The switching elements Q7 and Q8 of the chopper device 9 are connected in series, and both have diodes in antiparallel. On the other hand, the antiparallel diode included in the switching element Q17a of the inverter device 6 and the switching element 17b of the chopper device 9 may be omitted.
 スイッチング素子Q1~Q8が、IGBTを使用する場合には、各スイッチング素子に逆並列ダイオードが必要であるが、MOSFETなどボディダイオードを有する場合には、各スイッチング素子に逆並列ダイオードを接続せずにMOSFET自身のボディダイオードを利用してよい。また、直列接続された2つのスイッチング素子(例えば、Q1とQ2)としては、同一パッケージに搭載された2in1のパッケージを用いてもよい。 When the switching elements Q1 to Q8 use IGBTs, each switching element requires a counter-parallel diode, but when the switching elements have a body diode such as a MOSFET, the anti-parallel diode is not connected to each switching element. The body diode of the MOSFET itself may be used. Further, as the two switching elements (for example, Q1 and Q2) connected in series, a 2in1 package mounted in the same package may be used.
 スイッチング素子Q1~Q8としては、MOSFETやIGBTなどの電圧制御型スイッチング素子やサイリスタなどの電流制御型スイッチング素子を使用することができる。また、スイッチング素子および逆並列ダイオードの半導体材料としては、Si(シリコン)や、Siよりもバンドギャップが広い半導体であるSiC(炭化ケイ素)やGaN(窒化ガリウム)でもよい。ここで、ワイドバンドギャップ半導体は、Siに比べて発生損失を低減できるため、インバータ装置6やチョッパ装置9を小型化できる。 As the switching elements Q1 to Q8, a voltage control type switching element such as a MOSFET or an IGBT or a current control type switching element such as a thyristor can be used. Further, as the semiconductor material of the switching element and the antiparallel diode, Si (silicon), SiC (silicon carbide) or GaN (gallium nitride), which is a semiconductor having a wider bandgap than Si, may be used. Here, since the wide bandgap semiconductor can reduce the generated loss as compared with Si, the inverter device 6 and the chopper device 9 can be miniaturized.
 インバータ装置6を構成するスイッチング素子Q1~Q6をPWM(Pulse Width Modulation)制御することで、フィルタキャパシタ18aからパルス状の交流電力が出力される。出力された交流電力は、電動機5に供給され、機械エネルギーに変換されることで車両8を前進または後進させる。 By PWM (Pulse Width Modulation) control of the switching elements Q1 to Q6 constituting the inverter device 6, pulsed AC power is output from the filter capacitor 18a. The output AC power is supplied to the electric motor 5 and converted into mechanical energy to move the vehicle 8 forward or backward.
 なお、フィルタキャパシタ18aの初期充電は、充電回路である接触器12aと抵抗器13aを用いて行われる。接触器14aが開放状態にて接触器12aを投入し、抵抗器13aを介して初期充電を実施する。フィルタキャパシタ18aとフィルタリアクトル15aとはフィルタ回路を構成し、インバータ装置6から架線1に流れるノイズ電流を低減する。 The initial charge of the filter capacitor 18a is performed using the contactor 12a and the resistor 13a, which are charging circuits. With the contactor 14a open, the contactor 12a is turned on, and initial charging is performed via the resistor 13a. The filter capacitor 18a and the filter reactor 15a form a filter circuit to reduce the noise current flowing from the inverter device 6 to the overhead wire 1.
 また、抵抗器16aとスイッチング素子17aとは放電回路を構成し、スイッチング素子17aをオン状態とすることにより、フィルタキャパシタ18aが蓄積したエネルギーを抵抗器16aで消費し、フィルタキャパシタ18aの電圧を0Vまで放電する。 Further, the resistor 16a and the switching element 17a form a discharge circuit, and by turning on the switching element 17a, the energy stored in the filter capacitor 18a is consumed by the resistor 16a, and the voltage of the filter capacitor 18a is set to 0V. Discharge up to.
 チョッパ装置9のスイッチング素子Q7およびQ8は、蓄電池20の入出力電力が所望の値となるように制御される。例えば、架線1の電圧が直流1500V、蓄電池20の電圧が800Vとすると、チョッパ装置9は、蓄電池20を充電する場合、架線1の電圧(1500V)を蓄電池20の電圧(800V)にまで降圧する降圧チョッパとして機能し、昇降圧リアクトル15cが降圧リアクトルとして機能する。逆に、チョッパ装置9は、蓄電池20を放電する場合、蓄電池20の電圧(800V)を架線1の電圧(1500V)にまで昇圧する昇圧チョッパとして機能し、昇降圧リアクトル15cが昇圧リアクトルとして機能する。 The switching elements Q7 and Q8 of the chopper device 9 are controlled so that the input / output power of the storage battery 20 becomes a desired value. For example, assuming that the voltage of the overhead wire 1 is DC 1500V and the voltage of the storage battery 20 is 800V, the chopper device 9 steps down the voltage of the overhead wire 1 (1500V) to the voltage of the storage battery 20 (800V) when charging the storage battery 20. It functions as a step-down chopper, and the buck-boost reactor 15c functions as a step-down reactor. On the contrary, when the storage battery 20 is discharged, the chopper device 9 functions as a boost chopper that boosts the voltage (800V) of the storage battery 20 to the voltage (1500V) of the overhead wire 1, and the buck-boost reactor 15c functions as a boost reactor. ..
 架線1の電圧は、理想的には一定の直流電圧であるが、架線1に接続される車両本数に応じてその電圧は変動する。この場合でも、チョッパ装置9を制御することで蓄電池20を充電することができる。スイッチング素子Q7およびQ8のスイッチング動作により、フィルタキャパシタ18bからパルス状の交流電力が出力される。なお、フィルタキャパシタ18bの初期充電は、充電回路である接触器12bと抵抗器13bとを用いて行われる。すなわち、接触器14bが開放状態にて、接触器12bを投入し抵抗器13bを介して初期充電を実施する。 The voltage of the overhead wire 1 is ideally a constant DC voltage, but the voltage fluctuates according to the number of vehicles connected to the overhead wire 1. Even in this case, the storage battery 20 can be charged by controlling the chopper device 9. By the switching operation of the switching elements Q7 and Q8, pulsed AC power is output from the filter capacitor 18b. The initial charge of the filter capacitor 18b is performed by using the contactor 12b and the resistor 13b, which are charging circuits. That is, with the contactor 14b open, the contactor 12b is turned on and initial charging is performed via the resistor 13b.
