JP3675124B2 - Control device for pulse width modulation control converter - Google Patents

Control device for pulse width modulation control converter Download PDF

Info

Publication number
JP3675124B2
JP3675124B2 JP25305097A JP25305097A JP3675124B2 JP 3675124 B2 JP3675124 B2 JP 3675124B2 JP 25305097 A JP25305097 A JP 25305097A JP 25305097 A JP25305097 A JP 25305097A JP 3675124 B2 JP3675124 B2 JP 3675124B2
Authority
JP
Japan
Prior art keywords
pulse width
width modulation
modulation control
frequency
carrier signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25305097A
Other languages
Japanese (ja)
Other versions
JPH1198848A (en
Inventor
直人 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP25305097A priority Critical patent/JP3675124B2/en
Publication of JPH1198848A publication Critical patent/JPH1198848A/en
Application granted granted Critical
Publication of JP3675124B2 publication Critical patent/JP3675124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、交流電源に接続した複数のパルス幅変調制御コンバータの運転台数が変化しても、発生する高調波による悪影響を回避できるパルス幅変調制御コンバータの制御装置に関する。
【0002】
【従来の技術】
交流電源にパルス幅変調制御コンバータを接続して交流電力を直流電力に変換できる。この直流電力をパルス幅変調制御インバータへ入力すれば可変電圧・可変周波数の交流電力が得られるから、この交流電力で誘導電動機を所望の回転速度で運転させることができる。よって、従来は直流電動機を使用していた電気車も、最近では誘導電動機で走行できるようになった。そこで、以下では架線から供給される交流電力を、パルス幅変調制御コンバータとパルス幅変調制御インバータで変換して誘導電動機を駆動することにより走行する交流電気車を例にして、本発明を説明する。
【0003】
図5は2台の誘導電動機で走行する交流電気車の従来例を示した回路図である。この従来例回路において、架線1が供給する交流電力は、集電装置としてのパンタグラフ2を介して変圧器3の一次巻線3Cに与えられたのち、車輪4とレール5とを介して大地へ放流される。この変圧器3には2つの二次巻線3A.3Bを備えており、一方の二次巻線3Aにはスイッチ11を介してパルス幅変調制御コンバータ(以下ではPWMコンバータと略記する)12を接続し、これに入力する交流電力を直流電力に変換する。このPWMコンバータ12に接続したパルス幅変調制御インバータ(以下ではPWMインバータと略記する)13は、PWMコンバータ12からの直流電力を所望の電圧と周波数の交流電力に変換し、この交流電力で誘導電動機14を可変速運転させる。他方の二次巻線3Bにも、前述と同様にスイッチ21を介してPWMコンバータ22を接続し、このPWMコンバータ22にPWMインバータ23を接続して誘導電動機24を可変速運転させる。これら両電動機14,24により、交流電気車は所望の速度で走行することができる。
【0004】
キャリア周波数発生回路6が出力するキャリア信号を入力するゲート制御回路7は、パルス幅変調制御により適切なタイミングで両コンバータ12,22をオン・オフ制御することにより、交流電力を直流電力に変換する。PWMインバータ13,23も別途のキャリア信号によるパルス幅変調制御で直流を交流に変換しているが、PWMインバータ13,23の動作は本発明とは無関係であるから、この部分の説明は省略する。
【0005】
【発明が解決しようとする課題】
