JP6881419B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6881419B2
JP6881419B2 JP2018205770A JP2018205770A JP6881419B2 JP 6881419 B2 JP6881419 B2 JP 6881419B2 JP 2018205770 A JP2018205770 A JP 2018205770A JP 2018205770 A JP2018205770 A JP 2018205770A JP 6881419 B2 JP6881419 B2 JP 6881419B2
Authority
JP
Japan
Prior art keywords
compressor
dehumidifying operation
heat exchanger
dehumidification operation
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205770A
Other languages
Japanese (ja)
Other versions
JP2020070985A (en
Inventor
伊藤 裕
裕 伊藤
顕 木下
顕 木下
純也 米田
純也 米田
智彦 堤
智彦 堤
久瑠美 加藤
久瑠美 加藤
均 川島
均 川島
貴裕 仲田
貴裕 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018205770A priority Critical patent/JP6881419B2/en
Publication of JP2020070985A publication Critical patent/JP2020070985A/en
Application granted granted Critical
Publication of JP6881419B2 publication Critical patent/JP6881419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本開示は、空気調和機に関する。 The present disclosure relates to an air conditioner.

従来、空気調和機としては、特開2004−108618号公報(特許文献1)に開示されているように、顕熱能力の大きな第1除湿運転と、この第1除湿運転よりも顕熱能力が小さい第2除湿運転と、この第2除湿運転よりも顕熱能力が小さい第3除湿運転とを行うものがある。 Conventionally, as an air conditioner, as disclosed in Japanese Patent Application Laid-Open No. 2004-108618 (Patent Document 1), the first dehumidifying operation having a large sensible heat capacity and the sensible heat capacity are higher than those of the first dehumidifying operation. There is a small second dehumidifying operation and a third dehumidifying operation having a sensible heat capacity smaller than that of the second dehumidifying operation.

特開2004−108618号公報Japanese Unexamined Patent Publication No. 2004-108618

上記従来の空気調和機の第3除湿運転では、除湿量が少なくなってしまうという問題があった。 In the third dehumidifying operation of the conventional air conditioner, there is a problem that the amount of dehumidification is reduced.

本開示の課題は、第3除湿運転時における除湿量を増やすことができる空気調和機を提供することにある。 An object of the present disclosure is to provide an air conditioner capable of increasing the amount of dehumidification during the third dehumidification operation.

本開示の空気調和機は、
圧縮機、室外熱交換器、膨張機構および室内熱交換器が環状に接続され、冷媒が循環する冷媒回路と、
制御部と
を備え、
上記室内熱交換器は制御弁を有し、
上記制御部は、
上記室内熱交換器の実質的に全部を蒸発域にする第1除湿運転と、
上記室内熱交換器の一部を蒸発域にする一方、上記室内熱交換器の残りの部分を過熱域にする第2除湿運転と、
上記室内熱交換器において上記制御弁よりも上流側の部分を凝縮域とする一方、上記室内熱交換器において上記制御弁よりも下流側の部分を蒸発域とする第3除湿運転と
を行うと共に、
上記第3除湿運転時における上記圧縮機の周波数の上限値が、上記第2除湿運転時における上記圧縮機の周波数の上限値よりも高くなるように、上記圧縮機を制御する。
The air conditioner of the present disclosure is
A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected in a ring shape and a refrigerant circulates.
Equipped with a control unit
The indoor heat exchanger has a control valve and
The control unit
The first dehumidification operation that makes substantially all of the indoor heat exchanger an evaporation region, and
A second dehumidifying operation in which a part of the indoor heat exchanger is set to an evaporation region and the remaining part of the indoor heat exchanger is set to a superheat zone.
In the indoor heat exchanger, the portion on the upstream side of the control valve is set as the condensation region, while in the indoor heat exchanger, the portion on the downstream side of the control valve is set as the evaporation region, and the third dehumidifying operation is performed. ,
The compressor is controlled so that the upper limit of the frequency of the compressor during the third dehumidifying operation is higher than the upper limit of the frequency of the compressor during the second dehumidifying operation.

上記構成によれば、上記制御部が圧縮機を制御することにより、圧縮機の周波数の上限値が、第2除湿運転時における圧縮機の周波数の上限値よりも高くなる。したがって、上記第3除湿運転時における除湿量を増やすことができる。 According to the above configuration, the upper limit of the frequency of the compressor becomes higher than the upper limit of the frequency of the compressor during the second dehumidifying operation because the control unit controls the compressor. Therefore, the amount of dehumidification during the third dehumidification operation can be increased.

一態様の空気調和機では、
上記制御部は、上記第3除湿運転時における上記圧縮機の周波数の下限値は、上記第2除湿運転時における上記圧縮機の周波数の下限値よりも高くなるように、上記圧縮機を制御する。
In one aspect of the air conditioner,
The control unit controls the compressor so that the lower limit of the frequency of the compressor during the third dehumidifying operation is higher than the lower limit of the frequency of the compressor during the second dehumidifying operation. ..

上記態様によれば、上記制御部が圧縮機を制御することにより、第3除湿運転時における圧縮機の周波数の下限値が、第2除湿運転時における圧縮機の周波数の下限値よりも高くなる。したがって、上記第3除湿運転で室内を除湿するとき、いわゆるチョーク現象が冷媒回路で生じ難くなる。 According to the above aspect, by controlling the compressor by the control unit, the lower limit of the frequency of the compressor during the third dehumidifying operation becomes higher than the lower limit of the frequency of the compressor during the second dehumidifying operation. .. Therefore, when the room is dehumidified by the third dehumidifying operation, the so-called choke phenomenon is less likely to occur in the refrigerant circuit.

一態様の空気調和機では、
上記制御部は、上記第3除湿運転を上記第2除湿運転に引き続いて開始させる。
In one aspect of the air conditioner,
The control unit starts the third dehumidifying operation following the second dehumidifying operation.

上記態様によれば、上記第2除湿運転に引き続いて第3除湿運転が行われることにより、消費電力を低減することができる。 According to the above aspect, the power consumption can be reduced by performing the third dehumidifying operation following the second dehumidifying operation.

一態様の空気調和機では、
上記第3除湿運転の開始時における上記圧縮機の周波数は、上記第3除湿運転時における上記圧縮機の周波数の下限値である。
In one aspect of the air conditioner,
The frequency of the compressor at the start of the third dehumidifying operation is the lower limit of the frequency of the compressor at the time of the third dehumidifying operation.

上記態様によれば、上記第3除湿運転の開始時、第3除湿運転時における圧縮機の周波数の下限値で、圧縮機が駆動する。その結果、上記第3除湿運転の開始後、冷媒が循環しやすくなる。 According to the above aspect, the compressor is driven at the lower limit of the frequency of the compressor at the start of the third dehumidification operation and at the time of the third dehumidification operation. As a result, after the start of the third dehumidifying operation, the refrigerant is likely to circulate.

一態様の空気調和機では、
上記制御部は、上記第2除湿運転から上記第3除湿運転に切り替えるとき、上記第2除湿運転の終了後、上記膨張機構の開度を、上記第2除湿運転の終了時よりも大きい第1所定開度にした後、上記第3除湿運転の開始時、上記膨張機構の開度を、上記第1所定開度よりも大きい第2所定開度にする。
In one aspect of the air conditioner,
When switching from the second dehumidifying operation to the third dehumidifying operation, the control unit sets the opening degree of the expansion mechanism after the end of the second dehumidifying operation to be larger than that at the end of the second dehumidifying operation. After the predetermined opening degree is set, at the start of the third dehumidifying operation, the opening degree of the expansion mechanism is set to the second predetermined opening degree larger than the first predetermined opening degree.

