JP6989780B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6989780B2
JP6989780B2 JP2018205563A JP2018205563A JP6989780B2 JP 6989780 B2 JP6989780 B2 JP 6989780B2 JP 2018205563 A JP2018205563 A JP 2018205563A JP 2018205563 A JP2018205563 A JP 2018205563A JP 6989780 B2 JP6989780 B2 JP 6989780B2
Authority
JP
Japan
Prior art keywords
heat exchanger
dehumidifying
indoor heat
internal drying
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205563A
Other languages
Japanese (ja)
Other versions
JP2020070977A (en
Inventor
智彦 堤
裕 伊藤
顕 木下
純也 米田
均 川島
貴裕 仲田
久瑠美 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018205563A priority Critical patent/JP6989780B2/en
Publication of JP2020070977A publication Critical patent/JP2020070977A/en
Application granted granted Critical
Publication of JP6989780B2 publication Critical patent/JP6989780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、空気調和機に関する。 The present disclosure relates to an air conditioner.

従来、空気調和機としては、室内機と人検知センサを備え、冷房運転や除湿運転後に、人検知センサが人を検知した場合と人を検知しなかった場合で異なる内部乾燥運転を行うものがある(例えば、特開2018-112372号公報(特許文献1)参照)。 Conventionally, an air conditioner is equipped with an indoor unit and a human detection sensor, and performs different internal drying operations depending on whether the human detection sensor detects a person or not after cooling operation or dehumidifying operation. (See, for example, Japanese Patent Application Laid-Open No. 2018-11237 (Patent Document 1)).

特開2018-112372号公報Japanese Unexamined Patent Publication No. 2018-11237

ところで、上記空気調和機では、除湿運転の終了時よりも冷房運転の終了時の方が熱交換器などに付着した水滴量が多いにも関わらず、冷房運転や除湿運転の終了後に行う内部乾燥運転の時間を同じにしている。 By the way, in the above air conditioner, although the amount of water droplets adhering to the heat exchanger or the like is larger at the end of the cooling operation than at the end of the dehumidifying operation, the internal drying performed after the cooling operation or the dehumidifying operation is completed. The driving time is the same.

このため、上記空気調和機では、冷房運転や除湿運転を含む除湿モードに応じた内部乾燥運転の時間の適正化がなされていないため、必要以上に内部乾燥運転が行われて電力が消費されたり、ユーザーが不快に感じたりする場合がある。 For this reason, in the above air conditioner, the time of the internal drying operation according to the dehumidifying mode including the cooling operation and the dehumidifying operation is not optimized, so that the internal drying operation is performed more than necessary and power is consumed. , The user may feel uncomfortable.

また、上記空気調和機では、除湿モードによっては、熱交換器などに付着した水滴量が多い運転の終了後に内部乾燥運転を行うことで室内への湿度戻りが発生して、ユーザーに不快感を与える場合がある。 In addition, in the above air conditioner, depending on the dehumidification mode, the humidity returns to the room by performing the internal drying operation after the operation in which the amount of water droplets adhering to the heat exchanger is large, which causes discomfort to the user. May be given.

本開示では、除湿モードに応じて内部乾燥運転の時間を適正化できる空気調和機を提案する。 The present disclosure proposes an air conditioner capable of optimizing the time of internal drying operation according to the dehumidification mode.

また、本開示では、内部乾燥運転時の湿度戻りを抑制できる空気調和機を提案する。 Further, in the present disclosure, an air conditioner capable of suppressing humidity return during internal drying operation is proposed.

本開示の空気調和機は、
圧縮機、室外熱交換器、膨張機構および室内熱交換器が環状に接続された冷媒回路と、
上記室内熱交換器が風通路内に配置されたケーシングと、上記ケーシングの上記風通路内に配置された室内ファンとを有する室内機と、
上記室内ファンにより上記室内熱交換器を介して室内空気を循環させる送風運転および上記室内熱交換器を凝縮器として機能させる暖房運転の少なくとも一方により上記室内機の上記風通路内を乾燥させる内部乾燥運転を行う制御装置と
を備え、
蒸発域の大きさが異なる複数の除湿モードの運転が可能であり、
上記複数の除湿モード夫々の運転後に行う上記内部乾燥運転は、上記異なる複数の除湿モードに応じて異なる運転時間を用いることが可能なことを特徴とする。
The air conditioner of the present disclosure is
A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger are connected in an annular shape,
An indoor unit having a casing in which the indoor heat exchanger is arranged in the air passage, and an indoor fan arranged in the air passage of the casing.
Internal drying that dries the inside of the air passage of the indoor unit by at least one of the ventilation operation in which the indoor air is circulated through the indoor heat exchanger by the indoor fan and the heating operation in which the indoor heat exchanger functions as a condenser. Equipped with a control device to operate
It is possible to operate in multiple dehumidification modes with different sizes of evaporation areas .
The internal drying operation performed after each of the plurality of dehumidifying modes is characterized in that different operating times can be used depending on the plurality of different dehumidifying modes.

本開示によれば、複数の除湿モード夫々の運転後に行う内部乾燥運転において、蒸発域の大きさが異なる複数の除湿モードに応じて異なる運転時間を用いることが可能であるので、室内熱交換器をしっかり乾燥させることを優先する場合は、室内熱交換器の水滴量が多い除湿モードほど、その除湿モードの運転後に行う内部乾燥運転を長くすることで、室内機の風通路内が確実に乾燥されるようにする。これにより、除湿モードに応じて内部乾燥運転の時間を適正化できる。 According to the present disclosure, in the internal drying operation performed after each of the plurality of dehumidifying modes, it is possible to use different operating times according to the plurality of dehumidifying modes having different sizes of evaporation regions . If the priority is to dry the indoor heat exchanger firmly, the dehumidifying mode with a large amount of water droplets in the indoor heat exchanger is longer than the internal drying operation performed after the operation of the dehumidifying mode, so that the inside of the air passage of the indoor unit is surely dried. To be done. Thereby, the time of the internal drying operation can be optimized according to the dehumidification mode.

また、室内熱交換器から室内への湿度戻りを少なくすることを優先する場合は、室内熱交換器の水滴量が多い除湿モードほど、その除湿モードの運転後に行う内部乾燥運転を短くすることで、室内へ湿気が戻るのを抑える。これにより、除湿モードに応じて内部乾燥運転時の湿度戻りを抑制できる。 If priority is given to reducing the return of humidity from the indoor heat exchanger to the room, the dehumidifying mode with a larger amount of water droplets in the indoor heat exchanger can shorten the internal drying operation performed after the operation of the dehumidifying mode. , Prevents moisture from returning to the room. As a result, it is possible to suppress the return of humidity during the internal drying operation according to the dehumidification mode.

また、本開示の1つの態様に係る空気調和機では、
上記複数の除湿モードの運転は、上記室内熱交換器の実質的に全部を蒸発域とする第1除湿運転と、上記室内熱交換器の一部を凝縮域とする一方、上記室内熱交換器の残りの部分を蒸発域とする第2除湿運転とを含み、
上記第1除湿運転後の上記内部乾燥運転の運転時間は、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも長い。
Further, in the air conditioner according to one aspect of the present disclosure,
In the operation of the plurality of dehumidifying modes, the first dehumidifying operation in which substantially the entire indoor heat exchanger is set as the evaporation region and the operation in which a part of the indoor heat exchanger is set as the condensed region, while the indoor heat exchanger is used. Including the second dehumidification operation with the remaining part of the evaporation area
The operation time of the internal drying operation after the first dehumidifying operation is longer than the operating time of the internal drying operation after the second dehumidifying operation.

本開示によれば、室内熱交換器の実質的に全部を蒸発域となる第1除湿運転の終了後の室内熱交換器に付着した水滴量が第2除湿運転よりも多いので、第1除湿運転後の内部乾燥運転の運転時間を長くして、第1除湿運転の終了後の室内機の風通路内を確実に乾燥させることが可能になる。 According to the present disclosure, since the amount of water droplets adhering to the indoor heat exchanger after the completion of the first dehumidifying operation in which substantially the entire indoor heat exchanger is in the evaporation region is larger than that in the second dehumidifying operation, the first dehumidification is performed. By lengthening the operation time of the internal drying operation after the operation, it becomes possible to surely dry the inside of the air passage of the indoor unit after the end of the first dehumidifying operation.

また、本開示の1つの態様に係る空気調和機では、
上記複数の除湿モードの運転は、上記室内熱交換器の一部を蒸発域にする一方、上記室内熱交換器の残りの部分を過熱域にする第3除湿運転を含み、
上記第3除湿運転後の上記内部乾燥運転の運転時間は、上記第1除湿運転後の上記内部乾燥運転の運転時間よりも短く、かつ、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも長い。
Further, in the air conditioner according to one aspect of the present disclosure,
The operation of the plurality of dehumidifying modes includes a third dehumidifying operation in which a part of the indoor heat exchanger is set as an evaporation zone and the remaining part of the indoor heat exchanger is set as a superheat zone.
The operation time of the internal drying operation after the third dehumidifying operation is shorter than the operating time of the internal drying operation after the first dehumidifying operation, and the operating time of the internal drying operation after the second dehumidifying operation. Longer than.

本開示によれば、室内熱交換器に付着する水滴量が多い第1除湿運転、第3除湿運転、第2除湿運転の順に、内部乾燥運転の運転時間が長短に設定されることで、第1~第3除湿運転の除湿モードに応じて内部乾燥運転の時間を適正化できる。 According to the present disclosure, the operation time of the internal drying operation is set to be longer and shorter in the order of the first dehumidifying operation, the third dehumidifying operation, and the second dehumidifying operation in which the amount of water droplets adhering to the indoor heat exchanger is large. The time of the internal drying operation can be optimized according to the dehumidifying mode of the first to third dehumidifying operations.

また、本開示の1つの態様に係る空気調和機では、
上記複数の除湿モードの運転は、上記室内熱交換器の実質的に全部を蒸発域とする第1除湿運転と、上記室内熱交換器の一部を凝縮域とする一方、上記室内熱交換器の残りの部分を蒸発域とする第2除湿運転とを含み、
上記第1除湿運転後の上記内部乾燥運転の運転時間は、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも短い。
Further, in the air conditioner according to one aspect of the present disclosure,
In the operation of the plurality of dehumidifying modes, the first dehumidifying operation in which substantially the entire indoor heat exchanger is set as the evaporation region and the operation in which a part of the indoor heat exchanger is set as the condensed region, while the indoor heat exchanger is used. Including the second dehumidification operation with the remaining part of the evaporation area
The operation time of the internal drying operation after the first dehumidifying operation is shorter than the operating time of the internal drying operation after the second dehumidifying operation.

