JP6991483B2 - Method for manufacturing carbon fiber reinforced thermoplastic resin composite material - Google Patents

Method for manufacturing carbon fiber reinforced thermoplastic resin composite material Download PDF

Info

Publication number
JP6991483B2
JP6991483B2 JP2018027501A JP2018027501A JP6991483B2 JP 6991483 B2 JP6991483 B2 JP 6991483B2 JP 2018027501 A JP2018027501 A JP 2018027501A JP 2018027501 A JP2018027501 A JP 2018027501A JP 6991483 B2 JP6991483 B2 JP 6991483B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
woven fabric
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027501A
Other languages
Japanese (ja)
Other versions
JP2019143021A (en
Inventor
敦 角田
和夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIYAMA INDUSTRY CO., LTD.
MONJU ENGINEERING MEDICINE RESEARCH INSTITUTE
VEEDOLONE CO., LTD.
Original Assignee
HOSHIYAMA INDUSTRY CO., LTD.
MONJU ENGINEERING MEDICINE RESEARCH INSTITUTE
VEEDOLONE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIYAMA INDUSTRY CO., LTD., MONJU ENGINEERING MEDICINE RESEARCH INSTITUTE, VEEDOLONE CO., LTD. filed Critical HOSHIYAMA INDUSTRY CO., LTD.
Priority to JP2018027501A priority Critical patent/JP6991483B2/en
Priority to PCT/JP2019/004807 priority patent/WO2019163578A1/en
Publication of JP2019143021A publication Critical patent/JP2019143021A/en
Application granted granted Critical
Publication of JP6991483B2 publication Critical patent/JP6991483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、炭素繊維から繊維強化熱可塑性樹脂複合材料を製造する方法に関する。 The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite material from carbon fibers.

炭素繊維等の繊維強化複合材料(CFRP)は軽量化材料として注目され、航空機、自動車、風車の羽根、ロボットアーム、ドローン、スポーツ具などに広く利用されている。軽量得することにより、燃費の向上、環境負荷の低下に繋がるので、繊維強化複合材料の市場は今後も拡大していくと予想されている。その一方で、繊維強化複合材料製造工程途中の端材や使用寿命の来た廃棄複合材料(まとめて廃材と呼称)がすでに年間何万トンという規模となりつつある。そのため、CFRP廃材のリサイクル技術が極めて重要であり、いくつかの方法が提案されている(特許文献1、2)。 Fiber reinforced composite materials (CFRP) such as carbon fiber are attracting attention as lightweight materials, and are widely used in aircraft, automobiles, windmill blades, robot arms, drones, sports equipment, and the like. It is expected that the market for fiber-reinforced composite materials will continue to expand, as gaining light weight will lead to improved fuel efficiency and reduced environmental impact. On the other hand, scraps in the middle of the fiber-reinforced composite material manufacturing process and waste composite materials that have reached the end of their useful life (collectively referred to as waste materials) are already reaching the scale of tens of thousands of tons per year. Therefore, the technology for recycling CFRP waste materials is extremely important, and several methods have been proposed (Patent Documents 1 and 2).

引用文献1は熱硬化性樹脂(主としてエポキシ樹脂)を炭素繊維で補強した複合材料(以下CFRP)から炭素繊維を回収する技術(熱分解法)に関するものである。廃棄されたCFRPを適当なサイズに切断し、空気中約550℃で酸化処理して、残った炭素繊維を回収する方法である。この場合、酸化雰囲気中で高温処理するため炭素繊維が酸化され、強度が低下するという問題点がある。また、回収した炭素繊維が熱分解工程で絡むため、複合材料への加工が難しい。 Reference 1 relates to a technique (thermal decomposition method) for recovering carbon fibers from a composite material (hereinafter referred to as CFRP) in which a thermosetting resin (mainly an epoxy resin) is reinforced with carbon fibers. This is a method in which the discarded CFRP is cut into an appropriate size and oxidized in air at about 550 ° C. to recover the remaining carbon fibers. In this case, there is a problem that the carbon fiber is oxidized due to the high temperature treatment in the oxidizing atmosphere, and the strength is lowered. In addition, since the recovered carbon fibers are entangled in the thermal decomposition process, it is difficult to process them into a composite material.

特許文献2は廃棄されたCFRPを20mmサイズ程度に切断し、空気中で炭素繊維の酸化反応が起こらない約450℃以下で加熱処理する。熱処理したCFRPを電解質溶液に浸漬し、CFRPを陽極にして電解処理すると熱処理で炭化した樹脂残渣が離脱し、炭素繊維を回収する方法である。この方法では、静置状態で電解処理されるので、回収した炭素繊維の配向はCFRPの状態が保持されて直線状で、湿潤状態であるので、不織布化しやすく、複合材料への加工が容易である。また、回収工程で炭素繊維の強度低下もほとんどない。 In Patent Document 2, the discarded CFRP is cut into a size of about 20 mm and heat-treated at about 450 ° C. or lower at which the oxidation reaction of carbon fibers does not occur in the air. This is a method in which the heat-treated CFRP is immersed in an electrolyte solution, and when the CFRP is used as an anode and electrolyzed, the carbonized resin residue is removed by the heat treatment and the carbon fibers are recovered. In this method, since the electrolysis treatment is performed in a stationary state, the orientation of the recovered carbon fibers is linear and wet while maintaining the CFRP state, so that it is easy to make a non-woven fabric and it is easy to process it into a composite material. be. In addition, there is almost no decrease in the strength of the carbon fiber in the recovery process.

