KR20120078345A - Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby - Google Patents

Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby Download PDF

Info

Publication number
KR20120078345A
KR20120078345A KR1020100140620A KR20100140620A KR20120078345A KR 20120078345 A KR20120078345 A KR 20120078345A KR 1020100140620 A KR1020100140620 A KR 1020100140620A KR 20100140620 A KR20100140620 A KR 20100140620A KR 20120078345 A KR20120078345 A KR 20120078345A
Authority
KR
South Korea
Prior art keywords
fiber
resin
composite material
reinforced composite
fiber reinforced
Prior art date
Application number
KR1020100140620A
Other languages
Korean (ko)
Inventor
배만억
김진주
김호연
양철민
정석호
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020100140620A priority Critical patent/KR20120078345A/en
Publication of KR20120078345A publication Critical patent/KR20120078345A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/147Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces by treatment of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon

Abstract

PURPOSE: A manufacturing method of fiber reinforced composite materials and a fiber reinforced composite material manufactured by using the same are provided to reduce manufacturing costs and simplify manufacturing processes. CONSTITUTION: A manufacturing method of fiber reinforced composite materials comprises the following steps: cutting a thermoplastic resin film to fit into a mold(10); laminating the thermoplastic resin films(70,70') between fiber textiles(60,60',60") by turns; and autoclaving and press molding the laminated mold materials. In the molding step, the thermoplastic resins are impregnated between the fiber textiles by temperature and pressure. The fiber reinforced material is one or more selected from a natural fiber, a synthetic fiber, carbon fiber, ceramic fiber, glass fiber, metal fiber and metallized fiber. In the molding step, the pressurization condition is 1-5kgf/cm^2 and a temperature is 100-200 deg. Celsius.

Description

섬유보강 복합재료의 제조방법 및 그에 의해서 제조된 섬유보강 복합재료 {PREPARATION METHOD OF FIBER REINFORCED COMPOSITE MATERIAL AND FIBER REINFORCED COMPOSITE MATERIAL PREPARED THEREBY}Manufacturing method of fiber reinforced composite material and fiber reinforced composite material produced by the same {PREPARATION METHOD OF FIBER REINFORCED COMPOSITE MATERIAL AND FIBER REINFORCED COMPOSITE MATERIAL PREPARED THEREBY}

본 발명은 섬유보강 복합재료의 제조방법 및 그에 의해서 제조되는 섬유보강 복합재료에 관한 것으로, 더욱 상세하게는 열가소성 수지 필름과 보강용 섬유직물을 온도와 압력에 의해 동시에 함침 성형함으로써 제조공정을 단순화하고 제조원가를 낮출 수 있는 섬유보강 복합재료의 제조방법 및 그에 의해서 제조되는 섬유보강 복합재료에 관한 것이다.
The present invention relates to a method for manufacturing a fiber reinforced composite material and a fiber reinforced composite material produced by the same, and more particularly, to simplify the manufacturing process by impregnating and molding the thermoplastic film and the reinforcing fiber fabric simultaneously with temperature and pressure. The present invention relates to a method for producing a fiber reinforced composite material which can lower manufacturing costs, and to a fiber reinforced composite material produced thereby.

섬유보강 복합재료는 경량이고, 우수한 기계적 특성을 보유하기 때문에 항공 우주산업, 스포츠용품산업, 및 자동차 산업에서와 같은 여러 산업 분야에 활발하게 사용되고 있는 첨단 복합재료이다. 이들 산업에서 고강도, 고강성, 고내열성, 및 진동 및/또는 고내충격성을 지니는 고성능 복합재료를 개발하기 위한 요구가 가중되고 있다. Fiber-reinforced composites are advanced composite materials that are actively used in many industries such as in the aerospace, sporting goods, and automotive industries because of their light weight and excellent mechanical properties. There is an increasing demand in these industries to develop high performance composite materials having high strength, high stiffness, high heat resistance, and vibration and / or high impact resistance.

섬유보강 복합재료의 제조에는 각종의 방법이 사용되고 있는데 강화섬유에 미경화의 매트릭스 수지가 함침된 시이트 형상 중간기재인 프리프레그를 사용하는 방법이 널리 사용되고 있다. 도 1은 이러한 종래 기술에 의한 복합 재료의 제조장치를 개략적으로 도시한 것이다. 도 1을 참고하면, 통상적으로 복합재료는 열가소성 수지 필름을 제조한 후 탄소섬유와 미리 함침시킨 프리프레그 형태의 중간재 시이트를 만든 다음 열압착하여 제조한다. Various methods are used to manufacture the fiber-reinforced composite materials, and a method of using a prepreg, which is a sheet-shaped intermediate substrate in which an uncured matrix resin is impregnated with reinforcing fibers, is widely used. 1 schematically shows an apparatus for producing a composite material according to the prior art. Referring to FIG. 1, a composite material is typically manufactured by preparing a thermoplastic resin film and then preparing a prepreg-type intermediate material sheet impregnated with carbon fiber and then thermocompressing.