上記態様によれば、上記第2除湿運転の終了後、かつ、第3除湿運転の開始前に、膨張機構の開度は第1所定開度になる。この第1所定開度は、第2除湿運転の終了時における膨張機構の開度よりも大きく、かつ、第3除湿運転の開始時における膨張機構の第2所定開度よりも小さい。その結果、上記第3除湿運転の開始後、冷媒が循環しやすくなる効果を高めることができる。 According to the above aspect, the opening degree of the expansion mechanism becomes the first predetermined opening degree after the end of the second dehumidifying operation and before the start of the third dehumidifying operation. The first predetermined opening is larger than the opening of the expansion mechanism at the end of the second dehumidifying operation and smaller than the second predetermined opening of the expansion mechanism at the start of the third dehumidifying operation. As a result, after the start of the third dehumidifying operation, the effect of facilitating circulation of the refrigerant can be enhanced.

本開示の一実施形態の空気調和機の冷媒回路の回路図である。It is a circuit diagram of the refrigerant circuit of the air conditioner of one Embodiment of this disclosure. 上記空気調和機の制御ブロック図である。It is a control block diagram of the said air conditioner. 上記空気調和機の冷房除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the cooling dehumidification operation of the said air conditioner. 上記空気調和機の過絞り除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the over-throttle dehumidification operation of the said air conditioner. 上記空気調和機の再熱除湿運転を説明するための模式図である。It is a schematic diagram for demonstrating the reheat dehumidification operation of the said air conditioner. 上記空気調和機の冷房除湿運転、過絞り除湿運転および再熱除湿運転に関するモリエル線図である。It is a Moriel diagram regarding the cooling dehumidification operation, the over-throttle dehumidification operation, and the reheat dehumidification operation of the air conditioner. 上記空気調和機の冷房除湿運転、過絞り除湿運転および再熱除湿運転の運転条件を比較するための表である。It is a table for comparing the operation conditions of the cooling dehumidification operation, the over-throttle dehumidification operation, and the reheat dehumidification operation of the air conditioner.

以下、本開示の空気調和機を、図示の実施の形態により詳細に説明する。 Hereinafter, the air conditioner of the present disclosure will be described in detail by the illustrated embodiment.

図1は、本開示の一実施形態の空気調和機が備える冷媒回路RCの回路図である。 FIG. 1 is a circuit diagram of a refrigerant circuit RC included in the air conditioner according to the embodiment of the present disclosure.

上記空気調和機は、空調対象である室内に設置される室内機1と、室外に設置される室外機2とを備える。 The air conditioner includes an indoor unit 1 installed indoors to be air-conditioned and an outdoor unit 2 installed outdoors.

室内機1は、例えば、室内の壁面に取り付けられる壁掛け式の室内ユニットである。この室内機1は、室内熱交換器11と、この室内熱交換器11に空気を送る室内ファン12と、室内熱交換器11の温度を検出する室内熱交換器温度センサ51と、室内温度を検出する室内温度センサ52と、室内湿度を検出する室内湿度センサ53とを有する。 The indoor unit 1 is, for example, a wall-mounted indoor unit that is attached to a wall surface of the room. The indoor unit 1 measures the indoor heat exchanger 11, the indoor fan 12 that sends air to the indoor heat exchanger 11, the indoor heat exchanger temperature sensor 51 that detects the temperature of the indoor heat exchanger 11, and the indoor temperature. It has an indoor temperature sensor 52 for detecting and an indoor humidity sensor 53 for detecting indoor humidity.

室内熱交換器11は、室内ファン12による空気流に関して、室内ファン12よりも上流側に位置している。この室内熱交換器11は、室内ファン12からの空気と冷媒との熱交換を行うために、本体熱交換部11aと、補助熱交換部11bと、制御弁の一例としての電磁弁13とを有する。 The indoor heat exchanger 11 is located on the upstream side of the indoor fan 12 with respect to the air flow by the indoor fan 12. The indoor heat exchanger 11 includes a main body heat exchange unit 11a, an auxiliary heat exchange unit 11b, and an electromagnetic valve 13 as an example of a control valve in order to exchange heat between the air from the indoor fan 12 and the refrigerant. Have.

本体熱交換部11aは、室内ユーザ側に位置する正面部11a−1と、室内ユーザ側とは反対側に位置する背面部11a−2とから成っている。また、正面部11a−1は、冷媒配管L1,L2および電磁弁13を介して背面部11a−2に流体的に接続されている。これにより、膨張弁24から本体熱交換部11aへ流れる冷媒は、正面部11a−1を流れた後、背面部11a−2に流入することが可能となっている。 The main body heat exchange portion 11a includes a front portion 11a-1 located on the indoor user side and a back portion 11a-2 located on the side opposite to the indoor user side. Further, the front portion 11a-1 is fluidly connected to the back portion 11a-2 via the refrigerant pipes L1 and L2 and the solenoid valve 13. As a result, the refrigerant flowing from the expansion valve 24 to the main body heat exchange portion 11a can flow into the back portion 11a-2 after flowing through the front portion 11a-1.

補助熱交換部11bは、本体熱交換部11aの正面部11a−1に関して本体熱交換部11aの背面部11a−2側とは反対側に設けられている。すなわち、補助熱交換部11bは、本体熱交換部11aの正面部11a−1よりも、室内ユーザ側に位置する。この補助熱交換部11bは、本体熱交換部11aよりも、容積が小さい。また、補助熱交換部11bは、冷媒配管L11を介して本体熱交換部11aの正面部11a−1に流体的に接続されている。これにより、膨張弁24側からの冷媒は、補助熱交換部11bを介して、本体熱交換部11aに供給される。このように、補助熱交換部11bは、冷媒配管L3と冷媒配管L11との間の冷媒パスを有するものと言える。 The auxiliary heat exchange portion 11b is provided on the side opposite to the back surface portion 11a-2 side of the main body heat exchange portion 11a with respect to the front portion 11a-1 of the main body heat exchange portion 11a. That is, the auxiliary heat exchange unit 11b is located closer to the indoor user than the front portion 11a-1 of the main body heat exchange unit 11a. The volume of the auxiliary heat exchange unit 11b is smaller than that of the main body heat exchange unit 11a. Further, the auxiliary heat exchange portion 11b is fluidly connected to the front portion 11a-1 of the main body heat exchange portion 11a via the refrigerant pipe L11. As a result, the refrigerant from the expansion valve 24 side is supplied to the main body heat exchange unit 11a via the auxiliary heat exchange unit 11b. As described above, it can be said that the auxiliary heat exchange unit 11b has a refrigerant path between the refrigerant pipe L3 and the refrigerant pipe L11.

室内ファン12としては、例えば、クロスフローファンが採用される。このクロスフローファンは、室内熱交換器11で温度などが調整された空気を室内に向けて吹き出す。 As the indoor fan 12, for example, a cross flow fan is adopted. This cross-flow fan blows out air whose temperature and the like are adjusted by the indoor heat exchanger 11 toward the room.