一般に繊維基材を樹脂で補強して構造体を製造する場合、繊維基材が厚いと生産性が良い。樹脂が熱硬化性であると、硬化前の樹脂粘度が低い間に繊維基材を構成する単糸間に樹脂を含浸して硬化・成形すればよい。 Generally, when a structure is manufactured by reinforcing a fiber base material with a resin, the thicker the fiber base material, the better the productivity. If the resin is thermosetting, the resin may be impregnated between the single yarns constituting the fiber base material while the viscosity of the resin before curing is low, and the resin may be cured and molded.

しかし、樹脂が熱可塑性の場合、溶融粘度が高いので、繊維基材を構成する単糸間に樹脂を含浸することは困難である。成形生産性を上げるため、不織布の目付を上げるとますます樹脂含浸性が低下し、高性能の複合材料を製造することが困難となる。 However, when the resin is thermoplastic, it is difficult to impregnate the resin between the single yarns constituting the fiber base material because the melt viscosity is high. In order to increase molding productivity, increasing the basis weight of the non-woven fabric further reduces the resin impregnation property, making it difficult to manufacture high-performance composite materials.

特開平6-298993号公報Japanese Unexamined Patent Publication No. 6-298991 特許第6044946号公報Japanese Patent No. 60444946

厚い炭素繊維の不織布を補強材とし、マトリックス樹脂として熱可塑性樹脂を構成とした複合材料を量産する場合、次のような課題がある。
(1)熱可塑性樹脂の溶融粘度は一般に極めて高いので、不織布を構成する補強繊維単糸間に樹脂を含浸することが難しい。
(2)複合材料の生産性を上げるには、厚手の不織布を補強材として使用することが考えられるが、熱可塑性樹脂の含浸の困難さがさらに拡大する。
When mass-producing a composite material composed of a thermoplastic resin as a matrix resin using a thick carbon fiber non-woven fabric as a reinforcing material, there are the following problems.
(1) Since the melt viscosity of the thermoplastic resin is generally extremely high, it is difficult to impregnate the resin between the reinforcing fiber single yarns constituting the nonwoven fabric.
(2) In order to increase the productivity of the composite material, it is conceivable to use a thick non-woven fabric as a reinforcing material, but the difficulty of impregnating with the thermoplastic resin further increases.

本発明の目的は、上記2つの課題を解決するため、炭素繊維を不織布化し、さらにそれを繊維強化熱可塑性樹脂複合材料とするための、簡便で力学特性に優れた複合材料を製造する方法を提供することにある。 An object of the present invention is to provide a simple method for producing a composite material having excellent mechanical properties, in which carbon fibers are made into a non-woven fabric and further used as a fiber-reinforced thermoplastic resin composite material in order to solve the above two problems. To provide.

本発明は以下の通りである。
[1]
(A)炭素繊維を熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンとともに不織布化する、又は(B)湿潤化した炭素繊維不織布に熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンを添加して、熱可塑性ウレタン樹脂で接着及び被覆された炭素繊維不織布を得る工程(1)、
工程(1)で得た不織布の少なくとも1枚とマトリックス部材としての熱可塑性樹脂シートの少なくとも1枚を交互に積層し、次いで加熱して繊維強化熱可塑性樹脂複合材料を得る工程(2)
を含む、繊維強化熱可塑性樹脂複合材料の製造方法。
[2]
前記熱可塑性ウレタン樹脂はガラス転移温度が、40℃以上である、[1]に記載の製造方法。
[3]
前記熱可塑性ウレタン樹脂は、無黄変エステル系、無黄変エステル・エーテル系、無黄変カーボネート系、又は芳香族イソシアネート系の水系ウレタン樹脂であり、かつ前記エマルジョンの粒子径が0.01~0.1μmの範囲である、[1]又は[2]に記載の製造方法。
[4]
工程(1)において、炭素繊維100質量部に対して、前記エマルジョンを固形分で5~15質量部の範囲で用いる、[1]~[3]のいずれかに記載の製造方法。
[5]
工程(1)において用いる炭素繊維の一部又は全部は、炭素繊維複合材料を酸化雰囲気で加熱処理し、その後陽極酸化して、炭素繊維複合材料に含まれる樹脂分から炭素繊維を分離回収することで得られる、湿潤状態の炭素繊維であり、(A)では湿潤状態の炭素繊維をそのまま不織布化に用い、(B)では湿潤状態の炭素繊維を不織布として湿潤化した炭素繊維不織布を得る、[1]~[4]のいずれかに記載の製造方法。
[6]
工程(1)で得られる不織布は、目付が100g~2000g/m2の範囲である、[1]~[5]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
(A) The carbon fiber is made into a non-woven fabric together with the aqueous self-emulsifying emulsion of the thermoplastic urethane resin, or (B) the aqueous self-emulsifying emulsion of the thermoplastic urethane resin is added to the wet carbon fiber non-woven fabric to make the thermoplastic urethane. Step of obtaining carbon fiber nonwoven fabric bonded and coated with resin (1),
A step (2) in which at least one non-woven fabric obtained in the step (1) and at least one thermoplastic resin sheet as a matrix member are alternately laminated and then heated to obtain a fiber-reinforced thermoplastic resin composite material (2).
A method for manufacturing a fiber-reinforced thermoplastic resin composite material, including.
[2]
The production method according to [1], wherein the thermoplastic urethane resin has a glass transition temperature of 40 ° C. or higher.
[3]
The thermoplastic urethane resin is a non-yellowing ester-based, non-yellowing ester / ether-based, non-yellowing carbonate-based, or aromatic isocyanate-based aqueous urethane resin, and the particle size of the emulsion is 0.01 to. The production method according to [1] or [2], which is in the range of 0.1 μm.
[4]
The production method according to any one of [1] to [3], wherein in the step (1), the emulsion is used in the range of 5 to 15 parts by mass in terms of solid content with respect to 100 parts by mass of carbon fiber.
[5]
For some or all of the carbon fibers used in the step (1), the carbon fiber composite material is heat-treated in an oxidizing atmosphere and then anodized to separate and recover the carbon fibers from the resin component contained in the carbon fiber composite material. The obtained wet carbon fibers are obtained. In (A), the wet carbon fibers are used as they are for making a non-woven fabric, and in (B), the wet carbon fibers are used as a non-woven fabric to obtain a moistened carbon fiber non-woven fabric [1]. ] To [4].
[6]
The production method according to any one of [1] to [5], wherein the nonwoven fabric obtained in the step (1) has a basis weight in the range of 100 g to 2000 g / m 2 .