그러나 이러한 방법은 제조 과정에서 반드시 중간재 시이트인 프리프레그를 제조해야 하므로 공정이 복잡해지고 제조 원가가 상승한다. 또한 프리프레그가 상온에 장시간 방치되면 수지/경화재는 화학반응을 일으켜 경화되기 시작하므로 반드시 냉장보관해야 하므로 프리프레그 상태로는 오랜 기간 보관하기 어려워 보존 가능 기간이 제한되는 단점이 있다. 따라서 제조가 용이하고 보관이 용이한 섬유강화 복합 재료의 개발이 요구되고 있다.
However, this method requires the production of prepreg, which is an intermediate sheet, during the manufacturing process, which increases the complexity and manufacturing cost. In addition, when the prepreg is left at room temperature for a long time, the resin / curing material starts to harden due to a chemical reaction, and thus must be refrigerated so that it is difficult to store it for a long time in the prepreg state. Therefore, there is a demand for the development of fiber-reinforced composite materials that are easy to manufacture and easy to store.

본 발명의 하나의 목적은 성형사이클을 단축시키고 중간재 제작의 번거로움을 피할 수 있는 섬유강화 복합재료의 제조방법을 제공하는 것이다. One object of the present invention is to provide a method for producing a fiber-reinforced composite material that can shorten the molding cycle and avoid the hassle of manufacturing intermediate materials.

본 발명의 다른 목적은 역학 특성이 우수하면서도 제조가 간편한 섬유 보강 복합 재료를 제공하는 것이다.
Another object of the present invention is to provide a fiber reinforced composite material which is excellent in mechanical properties and easy to manufacture.

상술한 과제를 해결하기 위한 본 발명의 하나의 양상은 One aspect of the present invention for solving the above problems is

열가소성 수지 필름을 몰드 형태에 맞게 제단하는 단계;Cutting the thermoplastic resin film into a mold shape;

제단된 열가소성 수지 필름을 보강용 섬유직물 사이 사이에 한 장 씩 교대로 적층하는 단계; 및Alternately laminating the cut thermoplastic resin film one by one between the reinforcing fiber fabrics; And

상기 열가소성 수지 필름과 섬유직물의 적층 성형재료를 온도와 압력에 의하여 열가소성 수지가 직물 사이에 함침되도록 오토클래이브 또는 프레스 성형하는 단계를 포함하는 섬유보강 복합재료의 제조방법에 관계한다.It relates to a method for producing a fiber-reinforced composite material comprising the step of autoclaving or press molding the thermoplastic resin film and the laminated molding material of the fiber fabric so as to impregnate the thermoplastic resin between the fabric by temperature and pressure.

상술한 과제를 해결하기 위한 본 발명의 다른 양상은 본 발명의 방법에 의해서 제조되는 섬유보강 복합 재료에 관한 것이다. Another aspect of the present invention for solving the above problems relates to a fiber reinforced composite material produced by the method of the present invention.

본 발명의 방법에 의하면 기존의 열경화성 수지 복합재료 보다 성형 싸이클의 단축이 가능하고, 수지를 필름 형태로 직물과 별도로 보관이 가능하기 때문에 보존 가능 기간의 제한이 없으며, 중간재의 형태를 이용하지 않고 성형 시에 수지 필름의 용융, 함침이 동시에 진행되므로 중간재의 형태가 필요 없어 공정이 단순화되는 이점을 수득할 수 있다.
According to the method of the present invention, it is possible to shorten the molding cycle than the conventional thermosetting resin composite material, and because the resin can be stored separately from the fabric in the form of a film, there is no limit of the shelf life, and molding without using the form of the intermediate material Since the melting and impregnation of the resin film proceeds at the same time, the form of the intermediate material is not necessary, thereby obtaining an advantage of simplifying the process.

도 1은 종래 기술에 의한 복합 재료의 제조방법을 설명하기 위한 개략단면도이고,
도 2는 본 발명의 일실시예에 의한 복합 재료의 제조방법을 설명하기 위한 개략단면도이다.
1 is a schematic cross-sectional view for explaining a method for manufacturing a composite material according to the prior art,
2 is a schematic cross-sectional view for explaining a method for manufacturing a composite material according to an embodiment of the present invention.

이하, 본 발명의 일 실시 형태에 따른 섬유강화 복합재료의 제조방법을 도면을 참고하여 더욱 상세하게 설명한다.Hereinafter, a method of manufacturing a fiber reinforced composite material according to an embodiment of the present invention will be described in more detail with reference to the drawings.