電磁弁13は、電磁弁13は、室内熱交換器11の冷媒パスの中間部に設けられている。より詳しく説明すると、本体熱交換部11aの正面部11a−1側と本体熱交換部11aの正面部11a−1側との間に差圧を設定するための弁である。電磁弁13は、大開度および小開度の2位置のみを取ることが可能なオンオフ弁であり、必要時(例えば、後述する再熱除湿運転時)にオンされ、大開度の位置から小開度の位置に切り替えられる。 The solenoid valve 13 is provided in the middle portion of the refrigerant path of the indoor heat exchanger 11. More specifically, it is a valve for setting a differential pressure between the front portion 11a-1 side of the main body heat exchange portion 11a and the front portion 11a-1 side of the main body heat exchange portion 11a. The solenoid valve 13 is an on / off valve that can take only two positions, a large opening and a small opening, and is turned on when necessary (for example, during reheat dehumidification operation described later) and slightly opened from the position of the large opening. It can be switched to the degree position.

室外機2は、圧縮機21と、四路切換弁22と、室外熱交換器23と、膨張機構の一例としての膨張弁24と、アキュムレータ25と、室外熱交換器23に空気を送る室外ファン26とを有する。さらに、室外機2は、室外熱交換器23の温度を検出する室外熱交換器温度センサ56と、外気温度を検出する外気温度センサ57と、膨張弁24で減圧された冷媒の温度(蒸発温度)を検出する冷媒温度センサ58とを有する。なお、冷媒温度センサ58は、第1冷媒温度センサの一例である。 The outdoor unit 2 includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 as an example of an expansion mechanism, an accumulator 25, and an outdoor fan that sends air to the outdoor heat exchanger 23. It has 26 and. Further, the outdoor unit 2 includes an outdoor heat exchanger temperature sensor 56 that detects the temperature of the outdoor heat exchanger 23, an outside air temperature sensor 57 that detects the outside air temperature, and the temperature (evaporation temperature) of the refrigerant decompressed by the expansion valve 24. ) Is detected by the refrigerant temperature sensor 58. The refrigerant temperature sensor 58 is an example of the first refrigerant temperature sensor.

室外熱交換器23は、室外ファン26による空気流に関して、室外ファン26よりも下流側に位置している。室外熱交換器23内を流れる冷媒は、室内ファン12からの空気と熱交換する。 The outdoor heat exchanger 23 is located on the downstream side of the outdoor fan 26 with respect to the air flow by the outdoor fan 26. The refrigerant flowing in the outdoor heat exchanger 23 exchanges heat with the air from the indoor fan 12.

膨張弁24は、互いに異なる3以上の開度に調整可能な例えば電動弁であって、制御装置100(図2に示す)からの信号に応じて開度が変化する。 The expansion valve 24 is, for example, an electric valve that can be adjusted to an opening degree of 3 or more different from each other, and the opening degree changes according to a signal from the control device 100 (shown in FIG. 2).

また、上記空気調和機の冷媒回路RCは、室内熱交換器11、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁24、アキュムレータ25および冷媒配管L3〜L9から成っている。より詳しく説明すると、室内熱交換器11、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁24およびアキュムレータ25が、冷媒配管L3〜L9によって流体的に接続される。これにより、環状の冷媒回路RCが構成されている。このような冷媒回路RCにおいて、圧縮機21の駆動時、冷媒が循環する。 The refrigerant circuit RC of the air conditioner includes an indoor heat exchanger 11, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, an accumulator 25, and refrigerant pipes L3 to L9. .. More specifically, the indoor heat exchanger 11, the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the expansion valve 24, and the accumulator 25 are fluidly connected by the refrigerant pipes L3 to L9. As a result, the annular refrigerant circuit RC is configured. In such a refrigerant circuit RC, the refrigerant circulates when the compressor 21 is driven.

外気温度センサ57は、室外ファン26による空気流に関して、室外熱交換器23よりも上流側に位置している。すなわち、室外ファン26の駆動時、室外熱交換器23と熱交換する前の室外空気が外気温度センサ57を経由するようになっている。 The outside air temperature sensor 57 is located upstream of the outdoor heat exchanger 23 with respect to the air flow by the outdoor fan 26. That is, when the outdoor fan 26 is driven, the outdoor air before heat exchange with the outdoor heat exchanger 23 passes through the outside air temperature sensor 57.

また、図示しないが、上記空気調和機は、リモートコントローラ(以下、「リモコン」と言う。)を備える。ユーザは、リモコンを操作して、自動運転、冷房運転、暖房運転、除湿運転などを開始させたり、停止させたりすることができる。 Although not shown, the air conditioner includes a remote controller (hereinafter, referred to as "remote controller"). The user can operate the remote controller to start or stop the automatic operation, the cooling operation, the heating operation, the dehumidifying operation, and the like.

図2は、上記空気調和機の制御ブロック図である。 FIG. 2 is a control block diagram of the air conditioner.

上記空気調和機は、冷媒回路RCを制御する制御装置100を備える。より詳しく説明すると、制御装置100は、マイクロコンピュータ、入出力回路などから成っている。この制御装置100が、室内熱交換器温度センサ51、室内温度センサ52、室内湿度センサ53、室外熱交換器温度センサ56、外気温度センサ57、冷媒温度センサ58などからの信号に基づいて、圧縮機21、四路切換弁22、膨張弁24、室外ファン26、室内ファン12、電磁弁13などを制御する。なお、制御装置100は制御部の一例である。 The air conditioner includes a control device 100 that controls the refrigerant circuit RC. More specifically, the control device 100 includes a microprocessor, an input / output circuit, and the like. The control device 100 compresses based on signals from the indoor heat exchanger temperature sensor 51, the indoor temperature sensor 52, the indoor humidity sensor 53, the outdoor heat exchanger temperature sensor 56, the outside air temperature sensor 57, the refrigerant temperature sensor 58, and the like. It controls the machine 21, the four-way switching valve 22, the expansion valve 24, the outdoor fan 26, the indoor fan 12, the electromagnetic valve 13, and the like. The control device 100 is an example of a control unit.

また、制御装置100は、冷房除湿運転を行う冷房除湿運転制御部100aと、過絞り除湿運転を行う過絞り除湿運転制御部100bと、再熱除湿運転を行う再熱除湿運転制御部100cとを有する。この冷房除湿運転制御部100a、過絞り除湿運転制御部100bおよび再熱除湿運転制御部100cは、それぞれ、ソフトウェアにより構成されている。なお、上記冷房除湿運転は、第1除湿運転の一例である。また、上記過絞り除湿運転は、第2除湿運転の一例である。また、上記再熱除湿運転は、第3除湿運転の一例である。 Further, the control device 100 includes a cooling dehumidification operation control unit 100a that performs a cooling dehumidification operation, an overthrottle dehumidification operation control unit 100b that performs an overslot dehumidification operation, and a reheat dehumidification operation control unit 100c that performs a reheat dehumidification operation. Have. The cooling dehumidification operation control unit 100a, the over-throttle dehumidification operation control unit 100b, and the reheat dehumidification operation control unit 100c are each composed of software. The cooling dehumidification operation is an example of the first dehumidification operation. The over-throttle dehumidification operation is an example of the second dehumidification operation. The reheat dehumidification operation is an example of the third dehumidification operation.