前述の交流電気車に搭載しているPWMコンバータ12,22の運転に伴って高調波を発生する。この高調波が架線1やレール5に流れると、これらに接続している電気設備に障害を与える恐れがある。例えば給電回路の共振,信号回路の誤動作,通信設備への誘導障害などである。これらの高調波障害は交流電気車の安全運転を損なう恐れがあるので、是非とも回避しなければならない。
【0006】
そこで図5の従来例回路に図示のように、2組のPWMコンバータのキャリア信号の周波数は同じであっても、それぞれのキャリア信号に位相差を設け、更にキャリア信号の周波数を適切に選定することで、障害を与える恐れのある周波数の高調波が発生するのを回避する。即ち、PWMコンバータの運転台数をN、キャリア信号の周波数をfC 、交流電源の周波数をf0 とすると、キャリア信号にπ/Nなる位相差を設けた場合に発生する高調波の周波数fHHは下記の数式1で示される。但しmとnは正の整数(m,n=1,2,3・・・)である。
【0007】
【数1】
HH=2・N・n・fC ±(2・m−1)f0
図5の従来例回路では2組のPWMコンバータを運転しているから、N=2である。よってキャリア信号周波数fC を、障害発生の恐れがある高調波の周波数の1/4より高く選定しておけば、キャリア信号周波数fC の4倍までの高調波による障害を回避することができる。
【0008】
ところが、運転中の2組のPWMコンバータのいずれか一方が故障などで停止したとすると、数式1においてN=1となることから、発生する高調波の周波数fHHは従前の1/2になるので、これが原因で高調波障害を発生する恐れを生じることになる。
そこでこの発明の目的は、交流電源に接続した複数のPWMコンバータの運転台数を変更した場合でも、障害を引き起こす周波数の高調波が発生するのを回避できるようにすることにある。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、この発明のパルス幅変調制御コンバータの制御装置は、
変圧器の複数の二次巻線のそれぞれに、別個の開閉器を介してパルス幅変調制御により交流を直流に変換するパルス幅変調制御コンバータを接続し、前記各パルス幅変調制御コンバータへはキャリア周波数発生器から所定周波数のキャリア信号を与える構成のパルス幅変調制御コンバータにおいて、
前記開閉器の開閉状態から前記パルス幅変調制御コンバータの運転台数を検出し、この運転台数に対応した周波数のキャリア信号を選択してパルス幅変調制御コンバータを制御する。
【0010】
または、前記開閉器の開閉状態から前記パルス幅変調制御コンバータの運転台数を検出し、この運転台数に対応した周波数のキャリア信号を選択し、且つ運転台数に対応した位相差を各キャリア信号に与えてパルス幅変調制御コンバータを制御する。
または、前記開閉器の開閉状態から前記パルス幅変調制御コンバータの運転台数を検出し、この運転台数に対応した周波数のキャリア信号と、運転台数に対応した当該パルス幅変調制御コンバータの最大電流制限値と、を選択してパルス幅変調制御コンバータを制御する。
【0011】
または、前記開閉器の開閉状態から前記パルス幅変調制御コンバータの運転台数を検出し、この運転台数に対応した周波数のキャリア信号を選択し、且つ運転台数に対応した位相差を各キャリア信号に与え、且つ運転台数に対応した当該パルス幅変調制御コンバータの最大電流制限値を選択してパルス幅変調制御コンバータを制御する。
【0012】
【発明の実施の形態】
図1は本発明の第1実施例を表した回路図であって、請求項1に対応するが、この第1実施例回路は、図5で既述の従来例回路にキャリア周波数発生回路31と選択回路32とを付加した構成である。よって図5の従来例回路で既述した部分の説明は省略する。
【0013】
この第1実施例回路では、キャリア周波数発生回路31は2つの異なった周波数のキャリア信号を出力する。すなわちキャリア信号A1はPWMコンバータが2組運転している場合に対応した周波数であって、このキャリア信号A1により生じる高調波が不都合を発生しないように、その周波数を選定しているが、その選定要領は既に説明した。キャリア信号A2は、故障などによりいずれか一方のPWMコンバータが停止し、1台のみが運転する場合に対応した周波数であって、数式1から明らかなように、その周波数は前述したキャリア信号A1の2倍である。
【0014】
選択回路32は、スイッチ11とスイッチ21の開閉状態を入力して、キャリア周波数発生回路が出力する2つのキャリア信号A1,A2のいずれか一方を選択してゲート制御回路7へ与える。よって運転台数が1台の場合はキャリア信号A2を選択することにより、発生する高調波の周波数は2台の場合と同じになり、高調波による障害を回避できる。
【0015】
図2は本発明の第2実施例を表した回路図であって、請求項2に対応するが、この第2実施例回路は、図5で既述の従来例回路にキャリア周波数発生回路31と位相差変更・選択回路41とを付加した構成である。よって図5の従来例回路で既述した部分の説明は省略する。またキャリア周波数発生回路31は図1の第1実施例回路で記述済みであるから、これの説明も省略する。