본 발명의 일실시예에 의한 섬유보강 복합재료의 제조방법에서는 열가소성 수지를 매트릭스로 하는 섬유보강 복합재료의 제조 시에 중간재를 만들지 않고 열가소성 수지 필름을 몰드 형태에 맞게 제단 한 후 보강용 섬유직물 중간층에 한 장 씩 적층한 후 오토클래이브나 프레스 성형을 행하여 섬유보강 복합재료를 제조한다. 이러한 방법은 중간재 형태 제조가 필요 없으며 열가소성 수지 필름이 보강 직물의 중간층에 위치하면서 오토클래이브나 프레스 성형시 온도와 압력에 의하여 용융하여 직물 사이로 함침되는 인퓨전(Infusion) 방법을 이용함으로써 열가소성 복합재료 최종제품으로 바로 제조할 수 있는 방법이다.In the method of manufacturing the fiber reinforced composite material according to an embodiment of the present invention, the intermediate layer for reinforcing fiber fabric after the thermoplastic resin film is cut to fit the mold form without making an intermediate material in the manufacture of the fiber reinforced composite material using the thermoplastic resin as a matrix The sheet is laminated one by one and then subjected to autoclave or press molding to produce a fiber reinforced composite material. This method eliminates the need for the production of intermediate materials and results in the thermoplastic composite material by using an infusion method in which the thermoplastic film is placed in the intermediate layer of the reinforcing fabric and melted under temperature and pressure during autoclave or press molding to be impregnated between the fabrics. It is a method that can be manufactured directly into a product.

도 2는 본 발명의 일실시예에 의한 섬유보강 복합재료의 제조방법을 설명하기 위한 제조 설비의 개략단면도이다. 도 2를 참조하면, 먼저 열가소성 수지 필름을 몰드 형태에 맞게 제단한다. 이어서 제단된 열가소성 수지 필름을 보강용 섬유직물 사이 사이에 한 장 씩 교대로 적층하고나서, 상기 열가소성 수지 필름과 섬유직물의 적층 성형재료를 온도와 압력에 의하여 열가소성 수지가 직물 사이에 함침되도록 오토클래이브 성형 또는 프레스 성형한다. Figure 2 is a schematic cross-sectional view of a manufacturing facility for explaining a method of manufacturing a fiber reinforced composite material according to an embodiment of the present invention. Referring to FIG. 2, first, the thermoplastic resin film is cut in accordance with a mold shape. Subsequently, the laminated resin film is alternately laminated between the reinforcing fiber fabrics one by one, and then the autoclave is formed so that the thermoplastic resin is impregnated between the fabrics by the temperature and pressure of the laminated molding material of the thermoplastic film and the fiber fabric. Eve molding or press molding.

본 발명에서는 도 2에 도시된 바와 같이 진공백(vacuum bag)을 구비하는 성형 장치를 이용하는 진공 배깅(vacuum bagging) 기술에 의해서 복합재료를 제조한다. 몰드(10) 위에 상하 이형필름(20, 20′)을 덮을 수 있도록 구성된 진공백(50)이 장착되며, 진공백(50)의 측면에는 그의 내부를 진공상태가 되도록 진공력을 제공하는 진공라인이 구비된다. 진공라인에 의해서 진공백 내부의 공기가 배출되기 시작하면 밀봉되어 있던 복합재료 시이트 내부가 감압되면서 열가소성 수지 필름이 섬유직물에 밀착하게 되는데, 이들이 밀착되면 공기가 배출되지 않으므로, 소정의 기공이 있는 브리더(breather)(40)를 설치한다. 즉, 복합재료 시이트 내부가 감압되어 복합재료 시이트가 밀착되더라도, 브리더(40) 내의 기공을 통하여 복합재료 내부의 공기가 지속적으로 배출되어 복합재료 시이트 내부를 완전히 진공상태로 만들 수 있다.In the present invention, the composite material is manufactured by a vacuum bagging technique using a molding apparatus having a vacuum bag as shown in FIG. The vacuum bag 50 configured to cover the upper and lower release films 20 and 20 'is mounted on the mold 10, and a vacuum line is provided on the side of the vacuum bag 50 to provide a vacuum force to the inside thereof in a vacuum state. Is provided. When the air inside the vacuum bag starts to be discharged by the vacuum line, the inside of the sealed composite sheet is decompressed, and the thermoplastic film adheres to the fiber fabric. Install the (breather) (40). That is, even when the inside of the composite sheet is depressurized to closely adhere to the composite sheet, the air in the composite material is continuously discharged through the pores in the breather 40 to completely vacuum the inside of the composite sheet.