[冷房除湿運転]
上記冷房除湿運転は、図1に示すように、四路切換弁22を実線の切換え位置に切り換えると共に、圧縮機21を起動することで、開始される。この冷房除湿運転中、圧縮機21から吐出された高温高圧の冷媒が四路切換弁22を介して室外熱交換器23に流入する。そして、室外熱交換器23で凝縮した冷媒は、膨張弁24で減圧された後、室内熱交換器11の補助熱交換部11bと、室内熱交換器11の本体熱交換部11aとに、この順で流入する。この本体熱交換部11aおよび補助熱交換部11bで蒸発した冷媒が四路切換弁22およびアキュムレータ25を介して圧縮機21の吸入側に戻る。このように、冷媒が冷媒回路RCを循環するとき、冷房除湿運転制御部100aが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオフにすることで、図3に示すように、室内熱交換器11の実質的に全部を蒸発域(図3において斜線のハッチングを付した領域)とする。これにより、上記冷房除湿運転は、室内温度を変化させるための能力である顕熱能力が高くなる。
[Cooling and dehumidifying operation]
As shown in FIG. 1, the cooling / dehumidifying operation is started by switching the four-way switching valve 22 to the solid line switching position and activating the compressor 21. During this cooling / dehumidifying operation, the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 via the four-way switching valve 22. Then, the refrigerant condensed by the outdoor heat exchanger 23 is decompressed by the expansion valve 24, and then the auxiliary heat exchange portion 11b of the indoor heat exchanger 11 and the main body heat exchange portion 11a of the indoor heat exchanger 11 are subjected to this. Inflow in order. The refrigerant evaporated in the main body heat exchange section 11a and the auxiliary heat exchange section 11b returns to the suction side of the compressor 21 via the four-way switching valve 22 and the accumulator 25. In this way, when the refrigerant circulates in the refrigerant circuit RC, the cooling / dehumidifying operation control unit 100a adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns off the solenoid valve 13. As shown in FIG. 3, substantially the entire indoor heat exchanger 11 is defined as an evaporation region (the region shaded in FIG. 3). As a result, the cooling / dehumidifying operation has a high sensible heat capacity, which is the ability to change the room temperature.

ここで、室内熱交換器11の実質的に全部を蒸発域にするとは、室内熱交換器11の全部を蒸発域にするときだけでなく、所定条件下で室内熱交換器11において一部を除いた部分だけを蒸発域にするときも含む。この一部(例えば、室内熱交換器11の全容積の1/3以下の部分)だけが蒸発域とならないときとしては、例えば、室内環境などによって、室内熱交換器11の冷媒出口近傍の部分が過熱域となるときなどがある。 Here, to make substantially all of the indoor heat exchanger 11 an evaporation region is not only when the entire indoor heat exchanger 11 is made into an evaporation region, but also a part of the indoor heat exchanger 11 under predetermined conditions. It also includes the case where only the excluded part is set as the evaporation area. When only a part of this (for example, a part of 1/3 or less of the total volume of the indoor heat exchanger 11) does not become an evaporation region, for example, a part near the refrigerant outlet of the indoor heat exchanger 11 depending on the indoor environment or the like. Is sometimes overheated.

[過絞り除湿運転]
上記過絞り除湿運転は、上記冷房除湿運転のときと同じ方向に冷媒を流す。このとき、過絞り除湿運転制御部100bが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオフにすることで、室内熱交換器11の上流側の一部を蒸発域とする一方、室内熱交換器11の残りの部分を過熱域とする。例えば、過絞り除湿運転制御部100bは、図4に示すように、補助熱交換部11bを蒸発域(斜線のハッチングを付した領域)にする一方、本体熱交換部11aの正面部11a−1および背面部11a−2を過熱域(点のハッチングを付した領域)にする。これにより、上記過絞り除湿運転は、冷房除湿運転によりも顕熱能力が低くなるので、室内の熱負荷が高くも低くもないとき、室温の低下を抑制しつつ、室内の除湿を行える。図4では、補助熱交換部11bの全部が蒸発域となるように描かれているが、補助熱交換部11bの一部だけを蒸発域にすることも可能である。すなわち、上記蒸発域は、容積を変更することが可能な可変領域である。
[Over-throttle dehumidification operation]
In the over-squeezing dehumidifying operation, the refrigerant flows in the same direction as in the cooling / dehumidifying operation. At this time, the over-throttle dehumidification operation control unit 100b adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns off the solenoid valve 13 so that the one on the upstream side of the indoor heat exchanger 11 The portion is set as an evaporation region, while the remaining portion of the indoor heat exchanger 11 is set as a superheat region. For example, as shown in FIG. 4, the over-throttle dehumidification operation control unit 100b sets the auxiliary heat exchange unit 11b into an evaporation region (a region with hatched diagonal lines), while the front portion 11a-1 of the main body heat exchange unit 11a. And the back surface portion 11a-2 is set to a superheated region (a region with hatched dots). As a result, the sensible heat capacity of the over-throttle dehumidification operation is lower than that of the cooling dehumidification operation. Therefore, when the heat load in the room is neither high nor low, it is possible to dehumidify the room while suppressing a decrease in room temperature. In FIG. 4, the entire auxiliary heat exchange section 11b is drawn so as to be in the evaporation region, but it is also possible to set only a part of the auxiliary heat exchange section 11b as the evaporation zone. That is, the evaporation region is a variable region whose volume can be changed.

また、上記圧縮機21および膨張弁24は、過絞り除湿運転中、蒸発域の容積が負荷に応じて変化するように制御される。例えば、過絞り除湿運転制御部100bは、過絞り除湿運転中、蒸発域が所定容積(例えば、室内熱交換器11の全容積の2/3)以下となるように、圧縮機21および膨張弁24を制御する。 Further, the compressor 21 and the expansion valve 24 are controlled so that the volume of the evaporation region changes according to the load during the over-throttle dehumidification operation. For example, the over-throttle dehumidification operation control unit 100b has a compressor 21 and an expansion valve so that the evaporation area is equal to or less than a predetermined volume (for example, 2/3 of the total volume of the indoor heat exchanger 11) during the over-throttle dehumidification operation. 24 is controlled.

ここで、上記負荷に応じて変化するとは、室内から蒸発域に供給される熱量に応じて変化することであって、その熱量は例えば室内温度(室内機1が吸い込む空気の温度)と室内風量(室内機1が吹き出す風の量)によって決まる。また、上記負荷は、必要除湿能力(必要冷房能力)に対応しており、例えば、室内温度と設定温度との差に基づいて検知できる。なお、上記設定温度としては、予め設定された温度、または、ユーザがリモコンで設定した温度が用いられる。 Here, changing according to the above load means changing according to the amount of heat supplied from the room to the evaporation area, and the amount of heat is, for example, the indoor temperature (the temperature of the air sucked by the indoor unit 1) and the amount of indoor air. It is determined by (the amount of wind blown by the indoor unit 1). Further, the above load corresponds to the required dehumidifying capacity (required cooling capacity), and can be detected based on, for example, the difference between the room temperature and the set temperature. As the set temperature, a preset temperature or a temperature set by the user with the remote controller is used.