 フィルタキャパシタ18bとフィルタリアクトル15bとは、フィルタ回路を構成し、チョッパ装置9から架線1に流れるノイズ電流を低減する。また、抵抗器16bとスイッチング素子17bとは放電回路を構成し、スイッチング素子17bをオン状態とすることにより、フィルタキャパシタ18bが蓄積したエネルギーを抵抗器16bで消費し、フィルタキャパシタ18bの電圧を架線1の電圧以下(例えば0V)に放電する。 The filter capacitor 18b and the filter reactor 15b form a filter circuit to reduce the noise current flowing from the chopper device 9 to the overhead wire 1. Further, the resistor 16b and the switching element 17b form a discharge circuit, and by turning on the switching element 17b, the energy stored in the filter capacitor 18b is consumed by the resistor 16b, and the voltage of the filter capacitor 18b is transferred to the overhead wire. It discharges to a voltage of 1 or less (for example, 0V).
 次に、チョッパ装置9の機能を説明する。
 車両8のブレーキ時に電動機5は発電機として動作し、これにより発生する回生電力は架線1を介して他の車両の力行電力として消費される。この結果、電気エネルギーが効率よく利用され省エネルギー化ができる。
Next, the function of the chopper device 9 will be described.
When the vehicle 8 is braked, the electric motor 5 operates as a generator, and the regenerative power generated thereby is consumed as power running power of another vehicle via the overhead wire 1. As a result, electric energy can be efficiently used and energy can be saved.
 一方、架線1に他の力行中の車両が存在しない場合、回生電力は架線1に戻すことができず、機械ブレーキを使用して熱に変換するとエネルギー効率が低下する。この場合には、回生電力をチョッパ装置9を介して回生電力を蓄電池20に充電することができるため、従来は熱として消費していたエネルギーを回収できるため、エネルギー効率を向上させることができる。 On the other hand, if there is no other power running vehicle on the overhead line 1, the regenerative power cannot be returned to the overhead line 1, and if it is converted to heat using the mechanical brake, the energy efficiency will decrease. In this case, since the regenerative power can be charged to the storage battery 20 via the chopper device 9, the energy previously consumed as heat can be recovered, and the energy efficiency can be improved.
 また、チョッパ装置9は、非常走行の機能も有する。架線1の電力供給元である変電所(図示せず)で事故が生じた場合、架線1は停電する。架線1の停電によりインバータ装置6の電力源がなくなるため、電動機5の駆動が不可となり車両8を動かすことができなくなる。実施例1に係る電力変換システムでは、チョッパ装置9と蓄電池20とを備えることにより、架線1が停電した場合でも、蓄電池20の電力をチョッパ装置9およびインバータ装置9を介して電力変換することで、電動機5に電力を供給することができる。すなわち、架線1が停電した場合でも蓄電池20の電力を用いて車両8を動かすことが可能となる。 The chopper device 9 also has an emergency running function. If an accident occurs at a substation (not shown), which is the power supply source of the overhead line 1, the overhead line 1 will be cut off. Since the power source of the inverter device 6 is lost due to the power failure of the overhead wire 1, the motor 5 cannot be driven and the vehicle 8 cannot be operated. In the power conversion system according to the first embodiment, the chopper device 9 and the storage battery 20 are provided, so that the power of the storage battery 20 can be converted via the chopper device 9 and the inverter device 9 even if the overhead wire 1 has a power failure. , Electric power can be supplied to the electric power 5. That is, even if the overhead wire 1 has a power failure, the vehicle 8 can be operated by using the electric power of the storage battery 20.
 ここで、インバータ装置6およびチョッパ装置9が搭載するスイッチング素子Q1~Q8に関して、スイッチング素子は半導体であることから、偶発的に故障する場合がある。チョッパ装置9が故障すると、蓄電池20の電力をインバータ装置6に供給することが不能になるため、非常走行の機能を失う事態になる。 Here, regarding the switching elements Q1 to Q8 mounted on the inverter device 6 and the chopper device 9, since the switching element is a semiconductor, it may accidentally fail. If the chopper device 9 fails, it becomes impossible to supply the electric power of the storage battery 20 to the inverter device 6, so that the emergency running function is lost.
 この事態に対処するために、実施例1では、蓄電池20を架線に直結するための接触器21を備えている。以下では、一例として、架線1の電圧は1500V、蓄電池20の電圧は800V等、架線1と蓄電池20の電圧レベルが異なるシステムにて説明する。 In order to deal with this situation, in the first embodiment, a contactor 21 for directly connecting the storage battery 20 to the overhead wire is provided. In the following, as an example, a system in which the voltage level of the overhead wire 1 and the storage battery 20 are different, such as 1500 V for the voltage of the overhead wire 1 and 800 V for the voltage of the storage battery 20, will be described.
 図3は、非常走行開始時のタイミングチャートを示す図である。
 非常走行時に、接触器21を介して蓄電池20の電力をインバータ装置6に供給すると、チョッパ装置9を介さないため、エネルギー効率を向上させることができる。
FIG. 3 is a diagram showing a timing chart at the start of emergency running.
When the electric power of the storage battery 20 is supplied to the inverter device 6 via the contactor 21 during emergency driving, the energy efficiency can be improved because the chopper device 9 is not used.
 図3に示す時刻t1以前では、接触器14a、14b、19および遮断器11が投入されている。時刻t1にて非常走行の開始を検出すると、接触器14a、14b、19および遮断器11を開放し、接触器21を投入する。このとき、インバータ装置6のフィルタキャパシタ18aは1500Vに充電されている一方で、蓄電池20の電圧は800Vである。 Before the time t1 shown in FIG. 3, the contactors 14a, 14b, 19 and the circuit breaker 11 are turned on. When the start of emergency running is detected at time t1, the contactors 14a, 14b, 19 and the circuit breaker 11 are opened, and the contactor 21 is turned on. At this time, the filter capacitor 18a of the inverter device 6 is charged to 1500V, while the voltage of the storage battery 20 is 800V.