본 발명에서 이형 필름(20) 위에 섬유직물(60)을 놓고, 그 위에 열가소성 수지 필름(70)을 적층하고, 그 위에 섬유직물(60′), 열가소성 수지 필름(70′), 섬유직물(60″)을 차례로 적층한다. 이렇게 하여 준비된 진공백 내의 시트 상의 적층 성형재료를 오토클레이브 안에 삽입하고 증기를 불어 넣어 가열 가공하거나 또는 압축공기를 송입하여 가압함으로써 용융과 함침이 동시에 진행되어 섬유보강 복합 재료를 제조할 수 있다. In the present invention, the fibrous fabric 60 is placed on the release film 20, the thermoplastic film 70 is laminated thereon, and the fibrous fabric 60 ', the thermoplastic resin film 70', and the fibrous fabric 60 are disposed thereon. Are stacked one after the other. The laminated molding material on the sheet in the vacuum bag thus prepared is inserted into the autoclave and blows steam to heat processing or pressurized by pressurized compressed air to pressurize and impregnate simultaneously to produce a fiber reinforced composite material.

상기 섬유직물의 두께는 약 0.1 내지 1.5 mm이고, 상기 열가소성 수지 필름의 두께는 0.01 ~ 1 mm인 것이 좋고, 전체 매수 및 두께는 용도에 따라서 조절될 수 있다. The thickness of the fiber fabric is about 0.1 to 1.5 mm, the thickness of the thermoplastic resin film is preferably 0.01 to 1 mm, the total number and thickness can be adjusted according to the application.

성형에 필요한 조건은 가압 조건은 1 내지 5 kgf/cm2 이며 온도는 열가소성 수지의 녹는점에 의존하지만 일반적으로 100도 내지 200도에서 이루어진다.The conditions required for molding are pressurization conditions of 1 to 5 kgf / cm 2 and temperature depending on the melting point of the thermoplastic resin, but generally at 100 to 200 degrees.

본 발명에서 사용가능한 섬유 보강재의 예들은 천연섬유, 합성섬유, 탄소섬유, 세라믹 섬유, 유리 섬유, 금속 섬유 및 금속 피복 섬유 및 이들의 혼합 재료를 포함하지만, 반드시 이들로 제한되는 것은 아니다. 유리 섬유는, 강도, 탄성률, 내굴곡성이 뛰어나고 저렴하다는 점에서 바람직하다. 유리 섬유에는 E유리(전기용), C유리(내식용), S유리, T유리(고강도/고탄성률) 등이 있는데, 사용 목적에 따라 적절하게 선택할 수 있다. 한편, 고강도/고탄성률이 요구되는 분야에 있어서는 탄소 섬유를 유리하게 이용할 수 있다.Examples of fiber reinforcements usable in the present invention include, but are not necessarily limited to, natural fibers, synthetic fibers, carbon fibers, ceramic fibers, glass fibers, metal fibers and metal sheathed fibers and mixed materials thereof. Glass fiber is preferable at the point which is excellent in strength, elasticity modulus, and bend resistance, and is cheap. Glass fibers include E glass (for electric), C glass (for corrosion resistance), S glass, T glass (high strength / high modulus), and the like can be appropriately selected depending on the intended use. On the other hand, in the field where high strength / high modulus is required, carbon fiber can be advantageously used.

상기 탄소섬유로는 PAN, 피치, 셀룰로오스, 레이온 등의 섬유를 열처리함으로써 얻어지는, 섬유 직경이 5?15㎛ 인 종래의 탄소섬유는 물론, 섬유 직경 0.5?500㎚, 섬유 길이 1000㎛ 이하인 미세 탄소섬유인 탄소나노튜브도 사용할 수 있다. The carbon fiber is a fine carbon fiber having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 μm, as well as a conventional carbon fiber having a fiber diameter of 5 to 15 μm obtained by heat-treating fibers such as PAN, pitch, cellulose, and rayon. Phosphorus carbon nanotubes can also be used.

탄소섬유는 일반적으로 출발물질에 따라 폴리아크릴로니트릴 (PAN)계, 아크릴(acryl)계, 피치(pitch)계, 페놀(phenol)계 등으로 분류할 수 있다. 이러한 탄소섬유의 제조는 PAN계, 아크릴계, 피치계, 페놀계 등의 고분자를 상온 또는 고온에서 용융하여 물리적인 압력으로 밀어내거나 뽑아내는 습식방사, 용융방사, 건식방사방법을 이용한다. 전기방사법에 의해 제조되는 나노탄소섬유 또는 나노 활성탄소섬유는 주로 PAN, 피치 또는 페놀 등을 메타크레졸 같은 용매에 용해시켜 전기방사하여 나노섬유를 제조한 후 안정화, 탄소화 혹은 활성화시켜 제조된다.Carbon fibers can be generally classified into polyacrylonitrile (PAN) -based, acryl-based, pitch-based, phenol-based and the like according to starting materials. The carbon fiber is manufactured by wet spinning, melt spinning, and dry spinning methods in which polymers such as PAN, acrylic, pitch, and phenol are melted at room temperature or high temperature to be pushed out or extracted at physical pressure. Nanocarbon fibers or nano activated carbon fibers prepared by electrospinning are mainly prepared by dissolving PAN, pitch, or phenol in a solvent such as metacresol, followed by electrospinning to prepare nanofibers, and then stabilizing, carbonizing, or activating them.