本開示によれば、室内熱交換器の実質的に全部を蒸発域とする第1除湿運転の終了後の室内熱交換器に付着した水滴量が第2除湿運転よりも多いので、室内熱交換器の水滴量が多い第1除湿運転ほど、その第1除湿運転の運転後に行う内部乾燥運転を短くすることで、第1除湿運転の終了後の内部乾燥運転時の湿度戻りを抑制できる。 According to the present disclosure, since the amount of water droplets adhering to the indoor heat exchanger after the completion of the first dehumidifying operation in which substantially the entire indoor heat exchanger is the evaporation area is larger than that in the second dehumidifying operation, the indoor heat exchange is performed. The larger the amount of water droplets in the vessel, the shorter the internal drying operation performed after the first dehumidifying operation, so that the humidity return during the internal drying operation after the completion of the first dehumidifying operation can be suppressed.

また、本開示の1つの態様に係る空気調和機では、
上記複数の除湿モードの運転は、上記室内熱交換器の一部を蒸発域にする一方、上記室内熱交換器の残りの部分を過熱域にする第3除湿運転を含み、
上記第3除湿運転後の内部乾燥運転の運転時間は、上記第1除湿運転後の上記内部乾燥運転の運転時間よりも長く、かつ、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも短い。
Further, in the air conditioner according to one aspect of the present disclosure,
The operation of the plurality of dehumidifying modes includes a third dehumidifying operation in which a part of the indoor heat exchanger is set as an evaporation zone and the remaining part of the indoor heat exchanger is set as a superheat zone.
The operation time of the internal drying operation after the third dehumidifying operation is longer than the operating time of the internal drying operation after the first dehumidifying operation, and is longer than the operating time of the internal drying operation after the second dehumidifying operation. Is also short.

本開示によれば、室内熱交換器に付着した水滴量が少ない第2除湿運転、第3除湿運転、第1除湿運転の順に、内部乾燥運転の運転時間が長短に設定されることで、第1~第3除湿運転の終了後の内部乾燥運転時の湿度戻りを抑制できる。 According to the present disclosure, the operation time of the internal drying operation is set to be longer and shorter in the order of the second dehumidifying operation, the third dehumidifying operation, and the first dehumidifying operation in which the amount of water droplets adhering to the indoor heat exchanger is small. It is possible to suppress the return of humidity during the internal drying operation after the completion of the first to third dehumidifying operations.

また、本開示の1つの態様に係る空気調和機では、
上記第3除湿運転の継続時間が第1所定時間以上のとき、該第3除湿運転後に上記内部乾燥運転を行うと共に、
上記第2除湿運転の継続時間が第2所定時間以上のとき、該第2除湿運転後に上記内部乾燥運転を行う。
Further, in the air conditioner according to one aspect of the present disclosure,
When the duration of the third dehumidifying operation is longer than the first predetermined time, the internal drying operation is performed after the third dehumidifying operation, and the internal drying operation is performed.
When the duration of the second dehumidifying operation is longer than the second predetermined time, the internal drying operation is performed after the second dehumidifying operation.

本開示によれば、第3除湿運転の継続時間が第1所定時間未満のとき、すなわち、室内熱交換器に付着した水滴量が少ない短時間の第3除湿運転では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。また、第2除湿運転の継続時間が第2所定時間未満のとき、すなわち、室内熱交換器に付着した水滴量が少ない短時間の第2除湿運転では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。 According to the present disclosure, when the duration of the third dehumidifying operation is less than the first predetermined time, that is, in the short-time third dehumidifying operation in which the amount of water droplets adhering to the indoor heat exchanger is small, the internal drying operation is not performed. , The internal drying operation can be performed efficiently. Further, when the duration of the second dehumidifying operation is less than the second predetermined time, that is, in the second dehumidifying operation for a short time in which the amount of water droplets adhering to the indoor heat exchanger is small, the internal drying operation is not performed, so that the internal drying operation is performed. Can be done efficiently.

本開示の第1実施形態の空気調和器の冷媒回路の回路図である。It is a circuit diagram of the refrigerant circuit of the air conditioner of 1st Embodiment of this disclosure. 上記空気調和機の室内機の断面模式図である。It is sectional drawing of the indoor unit of the said air conditioner. 上記空気調和機の制御ブロック図である。It is a control block diagram of the said air conditioner. 上記空気調和機の冷房除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the cooling dehumidification operation of the said air conditioner. 上記空気調和機の過絞り除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the over-throbbing dehumidification operation of the said air conditioner. 上記空気調和機の再熱除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the reheat dehumidification operation of the said air conditioner. 上記空気調和機の冷房除湿運転時、過絞り除湿運転時および再熱除湿運転時のモリエル線図である。It is a Moriel diagram at the time of the cooling dehumidification operation, the over-throttle dehumidification operation, and the reheat dehumidification operation of the air conditioner. 上記空気調和機の内部乾燥運転を説明するタイミングチャートである。It is a timing chart explaining the internal drying operation of the said air conditioner. 本開示の第3実施形態の空気調和機の内部乾燥運転を説明するタイミングチャートである。It is a timing chart explaining the internal drying operation of the air conditioner of the 3rd Embodiment of this disclosure.

以下、実施形態を説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さ等の図面上の寸法は、図面の明瞭化と簡略化のために実際の尺度から適宜変更されており、実際の相対寸法を表してはいない。 Hereinafter, embodiments will be described. In the drawings, the same reference number represents the same part or the corresponding part. Further, the dimensions on the drawing such as length, width, thickness, and depth are appropriately changed from the actual scale for the purpose of clarifying and simplifying the drawing, and do not represent the actual relative dimensions.

〔第1実施形態〕
図1は、本開示の第1実施形態の空気調和機が備える冷媒回路RCの回路図である。
[First Embodiment]
FIG. 1 is a circuit diagram of a refrigerant circuit RC included in the air conditioner according to the first embodiment of the present disclosure.

上記空気調和機は、空調対象である室内に設置される室内機1と、室外に設置される室外機2とを備える。 The air conditioner includes an indoor unit 1 installed indoors to be air-conditioned and an outdoor unit 2 installed outdoors.

<室内機1の構成>
上記空気調和機の室内機1は、例えば、室内の壁面に取り付けられる壁掛け式の室内ユニットである。この室内機1は、室内熱交換器11と、この室内熱交換器11に空気を送る室内ファン12と、室内熱交換器11の温度を検出する室内熱交換器温度センサ51と、室内温度を検出する室内温度センサ52と、室内湿度を検出する室内湿度センサ53と、ストリーマ放電ユニット30とを有する。
<Structure of indoor unit 1>
The indoor unit 1 of the air conditioner is, for example, a wall-mounted indoor unit mounted on a wall surface of the room. The indoor unit 1 has an indoor heat exchanger 11, an indoor fan 12 that sends air to the indoor heat exchanger 11, an indoor heat exchanger temperature sensor 51 that detects the temperature of the indoor heat exchanger 11, and an indoor temperature. It has an indoor temperature sensor 52 for detecting, an indoor humidity sensor 53 for detecting indoor humidity, and a streamer discharge unit 30.

室内熱交換器11は、室内ファン12による空気流に関して、室内ファン12よりも上流側に位置している。この室内熱交換器11は、室内ファン12からの空気と冷媒との熱交換を行うために、本体熱交換部11aと、補助熱交換部11bと、制御弁の一例としての電磁弁13とを有する。 The indoor heat exchanger 11 is located on the upstream side of the indoor fan 12 with respect to the air flow by the indoor fan 12. The indoor heat exchanger 11 has a main body heat exchange unit 11a, an auxiliary heat exchange unit 11b, and an electromagnetic valve 13 as an example of a control valve in order to exchange heat between the air from the indoor fan 12 and the refrigerant. Have.

本体熱交換部11aは、室内側に位置する正面部11a-1と、室内側とは反対側に位置する背面部11a-2とから成っている。また、正面部11a-1は、冷媒配管L12,L13および電磁弁13を介して背面部11a-2に流体的に接続されている。これにより、膨張弁24から本体熱交換部11aへ流れる冷媒は、正面部11a-1を流れた後、背面部11a-2に流入することが可能となっている。 The main body heat exchange portion 11a includes a front portion 11a-1 located on the indoor side and a back portion 11a-2 located on the side opposite to the indoor side. Further, the front portion 11a-1 is fluidly connected to the back portion 11a-2 via the refrigerant pipes L12 and L13 and the solenoid valve 13. As a result, the refrigerant flowing from the expansion valve 24 to the main body heat exchange portion 11a can flow into the back portion 11a-2 after flowing through the front portion 11a-1.

補助熱交換部11bは、本体熱交換部11aの正面部11a-1に関して本体熱交換部11aの背面部11a-2側とは反対側に設けられている。すなわち、補助熱交換部11bは、本体熱交換部11aの正面部11a-1よりも、室内側に位置する。この補助熱交換部11bは、本体熱交換部11aよりも、容積が小さい。また、補助熱交換部11bの一端に冷媒配管L4が接続され、補助熱交換部11bの他端に、冷媒配管L11を介して本体熱交換部11aの正面部11a-1を接続している。これにより、膨張弁24側からの冷媒は、補助熱交換部11bを介して、本体熱交換部11aに供給される。 The auxiliary heat exchange portion 11b is provided on the side opposite to the back surface portion 11a-2 side of the main body heat exchange portion 11a with respect to the front portion 11a-1 of the main body heat exchange portion 11a. That is, the auxiliary heat exchange portion 11b is located on the indoor side of the front portion 11a-1 of the main body heat exchange portion 11a. The volume of the auxiliary heat exchange unit 11b is smaller than that of the main body heat exchange unit 11a. Further, the refrigerant pipe L4 is connected to one end of the auxiliary heat exchange portion 11b, and the front portion 11a-1 of the main body heat exchange portion 11a is connected to the other end of the auxiliary heat exchange portion 11b via the refrigerant pipe L11. As a result, the refrigerant from the expansion valve 24 side is supplied to the main body heat exchange unit 11a via the auxiliary heat exchange unit 11b.

室内ファン12としては、例えば、クロスフローファンが採用される。このクロスフローファンは、室内熱交換器11で温度などが調整された空気を室内に向けて吹き出す。 As the indoor fan 12, for example, a cross flow fan is adopted. This cross-flow fan blows out air whose temperature and the like are adjusted by the indoor heat exchanger 11 toward the room.

電磁弁13は、室内熱交換器11の冷媒パスの中間部に設けられている。より詳しく説明すると、本体熱交換部11aの正面部11a-1側と本体熱交換部11aの背面部11a-2側との間に差圧を設定するための弁である。電磁弁13は、大開度および小開度の2位置のみを取ることが可能なオンオフ弁であり、必要時(例えば、後述する再熱除湿運転時)にオンされ、大開度の位置から小開度の位置に切り替えられる。 The solenoid valve 13 is provided in the middle portion of the refrigerant path of the indoor heat exchanger 11. More specifically, it is a valve for setting a differential pressure between the front portion 11a-1 side of the main body heat exchange portion 11a and the back surface portion 11a-2 side of the main body heat exchange portion 11a. The solenoid valve 13 is an on / off valve that can take only two positions, a large opening and a small opening, and is turned on when necessary (for example, during the reheat dehumidification operation described later), and is slightly opened from the position of the large opening. Can be switched to the degree position.