【0016】
位相差変更・選択回路42は、前述したようにPWMコンバータの運転台数に対応した周波数のキャリア信号を選択すると共に、運転台数に対応して各PWMコンバータへ与えるキャリア信号の位相に差を設ける。この第2実施例回路では運転台数が2台から1台に変更になるので位相差は考えなくてもよいが、例えば運転台数が4台から3台に変更になる場合は、各PWMコンバータのキャリア信号の位相差はπ/4からπ/3に変更する。
【0017】
図3は本発明の第3実施例を表した回路図であって、請求項3に対応するが、この第3実施例回路は、図5で既述の従来例回路にキャリア周波数発生回路31と最大電流制限値発生回路51と選択回路52とを付加した構成である。よって図5の従来例回路で既述した部分の説明は省略する。またキャリア周波数発生回路31は図1の第1実施例回路で記述済みであり、これの説明も省略する。
【0018】
キャリア信号の周波数が高くなれば、PWMコンバータを構成する各半導体スイッチ素子の単位時間当たりのスイッチング回数はこの周波数に比例して増加する。これに伴って各素子のスイッチング損失も増加する。従ってキャリア信号周波数の増加と共に素子の通流電流を制限しなければ、素子の合計損失が増加して熱破壊にいたる恐れがある。そこでPWMコンバータの運転台数の変更に伴ってキャリア信号周波数がA1からA2に増加すれば、素子の最大電流制限値をB1からB2へ変更する。選択回路52はスイッチ11,21の開閉状態を入力して、キャリア信号周波数と共に素子の最大電流制限値を選択する。
【0019】
図4は本発明の第4実施例を表した回路図であって、請求項4に対応するが、この第4実施例回路は、図5で既述の従来例回路にキャリア周波数発生回路31と最大電流制限値発生回路51と位相差変更・選択回路62とを付加した構成である。よって図5の従来例回路で既述した部分の説明は省略する。またキャリア周波数発生回路31は図1の第1実施例回路で記述済みであり、最大電流制限値発生回路51は図3の第3実施例回路で記述済みであるから、これの説明も省略する。
【0020】
位相差変更・選択回路62は、前述したようにPWMコンバータの運転台数に対応した周波数のキャリア信号の選択と、最大電流制限値の選択をすると共に、キャリア信号の位相には運転台数に対応した差を設ける。
【0021】
【発明の効果】
複数のPWMコンバータをキャリア信号に位相差を設けて運転すると、その運転台数に対応した周波数の高調波を発生する。この高調波が他の電気設備に悪影響を及ぼさないように、キャリア信号の周波数は適切な値を選定するのであるが、故障などによりPWMコンバータの運転台数が変化すると、発生する高調波の周波数が変化して電気機器に障害を与える恐れがある。そこで本発明では、各PWMコンバータの電源側に設けた開閉器の開閉状態から当該PWMコンバータの運転台数を検出し、その台数に対応してキャリア信号の周波数を変更する。あるいはこれと同時に各PWMコンバータに与えるキャリア信号の位相差も変更する。これにより他の電気機器に悪影響を与える周波数の高調波が発生するのを抑制できる効果が得られる。
【0022】
また、PWMコンバータの運転台数の減少でキャリア信号周波数を高くすればスイッチング素子の損失が増加するから、運転台数の減少とともに素子の最大電流制限値を低減することで、素子が熱破壊する恐れを回避できる効果も合わせて得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した回路図
【図2】本発明の第2実施例を表した回路図
【図3】本発明の第3実施例を表した回路図
【図4】本発明の第4実施例を表した回路図
【図5】2台の誘導電動機で走行する交流電気車の従来例を示した回路図
【符号の説明】
1 架線
2 パンタグラフ
3 変圧器
3A,3B 二次巻線
4 車輪
5 レール
6,31 キャリア周波数発生回路
11,21 スイッチ
12,22 PWMコンバータ
13,23 PWMインバータ
14,24 誘導電動機
32,52 選択回路
42,62 位相差変更・選択回路
51 最大電流制限値発生回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control apparatus for a pulse width modulation control converter that can avoid adverse effects due to generated harmonics even if the number of operating pulse width modulation control converters connected to an AC power supply changes.
[0002]
[Prior art]
AC power can be converted to DC power by connecting a pulse width modulation control converter to the AC power supply. If this DC power is input to the pulse width modulation control inverter, AC power with variable voltage and variable frequency can be obtained, and therefore the induction motor can be operated at a desired rotational speed with this AC power. Therefore, an electric vehicle that has conventionally used a DC motor can now be driven by an induction motor. Therefore, in the following, the present invention will be described by taking an AC electric vehicle running by converting AC power supplied from an overhead line by a pulse width modulation control converter and a pulse width modulation control inverter and driving an induction motor as an example. .
[0003]
FIG. 5 is a circuit diagram showing a conventional example of an AC electric vehicle that runs with two induction motors. In this conventional circuit, the AC power supplied from the overhead wire 1 is applied to the primary winding 3C of the transformer 3 via the pantograph 2 as a current collector, and then to the ground via the wheel 4 and the rail 5. It is released. This transformer 3 has two secondary windings 3A. 3B, and one secondary winding 3A is connected to a pulse width modulation control converter (hereinafter abbreviated as a PWM converter) 12 via a switch 11 to convert AC power input thereto into DC power. To do. A pulse width modulation control inverter (hereinafter abbreviated as PWM inverter) 13 connected to the PWM converter 12 converts the DC power from the PWM converter 12 into AC power having a desired voltage and frequency, and the induction motor uses this AC power. 14 is operated at a variable speed. Similarly to the above, the other secondary winding 3B is connected to the PWM converter 22 via the switch 21, and the PWM inverter 23 is connected to the PWM converter 22 to drive the induction motor 24 at a variable speed. These electric motors 14 and 24 allow the AC electric vehicle to travel at a desired speed.
[0004]
The gate control circuit 7 that inputs the carrier signal output by the carrier frequency generation circuit 6 converts the AC power into DC power by controlling the on / off of the converters 12 and 22 at an appropriate timing by pulse width modulation control. . The PWM inverters 13 and 23 also convert direct current into alternating current by pulse width modulation control using a separate carrier signal. However, the operation of the PWM inverters 13 and 23 is irrelevant to the present invention, and thus description of this part is omitted. .
[0005]
[Problems to be solved by the invention]
Harmonics are generated with the operation of the PWM converters 12 and 22 mounted on the aforementioned AC electric vehicle. If this harmonic flows through the overhead wire 1 or the rail 5, there is a risk that the electric equipment connected thereto will be damaged. For example, resonance of the power supply circuit, malfunction of the signal circuit, inductive disturbance to the communication equipment, and the like. These harmonic disturbances may impair safe driving of AC electric vehicles and must be avoided by all means.
[0006]
Therefore, as shown in the conventional circuit of FIG. 5, even if the carrier signals of the two sets of PWM converters have the same frequency, a phase difference is provided for each carrier signal, and the carrier signal frequency is appropriately selected. This avoids the generation of harmonics of frequencies that can cause disturbances. That is, assuming that the number of operating PWM converters is N, the frequency of the carrier signal is f C , and the frequency of the AC power supply is f 0 , the frequency f HH of the harmonics generated when the carrier signal has a phase difference of π / N. Is represented by the following Equation 1. However, m and n are positive integers (m, n = 1, 2, 3...).
[0007]
[Expression 1]
f HH = 2 · N · n · f C ± (2 · m−1) f 0
Since the conventional circuit of FIG. 5 operates two sets of PWM converters, N = 2. Therefore, if the carrier signal frequency f C is selected to be higher than ¼ of the harmonic frequency that may cause a failure, the failure due to the harmonics up to four times the carrier signal frequency f C can be avoided. .
[0008]
However, if any one of the two PWM converters in operation is stopped due to a failure or the like, N = 1 in Equation 1, so that the frequency f HH of the generated harmonic is ½ of the previous one. Therefore, this may cause a harmonic disturbance.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to avoid generation of harmonics of a frequency causing a failure even when the number of operating PWM converters connected to an AC power supply is changed.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a control device for a pulse width modulation control converter of the present invention comprises:
A pulse width modulation control converter that converts alternating current to direct current by pulse width modulation control is connected to each of the secondary windings of the transformer via a separate switch, and each of the pulse width modulation control converters has a carrier. In a pulse width modulation control converter configured to give a carrier signal of a predetermined frequency from a frequency generator,
The number of operating pulse width modulation control converters is detected from the open / closed state of the switch, and a carrier signal having a frequency corresponding to the number of operating units is selected to control the pulse width modulation control converter.
[0010]
Alternatively, the number of operating pulse width modulation control converters is detected from the open / closed state of the switch, a carrier signal having a frequency corresponding to the number of operating units is selected, and a phase difference corresponding to the number of operating units is given to each carrier signal. To control the pulse width modulation control converter.
Alternatively, the number of operating pulse width modulation control converters is detected from the open / closed state of the switch, the carrier signal of the frequency corresponding to the number of operating units, and the maximum current limit value of the pulse width modulation control converter corresponding to the number of operating units And select the pulse width modulation control converter.
[0011]
Alternatively, the number of operating pulse width modulation control converters is detected from the open / closed state of the switch, a carrier signal having a frequency corresponding to the number of operating units is selected, and a phase difference corresponding to the number of operating units is given to each carrier signal. In addition, the maximum current limit value of the pulse width modulation control converter corresponding to the number of operating units is selected to control the pulse width modulation control converter.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, which corresponds to claim 1. This first embodiment circuit is different from the conventional circuit already described in FIG. And a selection circuit 32 are added. Therefore, the description of the part already described in the conventional circuit of FIG. 5 is omitted.
[0013]
In the circuit of the first embodiment, the carrier frequency generation circuit 31 outputs carrier signals having two different frequencies. That is, the carrier signal A1 has a frequency corresponding to the case where two sets of PWM converters are operating, and the frequency is selected so that the harmonics generated by the carrier signal A1 do not cause inconvenience. The point has already been explained. The carrier signal A2 is a frequency corresponding to the case where one of the PWM converters is stopped due to a failure or the like and only one unit is operated. As is clear from Equation 1, the frequency is the frequency of the carrier signal A1 described above. 2 times.
[0014]
The selection circuit 32 inputs the open / closed state of the switch 11 and the switch 21, selects one of the two carrier signals A 1 and A 2 output from the carrier frequency generation circuit, and supplies the selected signal to the gate control circuit 7. Therefore, when the number of operating units is one, by selecting the carrier signal A2, the frequency of the generated harmonics becomes the same as the case of two units, and obstacles due to the harmonics can be avoided.
[0015]
FIG. 2 is a circuit diagram showing a second embodiment of the present invention and corresponds to claim 2. This second embodiment circuit is different from the conventional circuit already described in FIG. And a phase difference changing / selecting circuit 41. Therefore, the description of the part already described in the conventional circuit of FIG. 5 is omitted. Since the carrier frequency generation circuit 31 has already been described in the circuit of the first embodiment of FIG. 1, the description thereof is also omitted.
[0016]
As described above, the phase difference changing / selecting circuit 42 selects a carrier signal having a frequency corresponding to the number of operating PWM converters, and provides a difference in the phase of the carrier signal applied to each PWM converter corresponding to the number of operating PWM converters. In this second embodiment circuit, the number of operating units is changed from two to one, so there is no need to consider the phase difference. For example, when the number of operating units is changed from four to three, each PWM converter The phase difference of the carrier signal is changed from π / 4 to π / 3.
[0017]
FIG. 3 is a circuit diagram showing a third embodiment of the present invention and corresponds to claim 3. This third embodiment circuit is different from the conventional circuit already described in FIG. The maximum current limit value generation circuit 51 and the selection circuit 52 are added. Therefore, the description of the part already described in the conventional circuit of FIG. 5 is omitted. The carrier frequency generating circuit 31 has already been described in the circuit of the first embodiment shown in FIG. 1, and the description thereof is also omitted.
[0018]
If the frequency of the carrier signal is increased, the number of times of switching per unit time of each semiconductor switch element constituting the PWM converter increases in proportion to this frequency. Along with this, the switching loss of each element also increases. Therefore, if the current flowing through the device is not limited as the carrier signal frequency increases, the total loss of the device may increase, leading to thermal destruction. Therefore, if the carrier signal frequency increases from A1 to A2 as the number of operating PWM converters is changed, the maximum current limit value of the element is changed from B1 to B2. The selection circuit 52 inputs the open / close state of the switches 11 and 21 and selects the maximum current limit value of the element together with the carrier signal frequency.
[0019]
FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention, which corresponds to claim 4. The circuit of the fourth embodiment is different from the conventional circuit already described in FIG. The maximum current limit value generating circuit 51 and the phase difference changing / selecting circuit 62 are added. Therefore, the description of the part already described in the conventional circuit of FIG. 5 is omitted. Since the carrier frequency generation circuit 31 has already been described in the circuit of the first embodiment of FIG. 1, and the maximum current limit value generation circuit 51 has been described in the circuit of the third embodiment of FIG. .
[0020]
As described above, the phase difference changing / selecting circuit 62 selects a carrier signal having a frequency corresponding to the number of operating PWM converters and a maximum current limit value, and corresponds to the number of operating carrier signals in phase. Make a difference.
[0021]
【The invention's effect】
When a plurality of PWM converters are operated by providing a carrier signal with a phase difference, harmonics having a frequency corresponding to the number of the operated PWM converters are generated. An appropriate value is selected for the frequency of the carrier signal so that this harmonic does not adversely affect other electrical equipment, but if the number of operating PWM converters changes due to a failure or the like, the frequency of the generated harmonic will be reduced. It may change and cause damage to electrical equipment. Therefore, in the present invention, the number of operating PWM converters is detected from the open / closed state of a switch provided on the power supply side of each PWM converter, and the frequency of the carrier signal is changed in accordance with the number of the PWM converters. Or at the same time, the phase difference of the carrier signal applied to each PWM converter is also changed. Thereby, the effect which can suppress that the harmonic of the frequency which has a bad influence on another electric equipment generate | occur | produces is acquired.
[0022]
In addition, if the carrier signal frequency is increased by decreasing the number of operating PWM converters, the loss of the switching element increases. Therefore, reducing the maximum current limit value of the element as the number of operating units decreases may cause the element to be thermally destroyed. Effects that can be avoided are also obtained.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the invention. FIG. 3 is a circuit diagram showing a third embodiment of the invention. 4 is a circuit diagram showing a fourth embodiment of the present invention. FIG. 5 is a circuit diagram showing a conventional example of an AC electric vehicle driven by two induction motors.
DESCRIPTION OF SYMBOLS 1 Overhead line 2 Pantograph 3 Transformer 3A, 3B Secondary winding 4 Wheel 5 Rail 6, 31 Carrier frequency generation circuit 11, 21 Switch 12, 22 PWM converter 13, 23 PWM inverter 14, 24 Induction motor 32, 52 Selection circuit 42 62 Phase difference change / selection circuit 51 Maximum current limit value generation circuit

Claims (4)

複数の二次巻線を備えた変圧器の一次巻線に交流電源を接続し、前記各二次巻線には別個の開閉器を介してそれぞれにパルス幅変調制御により交流を直流に変換するパルス幅変調制御コンバータを接続し、前記各パルス幅変調制御コンバータへはキャリア周波数発生器から所定周波数のキャリア信号を与える構成のパルス幅変調制御コンバータにおいて、
前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を発生するキャリア周波数発生回路と、前記各開閉器の開閉状態から検出した前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を選択する選択回路と、を備えることを特徴とするパルス幅変調制御コンバータの制御装置。
An AC power source is connected to the primary winding of a transformer having a plurality of secondary windings, and each secondary winding is converted to DC by pulse width modulation control via a separate switch. In a pulse width modulation control converter configured to connect a pulse width modulation control converter and supply a carrier signal of a predetermined frequency from a carrier frequency generator to each pulse width modulation control converter,
A carrier frequency generation circuit for generating a carrier signal having a frequency corresponding to the number of operating pulse width modulation control converters, and a carrier having a frequency corresponding to the number of operating pulse width modulation control converters detected from the open / closed state of each switch A control device for a pulse width modulation control converter, comprising: a selection circuit that selects a signal.
複数の二次巻線を備えた変圧器の一次巻線に交流電源を接続し、前記各二次巻線には別個の開閉器を介してそれぞれにパルス幅変調制御により交流を直流に変換するパルス幅変調制御コンバータを接続し、前記各パルス幅変調制御コンバータへはキャリア周波数発生器から所定周波数のキャリア信号を与える構成のパルス幅変調制御コンバータにおいて、
前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を発生するキャリア周波数発生回路と、前記各開閉器の開閉状態から検出した前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を選択すると共に、運転台数に対応した位相差をこのキャリア信号に与える位相差変更・選択回路と、を備えることを特徴とするパルス幅変調制御コンバータの制御装置。
An AC power source is connected to the primary winding of a transformer having a plurality of secondary windings, and each secondary winding is converted to DC by pulse width modulation control via a separate switch. In a pulse width modulation control converter configured to connect a pulse width modulation control converter and supply a carrier signal of a predetermined frequency from a carrier frequency generator to each pulse width modulation control converter,
A carrier frequency generation circuit for generating a carrier signal having a frequency corresponding to the number of operating pulse width modulation control converters, and a carrier having a frequency corresponding to the number of operating pulse width modulation control converters detected from the open / closed state of each switch A control apparatus for a pulse width modulation control converter, comprising: a phase difference changing / selecting circuit that selects a signal and gives a phase difference corresponding to the number of operating units to the carrier signal.
複数の二次巻線を備えた変圧器の一次巻線に交流電源を接続し、前記各二次巻線には別個の開閉器を介してそれぞれにパルス幅変調制御により交流を直流に変換するパルス幅変調制御コンバータを接続し、前記各パルス幅変調制御コンバータへはキャリア周波数発生器から所定周波数のキャリア信号を与える構成のパルス幅変調制御コンバータにおいて、
前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を発生するキャリア周波数発生回路と、前記パルス幅変調制御コンバータの最大電流を当該パルス幅変調制御コンバータの運転台数に対応して制限する最大電流制限値発生回路と、前記各開閉器の開閉状態から検出した前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号と最大電流制限値を選択する選択回路と、を備えることを特徴とするパルス幅変調制御コンバータの制御装置。
An AC power source is connected to the primary winding of a transformer having a plurality of secondary windings, and each secondary winding is converted to DC by pulse width modulation control via a separate switch. In a pulse width modulation control converter configured to connect a pulse width modulation control converter and supply a carrier signal of a predetermined frequency from a carrier frequency generator to each pulse width modulation control converter,
A carrier frequency generating circuit for generating a carrier signal having a frequency corresponding to the number of operating the pulse width modulation control converters, and limiting a maximum current of the pulse width modulation control converter corresponding to the number of operating pulse width modulation control converters; A maximum current limit value generating circuit; and a selection circuit for selecting a carrier signal having a frequency corresponding to the number of operating pulse width modulation control converters detected from the switching state of each switch and a maximum current limit value. A pulse width modulation control converter control device.
複数の二次巻線を備えた変圧器の一次巻線に交流電源を接続し、前記各二次巻線には別個の開閉器を介してそれぞれにパルス幅変調制御により交流を直流に変換するパルス幅変調制御コンバータを接続し、前記各パルス幅変調制御コンバータへはキャリア周波数発生器から所定周波数のキャリア信号を与える構成のパルス幅変調制御コンバータにおいて、
前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号を発生するキャリア周波数発生回路と、前記パルス幅変調制御コンバータの最大電流を当該パルス幅変調制御コンバータの運転台数に対応して制限する最大電流制限値発生回路と、前記各開閉器の開閉状態から検出した前記パルス幅変調制御コンバータの運転台数に対応した周波数のキャリア信号と最大電流制限値を選択すると共に、運転台数に対応した位相差を前記キャリア信号に与える位相差変更・選択回路と、を備えることを特徴とするパルス幅変調制御コンバータの制御装置。
An AC power source is connected to the primary winding of a transformer having a plurality of secondary windings, and each secondary winding is converted to DC by pulse width modulation control via a separate switch. In a pulse width modulation control converter configured to connect a pulse width modulation control converter and supply a carrier signal of a predetermined frequency from a carrier frequency generator to each pulse width modulation control converter,
A carrier frequency generating circuit for generating a carrier signal having a frequency corresponding to the number of operating the pulse width modulation control converters, and limiting a maximum current of the pulse width modulation control converter corresponding to the number of operating pulse width modulation control converters; Select the maximum current limit value generation circuit and the carrier signal and the maximum current limit value of the frequency corresponding to the number of operating pulse width modulation control converters detected from the open / closed state of each switch, and the level corresponding to the number of operating units. A control device for a pulse width modulation control converter, comprising: a phase difference changing / selecting circuit for giving a phase difference to the carrier signal.
JP25305097A 1997-09-18 1997-09-18 Control device for pulse width modulation control converter Expired - Lifetime JP3675124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25305097A JP3675124B2 (en) 1997-09-18 1997-09-18 Control device for pulse width modulation control converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25305097A JP3675124B2 (en) 1997-09-18 1997-09-18 Control device for pulse width modulation control converter

Publications (2)

Publication Number Publication Date
JPH1198848A JPH1198848A (en) 1999-04-09
JP3675124B2 true JP3675124B2 (en) 2005-07-27

Family

ID=17245794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25305097A Expired - Lifetime JP3675124B2 (en) 1997-09-18 1997-09-18 Control device for pulse width modulation control converter

Country Status (1)

Country Link
JP (1) JP3675124B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667844B1 (en) 2005-12-16 2007-01-11 삼성전자주식회사 Pwm controller with phase difference adjustment
ATE545983T1 (en) * 2007-12-17 2012-03-15 Gen Electric DEVICE FOR CONTROLLING TORQUE HARMONICS IN PWM CONVERTERS AND ASSOCIATED METHOD
JP6620247B2 (en) * 2016-09-30 2019-12-11 株式会社日立製作所 Power converter for vehicle
EP3771085B1 (en) * 2018-03-23 2023-03-15 Hitachi, Ltd. Power conversion device and power conversion device control method

Also Published As

Publication number Publication date
JPH1198848A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP5397532B2 (en) Power supply
JP5528327B2 (en) Apparatus and method for controlling power shunt, and hybrid vehicle having the same circuit
US8508961B2 (en) Power conversion apparatus
JP6067961B2 (en) Switch control method of switching arm and charging device for charging storage means
JPH11318086A (en) Stationary power converter supplied with unlimited voltage
JPH1070886A (en) Power convertor of multiple pulse width modulation type
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
JP2013132197A (en) Electric power conversion system and charging system
EP2605395A1 (en) A track-bound vehicle inverter
WO2018181332A1 (en) Rotating electrical machine control device
WO2014113146A1 (en) Connection for improved current balancing between parallel bridge circuits
JP3323106B2 (en) Semiconductor power converter
US20090016089A1 (en) Electromechanical power transfer system with even phase number dynamoelectric machine and three level inverter
JP6712096B2 (en) Electric power converter and electric power steering device
JP3675124B2 (en) Control device for pulse width modulation control converter
JP4838031B2 (en) Multiple inverter control system
JP4788949B2 (en) Variable speed drive device for induction motor
JP2011109869A (en) Power supply
JP2783204B2 (en) Control method of PWM converter
JP2004007991A (en) Drive unit of electric vehicle
JPH0767310B2 (en) AC motor power supply system
JP3535321B2 (en) Electric vehicle drive
JP2000324891A (en) Inverter drive motor
Chasib et al. Independent Control of Two-PMSM Fed by Two SVPWM Inverters with Fault Tolerant Operation
KR100919209B1 (en) Voltage modulation apparatus for 3 phase full-bridge inverter and voltage modulation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term