[再熱除湿運転]
上記再熱除湿運転は、上記冷房除湿運転のときと同じ方向に冷媒を流す。このとき、再熱除湿運転制御部100cが、圧縮機21の周波数と膨張弁24の開度とを調整すると共に、電磁弁13をオンにすることで、室内熱交換器11において電磁弁13よりも上流側の少なくとも一部を凝縮域にする一方、室内熱交換器11において電磁弁13より下流側の少なくとも一部を蒸発域とする。例えば、再熱除湿運転制御部100cは、図5に示すように、補助熱交換部11bと本体熱交換部11aの正面部11a−1とを凝縮域(格子のハッチングを付した領域)にする一方、本体熱交換部11aの背面部11a−2を蒸発域(斜線のハッチングを付した領域)にする。これにより、上記再熱除湿運転は、過絞り除湿運転よりも顕熱能力が低くなるので、室内の熱負荷が低いとき、室温の低下を抑制しつつ、室内の除湿を行える。
[Reheat dehumidification operation]
In the reheat dehumidification operation, the refrigerant flows in the same direction as in the cooling dehumidification operation. At this time, the reheat dehumidifying operation control unit 100c adjusts the frequency of the compressor 21 and the opening degree of the expansion valve 24, and turns on the solenoid valve 13 so that the room heat exchanger 11 is connected to the solenoid valve 13. At least a part of the upstream side is set as a condensation area, while at least a part of the room heat exchanger 11 on the downstream side of the solenoid valve 13 is set as an evaporation area. For example, as shown in FIG. 5, the reheat dehumidification operation control unit 100c sets the auxiliary heat exchange unit 11b and the front surface portion 11a-1 of the main body heat exchange unit 11a into a condensation region (a region with lattice hatching). On the other hand, the back surface portion 11a-2 of the main body heat exchange portion 11a is set as an evaporation region (a region with shaded hatching). As a result, the reheat dehumidification operation has a lower sensible heat capacity than the over-squeeze dehumidification operation. Therefore, when the heat load in the room is low, the room can be dehumidified while suppressing the decrease in room temperature.

また、上記再熱除湿運転では、電磁弁13は、小開度の位置に切り替えられる。すなわち、上記再熱除湿運転における電磁弁13の開度は、空気流量が10L/min未満に相当する開度である。上記再熱除湿運転における電磁弁13の開度は、空気流量が5L/minに相当する開度であれば好ましい。さらに、上記再熱除湿運転における電磁弁13の開度は、空気流量が3.5L/minに相当する開度であれば好ましい。ここで、「上記再熱除湿運転における電磁弁13の開度が、空気流量が10L/min未満に相当する開度である」とは、上記開度において冷媒回路RCを流れる空気流量が10L/min未満であることをいうのではなく、電磁弁13の流量特性から求められる上記開度における空気流量が10L/min未満であることをいう。 Further, in the reheat dehumidification operation, the solenoid valve 13 is switched to a position having a small opening degree. That is, the opening degree of the solenoid valve 13 in the reheat dehumidification operation is an opening degree corresponding to an air flow rate of less than 10 L / min. The opening degree of the solenoid valve 13 in the reheat dehumidification operation is preferably an opening degree corresponding to an air flow rate of 5 L / min. Further, the opening degree of the solenoid valve 13 in the reheat dehumidification operation is preferably an opening degree corresponding to an air flow rate of 3.5 L / min. Here, "the opening degree of the solenoid valve 13 in the reheat dehumidification operation is an opening degree corresponding to an air flow rate of less than 10 L / min" means that the air flow rate flowing through the refrigerant circuit RC at the above opening degree is 10 L / min. It does not mean that it is less than min, but that the air flow rate at the opening degree obtained from the flow rate characteristics of the solenoid valve 13 is less than 10 L / min.

上記冷房除湿運転、過絞り除湿運転または再熱除湿運転は、リモコンの除湿運転のボタンの押下に応じて開始するようになっている。より詳しく説明すると、上記除湿運転のボタが押下されると、例えば顕熱比に基づいて、冷房除湿運転、過絞り除湿運転および再熱除湿運転のうちの一つの除湿運転が自動的に選択されて開始する。その後、上記顕熱比の変化に応じて、他の除湿運転に自動的に切り替わる。なお、上記顕熱比とは、全熱(=顕熱+潜熱)に対する顕熱の比を指す。 The cooling dehumidifying operation, the over-squeezing dehumidifying operation, or the reheat dehumidifying operation is started in response to pressing the button of the dehumidifying operation of the remote controller. More specifically, when the dehumidification operation button is pressed, one of the cooling dehumidification operation, the over-squeeze dehumidification operation, and the reheat dehumidification operation is automatically selected based on, for example, the sensible heat ratio. To start. After that, it automatically switches to another dehumidifying operation according to the change in the sensible heat ratio. The sensible heat ratio refers to the ratio of sensible heat to total heat (= sensible heat + latent heat).

図6は、上記空気調和機の冷房除湿運転時、過絞り除湿運転時および再熱除湿運転時のモリエル線図である。 FIG. 6 is a Moriel diagram during the cooling dehumidification operation, the over-throttle dehumidification operation, and the reheat dehumidification operation of the air conditioner.

過絞り除湿運転制御部100bの制御は、過絞り除湿運転の蒸発温度は、冷房除湿運転の蒸発温度よりも低くなるように行われる。このとき、膨張弁24の開度は、通常、冷房除湿運転中の膨張弁24の開度よりも小さくなる。 The control of the over-throttle dehumidification operation control unit 100b is performed so that the evaporation temperature of the over-throttle dehumidification operation is lower than the evaporation temperature of the cooling dehumidification operation. At this time, the opening degree of the expansion valve 24 is usually smaller than the opening degree of the expansion valve 24 during the cooling / dehumidifying operation.

再熱除湿運転制御部100cの制御は、再熱除湿運転の蒸発温度が過絞り除湿運転の蒸発温度よりも低くなるように行われる。このとき、膨張弁24の開度は、過絞り除湿運転中における膨張弁24の最大開度よりも大きい開度に固定される。 The reheat dehumidification operation control unit 100c is controlled so that the evaporation temperature of the reheat dehumidification operation is lower than the evaporation temperature of the over-throttle dehumidification operation. At this time, the opening degree of the expansion valve 24 is fixed to an opening degree larger than the maximum opening degree of the expansion valve 24 during the over-throttle dehumidification operation.

図7は、上記空気調和機の冷房除湿運転、過絞り除湿運転および再熱除湿運転の運転条件を比較するための表を示す。 FIG. 7 shows a table for comparing the operating conditions of the cooling dehumidifying operation, the over-throttle dehumidifying operation, and the reheat dehumidifying operation of the air conditioner.

再熱除湿運転制御部100cは、再熱除湿運転時における圧縮機21の周波数の上限値が、過絞り除湿運転時における圧縮機21の周波数の上限値よりも高くなるように、かつ、再熱除湿運転時における圧縮機21の周波数の下限値が、過絞り除湿運転時における圧縮機21の周波数の下限値よりも高くなるように、圧縮機21を制御する。このとき、再熱除湿運転時における圧縮機21の周波数の上限値は例えば30Hzに設定される一方、過絞り除湿運転時における圧縮機21の周波数の上限値は例えば20Hzに設定される。また、再熱除湿運転時における圧縮機21の周波数の下限値は例えば10Hzに設定される一方、過絞り除湿運転時における圧縮機21の周波数の下限値は例えば4Hzに設定される。 The reheat dehumidification operation control unit 100c reheats the compressor 21 so that the upper limit of the frequency of the compressor 21 during the reheat dehumidification operation is higher than the upper limit of the frequency of the compressor 21 during the over-throttle dehumidification operation. The compressor 21 is controlled so that the lower limit of the frequency of the compressor 21 during the dehumidifying operation is higher than the lower limit of the frequency of the compressor 21 during the over-throttle dehumidifying operation. At this time, the upper limit of the frequency of the compressor 21 during the reheat dehumidification operation is set to, for example, 30 Hz, while the upper limit of the frequency of the compressor 21 during the over-throttle dehumidification operation is set to, for example, 20 Hz. Further, the lower limit of the frequency of the compressor 21 during the reheat dehumidification operation is set to, for example, 10 Hz, while the lower limit of the frequency of the compressor 21 during the over-throttle dehumidification operation is set to, for example, 4 Hz.

また、膨張弁24の開度は、パルス信号によって調整される。このパルス信号のパルス数は、膨張弁24の開度と比例する。すなわち、上記パルス数が増えにつれて、膨張弁24の開度は大きくなる。 Further, the opening degree of the expansion valve 24 is adjusted by a pulse signal. The number of pulses of this pulse signal is proportional to the opening degree of the expansion valve 24. That is, as the number of pulses increases, the opening degree of the expansion valve 24 increases.

上記構成の空気調和機では、リモコンの除湿運転のボタンが押下された後、再熱除湿運転が開始すると、再熱除湿運転制御部100cが圧縮機21を制御する。これにより、再熱除湿運転時における圧縮機21の周波数の上限値が、過絞り除湿運転時における圧縮機21の周波数の上限値よりも高くなる。したがって、上記再熱除湿運転時における除湿量を増やすことができる。 In the air conditioner having the above configuration, when the reheat dehumidification operation is started after the dehumidification operation button on the remote controller is pressed, the reheat dehumidification operation control unit 100c controls the compressor 21. As a result, the upper limit of the frequency of the compressor 21 during the reheat dehumidification operation becomes higher than the upper limit of the frequency of the compressor 21 during the over-throttle dehumidification operation. Therefore, the amount of dehumidification during the reheat dehumidification operation can be increased.

また、再熱除湿運転制御部100cが圧縮機21を制御することにより、再熱除湿運転時における圧縮機21の周波数の下限値が、過絞り除湿運転時における圧縮機21の周波数の下限値よりも高くなる。これにより、上記再熱除湿運転時、室外熱交換器23と室内熱交換器11との間における冷媒の圧力が過度に低下するのを抑制することができる。したがって、上記再熱除湿運転で室内を除湿するとき、チョーク現象の発生を抑制することができる。 Further, since the reheat dehumidification operation control unit 100c controls the compressor 21, the lower limit of the frequency of the compressor 21 during the reheat dehumidification operation is lower than the lower limit of the frequency of the compressor 21 during the over-throttle dehumidification operation. Will also be higher. As a result, it is possible to prevent the pressure of the refrigerant between the outdoor heat exchanger 23 and the indoor heat exchanger 11 from being excessively lowered during the reheat dehumidification operation. Therefore, when the room is dehumidified by the reheat dehumidification operation, the occurrence of the choke phenomenon can be suppressed.

上記実施形態では、再熱除湿運転時における圧縮機21の周波数の下限値は、過絞り除湿運転時における圧縮機21の周波数の下限値よりも高くなるようにしていたが、再熱除湿運転時における圧縮機21の周波数の下限値は、過絞り除湿運転時における圧縮機21の周波数の下限値と同じ、または、その下限値より低くなるようにしてもよい。 In the above embodiment, the lower limit of the frequency of the compressor 21 during the reheat dehumidification operation is set to be higher than the lower limit of the frequency of the compressor 21 during the over-throttle dehumidification operation. The lower limit of the frequency of the compressor 21 in the above may be the same as or lower than the lower limit of the frequency of the compressor 21 during the over-throttle dehumidification operation.

上記実施形態では、リモコンの除湿運転のボタンが押下されると、冷房除湿運転、過絞り除湿運転および再熱除湿運転のうちの一つの除湿運転が適宜選択されて行われていたが、リモコンの自動運転のボタンが押下されても、冷房除湿運転、過絞り除湿運転および再熱除湿運転のうちの一つの除湿運転が適宜選択されて行われるようにしてもよい。ここで、上記自動運転は、室内温度、室外温度などに基づいて、冷房運転、除湿運転、暖房運転などから一つが自動的に選択されて開始した後、自動的に他の空調運転に切り替わるものである。すなわち、例えば、上記自動運転の除湿運転において過絞り除湿運転が自動的に開始してもよい。また、上記自動運転の除湿運転では、冷房除湿運転、過絞り除湿運転および再熱除湿運転は、例えば顕熱比の変化に応じて、自動的に互いに切り替わるようにしてもよい。 In the above embodiment, when the dehumidifying operation button of the remote control is pressed, one of the cooling dehumidifying operation, the over-squeezing dehumidifying operation, and the reheat dehumidifying operation is appropriately selected and performed. Even if the button for automatic operation is pressed, one of the cooling dehumidifying operation, the over-squeezing dehumidifying operation, and the reheat dehumidifying operation may be appropriately selected and performed. Here, in the above automatic operation, one is automatically selected from the cooling operation, the dehumidifying operation, the heating operation, etc. based on the indoor temperature, the outdoor temperature, etc., and then automatically switched to the other air conditioning operation. Is. That is, for example, the over-squeezing dehumidifying operation may be automatically started in the dehumidifying operation of the automatic operation. Further, in the dehumidification operation of the automatic operation, the cooling dehumidification operation, the over-squeeze dehumidification operation, and the reheat dehumidification operation may be automatically switched to each other in response to a change in the sensible heat ratio, for example.

上記実施形態では、室内熱交換器11は、本体熱交換部11aと補助熱交換部11bを有していたが、本体熱交換部11aを有する一方、補助熱交換部11bを有さないようにしてもよい。このようにする場合、過絞り除湿運転時、本体熱交換部11aの一部だけが蒸発域となるようにすればよい。 In the above embodiment, the indoor heat exchanger 11 has the main body heat exchange unit 11a and the auxiliary heat exchange unit 11b, but the main body heat exchange unit 11a is provided, but the auxiliary heat exchange unit 11b is not provided. You may. In this case, during the over-throttle dehumidification operation, only a part of the main body heat exchange unit 11a may be in the evaporation region.

上記実施形態では、本体熱交換部11aの正面部11a−1側と本体熱交換部11aの正面部11a−1側との間に、電磁弁13を設けていたが、互いに異なる3以上の開度に調整可能な電動弁を制御弁の一例として設けてもよい。 In the above embodiment, the solenoid valve 13 is provided between the front portion 11a-1 side of the main body heat exchange portion 11a and the front portion 11a-1 side of the main body heat exchange portion 11a. An electric valve that can be adjusted each time may be provided as an example of the control valve.