<室外機2の構成>
上記空気調和機の室外機2は、圧縮機21と、四路切換弁22と、室外熱交換器23と、膨張機構の一例としての膨張弁24と、アキュムレータ25と、室外熱交換器23に空気を送る室外ファン26とを有する。さらに、室外機2は、室外熱交換器23の温度を検出する室外熱交換器温度センサ56と、外気温度を検出する外気温度センサ57と、膨張弁24で減圧された冷媒の温度(蒸発温度)を検出する冷媒温度センサ58とを有する。
<Structure of outdoor unit 2>
The outdoor unit 2 of the air conditioner includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 as an example of an expansion mechanism, an accumulator 25, and an outdoor heat exchanger 23. It has an outdoor fan 26 that sends air. Further, the outdoor unit 2 includes an outdoor heat exchanger temperature sensor 56 that detects the temperature of the outdoor heat exchanger 23, an outside air temperature sensor 57 that detects the outside air temperature, and the temperature (evaporation temperature) of the refrigerant decompressed by the expansion valve 24. ) Is provided with a refrigerant temperature sensor 58.

室外熱交換器23は、室外ファン26による空気流に関して、室外ファン26よりも下流側に位置している。室外熱交換器23内を流れる冷媒は、室外ファン26からの空気と熱交換する。 The outdoor heat exchanger 23 is located on the downstream side of the outdoor fan 26 with respect to the air flow by the outdoor fan 26. The refrigerant flowing in the outdoor heat exchanger 23 exchanges heat with the air from the outdoor fan 26.

膨張弁24は、互いに異なる3以上の開度に調整可能な例えば電動弁であって、制御装置100(図3に示す)からの信号に応じて開度が変化する。 The expansion valve 24 is, for example, an electric valve that can be adjusted to an opening degree of 3 or more different from each other, and the opening degree changes according to a signal from the control device 100 (shown in FIG. 3).

<冷媒回路RCの構成>
また、上記空気調和機の冷媒回路RCは、室内熱交換器11、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁24、アキュムレータ25および冷媒配管L1~L7から成っている。より詳しく説明すると、室内熱交換器11、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁24およびアキュムレータ25が、冷媒配管L1~L7によって流体的に接続される。これにより、環状の冷媒回路RCが構成されている。このような冷媒回路RCにおいて、圧縮機21を駆動時することにより冷媒が循環する。
<Construction of refrigerant circuit RC>
Further, the refrigerant circuit RC of the air conditioner includes an indoor heat exchanger 11, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, an accumulator 25, and refrigerant pipes L1 to L7. .. More specifically, the indoor heat exchanger 11, the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the expansion valve 24, and the accumulator 25 are fluidly connected by the refrigerant pipes L1 to L7. As a result, the annular refrigerant circuit RC is configured. In such a refrigerant circuit RC, the refrigerant circulates by driving the compressor 21.

また、図示しないが、上記空気調和機は、リモートコントローラ(以下、「リモコン」と言う。)を備える。ユーザーは、リモコンを操作して、自動運転、冷房運転、暖房運転、除湿運転などを開始させたり、停止させたりすることができる。 Although not shown, the air conditioner includes a remote controller (hereinafter referred to as "remote controller"). The user can operate the remote controller to start or stop automatic operation, cooling operation, heating operation, dehumidifying operation, and the like.

図2は、室内機1の断面模式図である。 FIG. 2 is a schematic cross-sectional view of the indoor unit 1.

図2に示すように、室内機1は、室内熱交換器11が風通路内に配置されたケーシング10と、ケーシング10の風通路内かつ室内熱交換器11よりも下流側に配置された室内ファン12と、ケーシング10の風通路内かつ室内熱交換器11よりも上流側にストリーマ放電ユニット30とを有する。図2において、31は、吹出口1aに設けられ、上下方向に回動可能な水平フラップである。また、ケーシング10の風通路は、太い実線の矢印で示されている空気流の通路である。 As shown in FIG. 2, the indoor unit 1 has a casing 10 in which the indoor heat exchanger 11 is arranged in the air passage, and an indoor unit in which the indoor heat exchanger 11 is arranged in the air passage of the casing 10 and downstream of the indoor heat exchanger 11. The fan 12 and the streamer discharge unit 30 are provided in the air passage of the casing 10 and on the upstream side of the indoor heat exchanger 11. In FIG. 2, reference numeral 31 is a horizontal flap provided at the outlet 1a and rotatable in the vertical direction. Further, the wind passage of the casing 10 is an air flow passage indicated by a thick solid arrow.

ストリーマ放電ユニット30は、プラズマ放電の一種であるストリーマ放電が発生する。このストリーマ放電の発生時に酸化分解力の高い活性種が生成され、これらの活性種は、ケーシング10の風通路内において、アンモニア類や、アルデヒド類、窒素酸化物等の小さな有機分子からなる有害成分や臭気成分を分解する。 In the streamer discharge unit 30, streamer discharge, which is a kind of plasma discharge, is generated. When this streamer discharge occurs, active species with high oxidative decomposition power are generated, and these active species are harmful components composed of small organic molecules such as ammonia, aldehydes, and nitrogen oxides in the air passage of the casing 10. Decomposes and odorous components.

また、図3は、上記空気調和機の制御ブロック図である。 Further, FIG. 3 is a control block diagram of the air conditioner.

上記空気調和機は、図3に示すように、冷媒回路RCを制御する制御装置100を備える。より詳しく説明すると、制御装置100は、マイクロコンピュータ、入出力回路などから成っている。この制御装置100が、室内熱交換器温度センサ51、室内温度センサ52、室内湿度センサ53、室外熱交換器温度センサ56、外気温度センサ57、冷媒温度センサ58などからの信号に基づいて、圧縮機21、四路切換弁22、膨張弁24、室外ファン26、室内ファン12、電磁弁13、ストリーマ放電ユニット30および水平フラップ用駆動モータ32などを制御する。 As shown in FIG. 3, the air conditioner includes a control device 100 for controlling the refrigerant circuit RC. More specifically, the control device 100 includes a microcomputer, an input / output circuit, and the like. The control device 100 compresses based on signals from the indoor heat exchanger temperature sensor 51, the indoor temperature sensor 52, the indoor humidity sensor 53, the outdoor heat exchanger temperature sensor 56, the outside air temperature sensor 57, the refrigerant temperature sensor 58, and the like. It controls the machine 21, the four-way switching valve 22, the expansion valve 24, the outdoor fan 26, the indoor fan 12, the electromagnetic valve 13, the streamer discharge unit 30, the horizontal flap drive motor 32, and the like.

また、制御装置100は、室内熱交換器11の実質的に全部を蒸発域となる冷房除湿運転を行う冷房除湿運転制御部100aと、室内熱交換器11の一部を蒸発域にする一方、室内熱交換器11の残りの部分を過熱域にする過絞り除湿運転を行う過絞り除湿運転制御部100bと、室内熱交換器11の一部を凝縮域とする一方、室内熱交換器11の残りの部分を蒸発域とする再熱除湿運転を行う再熱除湿運転制御部100cとを有する。この冷房除湿運転制御部100a、過絞り除湿運転制御部100bおよび再熱除湿運転制御部100cは、それぞれ、ソフトウェアにより構成されている。なお、上記冷房除湿運転は、第1除湿運転の一例であり、過絞り除湿運転は、第3除湿運転の一例であり、再熱除湿運転は、第2除湿運転の一例である。 Further, the control device 100 has a cooling / dehumidifying operation control unit 100a that performs a cooling / dehumidifying operation in which substantially the entire indoor heat exchanger 11 is in an evaporation region, and a part of the indoor heat exchanger 11 is in an evaporation region. The over-throttle dehumidification operation control unit 100b that performs the over-throttle dehumidification operation that makes the remaining part of the indoor heat exchanger 11 an overheat region, and a part of the indoor heat exchanger 11 that is a condensation region, while the indoor heat exchanger 11 It has a reheat dehumidifying operation control unit 100c that performs a reheat dehumidifying operation with the remaining portion as an evaporation area. The cooling dehumidification operation control unit 100a, the over-throttle dehumidification operation control unit 100b, and the reheat dehumidification operation control unit 100c are each configured by software. The cooling dehumidification operation is an example of the first dehumidification operation, the over-throttle dehumidification operation is an example of the third dehumidification operation, and the reheat dehumidification operation is an example of the second dehumidification operation.

上記冷房除湿運転(第1除湿運転)、過絞り除湿運転(第3除湿運転)、再熱除湿運転(第2除湿運転)は、室内熱交換器11の蒸発域の面積が異なる除湿モードの運転である。 The cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (second dehumidification operation) are operations in dehumidification modes in which the area of the evaporation area of the indoor heat exchanger 11 is different. Is.

[冷房除湿運転(第1除湿運転)]
冷房除湿運転(第1除湿運転)は、図1に示すように、四路切換弁22を実線の切換え位置に切り換えると共に、圧縮機21を起動することで、開始される。この冷房除湿運転(第1除湿運転)中、圧縮機21から吐出された高温高圧の冷媒が四路切換弁22を介して室外熱交換器23に流入する。そして、室外熱交換器23で凝縮した冷媒は、膨張弁24で減圧された後、室内熱交換器11の補助熱交換部11bと、室内熱交換器11の本体熱交換部11aとに、この順で流入する。この本体熱交換部11aおよび補助熱交換部11bで蒸発した冷媒が四路切換弁22およびアキュムレータ25を介して圧縮機21の吸入側に戻る。このように、冷媒が冷媒回路RCを循環するとき、冷房除湿運転制御部100aが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオフにすることで、図4に示すように、室内熱交換器11の全部を実質的に蒸発域(図4に示す斜線領域)とする。これにより、冷房除湿運転(第1除湿運転)は、室内温度を変化させるための能力である顕熱能力が高くなる。
[Cooling dehumidification operation (first dehumidification operation)]
As shown in FIG. 1, the cooling dehumidification operation (first dehumidification operation) is started by switching the four-way switching valve 22 to the solid line switching position and activating the compressor 21. During this cooling dehumidification operation (first dehumidification operation), the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way switching valve 22. Then, the refrigerant condensed by the outdoor heat exchanger 23 is decompressed by the expansion valve 24, and then the auxiliary heat exchange portion 11b of the indoor heat exchanger 11 and the main body heat exchange portion 11a of the indoor heat exchanger 11 are subjected to this. It flows in order. The refrigerant evaporated in the main body heat exchange unit 11a and the auxiliary heat exchange unit 11b returns to the suction side of the compressor 21 via the four-way switching valve 22 and the accumulator 25. In this way, when the refrigerant circulates in the refrigerant circuit RC, the cooling / dehumidifying operation control unit 100a adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns off the solenoid valve 13. As shown in FIG. 4, substantially the entire indoor heat exchanger 11 is set as an evaporation region (hatched region shown in FIG. 4). As a result, the cooling dehumidifying operation (first dehumidifying operation) has a high sensible heat capacity, which is the ability to change the room temperature.