또한, 열가소성 수지로서는, 폴리에틸렌이나 폴리프로필렌 등의 폴리올레핀계 수지, 나일론 6, 나일론 66, 나일론 12, 나일론 46으로 대표되는 폴리아미드계 수지, 폴리에틸렌 테레프탈레이트나 폴리부틸렌 테레프탈레이트 등의 폴리에스테르계 수지, 폴리에테르케톤 수지, 폴리페닐렌설파이드 수지, 폴리에테르이미드 수지, 폴리카보네이트 수지, 페놀수지, 우레아 수지, 멜라민 수지, 에폭시 수지, 알키드 수지, 비닐 에스테르 수지, 크실렌 수지, 및 푸란류 수지로 구성되는 군에서 선택되는 1종 이상을 사용할 수 있다. Moreover, as thermoplastic resin, polyolefin resin, such as polyethylene and a polypropylene, polyamide resin represented by nylon 6, nylon 66, nylon 12, nylon 46, polyester resin, such as polyethylene terephthalate and polybutylene terephthalate, , Polyether ketone resin, polyphenylene sulfide resin, polyetherimide resin, polycarbonate resin, phenol resin, urea resin, melamine resin, epoxy resin, alkyd resin, vinyl ester resin, xylene resin, and furan resin One or more types selected from the group can be used.

특히 내열성이 요구되는 분야에 있어서는 폴리에스테르계 수지가 좋고, 비용 절감, 내수성, 내화학약품성이 요구되는 분야에서는 폴리올레핀계 수지인 것이 바람직하다. 폴리프로필렌 수지는 내용제 성능이 우수하고, 성형 조건이 넓은 점에서 유리하고, 내마모성, 내유성(耐油性)이 필요한 경우에는 폴리아미드계 수지가 바람직하다. Especially in the field where heat resistance is required, the polyester resin is good, and in the field where cost reduction, water resistance and chemical resistance are required, the polyolefin resin is preferable. Polypropylene resin is advantageous in terms of excellent solvent performance, wide molding conditions, and polyamide-based resin is preferable when abrasion resistance and oil resistance are required.

본 발명의 다른 양상은 본 발명의 방법에 의해서 제조되는 복합재료에 관계한다. 본 발명의 복합 재료는 항공우주산업 및 자동차산업에 특히 유용한데, 일례로 항공기, 자동차, 전차, 소형기, 보트, 선박 등의 수송기기 전반이나 각종 산업기계의 외부판의 소재로 사용될 수 있다. 특히 탄소섬유 강화 복합재료 (carbon fiber-reinforced composites)는 항공우주산업뿐만 아니라 핵 및 일반 기술과 관련된 고도의 기술 분야, 및 베어링, 기어, 캠, 자동차 동체 등과 같은 운송 분야에서 주로 사용가능하고, 그 밖에 전기, 전자, 재료, 토목/건축재료, 자동차, 선박, 군사장비, 스포츠용품 등 다양한 분야에 응용될 수 있다. Another aspect of the invention relates to a composite material produced by the method of the invention. The composite material of the present invention is particularly useful in the aerospace industry and the automobile industry. For example, the composite material of the present invention may be used as an overall material of transport equipment such as aircraft, automobiles, trams, small machines, boats, ships, and the like in the outer plate of various industrial machines. In particular, carbon fiber-reinforced composites are mainly used in the aerospace industry as well as in the highly technical fields related to nuclear and general technologies, and in the transportation sectors such as bearings, gears, cams, and automotive fuselage. In addition, it can be applied to various fields such as electric, electronics, materials, civil engineering / building materials, automobiles, ships, military equipment, and sports goods.

이하에서 실시예에 의해 본 발명을 더욱 상세하게 설명하는데, 본 발명의 기술적 범위가 이들에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited thereto.