上記実施形態において、制御装置100は、室内機1側の室内制御部(図示せず)と、室外機2側の室外制御部(図示せず)とで構成されてもよいし、上記室内制御部のみで構成されるようにしてもよいし、上記室外制御部のみで構成されてもよい。別の言い方をすれば、制御装置100は、一部が室内機1に搭載され、かつ、残りの他の部分が室外機2に搭載されるようにしてもよいし、全部が室内機1に搭載されるようにしてもよいし、全部が室外機2に搭載されるようにしてもよい。 In the above embodiment, the control device 100 may be composed of an indoor control unit (not shown) on the indoor unit 1 side and an outdoor control unit (not shown) on the outdoor unit 2 side, or the indoor control. It may be composed only of the unit, or may be composed only of the outdoor control unit. In other words, the control device 100 may be partially mounted on the indoor unit 1 and the remaining other portion mounted on the outdoor unit 2, or the entire control device 100 may be mounted on the indoor unit 1. It may be mounted, or all of them may be mounted on the outdoor unit 2.

上記実施形態では、冷房除湿運転制御部100a、過絞り除湿運転制御部100bおよび再熱除湿運転制御部100cは、それぞれ、ソフトウェアにより構成されていたが、冷房除湿運転制御部100a、過絞り除湿運転制御部100bおよび再熱除湿運転制御部100cのうちの少なくとも一つが、ハードウェアにより構成されるようにしてもよい。 In the above embodiment, the cooling dehumidifying operation control unit 100a, the over-squeezing dehumidifying operation control unit 100b, and the reheat dehumidifying operation control unit 100c are respectively configured by software, but the cooling dehumidifying operation control unit 100a and the over-squeezing dehumidifying operation are operated. At least one of the control unit 100b and the reheat dehumidification operation control unit 100c may be configured by hardware.

上記実施形態において、再熱除湿運転制御部100cは、室外ファン26の回転数が最大回転数になってから、再熱除湿運転が終わるように、室外ファン26を制御してもよい。すなわち、再熱除湿運転が終わる直前に、室外ファン26の回転数が最大回転数になってもよい。これにより、上記再熱除湿運転後、電磁弁13のオフが容易となる。 In the above embodiment, the reheat dehumidification operation control unit 100c may control the outdoor fan 26 so that the reheat dehumidification operation ends after the rotation speed of the outdoor fan 26 reaches the maximum rotation speed. That is, the rotation speed of the outdoor fan 26 may reach the maximum rotation speed immediately before the end of the reheat dehumidification operation. As a result, the solenoid valve 13 can be easily turned off after the reheat dehumidification operation.

上記実施形態において、再熱除湿運転制御部100cは、再熱除湿運転の前に過絞り除湿運転を行うようにしてもうよい。別の言い方をすれば、過絞り除湿運転に引き続いて再熱除湿運転が開始するようにしてもよい。このようにした場合、消費電力を低減することができる。 In the above embodiment, the reheat dehumidification operation control unit 100c may perform the over-squeeze dehumidification operation before the reheat dehumidification operation. In other words, the reheat dehumidification operation may be started following the over-squeeze dehumidification operation. In this case, the power consumption can be reduced.

上記実施形態において、再熱除湿運転制御部100cは、再熱除湿運転の開始時、再熱除湿運転における圧縮機21の周波数の下限値で、圧縮機21を駆動してもよい。例えば図7の表の制御が圧縮機21に行われる場合、再熱除湿運転の開始時、圧縮機21の周波数は10Hzとしてもよい。このような制御が圧縮機21に行われることにより、電磁弁13がオンされて電磁弁13における冷媒流量が10L/min未満になっていても、冷媒が電磁弁13で詰り難くなる。したがって、上記第3除湿運転の開始後、冷媒が循環しやすくなる。 In the above embodiment, the reheat dehumidification operation control unit 100c may drive the compressor 21 at the lower limit of the frequency of the compressor 21 in the reheat dehumidification operation at the start of the reheat dehumidification operation. For example, when the control in the table of FIG. 7 is performed on the compressor 21, the frequency of the compressor 21 may be 10 Hz at the start of the reheat dehumidification operation. By performing such control on the compressor 21, even if the solenoid valve 13 is turned on and the refrigerant flow rate in the solenoid valve 13 is less than 10 L / min, the refrigerant is less likely to be clogged in the solenoid valve 13. Therefore, after the start of the third dehumidifying operation, the refrigerant is likely to circulate.

上記実施形態において、再熱除湿運転制御部100cは、過絞り除湿運転から熱除湿運転に切り替えるとき、過絞り除湿運転の終了後、膨張弁24の開度を、過絞り除湿運転の終了時よりも大きい第1所定開度にした後、再熱除湿運転の開始時、膨張弁24の開度を、第1所定開度よりも大きい第2所定開度にしてもよい。このような制御が膨張弁24に行われることにより、過絞り除湿運転から再熱除湿運転に切り替えるとき、冷媒回路RCの膨張弁24よりも上流側の部分と、冷媒回路RCの膨張弁24よりも下流側の部分との差圧を段階的に低減することができる。したがって、再熱除湿運転制御部100cは、再熱除湿運転の開始時、圧縮機21の周波数が下限値となるように、圧縮機21を制御する場合でも、第3除湿運転の開始後、冷媒が循環しやすくなる。 In the above embodiment, when the reheat dehumidification operation control unit 100c switches from the overslot dehumidification operation to the heat dehumidification operation, the opening degree of the expansion valve 24 is changed from the end of the overslot dehumidification operation after the end of the overthrottle dehumidification operation. At the start of the reheat dehumidification operation, the opening degree of the expansion valve 24 may be set to a second predetermined opening degree larger than the first predetermined opening degree. By performing such control on the expansion valve 24, when switching from the over-throttle dehumidification operation to the reheat dehumidification operation, the portion upstream of the expansion valve 24 of the refrigerant circuit RC and the expansion valve 24 of the refrigerant circuit RC The differential pressure with the downstream part can be reduced stepwise. Therefore, even when the reheat dehumidification operation control unit 100c controls the compressor 21 so that the frequency of the compressor 21 becomes the lower limit value at the start of the reheat dehumidification operation, the refrigerant is used after the start of the third dehumidification operation. Becomes easier to circulate.

本開示の具体的な実施形態について説明したが、本開示は上記第1〜第3実施形態およびその変形例に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。例えば、上記実施形態の変形例同士を組み合わせたものを、本開示の一実施形態としてもよい。 Although the specific embodiments of the present disclosure have been described, the present disclosure is not limited to the first to third embodiments and modifications thereof, and various modifications may be made within the scope of the present disclosure. it can. For example, a combination of modified examples of the above embodiments may be used as one embodiment of the present disclosure.