ここで、室内熱交換器11の全部を実質的に蒸発域にするとは、室内熱交換器11の全部を蒸発域にするときだけでなく、所定条件下で室内熱交換器11において一部を除いた部分だけを蒸発域にするときも含む。この一部(例えば、室内熱交換器11の全容積の1/3以下の部分)だけが蒸発域とならない所定条件としては、例えば、室内環境などによって、室内熱交換器11の冷媒出口近傍の部分が過熱域となるときなどがある。 Here, to make the entire indoor heat exchanger 11 substantially an evaporation region is not only when the entire indoor heat exchanger 11 is made into an evaporation region, but also a part of the indoor heat exchanger 11 under predetermined conditions. It also includes the case where only the excluded part is set as the evaporation area. As a predetermined condition that only a part of this (for example, a portion of 1/3 or less of the total volume of the indoor heat exchanger 11) does not become an evaporation region, for example, depending on the indoor environment or the like, in the vicinity of the refrigerant outlet of the indoor heat exchanger 11. There are times when the part becomes an overheated area.

[過絞り除湿運転(第3除湿運転)]
過絞り除湿運転(第3除湿運転)は、冷房除湿運転(第1除湿運転)のときと同じ方向に冷媒を流す。このとき、過絞り除湿運転制御部100bが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオフにすることで、室内熱交換器11の上流側の一部を蒸発域とする一方、室内熱交換器11の残りの部分を過熱域とする。例えば、過絞り除湿運転制御部100bは、図5に示すように、補助熱交換部11bを蒸発域(斜線のハッチングを付した領域)にする一方、本体熱交換部11aの正面部11a-1および背面部11a-2を過熱域(図5に示す点のハッチングを付した領域)にする。これにより、過絞り除湿運転(第3除湿運転)は、冷房除湿運転(第1除湿運転)よりも顕熱能力が低くなるので、室内の熱負荷が高くも低くもないとき、室温の低下を抑制しつつ、室内の除湿を行える。図5では、補助熱交換部11bの全部が蒸発域となるように描かれているが、補助熱交換部11bの一部だけを蒸発域にすることも可能である。すなわち、上記蒸発域は、容積を変更することが可能な可変領域である。
[Over-throttle dehumidification operation (third dehumidification operation)]
In the over-throttle dehumidification operation (third dehumidification operation), the refrigerant flows in the same direction as in the cooling dehumidification operation (first dehumidification operation). At this time, the over-throttle dehumidification operation control unit 100b adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns off the solenoid valve 13 to turn off the electromagnetic valve 13 so as to be one on the upstream side of the indoor heat exchanger 11. The portion is set as an evaporation region, while the remaining portion of the indoor heat exchanger 11 is set as a superheat region. For example, as shown in FIG. 5, the over-throttle dehumidification operation control unit 100b makes the auxiliary heat exchange unit 11b an evaporation region (a region with hatched diagonal lines), while the front portion 11a-1 of the main body heat exchange unit 11a. And the back surface portion 11a-2 is set as an overheated region (a region with hatches at the points shown in FIG. 5). As a result, the over-throttle dehumidification operation (third dehumidification operation) has a lower sensible heat capacity than the cooling dehumidification operation (first dehumidification operation), so that the room temperature drops when the heat load in the room is neither high nor low. You can dehumidify the room while suppressing it. In FIG. 5, the entire auxiliary heat exchange unit 11b is drawn so as to be in the evaporation region, but it is also possible to make only a part of the auxiliary heat exchange unit 11b into the evaporation region. That is, the evaporation region is a variable region whose volume can be changed.

また、上記圧縮機21および膨張弁24は、過絞り除湿運転(第3除湿運転)中、蒸発域の容積が負荷に応じて変化するように制御される。例えば、過絞り除湿運転制御部100bは、過絞り除湿運転(第3除湿運転)中、蒸発域が所定容積(例えば、室内熱交換器11の全容積の2/3)以下となるように、圧縮機21および膨張弁24を制御する。 Further, the compressor 21 and the expansion valve 24 are controlled so that the volume of the evaporation region changes according to the load during the over-throttle dehumidification operation (third dehumidification operation). For example, the over-throttle dehumidification operation control unit 100b is set so that the evaporation area is equal to or less than a predetermined volume (for example, 2/3 of the total volume of the indoor heat exchanger 11) during the over-throttle dehumidification operation (third dehumidification operation). It controls the compressor 21 and the expansion valve 24.

ここで、上記負荷に応じて変化するとは、室内から蒸発域に供給される熱量に応じて変化することであって、その熱量は例えば室内温度(室内機1が吸い込む空気の温度)と室内風量(室内機1が吹き出す風の量)によって決まる。また、上記負荷は、必要除湿能力(必要冷房能力)に対応しており、例えば、室内温度と設定温度との差に基づいて検知できる。なお、上記設定温度としては、予め設定された温度、または、ユーザーがリモコンで設定した温度が用いられる。 Here, what changes according to the load means that it changes according to the amount of heat supplied from the room to the evaporation area, and the amount of heat is, for example, the indoor temperature (the temperature of the air sucked by the indoor unit 1) and the indoor air amount. It is determined by (the amount of wind blown by the indoor unit 1). Further, the load corresponds to the required dehumidifying capacity (required cooling capacity), and can be detected based on, for example, the difference between the room temperature and the set temperature. As the set temperature, a preset temperature or a temperature set by the user with the remote controller is used.

[再熱除湿運転(第2除湿運転)]
再熱除湿運転(第2除湿運転)は、冷房除湿運転(第1除湿運転)ときと同じ方向に冷媒を流す。このとき、再熱除湿運転制御部100cが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオンにすることで、室内熱交換器11において電磁弁13よりも上流側の少なくとも一部を凝縮域にする一方、室内熱交換器11において電磁弁13より下流側の少なくとも一部を蒸発域とする。例えば、再熱除湿運転制御部100cは、図6に示すように、補助熱交換部11bと本体熱交換部11aの正面部11a-1とを凝縮域(図6に示す格子のハッチングを付した領域)にする一方、本体熱交換部11aの背面部11a-2を蒸発域(図6に示す斜線領域)にする。これにより、再熱除湿運転(第2除湿運転)は、過絞り除湿運転(第3除湿運転)よりも顕熱能力が低くなるので、室内の熱負荷が低いとき、室温の低下を抑制しつつ、室内の除湿を行える。
[Reheat dehumidification operation (second dehumidification operation)]
In the reheat dehumidification operation (second dehumidification operation), the refrigerant flows in the same direction as in the cooling dehumidification operation (first dehumidification operation). At this time, the reheat dehumidifying operation control unit 100c adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns on the solenoid valve 13 so that the room heat exchanger 11 is connected to the solenoid valve 13. At least a part of the upstream side of the room heat exchanger 11 is set as a condensation area, while at least a part of the room heat exchanger 11 on the downstream side of the solenoid valve 13 is set as an evaporation area. For example, as shown in FIG. 6, the reheat dehumidification operation control unit 100c has a condensation region (lattice hatching shown in FIG. 6) in which the auxiliary heat exchange unit 11b and the front portion 11a-1 of the main body heat exchange unit 11a are provided. On the other hand, the back surface portion 11a-2 of the main body heat exchange portion 11a is set to an evaporation region (hatched region shown in FIG. 6). As a result, the reheat dehumidification operation (second dehumidification operation) has a lower sensible heat capacity than the over-throttle dehumidification operation (third dehumidification operation), so that when the heat load in the room is low, the decrease in room temperature is suppressed. , Can dehumidify the room.

また、上記再熱除湿運転では、電磁弁13は、小開度の位置に切り替えられる。すなわち、上記再熱除湿運転における電磁弁13の開度は、空気流量が10.0L/min未満に相当する開度である。上記再熱除湿運転における電磁弁13の開度は、空気流量が5.0L/minに相当する開度であれば、好ましい。さらに、上記再熱除湿運転における電磁弁13の開度は、空気流量が3.5L/minに相当する開度であれば、さらに好ましい。ここで、「上記再熱除湿運転における電磁弁13の開度が、空気流量が10L/min未満に相当する開度である」とは、上記開度において冷媒回路RCを流れる空気流量が10L/min未満であることをいうのではなく、電磁弁13の流量特性から求められる上記開度における空気流量が10L/min未満であることをいう。 Further, in the reheat dehumidification operation, the solenoid valve 13 is switched to a position having a small opening degree. That is, the opening degree of the solenoid valve 13 in the reheat dehumidification operation is an opening degree corresponding to an air flow rate of less than 10.0 L / min. The opening degree of the solenoid valve 13 in the reheat dehumidification operation is preferably an opening degree corresponding to an air flow rate of 5.0 L / min. Further, the opening degree of the solenoid valve 13 in the reheat dehumidification operation is more preferably as long as the opening degree corresponds to an air flow rate of 3.5 L / min. Here, "the opening degree of the solenoid valve 13 in the reheat dehumidifying operation is an opening degree corresponding to an air flow rate of less than 10 L / min" means that the air flow rate flowing through the refrigerant circuit RC at the said opening degree is 10 L / min. It does not mean that it is less than min, but that the air flow rate at the opening degree obtained from the flow rate characteristics of the solenoid valve 13 is less than 10 L / min.

上記冷房除湿運転(第1除湿運転)、過絞り除湿運転(第3除湿運転)または再熱除湿運転(第2除湿運転)は、リモコンの除湿運転のボタンの押下に応じて開始するようになっている。より詳しく説明すると、除湿運転のボタが押下されると、顕熱比SHFに基づいて、冷房除湿運転(第1除湿運転)、過絞り除湿運転(第3除湿運転)および再熱除湿運転(第2除湿運転)のうちの1つの除湿運転が自動的に選択されて開始する。その後、顕熱比SHFの変化に応じて、他の除湿運転に自動的に切り替わる。ここで、顕熱比SHFは、顕熱/(顕熱+潜熱)で表され、例えば顕熱および潜熱は室内温度と室内湿度に基づいて算出する。 The cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), or reheat dehumidification operation (second dehumidification operation) is started in response to the pressing of the dehumidification operation button on the remote controller. ing. More specifically, when the dehumidification operation button is pressed, the cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (first dehumidification operation) are performed based on the sensible heat ratio SHF. 2 Dehumidification operation) is automatically selected and started. After that, it automatically switches to another dehumidifying operation according to the change in the sensible heat ratio SHF. Here, the sensible heat ratio SHF is expressed as sensible heat / (sensible heat + latent heat), and for example, sensible heat and latent heat are calculated based on the room temperature and the room humidity.

図7は、上記空気調和機の冷房除湿運転(第1除湿運転)時、過絞り除湿運転(第3除湿運転)時および再熱除湿運転(第2除湿運転)時のモリエル線図である。 FIG. 7 is a Moriel diagram during the cooling dehumidification operation (first dehumidification operation), the over-throttle dehumidification operation (third dehumidification operation), and the reheat dehumidification operation (second dehumidification operation) of the air conditioner.

過絞り除湿運転制御部100bの制御は、過絞り除湿運転(第3除湿運転)の蒸発温度は、冷房除湿運転(第1除湿運転)の蒸発温度よりも低くなるように行われる。このとき、膨張弁24の開度は、通常、冷房除湿運転(第1除湿運転)中の膨張弁24の開度よりも小さくなる。 The control of the over-throttle dehumidification operation control unit 100b is performed so that the evaporation temperature of the over-throttle dehumidification operation (third dehumidification operation) is lower than the evaporation temperature of the cooling dehumidification operation (first dehumidification operation). At this time, the opening degree of the expansion valve 24 is usually smaller than the opening degree of the expansion valve 24 during the cooling dehumidification operation (first dehumidification operation).

再熱除湿運転制御部100cの制御は、再熱除湿運転(第2除湿運転)の蒸発温度が過絞り除湿運転(第3除湿運転)の蒸発温度よりも低くなるように行われる。このとき、膨張弁24の開度は、過絞り除湿運転(第3除湿運転)中における膨張弁24の最大開度よりも大きい開度に固定される。 The reheat dehumidification operation control unit 100c is controlled so that the evaporation temperature of the reheat dehumidification operation (second dehumidification operation) is lower than the evaporation temperature of the over-throttle dehumidification operation (third dehumidification operation). At this time, the opening degree of the expansion valve 24 is fixed to an opening degree larger than the maximum opening degree of the expansion valve 24 during the over-throttle dehumidification operation (third dehumidification operation).

また、過絞り除湿運転制御部100bは、過絞り除湿運転(第3除湿運転)の開始後、冷媒温度センサ58によって検出された蒸発温度を用いて、膨張弁24の開度を調整する。より具体的に説明すると、上記蒸発温度が所定温度(例えば10℃)となるように、かつ、室内熱交換器11の冷媒パスの中間部が過熱域となるように、膨張弁24の開度が調整される。 Further, the over-throttle dehumidification operation control unit 100b adjusts the opening degree of the expansion valve 24 by using the evaporation temperature detected by the refrigerant temperature sensor 58 after the start of the over-throttle dehumidification operation (third dehumidification operation). More specifically, the opening degree of the expansion valve 24 is set so that the evaporation temperature becomes a predetermined temperature (for example, 10 ° C.) and the middle portion of the refrigerant path of the indoor heat exchanger 11 becomes a superheat region. Is adjusted.

また、冷房除湿運転制御部100aと過絞り除湿運転制御部100bは、冷房除湿運転(第1除湿運転)と過絞り除湿運転(第3除湿運転)との切り替えを顕熱比SHFに基づいて行う。この冷房除湿運転(第1除湿運転)から過絞り除湿運転(第3除湿運転)に切り替えるときの顕熱比SHFの第1閾値と、再熱除湿運転(第2除湿運転)から冷房除湿運転(第1除湿運転)に切り替えるときの顕熱比SHFの第2閾値とは、相互の切り替えにおいてヒステリシスを有するように異なる値に設定されている。 Further, the cooling dehumidification operation control unit 100a and the over-throttle dehumidification operation control unit 100b switch between the cooling dehumidification operation (first dehumidification operation) and the over-throttle dehumidification operation (third dehumidification operation) based on the sensible heat ratio SHF. .. The first threshold of the sensible heat ratio SHF when switching from this cooling dehumidification operation (first dehumidification operation) to the over-squeezing dehumidification operation (third dehumidification operation), and the cooling dehumidification operation (second dehumidification operation) from the reheat dehumidification operation (second dehumidification operation). The second threshold value of the sensible heat ratio SHF when switching to the first dehumidification operation) is set to a different value so as to have hysteresis in mutual switching.

過絞り除湿運転制御部100bと再熱除湿運転制御部100cは、過絞り除湿運転(第3除湿運転)と再熱除湿運転(第2除湿運転)との切り替えを顕熱比SHFに基づいて行う。この過絞り除湿運転(第3除湿運転)から再熱除湿運転(第2除湿運転)に切り替えるときの顕熱比SHFの第3閾値と、再熱除湿運転(第2除湿運転)から過絞り除湿運転(第3除湿運転)に切り替えるときの顕熱比SHFの第2閾値とは、相互の切り替えにおいてヒステリシスを有するように異なる値に設定されている。 The over-throttle dehumidification operation control unit 100b and the reheat dehumidification operation control unit 100c switch between the over-throttle dehumidification operation (third dehumidification operation) and the reheat dehumidification operation (second dehumidification operation) based on the sensible heat ratio SHF. .. The third threshold of the sensible heat ratio SHF when switching from this overheat dehumidification operation (third dehumidification operation) to the reheat dehumidification operation (second dehumidification operation), and the overheat dehumidification operation from the reheat dehumidification operation (second dehumidification operation). The second threshold value of the sensible heat ratio SHF when switching to the operation (third dehumidifying operation) is set to a different value so as to have hysteresis in the mutual switching.

上記構成の空気調和機において、制御装置100により、冷房除湿運転(第1除湿運転)と過絞り除湿運転(第3除湿運転)および再熱除湿運転(第2除湿運転)のそれぞれの終了後に内部乾燥運転を行う。この内部乾燥運転は、室内ファン12により室内熱交換器11を介して室内空気を循環させる送風運転、および、室内熱交換器11を凝縮器として機能させる暖房運転により、室内機1の風通路内を乾燥させる。 In the air conditioner having the above configuration, the control device 100 is used to inside after each of the cooling dehumidification operation (first dehumidification operation), the over-throttle dehumidification operation (third dehumidification operation), and the reheat dehumidification operation (second dehumidification operation) are completed. Perform a dry operation. This internal drying operation is performed in the air passage of the indoor unit 1 by a ventilation operation in which the indoor air is circulated through the indoor heat exchanger 11 by the indoor fan 12 and a heating operation in which the indoor heat exchanger 11 functions as a condenser. To dry.

暖房運転は、図1に示すように、四路切換弁22を点線の切換え位置に切り換えると共に、圧縮機21を起動することで、開始される。この暖房運転中、圧縮機21から吐出された高温高圧の冷媒が四路切換弁22を介して室内熱交換器11に流入する。そして、室内熱交換器11で凝縮した冷媒は、膨張弁24で減圧された後、室外熱交換器23に流入する。この室外熱交換器23で蒸発した冷媒が四路切換弁22およびアキュムレータ25を介して圧縮機21の吸入側に戻る。このとき、膨張弁24を所定開度にし、電磁弁13をオフにして冷媒回路RCを冷媒が循環することで、室内熱交換器11は凝縮器として機能し、室外熱交換器23は蒸発器として機能する。 As shown in FIG. 1, the heating operation is started by switching the four-way switching valve 22 to the switching position of the dotted line and activating the compressor 21. During this heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 11 via the four-way switching valve 22. Then, the refrigerant condensed in the indoor heat exchanger 11 is decompressed by the expansion valve 24 and then flows into the outdoor heat exchanger 23. The refrigerant evaporated in the outdoor heat exchanger 23 returns to the suction side of the compressor 21 via the four-way switching valve 22 and the accumulator 25. At this time, the expansion valve 24 is set to a predetermined opening degree, the solenoid valve 13 is turned off, and the refrigerant circulates in the refrigerant circuit RC, so that the indoor heat exchanger 11 functions as a condenser and the outdoor heat exchanger 23 is an evaporator. Functions as.

図8は、内部乾燥運転を説明するタイミングチャートである。 FIG. 8 is a timing chart illustrating the internal drying operation.

図8に示すように、運転指令が内部乾燥運転となると、最初の期間t1において、ストリーマ放電ユニット30(図1~図3に示す)をオンし、水平フラップ用駆動モータ32により水平フラップ31を全閉状態から第1所定開度開く。 As shown in FIG. 8, when the operation command is the internal drying operation, the streamer discharge unit 30 (shown in FIGS. 1 to 3) is turned on in the first period t1, and the horizontal flap 31 is turned on by the horizontal flap drive motor 32. The first predetermined opening is opened from the fully closed state.

次に、期間t2において、水平フラップ31を第2所定開度(>第1所定開度)開くと共に、室内ファン12を駆動して、室内空気を室内機1の風通路を介して循環させる送風運転を行う。 Next, in the period t2, the horizontal flap 31 is opened by the second predetermined opening (> the first predetermined opening), and the indoor fan 12 is driven to circulate the indoor air through the air passage of the indoor unit 1. Drive.

次に、期間t3において、室内ファン12を止めて送風運転を停止すると共に、水平フラップ31を全閉にする。 Next, in the period t3, the indoor fan 12 is stopped to stop the blowing operation, and the horizontal flap 31 is fully closed.

次に、期間t4において、再び室内ファン12を駆動して、室内空気を室内機1の風通路を介して循環させる送風運転を行う。このとき、室内ファン12の回転数を期間t2のときよりも高くしている。 Next, in the period t4, the indoor fan 12 is driven again to perform a blowing operation in which the indoor air is circulated through the air passage of the indoor unit 1. At this time, the rotation speed of the indoor fan 12 is set higher than that in the period t2.

次に、期間t5において、室内ファン12を止めて送風運転を停止すると共に、水平フラップ31を全閉にする。この期間t5の終了時点でストリーマ放電ユニット30をオフする。 Next, in the period t5, the indoor fan 12 is stopped to stop the blowing operation, and the horizontal flap 31 is fully closed. At the end of this period t5, the streamer discharge unit 30 is turned off.

次に、期間t6において、水平フラップ31を全閉状態から第3所定開度(<第1所定開度)開き、能力供給をオンにして暖房運転を行う。 Next, in the period t6, the horizontal flap 31 is opened from the fully closed state by a third predetermined opening (<first predetermined opening), the capacity supply is turned on, and the heating operation is performed.

次に、期間t7において、水平フラップ31を第2所定開度開いて、室内ファン12を止めて送風運転を停止する。 Next, in the period t7, the horizontal flap 31 is opened by a second predetermined opening, the indoor fan 12 is stopped, and the ventilation operation is stopped.

そして、期間t7の終了時点で水平フラップ31を全閉して、内部乾燥運転を終了する。 Then, at the end of the period t7, the horizontal flap 31 is fully closed to end the internal drying operation.

このようにして、室内ファン12により室内熱交換器11を介して室内空気を循環させる送風運転および室内熱交換器11を凝縮器として機能させる暖房運転により室内機1の風通路内を乾燥させる。 In this way, the inside of the air passage of the indoor unit 1 is dried by the ventilation operation in which the indoor fan 12 circulates the indoor air through the indoor heat exchanger 11 and the heating operation in which the indoor heat exchanger 11 functions as a condenser.

上記空気調和機では、冷房除湿運転(第1除湿運転)後の内部乾燥運転において運転時間T1(=t1+…+t7)を100分とし、過絞り除湿運転(第3除湿運転)後の内部乾燥運転において、期間t2を短縮して運転時間T3(=t1+…+t7)を75分とし、再熱除湿運転(第2除湿運転)後の内部乾燥運転において、期間t2をさらに短縮して運転時間T2(=t1+…+t7)を55分としている。 In the above air conditioner, the operation time T1 (= t1 + ... + t7) is set to 100 minutes in the internal drying operation after the cooling dehumidifying operation (first dehumidifying operation), and the internal drying operation after the over-squeezing dehumidifying operation (third dehumidifying operation). In the internal drying operation after the reheat dehumidification operation (second dehumidification operation), the operation time T3 (= t1 + ... + T7) is shortened to 75 minutes by shortening the period t2, and the operation time T2 (= t1 + ... + T7) is further shortened. = T1 + ... + t7) is set to 55 minutes.