本発明によれば、炭素繊維不織布を基材として用いても、熱可塑性樹脂をマトリックスとした力学特性の優れた複合材料を製造することができ、この製造方法によれば、高生産性での複合材料の量産も可能である。 According to the present invention, even if a carbon fiber non-woven fabric is used as a base material, a composite material having excellent mechanical properties using a thermoplastic resin as a matrix can be produced, and according to this production method, high productivity is achieved. Mass production of composite materials is also possible.

例えば、特許文献2に記載の方法でCFRP廃材から回収した湿潤状態にある炭素繊維(リサイクル炭素繊維)をそのまま用いる場合、湿式法による不織布(紙)を製造することが容易である。湿潤状態にある炭素繊維の単糸は屈折や湾曲状態のないまっすぐな状態で配置され、繊維の方向が平面内でランダムな擬似等方材料を得ることが可能である。 For example, when the wet carbon fiber (recycled carbon fiber) recovered from the CFRP waste material is used as it is by the method described in Patent Document 2, it is easy to produce a nonwoven fabric (paper) by a wet method. The single yarn of carbon fiber in a wet state is arranged in a straight state without refraction or bending, and it is possible to obtain a pseudo-isotropic material in which the direction of the fiber is random in a plane.

本発明の繊維強化熱可塑性樹脂複合材料の製造方法は以下の工程(1)及び(2)を含む。
工程(1):(A)炭素繊維を熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンとともに不織布化する、又は(B)湿潤化した炭素繊維不織布に熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンを添加して乾燥し、熱可塑性ウレタン樹脂で接着及び被覆された不織布シートを得る。
工程(2):工程(1)で得た不織布シートの少なくとも1枚とマトリックス部材としての熱可塑性樹脂シートの少なくとも1枚を交互に積層し、次いで加熱して繊維強化熱可塑性樹脂複合材料を得る。
The method for producing a fiber-reinforced thermoplastic resin composite material of the present invention includes the following steps (1) and (2).
Steps (1): (A) Non-woven fabric of carbon fiber together with water-based self-emulsifying emulsion of thermoplastic urethane resin, or (B) Water-based self-emulsifying emulsion of thermoplastic urethane resin is added to (B) wet carbon fiber non-woven fabric. And dried to obtain a non-woven fabric sheet bonded and coated with a thermoplastic urethane resin.
Step (2): At least one non-woven fabric sheet obtained in step (1) and at least one thermoplastic resin sheet as a matrix member are alternately laminated and then heated to obtain a fiber-reinforced thermoplastic resin composite material. ..

炭素繊維は、熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンとともに不織布化する。具体的には、炭素繊維を熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンと混合し、次いで常法により不織布化する。もしくは、湿潤化した不織布化した炭素繊維に熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンを付与した後、乾燥して、熱可塑性ウレタン樹脂で接着及び被覆された不織布シートを得る。湿潤化した炭素繊維不織布は、水分率が例えば、10%以上であることが好ましく、より好ましくは30%以上である。水系エマルジョンは、自己乳化型であるので、界面活性剤等の余分な成分を含まず、複合材料としたときに複合材料の物性を損なわないこと、回収炭素繊維を用いた場合でも優れた強度の複合材料を得られるということから適当である。 The carbon fibers are made into a non-woven fabric together with a water-based self-emulsifying emulsion of a thermoplastic urethane resin. Specifically, the carbon fibers are mixed with a water-based self-emulsifying emulsion of a thermoplastic urethane resin, and then made into a non-woven fabric by a conventional method. Alternatively, a water-based self-emulsifying emulsion of a thermoplastic urethane resin is applied to the wet non-woven carbon fiber and then dried to obtain a non-woven fabric sheet bonded and coated with the thermoplastic urethane resin. The wet carbon fiber nonwoven fabric preferably has a moisture content of, for example, 10% or more, more preferably 30% or more. Since the aqueous emulsion is a self-emulsifying type, it does not contain extra components such as surfactants, does not impair the physical characteristics of the composite material when used as a composite material, and has excellent strength even when recovered carbon fiber is used. It is suitable because a composite material can be obtained.

特許文献2に記載の炭素繊維複合材料(CFRP廃材等の)を酸化雰囲気で加熱処理し、その後陽極酸化して、炭素繊維複合材料に含まれる樹脂分から炭素繊維を分離回収することで得られるリサイクル炭素繊維であって、陽極酸化後に分離回収された炭素繊維は湿潤状態である。回収炭素繊維の水分率は分離回収方法にもよるが、例えば、30%以上である。そのため、この湿潤状態の炭素繊維をそのまま工程(1)の(B)の方法に用いることが、製造工程の簡素化と、炭素繊維が湿潤状態にあるので、水系自己乳化型エマルジョンとの馴染みが良好で、熱可塑性ウレタン樹脂との炭素繊維間の接着及び炭素繊維の被覆が良好に行われ、最終的に得られる複合材料の強度が向上することから好ましい。 Recycling obtained by heat-treating the carbon fiber composite material (CFRP waste material, etc.) described in Patent Document 2 in an oxidizing atmosphere and then anodizing the carbon fiber composite material to separate and recover the carbon fiber from the resin component contained in the carbon fiber composite material. The carbon fibers separated and recovered after anodization are in a wet state. The water content of the recovered carbon fiber depends on the separation and recovery method, but is, for example, 30% or more. Therefore, using the wet carbon fiber as it is in the method (B) of the step (1) simplifies the manufacturing process, and since the carbon fiber is in the wet state, it becomes familiar with the water-based self-emulsifying emulsion. It is preferable because the adhesion between the carbon fibers to the thermoplastic urethane resin and the coating of the carbon fibers are good, and the strength of the finally obtained composite material is improved.

もちろん新品のカットした炭素繊維単独又は特許文献2記載の回収炭素繊維の混合物であっても良い。新品のカットした炭素繊維を用いる場合、工程(1)の(A)の方法に用いるか、または、新品のカットした炭素繊維を常法により湿潤化した後に工程(1)の(B)の方法に用いることもできる。 Of course, a new cut carbon fiber alone or a mixture of recovered carbon fibers described in Patent Document 2 may be used. When a new cut carbon fiber is used, it is used in the method (A) of the step (1), or the new cut carbon fiber is moistened by a conventional method and then the method (B) of the step (1). It can also be used for.

ここで用いる熱可塑性ウレタン樹脂は、乾燥した後、250℃以上の耐熱性を有する熱可塑性フィルムを形成するものであることが好ましい。水系エマルジョンの粒子径は、単糸直径が約5~10μmの炭素繊維の間に含浸できるといか観点から、例えば、0.01~0.1μmの範囲が好ましい。 The thermoplastic urethane resin used here preferably forms a thermoplastic film having a heat resistance of 250 ° C. or higher after being dried. The particle size of the aqueous emulsion is preferably in the range of, for example, 0.01 to 0.1 μm from the viewpoint that it can be impregnated between carbon fibers having a single yarn diameter of about 5 to 10 μm.

熱可塑性ウレタン樹脂は、工程(2)における加熱において、熱可塑性樹脂と共に溶融し、熱可塑性樹脂と適度に混和し、得られる複合材料の強度向上に寄与できるという観点から、ガラス転移温度が、例えば、40℃以上の範囲であることが適当であり、さらに好ましくは、80℃以上の範囲である。 The glass transition temperature is, for example, from the viewpoint that the thermoplastic urethane resin melts together with the thermoplastic resin in the heating in the step (2) and can be appropriately mixed with the thermoplastic resin to contribute to the improvement of the strength of the obtained composite material. , 40 ° C. or higher is appropriate, and more preferably 80 ° C. or higher.

熱可塑性ウレタン樹脂は、材質には特に制限はなく、例えば、無黄変エステル系、無黄変エステル・エーテル系、無黄変カーボネート系、又は芳香族イソシアネート系の水系ウレタン樹脂を挙げることができる。上記ガラス転移温度及びエマルジョンの粒子径を有する熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンは、例えば、第一工業製薬のスーパーフレックスシリーズが市販品として入手が可能である。 The material of the thermoplastic urethane resin is not particularly limited, and examples thereof include non-yellowing ester-based, non-yellowing ester / ether-based, non-yellowing carbonate-based, and aromatic isocyanate-based aqueous urethane resins. .. The water-based self-emulsifying emulsion of a thermoplastic urethane resin having the glass transition temperature and the particle size of the emulsion is available as a commercial product, for example, in the Superflex series of Dai-ichi Kogyo Seiyaku.

エマルジョンの使用量は、炭素繊維100質量部に対して、エマルジョンを固形分で例えば、5~15質量部の範囲で用いることが、リサイクル炭素繊維を用いた場合でも、炭素繊維間の接着及び表面の被覆による熱可塑性樹脂との接着性を良好にし、優れた機械的強度を有する複合材料が得られるという観点から適当である。5質量部未満では、単糸間の空隙を樹脂で完全に埋めることが難しく、力学特性の優れた複合材料を得ることが難しくなる傾向がある。15質量部を超えても、それ以上の力学特性の優れた複合材料は得られない傾向がある。 The amount of the emulsion used is such that the emulsion is used in the range of 5 to 15 parts by mass in terms of solid content with respect to 100 parts by mass of carbon fibers, even when recycled carbon fibers are used, adhesion between carbon fibers and surface. It is suitable from the viewpoint that the adhesiveness to the thermoplastic resin is improved by the coating of the above material and a composite material having excellent mechanical strength can be obtained. If it is less than 5 parts by mass, it is difficult to completely fill the voids between the single yarns with the resin, and it tends to be difficult to obtain a composite material having excellent mechanical properties. Even if it exceeds 15 parts by mass, there is a tendency that a composite material having more excellent mechanical properties cannot be obtained.

工程(1)で得られる不織布は、目付が100g~2000g/m2の範囲であることが好ましい。目付が100g/m2以下では複合材料の生産性が低いので本発明の経済効果が乏しくなる傾向がある。逆に、2000g/m2以上では、不織布化が技術的に難しくなる傾向があり、不織布化した後の乾燥にも時間がかかるので、経済性が低下する傾向がある。 The nonwoven fabric obtained in the step (1) preferably has a basis weight in the range of 100 g to 2000 g / m 2 . When the basis weight is 100 g / m 2 or less, the productivity of the composite material is low, so that the economic effect of the present invention tends to be poor. On the contrary, at 2000 g / m 2 or more, it tends to be technically difficult to make a non-woven fabric, and it takes time to dry after making a non-woven fabric, so that the economic efficiency tends to decrease.

熱可塑性ウレタン樹脂で接着及び被覆された不織布は、工程(2)に供する前に加熱乾燥することが好ましい。加熱乾燥は、熱可塑性ウレタン樹脂の熱的特性を考慮し、炭素繊維が良好に接着及び被覆されることを考慮して、適宜決定することができる。例えば、100~160℃の範囲で、乾燥することができる。乾燥方法としては、例えば、熱風乾燥、熱板乾燥、赤外線乾燥などを挙げることができる。乾燥後、加圧して平板化することが好ましい。乾燥後の不織布は含水率が5%以下、好ましくは1%(ほぼ絶乾)であることが好ましい。 The nonwoven fabric bonded and coated with the thermoplastic urethane resin is preferably heat-dried before being subjected to the step (2). The heat-drying can be appropriately determined in consideration of the thermal properties of the thermoplastic urethane resin and in consideration of the good adhesion and coating of the carbon fibers. For example, it can be dried in the range of 100 to 160 ° C. Examples of the drying method include hot air drying, hot plate drying, infrared drying and the like. After drying, it is preferable to pressurize and flatten the plate. The dried non-woven fabric preferably has a water content of 5% or less, preferably 1% (almost dry).

工程(2)では、工程(1)で得た不織布の少なくとも1枚とマトリックス部材としての熱可塑性樹脂シートの少なくとも1枚を交互に積層し、次いで加熱して繊維強化熱可塑性樹脂複合材料を得る。工程(2)で用いる熱可塑性樹脂シートは、複合材料のマトリックス部材を構成するものである。マトリックス部材として用いられる熱可塑性樹脂としては、特に限定されないが、充填用の熱可塑性ウレタン樹脂との接着力の高い熱可塑性樹脂が好ましい。熱可塑性ウレタン樹脂の熱分解温度以下で溶融する合成樹脂が好ましい。具体的には、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン等を使用することが出来る。 In the step (2), at least one non-woven fabric obtained in the step (1) and at least one thermoplastic resin sheet as a matrix member are alternately laminated and then heated to obtain a fiber-reinforced thermoplastic resin composite material. .. The thermoplastic resin sheet used in the step (2) constitutes a matrix member of the composite material. The thermoplastic resin used as the matrix member is not particularly limited, but a thermoplastic resin having a high adhesive force with the thermoplastic urethane resin for filling is preferable. A synthetic resin that melts at a temperature equal to or lower than the thermal decomposition temperature of the thermoplastic urethane resin is preferable. Specifically, nylon, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyether sulfone and the like can be used.

不織布の少なくとも1枚とマトリックス部材としての熱可塑性樹脂シートの少なくとも2枚を交互に積層する。好ましくは、不織布の両面を熱可塑性樹脂シートが被覆するように挟み込む。即ち、不織布n枚に対して、熱可塑性樹脂シートn+1枚を交互に積層する。熱可塑性樹脂シートの厚みは、不織布の目付に応じて、さらには、複合材料における不織布とマトリックス部材としての熱可塑性樹脂との所望の質量比に応じて適宜決定することができる。不織布とマトリックス部材としての熱可塑性樹脂との質量比は、特に制限はないが、不織布100質量部に対して、マトリックス部材としての熱可塑性樹脂10~1000質量部の範囲とすることができ、好ましくは25~400質量部の範囲である。繊維と樹脂の割合は特に限定はないが、繊維の体積含有率が20~80%が好ましい。20%以下であると、複合材料としての力学特性が低く、適用する意味が少ない。80%を越えると、力学特性が逆に低下する場合がある。 At least one non-woven fabric and at least two thermoplastic resin sheets as matrix members are alternately laminated. Preferably, both sides of the nonwoven fabric are sandwiched so as to be covered with a thermoplastic resin sheet. That is, the thermoplastic resin sheets n + 1 are alternately laminated on the n non-woven fabrics. The thickness of the thermoplastic resin sheet can be appropriately determined according to the texture of the nonwoven fabric and further according to the desired mass ratio of the nonwoven fabric in the composite material and the thermoplastic resin as the matrix member. The mass ratio of the non-woven fabric to the thermoplastic resin as the matrix member is not particularly limited, but can be in the range of 10 to 1000 parts by mass of the thermoplastic resin as the matrix member with respect to 100 parts by mass of the non-woven fabric, which is preferable. Is in the range of 25 to 400 parts by mass. The ratio of the fiber to the resin is not particularly limited, but the volume content of the fiber is preferably 20 to 80%. If it is 20% or less, the mechanical properties as a composite material are low, and there is little point in applying it. If it exceeds 80%, the mechanical properties may be deteriorated.

得られた積層物は加熱して繊維強化熱可塑性樹脂複合材料を得る。加熱の際には積層物の両面から加圧することが好ましい。加熱温度は、熱可塑性樹脂シートを構成する熱可塑性樹脂の熱可塑性(溶融温度)を考慮して適宜決定することができる。さらに加圧の圧力は、加熱温度及びその温度における熱可塑性樹脂の粘度等を考慮して適宜決定できる。平板化した不織布の最上面と不織布と熱可塑性樹脂フィルムを交互に配置し、加熱・加圧して一体化させて、繊維強化熱可塑性樹脂複合材料を製造することができる。 The obtained laminate is heated to obtain a fiber-reinforced thermoplastic resin composite material. When heating, it is preferable to pressurize from both sides of the laminate. The heating temperature can be appropriately determined in consideration of the thermoplasticity (melting temperature) of the thermoplastic resin constituting the thermoplastic resin sheet. Further, the pressurizing pressure can be appropriately determined in consideration of the heating temperature and the viscosity of the thermoplastic resin at that temperature. A fiber-reinforced thermoplastic resin composite material can be produced by alternately arranging the uppermost surface of the flattened nonwoven fabric, the nonwoven fabric and the thermoplastic resin film, and heating and pressurizing them to integrate them.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples.