 ここにおいて、接触器21が投入された瞬間に、フィルタキャパシタ18aと蓄電池20との電位差によって蓄電池20に電流が流れ込み(図3に示す蓄電池20の電流は、蓄電池20の放電を正とする)、図3に示すように蓄電池20に過大な電流が流れる。この過大な電流は蓄電池20を発熱させることになるため、蓄電池20や接触器21の寿命を低下させるという課題を呈することになる。 Here, at the moment when the contact device 21 is turned on, a current flows into the storage battery 20 due to the potential difference between the filter capacitor 18a and the storage battery 20 (the current of the storage battery 20 shown in FIG. 3 is positive for the discharge of the storage battery 20). As shown in FIG. 3, an excessive current flows through the storage battery 20. Since this excessive current causes the storage battery 20 to generate heat, it presents a problem of shortening the life of the storage battery 20 and the contactor 21.
 以下、実施例1に係る電力変換システムにおける新規な構成部分及び制御方法について説明する。
 本発明に係る電力変換システムは、接触器21に加えて、チョッパ装置9の故障判定部22を備えている。チョッパ装置9が故障すると、蓄電池20の電力をインバータ装置6に供給できなくなるため、非常走行の機能が失われる。そこで、チョッパ装置21の故障判定部22が故障を検知しかつ非常走行を開始する場合は、接触器21を投入することにより蓄電池20の電力をインバータ装置6に供給する。チョッパ装置9が正常時であれば、非常走行時には接触器21は開放状態とする。これらの動作態様を機能させるために、故障判定部22の他に、非常走行を検出するための非常走行判定部23および接触器の投入を制御するための接触器投入制御部21を備えている。
Hereinafter, a novel component and a control method in the power conversion system according to the first embodiment will be described.
The power conversion system according to the present invention includes a failure determination unit 22 of the chopper device 9 in addition to the contactor 21. If the chopper device 9 fails, the electric power of the storage battery 20 cannot be supplied to the inverter device 6, so that the emergency running function is lost. Therefore, when the failure determination unit 22 of the chopper device 21 detects a failure and starts emergency running, the power of the storage battery 20 is supplied to the inverter device 6 by turning on the contactor 21. If the chopper device 9 is normal, the contactor 21 is in an open state during emergency driving. In order to make these operation modes function, in addition to the failure determination unit 22, an emergency travel determination unit 23 for detecting emergency travel and a contactor input control unit 21 for controlling contactor input are provided. ..
 接触器21を開放状態とする利点は、蓄電池20の電圧が架線1より低い場合、蓄電池20の電圧をインバータ装置6で直流-交流電力変換して電動機5を駆動すると、車両が高速走行時に発生する逆起電力がフィルタキャパシタ18aの電圧に比べて相対的に高くなり電動機5の出力トルクが低下する。そこで、接触器21を開放状態にして、チョッパ装置9を介し蓄電池20を用いて非常走行する。これにより、インバータ装置6のフィルタキャパシタ18aの電圧を架線1と同等にすることができ、電動機5の出力トルクを向上させることができる。 The advantage of opening the contact device 21 is that when the voltage of the storage battery 20 is lower than the overhead wire 1, the voltage of the storage battery 20 is converted into DC-AC power by the inverter device 6 to drive the electric motor 5, which occurs when the vehicle runs at high speed. The counter electromotive force is relatively higher than the voltage of the filter capacitor 18a, and the output torque of the electric motor 5 is lowered. Therefore, the contactor 21 is opened, and the storage battery 20 is used for emergency running via the chopper device 9. As a result, the voltage of the filter capacitor 18a of the inverter device 6 can be made equal to that of the overhead wire 1, and the output torque of the motor 5 can be improved.
 また、チョッパ装置9の故障により接触器21を投入して非常走行するときに、架線1の電圧と蓄電池20の電圧とが異なる場合、フィルタキャパシタ18aの電圧を制御する必要がある。 Further, when the contactor 21 is turned on due to the failure of the chopper device 9 and the emergency running is performed, if the voltage of the overhead wire 1 and the voltage of the storage battery 20 are different, it is necessary to control the voltage of the filter capacitor 18a.
 図4は、実施例1に係る電力変換システムの動作フローチャートを示す図である。以下の動作フロー全体のシーケンスは、接触器投入制御部21、故障判定部22および非常走行判定部23を含めて、本発明に係る電力変換システムの制御を行う制御装置(図示せず)が実行する。この制御装置は、ハードウェアで実現されても、ソフトウェアで実現されてもよく、また、図2に示す、接触器投入制御部21、故障判定部22および非常走行判定部23を含む構成としてもよい。 FIG. 4 is a diagram showing an operation flowchart of the power conversion system according to the first embodiment. The following sequence of the entire operation flow is executed by a control device (not shown) that controls the power conversion system according to the present invention, including the contactor closing control unit 21, the failure determination unit 22, and the emergency travel determination unit 23. do. This control device may be realized by hardware or software, and may be configured to include a contactor closing control unit 21, a failure determination unit 22, and an emergency travel determination unit 23 as shown in FIG. good.
 ステップ1000で、電力変換システムが始動する。
 ステップ1001にて、インバータ装置6が通常運転を開始する。
 ステップ1002にて、故障判定部22がチョッパ装置9の状態を監視する。
At step 1000, the power conversion system is started.
In step 1001, the inverter device 6 starts normal operation.
In step 1002, the failure determination unit 22 monitors the state of the chopper device 9.
 ステップ1003にて、故障判定部22は、チョッパ装置9が故障状態であるか否かを検出する。故障状態でない場合(No)は、ステップ1002に戻りチョッパ装置9の状態の監視を継続する。故障状態を検出した場合(Yes)は、ステップ1004に進む。 In step 1003, the failure determination unit 22 detects whether or not the chopper device 9 is in a failure state. If it is not in a faulty state (No), the process returns to step 1002 and the monitoring of the state of the chopper device 9 is continued. If a failure state is detected (Yes), the process proceeds to step 1004.
 ステップ1004にて、故障判定部22からの信号を受けた接触器投入制御部21が、接触器14bおよび19を開放する。チョッパ装置9が短絡故障している場合、接触器14bが投入されていると架線1からチョッパ装置9に大電流が流れるため、また同様に、接触器19が投入されていると蓄電池20からチョッパ装置9に大電流が流れるため、これらを回避するために開放するのである。なお、接触器12bは開放状態である。 In step 1004, the contactor closing control unit 21 that receives the signal from the failure determination unit 22 opens the contactors 14b and 19. When the chopper device 9 is short-circuited, a large current flows from the overhead wire 1 to the chopper device 9 when the contactor 14b is turned on. Similarly, when the contactor 19 is turned on, the chopper from the storage battery 20 Since a large current flows through the device 9, it is opened to avoid these. The contactor 12b is in an open state.