なお、この第1実施形態では、運転時間T1を100分,T3を75分,T2を55分としたが、空気調和機の構成に応じて適宜設定すればよい。 In this first embodiment, the operation time T1 is 100 minutes, T3 is 75 minutes, and T2 is 55 minutes, but it may be appropriately set according to the configuration of the air conditioner.

上記第1実施形態の空気調和機によれば、冷房除湿運転(第1除湿運転),過絞り除湿運転(第3除湿運転),再熱除湿運転(第2除湿運転)の複数の除湿モード夫々の運転後に行う内部乾燥運転において、異なる運転時間T1,T3,T2を用いることを可能としている。したがって、室内熱交換器11をしっかり乾燥させることを優先する場合は、室内熱交換器11の水滴量が多い除湿モードほど、その除湿モードの運転後に行う内部乾燥運転を長くすることで、室内機1の風通路内が確実に乾燥されるようにする。これにより、除湿モードに応じて内部乾燥運転の時間を適正化できる。なお、室内熱交換器11の水滴量は、室内環境や運転時間によって異なるが、冷房除湿運転(第1除湿運転)をH1、過絞り除湿運転(第3除湿運転)をH3、再熱除湿運転(第2除湿運転)をH2とすると、各運転おける室内熱交換器11の水滴量は、
H1 > H3 > H2
となっている。
According to the air conditioner of the first embodiment, each of the plurality of dehumidifying modes of cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (second dehumidification operation). It is possible to use different operating times T1, T3, and T2 in the internal drying operation performed after the operation. Therefore, when giving priority to drying the indoor heat exchanger 11 firmly, the dehumidifying mode in which the amount of water droplets in the indoor heat exchanger 11 is large is longer the internal drying operation performed after the operation of the dehumidifying mode, so that the indoor unit is united. Make sure that the inside of the air passage of 1 is dried. Thereby, the time of the internal drying operation can be optimized according to the dehumidification mode. The amount of water droplets in the indoor heat exchanger 11 varies depending on the indoor environment and operating time, but the cooling dehumidification operation (first dehumidification operation) is H1, the over-squeezing dehumidification operation (third dehumidification operation) is H3, and the reheat dehumidification operation. Assuming that (second dehumidification operation) is H2, the amount of water droplets in the indoor heat exchanger 11 in each operation is
H1 > H3 > H2
It has become.

また、上記室内熱交換器11の実質的に全部を蒸発域となる冷房除湿運転(第1除湿運転)の終了後の室内熱交換器11に付着した水滴量が再熱除湿運転(第2除湿運転)よりも多いので、冷房除湿運転(第1除湿運転)後の内部乾燥運転の運転時間を長くして、冷房除湿運転(第1除湿運転)の終了後の室内機1の風通路内を確実に乾燥させることが可能になる。 Further, the amount of water droplets adhering to the indoor heat exchanger 11 after the completion of the cooling dehumidification operation (first dehumidification operation) in which substantially the entire indoor heat exchanger 11 is in the evaporation region is the reheat dehumidification operation (second dehumidification operation). Since it is more than the operation), the operation time of the internal drying operation after the cooling dehumidifying operation (first dehumidifying operation) is lengthened, and the inside of the air passage of the indoor unit 1 after the cooling dehumidifying operation (first dehumidifying operation) is completed. It becomes possible to surely dry.

また、室内熱交換器11に付着する水滴量が多い冷房除湿運転(第1除湿運転)、過絞り除湿運転(第3除湿運転)、再熱除湿運転(第2除湿運転)の順に、内部乾燥運転の運転時間が長短に設定されることで、室内熱交換器11に付着した水滴量が多い除湿モードの運転で内部乾燥運転時間を長くできる。これにより、冷房除湿運転(第1除湿運転),過絞り除湿運転(第3除湿運転),再熱除湿運転(第2除湿運転)に応じて内部乾燥運転の時間を適正化できる。 In addition, internal drying is performed in the order of cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (second dehumidification operation) in which the amount of water droplets adhering to the indoor heat exchanger 11 is large. By setting the operation time to be long or short, the internal drying operation time can be lengthened by the operation in the dehumidification mode in which the amount of water droplets adhering to the indoor heat exchanger 11 is large. As a result, the time of the internal drying operation can be optimized according to the cooling dehumidification operation (first dehumidification operation), the over-squeezing dehumidification operation (third dehumidification operation), and the reheat dehumidification operation (second dehumidification operation).

また、過絞り除湿運転(第3除湿運転)の継続時間が第1所定時間(例えば100分)未満のとき、すなわち、室内熱交換器11に付着した水滴量が少ない短時間の過絞り除湿運転(第3除湿運転)では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。また、再熱除湿運転(第2除湿運転)の継続時間が第2所定時間(例えば100分)未満のとき、すなわち、室内熱交換器11に付着した水滴量が少ない短時間の再熱除湿運転(第2除湿運転)では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。 Further, when the duration of the over-throttle dehumidification operation (third dehumidification operation) is less than the first predetermined time (for example, 100 minutes), that is, the over-throttle dehumidification operation for a short time in which the amount of water droplets adhering to the indoor heat exchanger 11 is small. Since the internal drying operation is not performed in the (third dehumidifying operation), the internal drying operation can be efficiently performed. Further, when the duration of the reheat dehumidification operation (second dehumidification operation) is less than the second predetermined time (for example, 100 minutes), that is, the reheat dehumidification operation for a short time in which the amount of water droplets adhering to the indoor heat exchanger 11 is small. Since the internal drying operation is not performed in the (second dehumidifying operation), the internal drying operation can be efficiently performed.

〔第2実施形態〕
本開示の第2実施形態の空気調和機は、制御装置100の動作を除いて第1実施形態の空気調和機と同一の構成をしており、図1~図8を援用する。
[Second Embodiment]
The air conditioner of the second embodiment of the present disclosure has the same configuration as the air conditioner of the first embodiment except for the operation of the control device 100, and FIGS. 1 to 8 are incorporated.

上記空気調和機では、冷房除湿運転(第1除湿運転)後の内部乾燥運転において運転時間T1(=t1+…+t7)を55分とし、過絞り除湿運転(第3除湿運転)後の内部乾燥運転において、期間t2を長くして運転時間T3(=t1+…+t7)を75分とし、再熱除湿運転(第2除湿運転)後の内部乾燥運転において、期間t2をさらに長くして運転時間T2(=t1+…+t7)を100分としている。 In the above air conditioner, the operation time T1 (= t1 + ... + t7) is set to 55 minutes in the internal drying operation after the cooling dehumidifying operation (first dehumidifying operation), and the internal drying operation after the over-squeezing dehumidifying operation (third dehumidifying operation). In the internal drying operation after the reheat dehumidification operation (second dehumidification operation), the period t2 is lengthened to set the operation time T3 (= t1 + ... + T7) to 75 minutes, and the period t2 is further lengthened to set the operation time T2 (= t1 + ... + T7). = T1 + ... + t7) is set to 100 minutes.

なお、この第1実施形態では、運転時間T1を55分,T3を75分,T2を100分としたが、空気調和機の構成に応じて適宜設定すればよい。 In this first embodiment, the operation time T1 is 55 minutes, T3 is 75 minutes, and T2 is 100 minutes, but it may be appropriately set according to the configuration of the air conditioner.

上記第2実施形態の空気調和機によれば、冷房除湿運転(第1除湿運転),過絞り除湿運転(第3除湿運転),再熱除湿運転(第2除湿運転)の複数の除湿モード夫々の運転後に行う内部乾燥運転において、異なる運転時間T1,T3,T2を用いることを可能としている。したがって、室内熱交換器11から室内への湿度戻りを少なくすることを優先する場合は、室内熱交換器11の水滴量が多い除湿モードほど、その除湿モードの運転後に行う内部乾燥運転を短くすることで、室内へ湿気が戻るのを抑える。これにより、内部乾燥運転時の湿度戻りを抑制できる。なお、室内熱交換器11の水滴量は、室内環境や運転時間によって異なるが、冷房除湿運転(第1除湿運転)をH1、過絞り除湿運転(第3除湿運転)をH3、再熱除湿運転(第2除湿運転)をH2とすると、各運転おける室内熱交換器11の水滴量は、
H1 > H3 > H2
となっている。
According to the air conditioner of the second embodiment, each of the plurality of dehumidifying modes of cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (second dehumidification operation). It is possible to use different operating times T1, T3, and T2 in the internal drying operation performed after the operation. Therefore, when giving priority to reducing the return of humidity from the indoor heat exchanger 11 to the room, the dehumidifying mode in which the amount of water droplets in the indoor heat exchanger 11 is large, the shorter the internal drying operation performed after the operation of the dehumidifying mode is shortened. This prevents moisture from returning to the room. As a result, it is possible to suppress the return of humidity during the internal drying operation. The amount of water droplets in the indoor heat exchanger 11 varies depending on the indoor environment and operating time, but the cooling dehumidification operation (first dehumidification operation) is H1, the over-squeezing dehumidification operation (third dehumidification operation) is H3, and the reheat dehumidification operation. Assuming that (second dehumidification operation) is H2, the amount of water droplets in the indoor heat exchanger 11 in each operation is
H1 > H3 > H2
It has become.

また、上記冷房除湿運転(第1除湿運転)の終了後の室内熱交換器11に付着した水滴量が再熱除湿運転(第2除湿運転)よりも多いので、室内熱交換器11の水滴量が多い冷房除湿運転(第1除湿運転)ほど、その冷房除湿運転(第1除湿運転)の運転後に行う内部乾燥運転を短くする。これにより、冷房除湿運転(第1除湿運転)の運転終了後の内部乾燥運転時の湿度戻りを抑制できる。 Further, since the amount of water droplets adhering to the indoor heat exchanger 11 after the completion of the cooling dehumidification operation (first dehumidification operation) is larger than that of the reheat dehumidification operation (second dehumidification operation), the amount of water droplets in the indoor heat exchanger 11 The more the cooling and dehumidifying operation (first dehumidifying operation), the shorter the internal drying operation performed after the cooling and dehumidifying operation (first dehumidifying operation). As a result, it is possible to suppress the return of humidity during the internal drying operation after the cooling dehumidifying operation (first dehumidifying operation) is completed.

また、上記室内熱交換器11に付着した水滴量が少ない再熱除湿運転(第2除湿運転)、過絞り除湿運転(第3除湿運転)、冷房除湿運転(第1除湿運転)の順に、内部乾燥運転の運転時間を長短に設定することで、冷房除湿運転(第1除湿運転),過絞り除湿運転(第3除湿運転),再熱除湿運転(第2除湿運転)の運転終了後の内部乾燥運転時の湿度戻りを抑制できる。 In addition, the inside is in the order of reheat dehumidification operation (second dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and cooling dehumidification operation (first dehumidification operation) in which the amount of water droplets adhering to the indoor heat exchanger 11 is small. By setting the operation time of the drying operation to long and short, the inside after the operation of cooling dehumidification operation (first dehumidification operation), over-squeezing dehumidification operation (third dehumidification operation), and reheat dehumidification operation (second dehumidification operation) is completed. It is possible to suppress the return of humidity during dry operation.

また、過絞り除湿運転(第3除湿運転)の継続時間が第1所定時間(例えば100分)未満のとき、すなわち、室内熱交換器11に付着した水滴量が少ない短時間の過絞り除湿運転(第3除湿運転)では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。また、再熱除湿運転(第2除湿運転)の継続時間が第2所定時間(例えば100分)未満のとき、すなわち、室内熱交換器11に付着した水滴量が少ない短時間の再熱除湿運転(第2除湿運転)では内部乾燥運転を行わないので、内部乾燥運転を効率よく行うことができる。 Further, when the duration of the over-throttle dehumidification operation (third dehumidification operation) is less than the first predetermined time (for example, 100 minutes), that is, the over-throttle dehumidification operation for a short time in which the amount of water droplets adhering to the indoor heat exchanger 11 is small. Since the internal drying operation is not performed in the (third dehumidifying operation), the internal drying operation can be efficiently performed. Further, when the duration of the reheat dehumidification operation (second dehumidification operation) is less than the second predetermined time (for example, 100 minutes), that is, the reheat dehumidification operation for a short time in which the amount of water droplets adhering to the indoor heat exchanger 11 is small. Since the internal drying operation is not performed in the (second dehumidifying operation), the internal drying operation can be efficiently performed.

〔第3実施形態〕
本開示の第3実施形態の空気調和機は、加湿装置(図示せず)と内部乾燥運転の動作を除いて第1実施形態の空気調和機と同一の構成をしており、図1~図7を援用する。
[Third Embodiment]
The air conditioner of the third embodiment of the present disclosure has the same configuration as the air conditioner of the first embodiment except for the operation of the humidifying device (not shown) and the internal drying operation, and FIGS. 7 is used.

この第3実施形態の空気調和機は、外部から加湿ホースを介して加湿空気を室内機1の風通路内に供給する加湿装置を備える。 The air conditioner of the third embodiment includes a humidifying device that supplies humidified air from the outside into the air passage of the indoor unit 1 via a humidifying hose.

図9は、内部乾燥運転を説明するタイミングチャートである。 FIG. 9 is a timing chart illustrating the internal drying operation.

図9に示すように、運転指令が内部乾燥運転となると、最初の期間t1において、ストリーマ放電ユニット30(図1~図3に示す)をオンし、水平フラップ用駆動モータ32により水平フラップ31を全閉状態から第1所定開度開く。 As shown in FIG. 9, when the operation command is the internal drying operation, the streamer discharge unit 30 (shown in FIGS. 1 to 3) is turned on in the first period t1, and the horizontal flap 31 is turned on by the horizontal flap drive motor 32. The first predetermined opening is opened from the fully closed state.

次に、期間t2aにおいて、水平フラップ31を第2所定開度(>第1所定開度)開くと共に、室内ファン12を駆動して、室内空気を室内機1の風通路を介して循環させる送風運転を行う。ここで、加湿ホース乾燥指令により、加湿装置においてヒータで加熱された外気が加湿装置から加湿ホースを介して室内機1の風通路内に供給されることにより、加湿ホース内を乾燥させる。 Next, in the period t2a, the horizontal flap 31 is opened by the second predetermined opening (> the first predetermined opening), and the indoor fan 12 is driven to circulate the indoor air through the air passage of the indoor unit 1. Drive. Here, according to the humidifying hose drying command, the outside air heated by the heater in the humidifying device is supplied from the humidifying device to the air passage of the indoor unit 1 via the humidifying hose to dry the inside of the humidifying hose.

次に、期間t2bにおいて、加湿装置を停止して、室内空気を室内機1の風通路を介して循環させる送風運転を続ける。 Next, in the period t2b, the humidifying device is stopped, and the ventilation operation in which the indoor air is circulated through the air passage of the indoor unit 1 is continued.

次に、期間t3において、室内ファン12を止めて送風運転を停止すると共に、水平フラップ31を全閉にする。 Next, in the period t3, the indoor fan 12 is stopped to stop the blowing operation, and the horizontal flap 31 is fully closed.

次に、期間t4において、再び室内ファン12を駆動して、室内空気を室内機1の風通路を介して循環させる送風運転を行う。このとき、室内ファン12の回転数を期間t2a,t2bのときよりも高くしている。 Next, in the period t4, the indoor fan 12 is driven again to perform a blowing operation in which the indoor air is circulated through the air passage of the indoor unit 1. At this time, the rotation speed of the indoor fan 12 is set higher than that during the periods t2a and t2b.

次に、期間t5において、室内ファン12を止めて送風運転を停止すると共に、水平フラップ31を全閉にする。この期間t5の終了時点でストリーマ放電ユニット30をオフする。 Next, in the period t5, the indoor fan 12 is stopped to stop the blowing operation, and the horizontal flap 31 is fully closed. At the end of this period t5, the streamer discharge unit 30 is turned off.

次に、期間t6において、水平フラップ31を全閉状態から第3所定開度(<第1所定開度)開き、能力供給をオンにして暖房運転を行う。 Next, in the period t6, the horizontal flap 31 is opened from the fully closed state by a third predetermined opening (<first predetermined opening), the capacity supply is turned on, and the heating operation is performed.

次に、期間t7において、水平フラップ31を第2所定開度開いて、室内ファン12を止めて送風運転を停止する。 Next, in the period t7, the horizontal flap 31 is opened by a second predetermined opening, the indoor fan 12 is stopped, and the ventilation operation is stopped.

そして、期間t7の終了時点で水平フラップ31を全閉して、内部乾燥運転を終了する。 Then, at the end of the period t7, the horizontal flap 31 is fully closed to end the internal drying operation.

このようにして、室内ファン12により室内熱交換器11を介して室内空気を循環させる送風運転および室内熱交換器11を凝縮器として機能させる暖房運転により室内機1の風通路内を乾燥させる。 In this way, the inside of the air passage of the indoor unit 1 is dried by the ventilation operation in which the indoor fan 12 circulates the indoor air through the indoor heat exchanger 11 and the heating operation in which the indoor heat exchanger 11 functions as a condenser.

上記第3実施形態の空気調和機において、第1実施形態と同様、室内熱交換器11をしっかり乾燥させることを優先する場合は、冷房除湿運転(第1除湿運転)後の内部乾燥運転において運転時間T1(=t1+…+t7)を100分とし、過絞り除湿運転(第3除湿運転)後の内部乾燥運転において、期間t2を短縮して運転時間T3(=t1+…+t7)を75分とし、再熱除湿運転(第2除湿運転)後の内部乾燥運転において、期間t2を短縮して運転時間T2(=t1+…+t7)を55分としている。 In the air conditioner of the third embodiment, when the priority is given to dry the indoor heat exchanger 11 firmly as in the first embodiment, the operation is performed in the internal drying operation after the cooling dehumidification operation (first dehumidification operation). The time T1 (= t1 + ... + t7) is set to 100 minutes, and in the internal drying operation after the over-throttle dehumidification operation (third dehumidification operation), the period t2 is shortened and the operation time T3 (= t1 + ... + t7) is set to 75 minutes. In the internal drying operation after the reheat dehumidification operation (second dehumidification operation), the period t2 is shortened and the operation time T2 (= t1 + ... + t7) is set to 55 minutes.

なお、第2実施形態と同様、室内熱交換器11から室内への湿度戻りを少なくすることを優先する場合は、冷房除湿運転(第1除湿運転)後の内部乾燥運転において運転時間T1(=t1+…+t7)を55分とし、過絞り除湿運転(第3除湿運転)後の内部乾燥運転において、期間t2を長くして運転時間T3(=t1+…+t7)を75分とし、再熱除湿運転(第2除湿運転)後の内部乾燥運転において、期間t2を長くして運転時間T2(=t1+…+t7)を100分としてもよい。 As in the second embodiment, when giving priority to reducing the return of humidity from the indoor heat exchanger 11 to the room, the operation time T1 (=) in the internal drying operation after the cooling dehumidification operation (first dehumidification operation). In the internal drying operation after the over-throttle dehumidification operation (third dehumidification operation), t1 + ... + t7) is set to 55 minutes, the period t2 is lengthened, the operation time T3 (= t1 + ... + t7) is set to 75 minutes, and the reheat dehumidification operation is performed. In the internal drying operation after the (second dehumidifying operation), the period t2 may be lengthened and the operating time T2 (= t1 + ... + T7) may be set to 100 minutes.

上記第1~第3実施形態では、冷房除湿運転(第1除湿運転)と過絞り除湿運転(第3除湿運転)および再熱除湿運転(第2除湿運転)のそれぞれの終了後に内部乾燥運転を行ったが、過絞り除湿運転(第3除湿運転)のない空気調和機にこの発明を適用してもよい。この場合、冷房除湿運転(第1除湿運転)と再熱除湿運転(第2除湿運転)の終了後に、運転時間の異なる内部乾燥運転をそれぞれ行う。 In the first to third embodiments, the internal drying operation is performed after each of the cooling dehumidification operation (first dehumidification operation), the over-squeezing dehumidification operation (third dehumidification operation), and the reheat dehumidification operation (second dehumidification operation). However, the present invention may be applied to an air conditioner without an over-throttle dehumidification operation (third dehumidification operation). In this case, after the cooling dehumidification operation (first dehumidification operation) and the reheat dehumidification operation (second dehumidification operation) are completed, internal drying operations with different operation times are performed.

また、第1~第3実施形態では、ストリーマ放電ユニット30を備えた空気調和機について説明したが、ストリーマ放電ユニットを備えていない空気調和機にこの発明を適用してもよい。 Further, in the first to third embodiments, the air conditioner provided with the streamer discharge unit 30 has been described, but the present invention may be applied to the air conditioner not provided with the streamer discharge unit.

また、第1~第3実施形態では、室内ファン12により室内熱交換器11を介して室内空気を循環させる送風運転および室内熱交換器11を凝縮器として機能させる暖房運転により室内機1の風通路内を乾燥させる内部乾燥運転を行ったが、送風運転と暖房運転のうちの一方のみによる内部乾燥運転でもよい。 Further, in the first to third embodiments, the wind of the indoor unit 1 is operated by the ventilation operation in which the indoor fan 12 circulates the indoor air through the indoor heat exchanger 11 and the heating operation in which the indoor heat exchanger 11 functions as a condenser. Although the internal drying operation for drying the inside of the passage is performed, the internal drying operation may be performed by only one of the ventilation operation and the heating operation.

本開示の具体的な実施の形態について説明したが、本開示は上記第1~第3実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。 Although the specific embodiments of the present disclosure have been described, the present disclosure is not limited to the first to third embodiments described above, and various modifications can be made within the scope of the present disclosure.

1…室内機
1a…吹出口
2…室外機
10…ケーシング
11…室内熱交換器
11a…本体熱交換部
11a-1…正面部
11a-2…背面部
11b…補助熱交換部
12…室内ファン
13…電磁弁
21…圧縮機
22…四路切換弁
23…室外熱交換器
24…膨張弁(膨張機構)
25…アキュムレータ
26…室外ファン
30…ストリーマ放電ユニット
31…水平フラップ
32…水平フラップ用駆動モータ
51…室内熱交換器温度センサ
52…室内温度センサ
53…室内湿度センサ
56…室外熱交換器温度センサ
57…外気温度センサ
58…冷媒温度センサ
100…制御装置
100a…冷房除湿運転制御部
100b…過絞り除湿運転制御部
100c…再熱除湿運転制御部
RC…冷媒回路
1 ... Indoor unit 1a ... Blowout 2 ... Outdoor unit 10 ... Casing 11 ... Indoor heat exchanger 11a ... Main body heat exchange part 11a-1 ... Front part 11a-2 ... Back part 11b ... Auxiliary heat exchange part 12 ... Indoor fan 13 … Solenoid valve 21… Compressor 22… Four-way switching valve 23… Outdoor heat exchanger 24… Expansion valve (expansion mechanism)
25 ... Accumulator 26 ... Outdoor fan 30 ... Streamer discharge unit 31 ... Horizontal flap 32 ... Horizontal flap drive motor 51 ... Indoor heat exchanger temperature sensor 52 ... Indoor temperature sensor 53 ... Indoor humidity sensor 56 ... Outdoor heat exchanger temperature sensor 57 ... Outside air temperature sensor 58 ... Refrigerator temperature sensor 100 ... Control device 100a ... Cooling dehumidification operation control unit 100b ... Over-throttle dehumidification operation control unit 100c ... Reheat dehumidification operation control unit RC ... Refrigerator circuit

Claims (6)

圧縮機(21)、室外熱交換器(23)、膨張機構(24)および室内熱交換器(11)が環状に接続された冷媒回路(RC)と、
上記室内熱交換器(11)が風通路内に配置されたケーシング(10)と、上記ケーシング(10)の上記風通路内に配置された室内ファン(12)とを有する室内機(1)と、
上記室内ファン(12)により上記室内熱交換器(11)を介して室内空気を循環させる送風運転および上記室内熱交換器(11)を凝縮器として機能させる暖房運転の少なくとも一方により上記室内機(1)の上記風通路内を乾燥させる内部乾燥運転を行う制御装置(100)と
を備え、
蒸発域の大きさが異なる複数の除湿モードの運転が可能であり、
上記複数の除湿モード夫々の運転後に行う上記内部乾燥運転は、上記異なる複数の除湿モードに応じて異なる運転時間を用いることが可能なことを特徴とする空気調和機。
A refrigerant circuit (RC) in which a compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24) and an indoor heat exchanger (11) are connected in an annular shape,
An indoor unit (1) having a casing (10) in which the indoor heat exchanger (11) is arranged in the air passage and an indoor fan (12) arranged in the air passage of the casing (10). ,
The indoor unit (12) is operated by at least one of a ventilation operation in which indoor air is circulated through the indoor heat exchanger (11) by the indoor fan (12) and a heating operation in which the indoor heat exchanger (11) functions as a condenser. 1) It is equipped with a control device (100) that performs an internal drying operation to dry the inside of the air passage.
It is possible to operate in multiple dehumidification modes with different sizes of evaporation areas .
The air conditioner is characterized in that the internal drying operation performed after each of the plurality of dehumidifying modes can use different operating times according to the plurality of different dehumidifying modes.
請求項1に記載の空気調和機において、
上記複数の除湿モードの運転は、上記室内熱交換器(11)の実質的に全部を蒸発域とする第1除湿運転と、上記室内熱交換器(11)の一部を凝縮域とする一方、上記室内熱交換器(11)の残りの部分を蒸発域とする第2除湿運転とを含み、
上記第1除湿運転後の上記内部乾燥運転の運転時間は、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも長いことを特徴とする空気調和機。
In the air conditioner according to claim 1,
In the operation of the plurality of dehumidifying modes, the first dehumidifying operation in which substantially the entire indoor heat exchanger (11) is set as the evaporation region and the operation in which a part of the indoor heat exchanger (11) is set as the condensed region are performed. , Including the second dehumidification operation in which the remaining part of the indoor heat exchanger (11) is the evaporation area.
An air conditioner characterized in that the operating time of the internal drying operation after the first dehumidifying operation is longer than the operating time of the internal drying operation after the second dehumidifying operation.
請求項2に記載の空気調和機において、
上記複数の除湿モードの運転は、上記室内熱交換器(11)の一部を蒸発域にする一方、上記室内熱交換器(11)の残りの部分を過熱域にする第3除湿運転を含み、
上記第3除湿運転後の上記内部乾燥運転の運転時間は、上記第1除湿運転後の上記内部乾燥運転の運転時間よりも短く、かつ、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも長いことを特徴とする空気調和機。
In the air conditioner according to claim 2,
The operation of the plurality of dehumidifying modes includes a third dehumidifying operation in which a part of the indoor heat exchanger (11) is set as an evaporation region and the remaining part of the indoor heat exchanger (11) is set as a superheat region. ,
The operation time of the internal drying operation after the third dehumidifying operation is shorter than the operating time of the internal drying operation after the first dehumidifying operation, and the operating time of the internal drying operation after the second dehumidifying operation. An air conditioner characterized by being longer than.
請求項1に記載の空気調和機において、
上記複数の除湿モードの運転は、上記室内熱交換器(11)の実質的に全部を蒸発域とする第1除湿運転と、上記室内熱交換器(11)の一部を凝縮域とする一方、上記室内熱交換器(11)の残りの部分を蒸発域とする第2除湿運転とを含み、
上記第1除湿運転後の上記内部乾燥運転の運転時間は、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも短いことを特徴とする空気調和機。
In the air conditioner according to claim 1,
In the operation of the plurality of dehumidifying modes, the first dehumidifying operation in which substantially the entire indoor heat exchanger (11) is set as the evaporation region and the operation in which a part of the indoor heat exchanger (11) is set as the condensed region are performed. , Including the second dehumidification operation in which the remaining part of the indoor heat exchanger (11) is the evaporation area.
An air conditioner characterized in that the operating time of the internal drying operation after the first dehumidifying operation is shorter than the operating time of the internal drying operation after the second dehumidifying operation.
請求項4に記載の空気調和機において、
上記複数の除湿モードの運転は、上記室内熱交換器(11)の一部を蒸発域にする一方、上記室内熱交換器(11)の残りの部分を過熱域にする第3除湿運転を含み、
上記第3除湿運転後の内部乾燥運転の運転時間は、上記第1除湿運転後の上記内部乾燥運転の運転時間よりも長く、かつ、上記第2除湿運転後の上記内部乾燥運転の運転時間よりも短いことを特徴とする空気調和機。
In the air conditioner according to claim 4,
The operation of the plurality of dehumidifying modes includes a third dehumidifying operation in which a part of the indoor heat exchanger (11) is set as an evaporation region and the remaining part of the indoor heat exchanger (11) is set as a superheat region. ,
The operation time of the internal drying operation after the third dehumidifying operation is longer than the operating time of the internal drying operation after the first dehumidifying operation, and is longer than the operating time of the internal drying operation after the second dehumidifying operation. An air conditioner characterized by being short.
請求項3または5に記載の空気調和機において、
上記第3除湿運転の継続時間が第1所定時間以上のとき、該第3除湿運転後に上記内部乾燥運転を行うと共に、
上記第2除湿運転の継続時間が第2所定時間以上のとき、該第2除湿運転後に上記内部乾燥運転を行うことを特徴とする空気調和機。
In the air conditioner according to claim 3 or 5.
When the duration of the third dehumidifying operation is longer than the first predetermined time, the internal drying operation is performed after the third dehumidifying operation, and the internal drying operation is performed.
An air conditioner characterized in that when the duration of the second dehumidifying operation is longer than the second predetermined time, the internal drying operation is performed after the second dehumidifying operation.
JP2018205563A 2018-10-31 2018-10-31 Air conditioner Active JP6989780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205563A JP6989780B2 (en) 2018-10-31 2018-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205563A JP6989780B2 (en) 2018-10-31 2018-10-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2020070977A JP2020070977A (en) 2020-05-07
JP6989780B2 true JP6989780B2 (en) 2022-01-12

Family

ID=70547783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205563A Active JP6989780B2 (en) 2018-10-31 2018-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP6989780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462830B2 (en) 2021-03-18 2024-04-05 三菱電機株式会社 Air Conditioning Equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212892B1 (en) 1998-07-27 2001-04-10 Alexander Pinkus Rafalovich Air conditioner and heat pump with dehumidification
JP2004085020A (en) 2002-08-26 2004-03-18 Hitachi Home & Life Solutions Inc Air conditioner
JP2004108618A (en) 2002-09-13 2004-04-08 Toshiba Kyaria Kk Air conditioner
JP2004197990A (en) 2002-12-17 2004-07-15 Fujitsu General Ltd Air conditioner control method
JP2017044424A (en) 2015-08-27 2017-03-02 株式会社富士通ゼネラル Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003101B2 (en) * 1998-01-27 2007-11-07 三菱電機株式会社 Control method and apparatus for air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212892B1 (en) 1998-07-27 2001-04-10 Alexander Pinkus Rafalovich Air conditioner and heat pump with dehumidification
JP2004085020A (en) 2002-08-26 2004-03-18 Hitachi Home & Life Solutions Inc Air conditioner
JP2004108618A (en) 2002-09-13 2004-04-08 Toshiba Kyaria Kk Air conditioner
JP2004197990A (en) 2002-12-17 2004-07-15 Fujitsu General Ltd Air conditioner control method
JP2017044424A (en) 2015-08-27 2017-03-02 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP2020070977A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP2006313027A (en) Ventilation air conditioner
JP2008175490A (en) Air conditioner
JP6989780B2 (en) Air conditioner
CN107504629B (en) Multi-connected air conditioner clothes dryer and control method thereof
JP2010145012A (en) Heat exchange type ventilation device
JP6881419B2 (en) Air conditioner
JP3936345B2 (en) Air conditioner
KR20180078833A (en) Air conditioner and method for controlling the same
JP2005009849A (en) Air conditioner
KR20060089432A (en) Air conditioner and in door uint in use with it and method for dehumidifying
JP6897653B2 (en) Air conditioner
JP4938536B2 (en) Air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
KR100430002B1 (en) Driving control method of air conditioner for bathroom
KR100393777B1 (en) Dehumidifying operation control method for air conditioner
JP2005164114A (en) Bathroom air conditioning system
JP2020070981A (en) Air conditioner
JP6745895B2 (en) Air conditioning system
JP4452083B2 (en) Air conditioner with floor heating
KR20070052993A (en) Air-conditioner and controlling method for the same
JP2722419B2 (en) Air conditioner
JP6997396B2 (en) Air conditioning system
JP6897652B2 (en) Air conditioner
WO2022004264A1 (en) Heat exchange ventilation device with air purification function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6989780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151