실시예Example

비교예 1Comparative Example 1

프리프레그 제조를 위하여 에폭시 수지를 약 80℃로 유지되고 있는 코팅기에 투입하였다. 코팅기의 롤러를 회전시키며 롤러에 에폭시 수지를 코팅한 다음, 한쪽 면이 폴리에틸렌으로 코팅된 이형지를 1000 cm/min의 속도로 롤러의 원주면에 공급하여 이형지에 에폭시 수지를 도포하였다. 이때, 롤러의 간격을 조절하여 도포되는 에폭시 수지를 50㎛의 두께로 도포하였다. 에폭시 수지가 도포된 이형지를 5℃의 냉각판을 통과시켜 액체상의 에폭시 수지를 고체상의 에폭시 수지층으로 형성한 다음, 이형지와 맞닿은 수지층의 반대 면에 보강섬유로서 탄소섬유를 1 kgf/cm2의 압력으로 압착하여 적층함으로써 프리프레그를 제조하였다. 이렇게 제조된 프리프레그를 이용하여 한 장씩 적층한 후 열압착하여 복합재료를 제작하였다.
Epoxy resin was added to a coater maintained at about 80 ° C. for prepreg production. The roller of the coating machine was rotated to coat the epoxy resin on the roller, and then the release paper coated with polyethylene on one side was supplied to the circumferential surface of the roller at a speed of 1000 cm / min to apply the epoxy resin to the release paper. At this time, the epoxy resin to be applied by adjusting the interval of the roller was applied to a thickness of 50㎛. Epoxy resin-coated release paper was passed through a 5 ° C. cooling plate to form a liquid epoxy resin as a solid epoxy resin layer, and then 1 kgf / cm 2 of carbon fiber as a reinforcing fiber on the opposite side of the resin layer in contact with the release paper. The prepreg was manufactured by pressing and laminating | stacking at the pressure of. Using the prepreg prepared as described above was laminated one by one to produce a composite material by thermal compression.

실시예 1Example 1

본 실시예에서 보강용 섬유직물로는 두께 0.27 mm의 탄소섬유 섬유직물을 사용하였고, 열가소성 수지 필름으로는 두께는 0.05 mm의 나일론 필름을 사용하였다. 상기 나일론 필름을 몰드 형태에 맞게 제단한 후, 탄소섬유 섬유직물과 나일론 필름을 교대로 한 장씩 적층하여 총 10 플라이(ply)의 프리폼을 제작하였다. 이어서 이러한 프리폼을 몰드 위에 올려 놓고 진공 필름으로 덮은 뒤에 진공 펌프를 사용하여 압착 고정하였다. 그리고 오토클레이브에 투입 후 3 kgf/m2의 압력으로 공기압을 주입하면서 170도에서 2시간 유지하여, 상기 나일론 필름이 탄소섬유 섬유직물 사이에 함침되도록 하였다. 오토클레이브 성형이 완료되고나서 약 1 시간 정도 냉각시켜 섬유보강 복합재료를 수득하였다. In the present embodiment, a carbon fiber fiber fabric having a thickness of 0.27 mm was used as the reinforcing fiber fabric, and a nylon film having a thickness of 0.05 mm was used as the thermoplastic resin film. After the nylon film was cut to fit the mold shape, a carbon fiber fiber fabric and a nylon film were alternately stacked one by one to prepare a total of 10 plies of preforms. This preform was then placed on a mold and covered with a vacuum film and then press-fixed using a vacuum pump. And it was maintained at 170 degrees for 2 hours while injecting air pressure at a pressure of 3 kgf / m 2 after being put into the autoclave, so that the nylon film was impregnated between the carbon fiber fiber fabric. After completion of autoclave molding, cooling was performed for about 1 hour to obtain a fiber reinforced composite material.

상기 비교예의 방법과 달리 본 발명의 방법에서는 별도로 프리프레그를 제조하는 공정을 거치지 않고 직접 보강용 섬유직물과 열가소성 수지 필름을 교대로 적층한 후 성형함으로써 전체 공정을 단축하여 공정시간 및 제조비용을 절감할 수 있다.
Unlike the method of the comparative example, in the method of the present invention, instead of going through the process of manufacturing the prepreg separately, by directly stacking the reinforcing fiber fabric and the thermoplastic resin film alternately and molding to shorten the overall process to reduce the process time and manufacturing cost can do.

이상에서 실시예 및 첨부된 도면에 기초하여 본 발명에 대해서 상세하게 설명하였으나, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 자명하므로, 본 발명의 보호범위는 첨부되는 청구범위에 의해서 정해져야 할 것이다.
Although the present invention has been described in detail with reference to the embodiments and the accompanying drawings, various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. As will be apparent to those skilled in the art, the scope of protection of the present invention should be defined by the appended claims.