1 室内機
2 室外機
11 室内熱交換器
11a 本体熱交換部
11a−1 正面部
11a−2 背面部
11b 補助熱交換部
13 電磁弁
12 室内ファン
21 圧縮機
22 四路切換弁
23 室外熱交換器
24 膨張弁
25 アキュムレータ
26 室外ファン
51 室内熱交換器温度センサ
52 室内温度センサ
53 室内湿度センサ
56 室外熱交換器温度センサ
57 外気温度センサ
58,261 冷媒温度センセ
100 制御装置
100a 冷房除湿運転制御部
100b 過絞り除湿運転制御部
100c 再熱除湿運転制御部
RC 冷媒回路
1 Indoor unit 2 Outdoor unit 11 Indoor heat exchanger 11a Main body heat exchange part 11a-1 Front part 11a-2 Back part 11b Auxiliary heat exchange part 13 Electromagnetic valve 12 Indoor fan 21 Compressor 22 Four-way switching valve 23 Outdoor heat exchanger 24 Expansion valve 25 Accumulator 26 Outdoor fan 51 Indoor heat exchanger temperature sensor 52 Indoor temperature sensor 53 Indoor humidity sensor 56 Outdoor heat exchanger temperature sensor 57 Outside air temperature sensor 58,261 Refrigerant temperature sensation 100 Control device 100a Cooling and dehumidifying operation control unit 100b Over-throttle dehumidification operation control unit 100c Reheat dehumidification operation control unit RC refrigerant circuit

Claims (4)

圧縮機(21)、室外熱交換器(23)、膨張機構(24)および室内熱交換器(11)が環状に接続され、冷媒が循環する冷媒回路(RC)と、
制御部(100)と
を備え、
上記室内熱交換器(11)は制御弁(13)を有し、
上記制御部(100)は、
上記室内熱交換器(11)の実質的に全部を蒸発域にする第1除湿運転と、
上記室内熱交換器(11)の一部を蒸発域にする一方、上記室内熱交換器(11)の残りの部分を過熱域にする第2除湿運転と、
上記室内熱交換器(11)において上記制御弁(13)よりも上流側の部分を凝縮域とする一方、上記室内熱交換器(11)において上記制御弁(13)よりも下流側の部分を蒸発域とする第3除湿運転と
を行うと共に、
上記第3除湿運転時における上記圧縮機(21)の周波数の上限値が、上記第2除湿運転時における上記圧縮機(21)の周波数の上限値よりも高くなるように、上記圧縮機(21)を制御し、
上記制御部(100)は、上記第3除湿運転時における上記圧縮機(21)の周波数の下限値は、上記第2除湿運転時における上記圧縮機(21)の周波数の下限値よりも高くなるように、上記圧縮機(21)を制御することを特徴とする空気調和機。
A refrigerant circuit (RC) in which a compressor (21), an outdoor heat exchanger (23), an expansion mechanism (24) and an indoor heat exchanger (11) are connected in a ring shape and a refrigerant circulates.
Equipped with a control unit (100)
The indoor heat exchanger (11) has a control valve (13).
The control unit (100)
The first dehumidifying operation that makes substantially all of the indoor heat exchanger (11) an evaporation region, and
A second dehumidifying operation in which a part of the indoor heat exchanger (11) is set to an evaporation region and the remaining part of the indoor heat exchanger (11) is set to a superheat region.
In the indoor heat exchanger (11), the portion on the upstream side of the control valve (13) is set as the condensation region, while in the indoor heat exchanger (11), the portion on the downstream side of the control valve (13) is set. In addition to performing the third dehumidification operation, which is the evaporation area,
The compressor (21) so that the upper limit of the frequency of the compressor (21) during the third dehumidifying operation is higher than the upper limit of the frequency of the compressor (21) during the second dehumidifying operation. ) ,
In the control unit (100), the lower limit of the frequency of the compressor (21) during the third dehumidifying operation is higher than the lower limit of the frequency of the compressor (21) during the second dehumidifying operation. An air conditioner characterized by controlling the compressor (21) as described above.
請求項1に記載の空気調和機において、
上記制御部(100)は、上記第3除湿運転を上記第2除湿運転に引き続いて開始させることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The control unit (100) is an air conditioner characterized in that the third dehumidifying operation is started following the second dehumidifying operation.
請求項1または2に記載の空気調和機において、
上記第3除湿運転の開始時における上記圧縮機(21)の周波数は、上記第3除湿運転時における上記圧縮機(21)の周波数の下限値であることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2.
An air conditioner characterized in that the frequency of the compressor (21) at the start of the third dehumidifying operation is a lower limit of the frequency of the compressor (21) at the time of the third dehumidifying operation.
請求項に記載の空気調和機において、
上記制御部(100)は、上記第2除湿運転から上記第3除湿運転に切り替えるとき、上記第2除湿運転の終了後、上記膨張機構(24)の開度を、上記第2除湿運転の終了時よりも大きい第1所定開度にした後、上記第3除湿運転の開始時、上記膨張機構(24)の開度を、上記第1所定開度よりも大きい第2所定開度にすることを特徴とする空気調和機。
In the air conditioner according to claim 3,
When the control unit (100) switches from the second dehumidifying operation to the third dehumidifying operation, after the end of the second dehumidifying operation, the opening degree of the expansion mechanism (24) is changed to the end of the second dehumidifying operation. After setting the first predetermined opening larger than the time, at the start of the third dehumidifying operation, the opening of the expansion mechanism (24) is set to the second predetermined opening larger than the first predetermined opening. An air conditioner featuring.
JP2018205770A 2018-10-31 2018-10-31 Air conditioner Active JP6881419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205770A JP6881419B2 (en) 2018-10-31 2018-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205770A JP6881419B2 (en) 2018-10-31 2018-10-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2020070985A JP2020070985A (en) 2020-05-07
JP6881419B2 true JP6881419B2 (en) 2021-06-02

Family

ID=70548263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205770A Active JP6881419B2 (en) 2018-10-31 2018-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP6881419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111536676B (en) * 2020-05-13 2021-08-13 广东美的制冷设备有限公司 Air conditioner control method and device, air conditioner and computer storage medium
JP7343801B2 (en) * 2021-08-05 2023-09-13 ダイキン工業株式会社 air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461633B2 (en) * 1995-09-29 2003-10-27 東芝キヤリア株式会社 Air conditioner
JP2001201207A (en) * 2000-01-18 2001-07-27 Mitsubishi Heavy Ind Ltd Air conditioner
JP3993015B2 (en) * 2002-04-25 2007-10-17 ダイキン工業株式会社 Air conditioner
JP4068927B2 (en) * 2002-09-13 2008-03-26 東芝キヤリア株式会社 Air conditioner
JP4555671B2 (en) * 2004-12-09 2010-10-06 東芝キヤリア株式会社 Air conditioner
CN106568224A (en) * 2016-11-02 2017-04-19 珠海格力电器股份有限公司 Air-conditioning system and air-conditioning control method

Also Published As

Publication number Publication date
JP2020070985A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP3740637B2 (en) Air conditioner
JP2020070986A (en) Air conditioner
JP6401015B2 (en) Air conditioner
WO2015114722A1 (en) Ventilation device
JP6595288B2 (en) Air conditioner
JP6881419B2 (en) Air conditioner
JP2016090113A (en) Air conditioner
JP6094561B2 (en) Air conditioner
JP6897653B2 (en) Air conditioner
JP2020153646A (en) Air conditioner
JP2020125855A (en) Air conditioner
JP6563120B2 (en) Air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
JP6773100B2 (en) Air conditioner
JP5538029B2 (en) AIR CONDITIONER AND CONTROL METHOD FOR AIR CONDITIONER
JP2020070981A (en) Air conditioner
JP6897652B2 (en) Air conditioner
JP6989780B2 (en) Air conditioner
JP2006177599A (en) Air conditioner
JP2016090097A (en) Air conditioner
JP6881641B2 (en) Air conditioner and air conditioner system
JP6918221B2 (en) Air conditioner
JPH10103739A (en) Air conditioner
JP3181111B2 (en) Air conditioner
JP2018048753A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151