 ステップ1005にて、非常走行判定部23が、インバータ装置6の非常走行指令の有無を検出する。非常走行指令を検出しない場合(No)は、インバータ装置6は通常動作を継続し、非常走行判定部23は非常走行指令の検出を継続する。非常走行指令を検出した場合(Yes)は、ステップ1006に進む。 In step 1005, the emergency travel determination unit 23 detects the presence or absence of an emergency travel command for the inverter device 6. When the emergency running command is not detected (No), the inverter device 6 continues the normal operation, and the emergency running determination unit 23 continues to detect the emergency running command. If an emergency travel command is detected (Yes), the process proceeds to step 1006.
 ステップ1006にて、非常走行判定部23からの信号を受けた接触器投入制御部21は、遮断器11を開放する。この動作は、架線1とインバータ装置6を切り離すためである。 In step 1006, the contactor closing control unit 21 that received the signal from the emergency travel determination unit 23 opens the circuit breaker 11. This operation is for disconnecting the overhead wire 1 and the inverter device 6.
 ステップ1007にて、インバータ装置6の放電回路の制御部(図示せず)がスイッチング素子17aを所定時間オン動作し、抵抗器16aを用いてフィルタキャパシタ18aを放電する。例えば、架線1の電圧が直流1500Vの場合、フィルタキャパシタ18aを直流1500Vから0Vまで放電する。 In step 1007, the control unit (not shown) of the discharge circuit of the inverter device 6 turns on the switching element 17a for a predetermined time, and discharges the filter capacitor 18a using the resistor 16a. For example, when the voltage of the overhead wire 1 is DC 1500V, the filter capacitor 18a is discharged from DC 1500V to 0V.
 ステップ1008にて、接触器投入制御部21が接触器12aおよび21を投入することで、抵抗器13aを用いてフィルタキャパシタ18aが初期充電される。例えば、蓄電池20の電圧が直流800Vの場合、フィルタキャパシタ18aは0Vから直流800Vまで充電される。 In step 1008, the contactor charging control unit 21 inputs the contactors 12a and 21, so that the filter capacitor 18a is initially charged using the resistor 13a. For example, when the voltage of the storage battery 20 is DC 800V, the filter capacitor 18a is charged from 0V to DC 800V.
 ステップ1009にて、接触器投入制御部21は接触器14aを投入し、接触器12aを開放する。これにより、蓄電池20とフィルタキャパシタ18aとを直結する。 In step 1009, the contactor closing control unit 21 throws in the contactor 14a and opens the contactor 12a. As a result, the storage battery 20 and the filter capacitor 18a are directly connected.
 ステップ1010にて、蓄電池20を利用したインバータ装置6の非常走行が開始される。
 ステップ1011で、本動作フローチャートが終了する。
In step 1010, the emergency run of the inverter device 6 using the storage battery 20 is started.
At step 1011 this operation flowchart ends.
 図5は、実施例1に係る電力変換システムのタイミングチャートを示す図である。
 図3に示すタイミングチャートに従った制御態様との違いは、スイッチング素子17aおよび接触器12aを制御している点である。図3に示すタイミングチャートでは、フィルタキャパシタ18aの電圧と蓄電池20の電圧とが異なる状態で接触器21を投入するため、蓄電池20に大電流が流れ、フィルタキャパシタ18aの電圧が振動する事態を招いていた。
FIG. 5 is a diagram showing a timing chart of the power conversion system according to the first embodiment.
The difference from the control mode according to the timing chart shown in FIG. 3 is that the switching element 17a and the contactor 12a are controlled. In the timing chart shown in FIG. 3, since the contactor 21 is inserted in a state where the voltage of the filter capacitor 18a and the voltage of the storage battery 20 are different, a large current flows through the storage battery 20 and the voltage of the filter capacitor 18a vibrates. Was there.
 本発明では、以下に示すタイミングチャートにより、上記事態を回避することが可能となる。
 時刻t1において、チョッパ装置9の故障を検出すると接触器14bおよび19が開放される。
In the present invention, the timing chart shown below makes it possible to avoid the above situation.
When the failure of the chopper device 9 is detected at time t1, the contactors 14b and 19 are opened.
 続いて、時刻t2において、非常走行フラグを検出すると、遮断器11および接触器14aを開放すると共に、接触器21を投入する前の動作としてスイッチング素子17aと抵抗器16aとを用いてフィルタキャパシタ18aを放電する。 Subsequently, when the emergency travel flag is detected at time t2, the circuit breaker 11 and the contactor 14a are opened, and the filter capacitor 18a is used as an operation before the contactor 21 is turned on by using the switching element 17a and the resistor 16a. To discharge.
 その後、時刻t3において、接触器21と共に接触器12aを投入し、抵抗器13aを用いてフィルタキャパシタ18aの電圧を蓄電池20の電圧に充電する。この結果、蓄電池20からフィルタキャパシタ18aに流入する電流は、図3に示すタイミングチャートの場合と比較して低減することができる。これにより、フィルタキャパシタ18aの電圧は振動せず、蓄電池20や接触器21の寿命低下を回避することができる。 After that, at time t3, the contactor 12a is turned on together with the contactor 21, and the voltage of the filter capacitor 18a is charged to the voltage of the storage battery 20 using the resistor 13a. As a result, the current flowing from the storage battery 20 into the filter capacitor 18a can be reduced as compared with the case of the timing chart shown in FIG. As a result, the voltage of the filter capacitor 18a does not vibrate, and it is possible to avoid shortening the life of the storage battery 20 and the contactor 21.
 フィルタキャパシタ18aの充電が完了した後の時刻t4において、接触器14aを投入、接触器12aを開放することで、蓄電池20を利用したインバータ装置6の非常走行を開始する。 At time t4 after the charging of the filter capacitor 18a is completed, the contactor 14a is turned on and the contactor 12a is opened to start the emergency running of the inverter device 6 using the storage battery 20.
 実施例1では、フィルタキャパシタ18aを0Vまで放電したが、0Vでなく蓄電池20の電圧と同等レベルまでの放電に低減してもよい。フィルタキャパシタ18aの電圧と蓄電池20の電圧とが同等であれば、抵抗器13aを介さずに接触器21を投入しても蓄電池20を流れる電流を低減することができる。
 また、蓄電池20からフィルタキャパシタ18aを充電する回路と架線1からフィルタキャパシタ18aを充電する回路とは、部品を共通化していることから、部品点数の削減により電力変換システムの小型化が可能となる。
In the first embodiment, the filter capacitor 18a is discharged to 0V, but it may be reduced to a level equivalent to the voltage of the storage battery 20 instead of 0V. If the voltage of the filter capacitor 18a and the voltage of the storage battery 20 are the same, the current flowing through the storage battery 20 can be reduced even if the contactor 21 is inserted without using the resistor 13a.
Further, since the circuit for charging the filter capacitor 18a from the storage battery 20 and the circuit for charging the filter capacitor 18a from the overhead wire 1 share common parts, the power conversion system can be downsized by reducing the number of parts. ..
 図6は、本発明の実施例2に係る電力変換システムの回路構成を示す図である。インバータ装置6およびチョッパ装置9の構成、機能および動作は、実施例1と同様であるので省略する。また、開放手段14aおよび開放手段14bは共に接触器としている。 FIG. 6 is a diagram showing a circuit configuration of the power conversion system according to the second embodiment of the present invention. Since the configurations, functions, and operations of the inverter device 6 and the chopper device 9 are the same as those in the first embodiment, they will be omitted. Further, both the opening means 14a and the opening means 14b are contactors.
 実施例2は、図2に示す実施例1の回路構成に比べて、接触器12bおよび抵抗器13bを省略しているが、実施例2の回路構成においても、図4に示す実施例1と同様の動作フローチャートにより、実施例1と同様の機能を奏することができる。さらに、接触器12bおよび抵抗器13bを省略できるので、電力変換システムのより小型化を実現できる。 In the second embodiment, the contactor 12b and the resistor 13b are omitted as compared with the circuit configuration of the first embodiment shown in FIG. 2, but the circuit configuration of the second embodiment is also the same as that of the first embodiment shown in FIG. With the same operation flowchart, the same function as that of the first embodiment can be achieved. Further, since the contactor 12b and the resistor 13b can be omitted, the power conversion system can be further miniaturized.
 図7は、本発明の実施例3に係る電力変換システムの回路構成を示す図である。インバータ装置6およびチョッパ装置9の構成、機能および動作は、実施例1と同様であるので省略する。 FIG. 7 is a diagram showing a circuit configuration of the power conversion system according to the third embodiment of the present invention. Since the configurations, functions, and operations of the inverter device 6 and the chopper device 9 are the same as those in the first embodiment, they will be omitted.
 実施例3は、図2に示す実施例1の回路構成に比べて、遮断器11が接触器14に置き換わり、接触器14aおよび14bが、それぞれスイッチング素子Q9およびQ10に置き換わっている。 In the third embodiment, the circuit breaker 11 is replaced with the contactor 14, and the contactors 14a and 14b are replaced with the switching elements Q9 and Q10, respectively, as compared with the circuit configuration of the first embodiment shown in FIG.
 実施例3の構成が奏する効果について説明する。
 インバータ装置6やチョッパ装置9が故障した場合、フィルタリアクトル15aや15bが地絡した場合、架線1から事故電流が流れ込み、架線1に電力を供給している変電所(図示せず)が停電する。この事故電流を遮断するために、実施例1では遮断器11を搭載しているが、遮断器は許容電流が高いため装置規模が大きい。それに対して、実施例3ではスイッチング素子Q9およびQ10並びにそれらに並列に抵抗器16aおよび16bを備えている。
The effect of the configuration of Example 3 will be described.
If the inverter device 6 or chopper device 9 fails, or if the filter reactors 15a or 15b have a ground fault, an accident current flows from the overhead wire 1 and the substation (not shown) that supplies power to the overhead wire 1 loses power. .. In order to cut off this accident current, the circuit breaker 11 is mounted in the first embodiment, but the circuit breaker has a high allowable current, so the scale of the device is large. On the other hand, in the third embodiment, the switching elements Q9 and Q10 and the resistors 16a and 16b are provided in parallel with them.
 スイッチング素子は、機械式の遮断器や接触器に比べて動作時間が高速である。そのため、事故電流が増大する前にスイッチング素子Q9やQ10をオフ状態とし、抵抗器16aや16bで事故電流を減流することができる。減流した電流は事故電流に比べて小さいため、接触器14で遮断することが可能となる。この結果、大型の遮断器は不要となり、電力変換システムの更なる小型化が可能となる。 Switching elements have a faster operating time than mechanical circuit breakers and contactors. Therefore, the switching elements Q9 and Q10 can be turned off before the fault current increases, and the fault current can be reduced by the resistors 16a and 16b. Since the reduced current is smaller than the accident current, it can be cut off by the contactor 14. As a result, a large circuit breaker becomes unnecessary, and the power conversion system can be further miniaturized.
 なお、抵抗器16aおよび16bは、事故電流を減流する抵抗器であることに加えて、フィルタキャパシタ18aおよび18bの充電抵抗として機能する。また、減流に必要な抵抗値と充電に必要な抵抗値が異なる場合には、実施例3の回路構成に加えて、スイッチング素子Q9およびQ10に対して、さらに並列にスイッチング素子と抵抗器の直列回路(図示せず)を接続するようにしてもよい。これにより、事故電流を減流する抵抗器とフィルタキャパシタ18aおよび18bを初期充電する抵抗器とを切り替えることが可能となる。 The resistors 16a and 16b function as charging resistors for the filter capacitors 18a and 18b in addition to being resistors that reduce the fault current. When the resistance value required for flow reduction and the resistance value required for charging are different, in addition to the circuit configuration of the third embodiment, the switching element and the resistor are further connected in parallel with the switching elements Q9 and Q10. A series circuit (not shown) may be connected. This makes it possible to switch between a resistor that reduces the fault current and a resistor that initially charges the filter capacitors 18a and 18b.
1 架線、2 レール、3 車輪、4 台車、5 電動機、6 インバータ装置、7 集電装置、8 車両、9 チョッパ装置、10 接触器箱、11 遮断器、12a、12b、14、14a、14b、19、21 接触器、13a、13b、16a、16b 抵抗器、15 フィルタリアクトル箱、15a、15b フィルタリアクトル、15c 昇降圧リアクトル、17a、17b、Q1~Q10 スイッチング素子、18a、18b フィルタキャパシタ、20 蓄電池、21 接触器投入制御部、22 故障判定部、23 非常走行判定部 1 overhead wire, 2 rails, 3 wheels, 4 trolleys, 5 motors, 6 inverter devices, 7 current collectors, 8 vehicles, 9 chopper devices, 10 contactor boxes, 11 circuit breakers, 12a, 12b, 14, 14a, 14b, 19, 21 contactors, 13a, 13b, 16a, 16b resistors, 15 filter reactor boxes, 15a, 15b filter reactors, 15c buck-boost reactors, 17a, 17b, Q1 to Q10 switching elements, 18a, 18b filter capacitors, 20 storage batteries. , 21 Contactor input control unit, 22 Failure determination unit, 23 Emergency travel determination unit

Claims (13)

  1.  架線から第一の開放手段、第二の開放手段および第一のフィルタリアクトルを介して直流電力を交流電力に変換してモータを駆動するインバータ装置と、
     前記架線から前記第一の開放手段、第三の開放手段および第二のフィルタリアクトルを介して直流電力を直流直流変換して第三のリアクトルを介して蓄電池の電力を制御するチョッパ装置と、
     前記チョッパ装置と前記蓄電池との間に接続した第一の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第二の接触器と
    を備え、
     前記チョッパ装置の故障検出および前記架線の停電検出に応じて前記第一から前記第三の開放手段の開閉および前記第一並びに前記第二の接触器の開閉を制御する
    ことを特徴とする電力変換システム。
    An inverter device that drives a motor by converting DC power into AC power from the overhead wire via the first opening means, the second opening means, and the first filter reactor.
    A chopper device that converts DC power from the overhead wire to DC through the first opening means, the third opening means, and the second filter reactor, and controls the power of the storage battery through the third reactor.
    A first contactor connected between the chopper device and the storage battery,
    A second contactor connected between the first opening means and the storage battery is provided.
    Power conversion characterized by controlling the opening and closing of the first to the third opening means and the opening and closing of the first and second contactors in response to the failure detection of the chopper device and the power failure detection of the overhead wire. system.
  2.  請求項1に記載の電力変換システムであって、
     前記第一の開放手段は遮断器、前記第二および前記第三の開放手段は接触器であり、
     前記第二の開放手段に対して並列に接続した第三の接触器および第一の抵抗器の直列回路を備える
    ことを特徴とする電力変換システム。
    The power conversion system according to claim 1.
    The first opening means is a circuit breaker, and the second and third opening means are contactors.
    A power conversion system comprising a series circuit of a third contactor and a first resistor connected in parallel to the second opening means.
  3.  請求項2に記載の電力変換システムであって、
     前記インバータ装置の直流側に、フィルタキャパシタと当該フィルタキャパシタに対して並列に接続した第一のスイッチング素子および第二の抵抗器の直列回路とを備え、
     前記故障検出および前記停電検出に応じて、前記第一から前記第三の開放手段および前記第一の接触器が開放され、続いて前記第一のスイッチング素子が第一の所定期間オン状態となった後に、前記第二および前記第三の接触器が投入されて当該第三の接触器が第二の所定期間オン状態となる
    ことを特徴とする電力変換システム。
    The power conversion system according to claim 2.
    On the DC side of the inverter device, a filter capacitor and a series circuit of a first switching element and a second resistor connected in parallel to the filter capacitor are provided.
    In response to the failure detection and the power failure detection, the first to the third opening means and the first contactor are opened, and then the first switching element is turned on for the first predetermined period. After that, the second and third contactors are turned on, and the third contactor is turned on for a second predetermined period.
  4.  請求項1に記載の電力変換システムであって、
     前記第一の開放手段は接触器であり、前記第二および前記第三の開放手段はスイッチング素子である
    ことを特徴とする電力変換システム。
    The power conversion system according to claim 1.
    A power conversion system, wherein the first opening means is a contactor, and the second and third opening means are switching elements.
  5.  架線から第一の開放手段、第二の開放手段および第一のフィルタリアクトルを介して直流電力を交流電力に変換しモータを駆動するインバータ装置と、
     前記第二の開放手段に対して並列に接続した第一の抵抗器および第一の接触器の直列回路と、
     前記第一の抵抗器と前記第一の接触器との接続点から第三の開放手段、第二のフィルタリアクトルを介して直流電力を直流直流変換して第三のリアクトルを介して蓄電池の電力を制御するチョッパ装置と、
     前記チョッパ装置と前記蓄電池との間に接続した第二の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第三の接触器と
    を備え、
     前記チョッパ装置の故障検出と前記架線の停電検出とに応じて前記第一から前記第三の開放手段の開閉および前記第一から前記第三の接触器の開閉を制御する
    ことを特徴とする電力変換システム。
    An inverter device that converts DC power into AC power and drives a motor from the overhead wire via the first opening means, the second opening means, and the first filter reactor.
    A series circuit of the first resistor and the first contactor connected in parallel to the second opening means,
    DC power is converted from the connection point between the first resistor and the first contactor through the third opening means and the second filter reactor, and the power of the storage battery is converted through the third reactor. With a chopper device to control
    A second contactor connected between the chopper device and the storage battery,
    A third contactor connected between the first opening means and the storage battery is provided.
    An electric power characterized by controlling the opening and closing of the first to the third opening means and the opening and closing of the first to the third contactors according to the failure detection of the chopper device and the power failure detection of the overhead wire. Conversion system.
  6.  請求項5に記載の電力変換システムであって、
     前記インバータ装置の直流側に、フィルタキャパシタと当該フィルタキャパシタに対して並列に接続した第一のスイッチング素子および第二の抵抗器の直列回路とを備え、
     前記第一の開放手段は遮断器、前記第二および前記第三の開放手段は接触器であり、
     前記故障検出および前記停電検出に応じて、前記第一から前記第三の開放手段および前記第二の接触器が開放され、続いて前記第一のスイッチング素子が第一の所定期間オン状態となった後に、前記第一および前記第三の接触器が投入されて当該第一の接触器が第二の所定期間オン状態となる
    ことを特徴とする電力変換システム。
    The power conversion system according to claim 5.
    On the DC side of the inverter device, a filter capacitor and a series circuit of a first switching element and a second resistor connected in parallel to the filter capacitor are provided.
    The first opening means is a circuit breaker, and the second and third opening means are contactors.
    In response to the failure detection and the power failure detection, the first to the third opening means and the second contactor are opened, and then the first switching element is turned on for the first predetermined period. After that, the power conversion system is characterized in that the first and third contactors are turned on and the first contactor is turned on for a second predetermined period.
  7.  請求項1乃至請求項6のいずれか一項に記載の電力変換システムであって、
     前記インバータ装置および前記チョッパ装置を構成する少なくとも一つのスイッチング素子は、シリコンまたはシリコンより大きいバンドギャップを有する半導体材料を母材とする
    ことを特徴とする電力変換システム。
    The power conversion system according to any one of claims 1 to 6.
    A power conversion system characterized in that at least one switching element constituting the inverter device and the chopper device is made of silicon or a semiconductor material having a band gap larger than that of silicon.
  8.  請求項1乃至請求項7のいずれか一項に記載の電力変換システムであって、
     前記インバータ装置および前記チョッパ装置を構成する少なくとも一つのスイッチング素子は、MOSFETまたはIGBTの電圧駆動型素子である
    ことを特徴とする電力変換システム。
    The power conversion system according to any one of claims 1 to 7.
    A power conversion system characterized in that at least one switching element constituting the inverter device and the chopper device is a voltage-driven element of a MOSFET or an IGBT.
  9.  架線と当該架線からの直流電力を交流電力に変換してモータを駆動するインバータ装置との間に設けた第一の開放手段および第二の開放手段と、
     前記第一の開放手段と当該第一の開放手段を介して前記架線からの直流電力を直流直流変換して蓄電池の電力を制御するチョッパ装置との間に設けた第三の開放手段と、
     前記チョッパ装置と前記蓄電池との間に接続した第一の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第二の接触器と、
     前記第一から前記第三の開放手段および前記第一並びに前記第二の接触器を制御する制御装置と
    を備え、
     前記制御装置は、前記チョッパ装置の故障検出および前記架線の停電検出に応じて前記第一から前記第三の開放手段の開閉および前記第一並びに前記第二の接触器の開閉を制御する
    ことを特徴とする電力変換システム。
    The first opening means and the second opening means provided between the overhead wire and the inverter device for converting the DC power from the overhead wire into AC power to drive the motor, and
    A third opening means provided between the first opening means and a chopper device that controls the power of the storage battery by converting the DC power from the overhead wire into DC DC via the first opening means.
    A first contactor connected between the chopper device and the storage battery,
    A second contactor connected between the first opening means and the storage battery,
    The first to the third opening means and the control device for controlling the first and second contactors are provided.
    The control device controls the opening / closing of the first to the third opening means and the opening / closing of the first and second contactors in response to the failure detection of the chopper device and the power failure detection of the overhead wire. Characterized power conversion system.
  10.  架線と当該架線からの直流電力を交流電力に変換してモータを駆動するインバータ装置との間に設けた第一の開放手段および第二の開放手段と、
     前記第二の開放手段に対して並列に接続した第一の抵抗器および第一の接触器の直列回路と、
     前記第一の抵抗器と前記第一の接触器との接続点から前記第一の開放手段および前記第一の抵抗器を介して前記架線からの直流電力を直流直流変換して蓄電池の電力を制御するチョッパ装置との間に設けた第三の開放手段と、
     前記チョッパ装置と前記蓄電池との間に接続した第二の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第三の接触器と、
     前記第一から前記第三の開放手段および前記第一から前記第三の接触器を制御する制御装置と
    を備え、
     前記制御装置は、前記チョッパ装置の故障検出および前記架線の停電検出に応じて前記第一から前記第三の開放手段の開閉および前記第一から前記第三の接触器の開閉を制御する
    ことを特徴とする電力変換システム。
    The first opening means and the second opening means provided between the overhead wire and the inverter device for converting the DC power from the overhead wire into AC power to drive the motor, and
    A series circuit of the first resistor and the first contactor connected in parallel to the second opening means,
    The DC power from the overhead wire is converted to DC from the connection point between the first resistor and the first contactor via the first opening means and the first resistor to obtain the power of the storage battery. A third opening means provided between the chopper device to be controlled and
    A second contactor connected between the chopper device and the storage battery,
    A third contactor connected between the first opening means and the storage battery,
    The first to the third opening means and the control device for controlling the first to the third contactors are provided.
    The control device controls opening and closing of the first to third opening means and opening and closing of the first to third contactors in response to failure detection of the chopper device and power failure detection of the overhead wire. Characterized power conversion system.
  11.  請求項1乃至請求項10のいずれか一項に記載の電力変換システムを搭載した鉄道車両。 A railway vehicle equipped with the power conversion system according to any one of claims 1 to 10.
  12.  架線と当該架線からの直流電力を交流電力に変換してモータを駆動するインバータ装置との間に設けた第一の開放手段および第二の開放手段と、
     前記第二の開放手段に対して並列に接続した第三の接触器および第一の抵抗器の直列回路と、
     前記第一の開放手段と当該第一の開放手段を介して前記架線からの直流電力を直流直流変換して蓄電池の電力を制御するチョッパ装置との間に設けた第三の開放手段と、
     前記チョッパ装置と前記蓄電池との間に接続した第一の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第二の接触器と、
     前記インバータ装置の直流側に接続したフィルタキャパシタに並列に設けた第一のスイッチング素子および第二の抵抗器の直列回路と
    を備える電力変換システムの制御方法であって、
     前記チョッパ装置の故障検出に応じて、前記第三の開放手段および前記第一の接触器を開放する第1ステップと、
     前記第1ステップに続く前記架線の停電検出に応じて、前記第一および前記第二の開放手段を開放すると共に前記第一のスイッチング素子を第一の所定期間オン状態にする第2ステップと、
     前記第一の所定期間後に前記第二および前記第三の接触器を投入して当該第三の接触器を第二の所定期間オン状態にする第3ステップと
    を有する電力変換システムの制御方法。
    The first opening means and the second opening means provided between the overhead wire and the inverter device for converting the DC power from the overhead wire into AC power to drive the motor, and
    A series circuit of a third contactor and a first resistor connected in parallel to the second opening means,
    A third opening means provided between the first opening means and a chopper device that controls the power of the storage battery by converting the DC power from the overhead wire into DC DC via the first opening means.
    A first contactor connected between the chopper device and the storage battery,
    A second contactor connected between the first opening means and the storage battery,
    A control method for a power conversion system including a first switching element and a series circuit of a second resistor provided in parallel with a filter capacitor connected to the DC side of the inverter device.
    The first step of opening the third opening means and the first contactor in response to the failure detection of the chopper device,
    A second step of opening the first and second opening means and turning the first switching element into the ON state for the first predetermined period in response to the detection of a power failure of the overhead wire following the first step.
    A method for controlling a power conversion system, comprising a third step of turning on the second and third contactors after the first predetermined period to turn on the third contactor for a second predetermined period.
  13.  架線と当該架線からの直流電力を交流電力に変換してモータを駆動するインバータ装置との間に設けた第一の開放手段および第二の開放手段と、
     前記第二の開放手段に対して並列に接続した第一の抵抗器および第一の接触器の直列回路と、
     前記第一の抵抗器と前記第一の接触器との接続点から前記第一の開放手段および前記第一の抵抗器を介して前記架線からの直流電力を直流直流変換して蓄電池の電力を制御するチョッパ装置との間に設けた第三の開放手段と、
     前記チョッパ装置と前記蓄電池との間に接続した第二の接触器と、
     前記第一の開放手段と前記蓄電池との間に接続した第三の接触器と、
     前記インバータ装置の直流側に接続したフィルタキャパシタに並列に設けた第一のスイッチング素子および第二の抵抗器の直列回路と
    を備える電力変換システムの制御方向であって、
     前記チョッパ装置の故障検出に応じて、前記第三の開放手段および前記第二の接触器を開放する第1ステップと、
     前記第1ステップに続く前記架線の停電検出に応じて、前記第一および前記第二の開放手段を開放すると共に前記第一のスイッチング素子を第一の所定期間オン状態にする第2ステップと、
     前記第一の所定期間後に前記第一および前記第三の接触器を投入して当該第一の接触器を第二の所定期間オン状態にする第3ステップと
    を有する電力変換システムの制御方法。
    The first opening means and the second opening means provided between the overhead wire and the inverter device for converting the DC power from the overhead wire into AC power to drive the motor, and
    A series circuit of the first resistor and the first contactor connected in parallel to the second opening means,
    The DC power from the overhead wire is converted to DC from the connection point between the first resistor and the first contactor via the first opening means and the first resistor to obtain the power of the storage battery. A third opening means provided between the chopper device to be controlled and
    A second contactor connected between the chopper device and the storage battery,
    A third contactor connected between the first opening means and the storage battery,
    A control direction of a power conversion system including a first switching element and a series circuit of a second resistor provided in parallel with a filter capacitor connected to the DC side of the inverter device.
    The first step of opening the third opening means and the second contactor in response to the failure detection of the chopper device,
    A second step of opening the first and second opening means and turning the first switching element into the ON state for the first predetermined period in response to the detection of a power failure of the overhead wire following the first step.
    A method for controlling a power conversion system, comprising a third step of turning on the first and third contactors after the first predetermined period to turn on the first contactor for a second predetermined period.
PCT/JP2021/025122 2020-07-09 2021-07-02 Power converting system, control method for same, and railway vehicle equipped with same WO2022009794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020118347A JP7407079B2 (en) 2020-07-09 2020-07-09 Power conversion system, its control method, and railway vehicle equipped with it
JP2020-118347 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022009794A1 true WO2022009794A1 (en) 2022-01-13

Family

ID=79552598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025122 WO2022009794A1 (en) 2020-07-09 2021-07-02 Power converting system, control method for same, and railway vehicle equipped with same

Country Status (2)

Country Link
JP (1) JP7407079B2 (en)
WO (1) WO2022009794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887509A (en) * 1972-02-26 1973-11-17
JPS5021407A (en) * 1973-07-02 1975-03-07
JPS5347496B1 (en) * 1969-06-23 1978-12-21
JPS592502A (en) * 1982-05-27 1984-01-09 ゼネラル・エレクトリツク・カンパニイ Defect detecting and inhibiting circuit for power controller
JP2012034537A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Drive circuit for electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347496B1 (en) * 1969-06-23 1978-12-21
JPS4887509A (en) * 1972-02-26 1973-11-17
JPS5021407A (en) * 1973-07-02 1975-03-07
JPS592502A (en) * 1982-05-27 1984-01-09 ゼネラル・エレクトリツク・カンパニイ Defect detecting and inhibiting circuit for power controller
JP2012034537A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Drive circuit for electric vehicle

Also Published As

Publication number Publication date
JP7407079B2 (en) 2023-12-28
JP2022015480A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5558022B2 (en) Electric vehicle storage control device and storage control method
JP5972785B2 (en) Electric vehicle control device
US5436540A (en) Protection circuit for a gate turn-off device in an electrical braking system for an electric traction motor vehicle
KR101169343B1 (en) Restoration-electric power storage system of DC electric railway car
US20100214055A1 (en) Electric vehicle inverter apparatus and protection method therefor
US9774215B2 (en) Power conversion apparatus
EP2816717B1 (en) Electric power conversion system equipped with electric storage device
JP3618273B2 (en) DC feeder system for electric railway
JP5902534B2 (en) Railway vehicle drive system
US11097620B2 (en) Circuit system for railroad vehicle
KR101606271B1 (en) Driving apparatus for rail car
JP5777669B2 (en) Electric vehicle control device
WO2022009794A1 (en) Power converting system, control method for same, and railway vehicle equipped with same
JP2001037004A (en) Inverter type electric rolling stock controller
JP6851502B2 (en) Power conversion system for railway vehicles
JP7278917B2 (en) POWER CONVERSION SYSTEM AND CURRENT CONTROL METHOD IN POWER CONVERSION SYSTEM
JP7301686B2 (en) power conversion system
CN107431365B (en) Electricity storage device
JP2024079558A (en) Power supply switching device and drive control device
JP2015095995A (en) Vehicle power conversion equipment
JP2001354053A (en) Feed system
CN117897903A (en) Electric traction system
JPH11215605A (en) Car controller
JPH1198606A (en) Power supply for regenerative power absorber
JPS62207103A (en) Dynamic brake for inverter electric car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838279

Country of ref document: EP

Kind code of ref document: A1