10: 몰드 20, 20′: 이형 필름
40: 브리더(breather) 50: 진공백
60, 60′, 60″: 섬유직물
70, 70′: 열가소성 수지 필름
10: mold 20, 20 ': release film
40: breather 50: vacuum bag
60, 60 ′, 60 ″: textile fabric
70, 70 ′: thermoplastic film

Claims (7)

열가소성 수지 필름을 몰드 형태에 맞게 제단하는 단계;
제단된 열가소성 수지 필름을 보강용 섬유직물 사이 사이에 한 장 씩 교대로 적층하는 단계; 및
상기 열가소성 수지 필름과 섬유직물의 적층 성형재료를 온도와 압력에 의하여 열가소성 수지가 직물 사이에 함침되도록 오토클래이브 또는 프레스 성형하는 단계를 포함하는 섬유보강 복합재료의 제조방법.
Cutting the thermoplastic resin film into a mold shape;
Alternately laminating the cut thermoplastic resin film one by one between the reinforcing fiber fabrics; And
Autoclave or press-molding the thermoplastic resin film and the laminated molding material of the fiber fabric to impregnate the thermoplastic resin between the fabric by the temperature and pressure.
제1항에 있어서, 상기 섬유 보강재는 천연섬유, 합성섬유, 탄소섬유, 세라믹 섬유, 유리 섬유, 금속 섬유 및 금속 피복 섬유로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 섬유보강 복합재료의 제조방법.
The fiber reinforced composite material according to claim 1, wherein the fiber reinforcing material is at least one member selected from the group consisting of natural fiber, synthetic fiber, carbon fiber, ceramic fiber, glass fiber, metal fiber and metal coated fiber. Manufacturing method.
제1항에 있어서, 상기 열경화성 수지는 폴리올레핀계 수지, 폴리아미드계 수지, 폴리에스테르계 수지, 폴리에테르케톤 수지, 폴리페닐렌설파이드 수지, 폴리에테르이미드 수지, 폴리카보네이트 수지, 페놀수지, 우레아 수지, 멜라민 수지, 에폭시 수지, 알키드 수지, 비닐 에스테르 수지, 크실렌 수지, 및 푸란류로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 섬유보강 복합재료의 제조방법.The method of claim 1, wherein the thermosetting resin is a polyolefin resin, polyamide resin, polyester resin, polyether ketone resin, polyphenylene sulfide resin, polyetherimide resin, polycarbonate resin, phenol resin, urea resin, A method for producing a fiber reinforced composite material, characterized in that at least one member selected from the group consisting of melamine resin, epoxy resin, alkyd resin, vinyl ester resin, xylene resin, and furan. 제 1항에 있어서, 상기 보강섬유는 탄소나노튜브인 것을 특징으로 하는 섬유보강 복합재료의 제조방법.
The method of claim 1, wherein the reinforcing fibers are carbon nanotubes.
제 1항에 있어서, 상기 성형 단계에서 가압 조건은 1 내지 5 kgf/cm2이며 온도는 100도 내지 200도인 것을 특징으로 하는 섬유보강 복합재료의 제조방법.
The method of claim 1, wherein the pressing conditions in the molding step is 1 to 5 kgf / cm 2 and the temperature is 100 to 200 degrees manufacturing method of the fiber reinforced composite material.
제 1항에 있어서, 상기 섬유직물의 두께는 0.1 내지 1.5 mm이고, 상기 열가소성 수지 필름의 두께는 0.01 ~ 1 mm인 것을 특징으로 하는 섬유보강 복합재료의 제조방법.
The method of claim 1, wherein the fiber fabric has a thickness of 0.1 to 1.5 mm, and the thermoplastic resin film has a thickness of 0.01 to 1 mm.
제 1항 내지 제6항 중 어느 하나의 항의 방법에 의해서 제조된 섬유보강 복합재료. Fiber-reinforced composite material produced by the method of any one of claims 1 to 6.
KR1020100140620A 2010-12-31 2010-12-31 Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby KR20120078345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100140620A KR20120078345A (en) 2010-12-31 2010-12-31 Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100140620A KR20120078345A (en) 2010-12-31 2010-12-31 Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby

Publications (1)

Publication Number Publication Date
KR20120078345A true KR20120078345A (en) 2012-07-10

Family

ID=46711709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100140620A KR20120078345A (en) 2010-12-31 2010-12-31 Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby

Country Status (1)