実施例1-1(リサイクル炭素繊維の場合)
(1)引用文献2を参考に回収したCFRPを20mmに切断した後、空気雰囲気375℃で1時間加熱し、マトリックス樹脂の大部分を除去した。ついで、0.2規定の硫酸水溶液に浸漬し、12Vで3分間陽極酸化した。
(2)回収した塊状の炭素繊維を水洗、脱水処理し、水分率を50%の回収炭素繊維を得た。これを常法に従って繊維目付重量が360g/m2(水分率50%)の不織布を作成した。
(3)これに、第一工業製薬(株)製の無黄変型エーテル系自己乳化タイプポリウレタンエマルジョン液「スーパーフレックス130」の固形分36g/m2に相当する量を均一に付与し、金網上で120℃の熱風で2時間乾燥した。乾燥後、金網から外し、板状の厚さ0.2mmのシートを得た。
Example 1-1 (in the case of recycled carbon fiber)
(1) The CFRP recovered with reference to Cited Document 2 was cut into 20 mm and then heated at an air atmosphere of 375 ° C. for 1 hour to remove most of the matrix resin. Then, it was immersed in a 0.2N sulfuric acid aqueous solution and anodized at 12 V for 3 minutes.
(2) The recovered lumpy carbon fibers were washed with water and dehydrated to obtain recovered carbon fibers having a water content of 50%. A non-woven fabric having a fiber basis weight of 360 g / m 2 (moisture content 50%) was prepared according to a conventional method.
(3) An amount equivalent to a solid content of 36 g / m 2 of the non-yellowing ether-based self-emulsifying polyurethane emulsion "Superflex 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. was uniformly applied to this, and on a wire mesh. It was dried with hot air at 120 ° C. for 2 hours. After drying, it was removed from the wire mesh to obtain a plate-shaped sheet having a thickness of 0.2 mm.

(4)このシート7枚と0.2mmの厚さの積水成形工業(株)製のポリプロピレンシートP8134の8枚を交互に重ね、200℃に加熱した河中産業(株)製のホットプレスで5分間加熱してポリプロピレンシートを溶融させたのち、6MPaの圧力に10分間保持した。その後、圧力を保持したまま50℃に降温した。金型を解体し、サイズ30cm角で、厚さ3mmの板状複合材を得た。
(5)これをダイヤモンドカッターで切り出し、下記形状の試験片を作成し、JIS7115-1986に従って、引張試験を実施し、結果を表1に示した。
<引張試験> 1号試験片 JIS7115-19866.1.1(1)に記載
(4) Seven of these sheets and eight of 0.2 mm thick polypropylene sheets P8134 manufactured by Sekisui Chemical Co., Ltd. were alternately stacked and heated to 200 ° C. with a hot press manufactured by Kawanaka Sangyo Co., Ltd. 5 After heating for 1 minute to melt the polypropylene sheet, the polypropylene sheet was held at a pressure of 6 MPa for 10 minutes. Then, the temperature was lowered to 50 ° C. while maintaining the pressure. The mold was disassembled to obtain a plate-shaped composite material having a size of 30 cm square and a thickness of 3 mm.
(5) This was cut out with a diamond cutter to prepare a test piece having the following shape, a tensile test was carried out in accordance with JIS7115-1986 , and the results are shown in Table 1.
<Tensile test> Described in No. 1 test piece JIS7115 -1986 6.1.1 (1)

実施例1-2
実施例1-1の(1)と同様にして回収した塊状の炭素繊維を水洗、脱水処理し、水分率を50%の回収炭素繊維を得た。これに、第一工業製薬(株)製の無黄変型エーテル系自己乳化タイプポリウレタンエマルジョン液「スーパーフレックス130」の固形分36g/m2に相当する量を添加し、これから常法に従って繊維目付重量が360g/m2(水分率50%)の不織布を作成した。次いで、金網上で120℃の熱風で2時間乾燥した。乾燥後、金網から外し、板状の厚さ0.2mmのシートを得た。このシートを実施例1-1の(4)と同様の手順で板状複合材を得た。実施例1-1の板状複合材とほぼ同等のコンポジット引張強度を得た。
Example 1-2
The lumpy carbon fibers recovered in the same manner as in (1) of Example 1-1 were washed with water and dehydrated to obtain recovered carbon fibers having a water content of 50%. To this, add an amount equivalent to the solid content of 36 g / m 2 of the non-woven ether-based self-emulsifying polyurethane emulsion "Superflex 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. Created a non-woven fabric of 360 g / m 2 (moisture content 50%). Then, it was dried on a wire mesh with hot air at 120 ° C. for 2 hours. After drying, it was removed from the wire mesh to obtain a plate-shaped sheet having a thickness of 0.2 mm. A plate-like composite material was obtained from this sheet by the same procedure as in (4) of Example 1-1. A composite tensile strength almost equivalent to that of the plate-shaped composite material of Example 1-1 was obtained.

実施例2-1(通常の不織布製法)
(1)直径が7ミクロンの12000本の単糸からなる連続炭素繊維360gを長さ20mmにカットし、アニオン系界面活性剤を溶解させた水に分散させた。
(2)上記分散液を100cm角の金網に濾過し、湿潤状態の不織布(乾燥状態での繊維目付:360g/m2)を得た。金網ごとプレスし、水分率を50%とした。
Example 2-1 (ordinary non-woven fabric manufacturing method)
(1) 360 g of continuous carbon fiber composed of 12,000 single yarns having a diameter of 7 microns was cut into a length of 20 mm and dispersed in water in which an anionic surfactant was dissolved.
(2) The dispersion liquid was filtered through a 100 cm square wire mesh to obtain a wet non-woven fabric (fiber basis weight in a dry state: 360 g / m 2 ). The entire wire mesh was pressed to set the moisture content to 50%.

(3)これに、第一工業製薬(株)製の無黄変型エーテル系自己乳化タイプポリウレタンエマルジョン液「スーパーフレックス130」の固形分36gを均一に付与し、120℃の熱風で2時間乾燥した。乾燥後、金網から外し、熱プレスし板状の不織布(厚さ:0.2mm)を得た。 (3) To this, a solid content of 36 g of a non-yellowing ether-based self-emulsifying polyurethane emulsion "Superflex 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. was uniformly applied, and dried with hot air at 120 ° C. for 2 hours. .. After drying, it was removed from the wire mesh and heat-pressed to obtain a plate-shaped non-woven fabric (thickness: 0.2 mm).

(4)30cm角に切断した板状の不織布7枚と0.2mmの厚さの積水成形工業(株)製のポリプロピレンシート8枚を上下に金枠の中に重ね、実施例1-1の(4)と同様の手順で、サイズ30cm角で、厚さ3mmの板状複合材を得た。
(5)これをダイヤモンドカッターで切りだし、実施例1-1と同様の形状の試験片を作成し、JIS7115-1986に従って、引張試験を実施した。
(4) Seven plate-shaped non-woven fabrics cut into 30 cm squares and eight polypropylene sheets manufactured by Sekisui Molding Industry Co., Ltd. with a thickness of 0.2 mm were stacked vertically in a metal frame, and in Example 1-1. By the same procedure as in (4), a plate-shaped composite material having a size of 30 cm square and a thickness of 3 mm was obtained.
(5) This was cut out with a diamond cutter to prepare a test piece having the same shape as in Example 1-1, and a tensile test was carried out in accordance with JIS7115-1986 .

実施例2-2
実施例1-1の(1)と同様にして得た、アニオン系界面活性剤を溶解させた水に炭素繊維を分散させた分散液に、第一工業製薬(株)製の無黄変型エーテル系自己乳化タイプポリウレタンエマルジョン液「スーパーフレックス130」の固形分36gを添加し、100cm角の金網に濾過し、湿潤状態の不織布(乾燥状態での繊維目付:360g/m2)を得た。金網ごとプレスし、水分率を50%とした。これを120℃の熱風で2時間乾燥した。乾燥後、金網から外し、熱プレスし板状の不織布(厚さ:0.2mm)を得た。この不織布シートを実施例1-1の(4)と同様の手順で板状複合材を得た。実施例2-1の板状複合材とほぼ同等のコンポジット引張強度を得た。
Example 2-2
A non-woven ether manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added to a dispersion liquid in which carbon fibers were dispersed in water in which an anionic surfactant was dissolved, which was obtained in the same manner as in (1) of Example 1-1. A solid content of 36 g of the self-emulsifying type polyurethane emulsion "Superflex 130" was added and filtered into a 100 cm square wire mesh to obtain a wet non-woven fabric (fiber texture in a dry state: 360 g / m 2 ). The entire wire mesh was pressed to set the moisture content to 50%. This was dried with hot air at 120 ° C. for 2 hours. After drying, it was removed from the wire mesh and heat-pressed to obtain a plate-shaped non-woven fabric (thickness: 0.2 mm). A plate-shaped composite material was obtained from this nonwoven fabric sheet by the same procedure as in (4) of Example 1-1. A composite tensile strength almost equivalent to that of the plate-shaped composite material of Example 2-1 was obtained.

Figure 0006991483000001
Figure 0006991483000001

上記表1より、ポリウレタン処理することにより、引張強度が向上する。特に、リサイクル炭素繊維から製造した複合材料は新品の炭素繊維とほぼ同等であることが確認された。 From Table 1 above, the tensile strength is improved by the polyurethane treatment. In particular, it was confirmed that the composite material produced from recycled carbon fiber was almost equivalent to the new carbon fiber.

本発明は、炭素繊維複合材料から回収した炭素繊維の有効利用に有用である。 The present invention is useful for effective utilization of carbon fibers recovered from carbon fiber composite materials.

Claims (6)

(A)炭素繊維を熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンとともに不織布化する、又は(B)湿潤化した炭素繊維不織布に熱可塑性ウレタン樹脂の水系自己乳化型エマルジョンを添加して、熱可塑性ウレタン樹脂で接着及び被覆された炭素繊維不織布を得る工程(1)、
工程(1)で得た不織布の少なくとも1枚とマトリックス部材としての熱可塑性樹脂シートの少なくとも1枚を交互に積層し、次いで加熱して繊維強化熱可塑性樹脂複合材料を得る工程(2)
を含む、繊維強化熱可塑性樹脂複合材料の製造方法。
(A) The carbon fiber is made into a non-woven fabric together with the aqueous self-emulsifying emulsion of the thermoplastic urethane resin, or (B) the aqueous self-emulsifying emulsion of the thermoplastic urethane resin is added to the wet carbon fiber non-woven fabric to make the thermoplastic urethane. Step of obtaining carbon fiber nonwoven fabric bonded and coated with resin (1),
A step (2) in which at least one non-woven fabric obtained in the step (1) and at least one thermoplastic resin sheet as a matrix member are alternately laminated and then heated to obtain a fiber-reinforced thermoplastic resin composite material (2).
A method for manufacturing a fiber-reinforced thermoplastic resin composite material, including.
前記熱可塑性ウレタン樹脂はガラス転移温度が、40℃以上である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the thermoplastic urethane resin has a glass transition temperature of 40 ° C. or higher. 前記熱可塑性ウレタン樹脂は、無黄変エステル系、無黄変エステル・エーテル系、無黄変カーボネート系、又は芳香族イソシアネート系の水系ウレタン樹脂であり、かつ前記エマルジョンの粒子径が0.01~0.1μmの範囲である、請求項1又は2に記載の製造方法。 The thermoplastic urethane resin is a non-yellowing ester-based, non-yellowing ester / ether-based, non-yellowing carbonate-based, or aromatic isocyanate-based aqueous urethane resin, and the particle size of the emulsion is 0.01 to. The production method according to claim 1 or 2, which is in the range of 0.1 μm. 工程(1)において、炭素繊維100質量部に対して、前記エマルジョンを固形分で5~15質量部の範囲で用いる、請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein in the step (1), the emulsion is used in the range of 5 to 15 parts by mass in terms of solid content with respect to 100 parts by mass of carbon fiber. 工程(1)において用いる炭素繊維の一部又は全部は、炭素繊維複合材料を酸化雰囲気で加熱処理し、その後陽極酸化して、炭素繊維複合材料に含まれる樹脂分から炭素繊維を分離回収することで得られる、湿潤状態の炭素繊維であり、(A)では湿潤状態の炭素繊維をそのまま不織布化に用い、(B)では湿潤状態の炭素繊維を不織布として湿潤化した炭素繊維不織布を得る、請求項1~4のいずれかに記載の製造方法。 For some or all of the carbon fibers used in the step (1), the carbon fiber composite material is heat-treated in an oxidizing atmosphere and then anodized to separate and recover the carbon fibers from the resin component contained in the carbon fiber composite material. The obtained carbon fiber in a wet state. In (A), the wet carbon fiber is used as it is for making a non-woven fabric, and in (B), a moistened carbon fiber non-woven fabric is obtained by using the wet carbon fiber as a non-woven fabric. The manufacturing method according to any one of 1 to 4. 工程(1)で得られる不織布は、目付が100g~2000g/m2の範囲である、請求項1~5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the nonwoven fabric obtained in the step (1) has a basis weight in the range of 100 g to 2000 g / m 2 .
JP2018027501A 2018-02-20 2018-02-20 Method for manufacturing carbon fiber reinforced thermoplastic resin composite material Active JP6991483B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018027501A JP6991483B2 (en) 2018-02-20 2018-02-20 Method for manufacturing carbon fiber reinforced thermoplastic resin composite material
PCT/JP2019/004807 WO2019163578A1 (en) 2018-02-20 2019-02-12 Method for producing carbon-fiber-reinforced thermoplastic-resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027501A JP6991483B2 (en) 2018-02-20 2018-02-20 Method for manufacturing carbon fiber reinforced thermoplastic resin composite material

Publications (2)

Publication Number Publication Date
JP2019143021A JP2019143021A (en) 2019-08-29
JP6991483B2 true JP6991483B2 (en) 2022-01-12

Family

ID=67687208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027501A Active JP6991483B2 (en) 2018-02-20 2018-02-20 Method for manufacturing carbon fiber reinforced thermoplastic resin composite material

Country Status (2)

Country Link
JP (1) JP6991483B2 (en)
WO (1) WO2019163578A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182158A1 (en) * 2022-03-22 2023-09-28 東レ株式会社 Integrated molded component and method for manufacturing integrated molded component
WO2024105827A1 (en) * 2022-11-16 2024-05-23 株式会社ワークスタジオ Method for producing recycled product, and recycled product
CN115816927B (en) * 2023-02-20 2023-05-02 中国人民解放军军事科学院系统工程研究院 Carbon fiber reinforced thermoplastic composite material with three-dimensional structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212311A (en) 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
WO2016104467A1 (en) 2014-12-26 2016-06-30 乗明 伊集院 Carbon fibers, manufacturing method therefor, and carbon-fiber-reinforced resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022100B2 (en) * 1978-05-01 1985-05-31 東亜燃料工業株式会社 Manufacturing method of nonwoven fabric
JP4270810B2 (en) * 2002-06-03 2009-06-03 三菱レイヨン株式会社 Manufacturing method of chopped carbon fiber bundle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212311A (en) 2001-01-15 2002-07-31 Japan Vilene Co Ltd Carbon fiber-reinforced stampable sheet, method for producing the same and molded product thereof
WO2016104467A1 (en) 2014-12-26 2016-06-30 乗明 伊集院 Carbon fibers, manufacturing method therefor, and carbon-fiber-reinforced resin composition

Also Published As

Publication number Publication date
JP2019143021A (en) 2019-08-29
WO2019163578A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6991483B2 (en) Method for manufacturing carbon fiber reinforced thermoplastic resin composite material
JP5749868B1 (en) Composite material containing unidirectional continuous fiber and thermoplastic resin
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
JP4233560B2 (en) Manufacturing method of prepreg
JP6036350B2 (en) Aluminum coated composite panel
US11584835B2 (en) Laminated substrate and method for manufacturing the same
CN106671451B (en) Fibre reinforced composites, preparation method and application
JP5841780B2 (en) Manufacturing method of prepreg and manufacturing method of fiber reinforced thermosetting resin molding
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP2018138383A (en) Material system, and methods for manufacturing material system
WO2014021366A1 (en) Heat-resistant paper and process for producing same, fiber-reinforced heat-resistant molded resin, precursor therefor, and processes for producing said molded resin and precursor
KR101482452B1 (en) Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same
JP2015521660A (en) Method for producing element of thermoplastic composite material and element of thermoplastic composite material obtained using the same
CN107856325A (en) One kind is used for continuous fiber reinforced thermoplastic matrix composite and preparation method
JP5932576B2 (en) Fiber reinforced plastic molding substrate
JP6000497B1 (en) Fiber-reinforced composite material and method for producing the same
KR20110079719A (en) Method for producing air-permeable composite sheet
JP2007099966A (en) Prepreg
JP2017222786A (en) Fiber-resin composite body and method for producing the same
JP2007098918A (en) Prepreg manufacturing apparatus, and prepreg
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
CN212949603U (en) Hot-melt controllable carbon fiber thermoplastic prepreg fabric structure
JP7313130B2 (en) fiber sheets and composite membranes
JP3971632B2 (en) Carbon fiber reinforced resin sheet and manufacturing method thereof
CN106827710B (en) A kind of flexible fiber fabric enhancing compound polyurethane material and preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6991483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150