Country Link
KR (1) KR20120078345A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016518A1 (en) * 2013-07-30 2015-02-05 (주)엘지하우시스 Continuous fiber reinforced resin composite material and molded article thereof
WO2015084065A1 (en) * 2013-12-06 2015-06-11 주식회사 엘지화학 Composite material with improved mechanical properties and molded article containing same
CN104960581A (en) * 2015-07-20 2015-10-07 奇瑞汽车股份有限公司 Automobile rear floor made from composite materials and manufacturing method of automobile rear floor
CN110181905A (en) * 2019-06-04 2019-08-30 中国人民解放军第五七一零工厂 Fiber/metal laminate composite material airplane floor and manufacturing method
CN111039685A (en) * 2019-11-22 2020-04-21 烟台凯泊复合材料科技有限公司 Large integral thin-wall carbon/ceramic composite material gas limiting cylinder and preparation method thereof
KR102131095B1 (en) * 2019-04-03 2020-07-07 주식회사 넥스컴스 Manufacture method of composite nozzle and projectile insulation parts with phenolic film
KR102144682B1 (en) * 2019-11-27 2020-08-18 재단법인 한국탄소융합기술원 Automated fiber placement machine and thermoplastic reinforced panel of aircraft made by the same
KR102274173B1 (en) * 2020-07-15 2021-07-08 한국항공우주산업 주식회사 Co curing method of composite material through reinforcement and its composite material
KR20210136297A (en) * 2020-05-07 2021-11-17 한국과학기술원 Method for manufacturing energy storage materials using gas permeability of polymer and autoclave manufacturing process
KR20220021847A (en) * 2020-08-14 2022-02-22 주식회사 유원 Fiber reinforced polymer composite and roll wiper using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016518A1 (en) * 2013-07-30 2015-02-05 (주)엘지하우시스 Continuous fiber reinforced resin composite material and molded article thereof
WO2015084065A1 (en) * 2013-12-06 2015-06-11 주식회사 엘지화학 Composite material with improved mechanical properties and molded article containing same
CN104960581A (en) * 2015-07-20 2015-10-07 奇瑞汽车股份有限公司 Automobile rear floor made from composite materials and manufacturing method of automobile rear floor
KR102131095B1 (en) * 2019-04-03 2020-07-07 주식회사 넥스컴스 Manufacture method of composite nozzle and projectile insulation parts with phenolic film
CN110181905A (en) * 2019-06-04 2019-08-30 中国人民解放军第五七一零工厂 Fiber/metal laminate composite material airplane floor and manufacturing method
CN110181905B (en) * 2019-06-04 2024-01-23 凌云(宜昌)航空装备工程有限公司 Aircraft floor made of fiber/metal laminate composite material and manufacturing method
CN111039685A (en) * 2019-11-22 2020-04-21 烟台凯泊复合材料科技有限公司 Large integral thin-wall carbon/ceramic composite material gas limiting cylinder and preparation method thereof
KR102144682B1 (en) * 2019-11-27 2020-08-18 재단법인 한국탄소융합기술원 Automated fiber placement machine and thermoplastic reinforced panel of aircraft made by the same
WO2021107340A1 (en) * 2019-11-27 2021-06-03 재단법인 한국탄소융합기술원 Automatic fiber lamination apparatus and thermoplastic reinforced panel for aircraft manufactured thereby
KR20210136297A (en) * 2020-05-07 2021-11-17 한국과학기술원 Method for manufacturing energy storage materials using gas permeability of polymer and autoclave manufacturing process
KR102274173B1 (en) * 2020-07-15 2021-07-08 한국항공우주산업 주식회사 Co curing method of composite material through reinforcement and its composite material
KR20220021847A (en) * 2020-08-14 2022-02-22 주식회사 유원 Fiber reinforced polymer composite and roll wiper using the same

Similar Documents

Publication Publication Date Title
KR20120078345A (en) Preparation method of fiber reinforced composite material and fiber reinforced composite material prepared thereby
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
RU2640553C2 (en) Composite reinforcing yarn, prepreg, tape for 3d printing and installation for their production
AU2017209441B2 (en) Fabrication of complex-shaped composite structures
KR101934059B1 (en) Thermoplastic prepreg and method for producing the same
US20100218890A1 (en) Methods for preparing nanoparticle-containing thermoplastic composite laminates
US7981500B2 (en) Carbon fiber reinforced prepreg of gas barrier properties, carbon fiber reinforced plastic and methods of producing the same
CN104903104A (en) Method for preparing continuous carbon fiber-reinforced thermoplastic prepreg
JP2014125532A5 (en)
KR20170124545A (en) Resin supply material, preform, and method for producing fiber-reinforced resin
KR102285655B1 (en) Fiber-reinforced resin intermediate material, fiber-reinforced resin molded body, and method for manufacturing a fiber-reinforced resin intermediate material
JP2008266648A (en) Fiber reinforced thermoplastic resin composite material and formed article using it
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
JP2005052987A (en) Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material
KR101961103B1 (en) Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same
TW202006025A (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
US20160265157A1 (en) Structured flock fiber reinforced layer
CN111844946A (en) Novel composite board and preparation method thereof
EP2384884A1 (en) A method of fabricating a reinforced composite part and a reinforced composite part obtained with said method
EP2433780A1 (en) Improved automated manufacturing process for high performance composite material part
EP3585607B1 (en) Fiber composite with reduced surface roughness and method for its manufacture
CN115485423B (en) Bicomponent or multicomponent fibers for large composite parts
CN212979447U (en) Novel composite board

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination