JP6973749B2 - Drive device for power semiconductor devices - Google Patents

Drive device for power semiconductor devices Download PDF

Info

Publication number
JP6973749B2
JP6973749B2 JP2017214668A JP2017214668A JP6973749B2 JP 6973749 B2 JP6973749 B2 JP 6973749B2 JP 2017214668 A JP2017214668 A JP 2017214668A JP 2017214668 A JP2017214668 A JP 2017214668A JP 6973749 B2 JP6973749 B2 JP 6973749B2
Authority
JP
Japan
Prior art keywords
power semiconductor
gate
threshold voltage
semiconductor element
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017214668A
Other languages
Japanese (ja)
Other versions
JP2019088104A (en
Inventor
俊 松本
浩司 矢野
良平 ▲高▼柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
University of Yamanashi NUC
Original Assignee
Fuji Electric Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, University of Yamanashi NUC filed Critical Fuji Electric Co Ltd
Priority to JP2017214668A priority Critical patent/JP6973749B2/en
Publication of JP2019088104A publication Critical patent/JP2019088104A/en
Application granted granted Critical
Publication of JP6973749B2 publication Critical patent/JP6973749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明はパワー半導体素子の駆動装置に関し、特にワイドバンドギャップ半導体を用いたパワー半導体素子を駆動中にパワー半導体素子の閾値電圧が変動するのを抑制するパワー半導体素子の駆動装置に関する。 The present invention relates to a drive device for a power semiconductor element, and more particularly to a drive device for a power semiconductor element that suppresses fluctuation of the threshold voltage of the power semiconductor element while driving the power semiconductor element using a wide band gap semiconductor.

次世代パワー半導体素子として炭化珪素(SiC)半導体素子に代表されるワイドバンドギャップ半導体素子が珪素(Si)半導体素子よりも高耐圧、低損失、高速スイッチング、高温動作などが可能になるということで注目されている。しかし、SiC半導体素子は、Si半導体素子と比較してゲート酸化膜の品質が低いことが知られている。このことが、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)での閾値電圧の変動要因になっている。パワー半導体スイッチング素子では、オン状態とオフ状態との境目となる閾値電圧Vthが異常に変動すると、誤オンなどにより回路故障が生じる危険性がある。このような閾値電圧Vthの異常な変動を防止するため、ゲート酸化膜の品質向上に向けたSiC半導体素子の製造方法の提案がなされている(特許文献1,2)。 Wideband gap semiconductor devices represented by silicon carbide (SiC) semiconductor devices as next-generation power semiconductor devices will be capable of higher withstand voltage, lower loss, higher speed switching, higher temperature operation, etc. than silicon (Si) semiconductor devices. Attention has been paid. However, it is known that the quality of the gate oxide film of the SiC semiconductor device is lower than that of the Si semiconductor device. This is a factor that fluctuates the threshold voltage in MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors). In a power semiconductor switching element, if the threshold voltage Vth, which is the boundary between the on state and the off state, fluctuates abnormally, there is a risk that a circuit failure may occur due to erroneous on or the like. In order to prevent such an abnormal fluctuation of the threshold voltage Vth, a method for manufacturing a SiC semiconductor device for improving the quality of a gate oxide film has been proposed (Patent Documents 1 and 2).

また、閾値電圧Vthの異常な変動を回路の工夫により抑制するようにした技術も知られている(特許文献3)。この特許文献3では、パワー半導体素子のゲート電極に印加するゲート電圧が正のとき、閾値電圧Vthが正の方向に変動する性質があることに対し、パワー半導体素子が非導通期間に負のゲート電圧を印加することで閾値電圧Vthの変動を抑制することにしている。パワー半導体素子の非導通期間に負のゲート電圧を印加した場合、そのパワー半導体素子に還流電流が流れるようなことがあるとその還流電流は、内蔵ダイオードを流れることになる。内蔵ダイオードは、通電性能がよくないので、閾値電圧Vthの変動を抑制するために行うパワー半導体素子のゲート電極への負電圧の印加は、還流電流が内蔵ダイオードを流れない期間に行うことにしている。これにより、還流ダイオードの導通性能の低下を抑制しつつ、トランジスタの閾値電圧の変動を抑制している。 Further, there is also known a technique for suppressing an abnormal fluctuation of the threshold voltage Vth by devising a circuit (Patent Document 3). In Patent Document 3, when the gate voltage applied to the gate electrode of the power semiconductor element is positive, the threshold voltage Vth has a property of fluctuating in the positive direction, whereas the power semiconductor element has a negative gate during the non-conduction period. It is decided to suppress the fluctuation of the threshold voltage Vth by applying a voltage. When a negative gate voltage is applied during the non-conduction period of a power semiconductor device, if a recirculation current may flow in the power semiconductor element, the recirculation current will flow through the built-in diode. Since the built-in diode does not have good energization performance, the negative voltage is applied to the gate electrode of the power semiconductor element to suppress the fluctuation of the threshold voltage Vth during the period when the return current does not flow through the built-in diode. There is. As a result, the fluctuation of the threshold voltage of the transistor is suppressed while suppressing the deterioration of the conduction performance of the freewheeling diode.

特開2016−213414号公報Japanese Unexamined Patent Publication No. 2016-213141 国際公開第2011/074237号International Publication No. 2011/074237 特開2013−207821号公報Japanese Unexamined Patent Publication No. 2013-207821

しかしながら、特許文献3による閾値電圧の変動を抑制する方法では、内蔵ダイオードに還流電流が流れないことを検出するために、電力変換回路から負荷に向かって流れる電流を検出する電流検出手段が備えられている。また、閾値電圧の変動は、パワー半導体素子をある時間駆動した場合に生じるものであるため、パワー半導体素子を駆動している間、常に閾値電圧の変動が抑制されているとは限らない。 However, in the method of suppressing the fluctuation of the threshold voltage according to Patent Document 3, in order to detect that the return current does not flow in the built-in diode, a current detecting means for detecting the current flowing from the power conversion circuit toward the load is provided. ing. Further, since the fluctuation of the threshold voltage occurs when the power semiconductor element is driven for a certain period of time, the fluctuation of the threshold voltage is not always suppressed while the power semiconductor element is being driven.

本発明はこのような点に鑑みてなされたものであり、パワー半導体素子に閾値電圧の変動が生じたときに、その変動に応じて、閾値電圧の変動を抑制するようにしたパワー半導体素子の駆動装置を提供することを目的とする。 The present invention has been made in view of such a point, and when a fluctuation of the threshold voltage occurs in the power semiconductor element, the power semiconductor element is designed to suppress the fluctuation of the threshold voltage according to the fluctuation. It is an object of the present invention to provide a drive device.

本発明では、上記の課題を解決するために、パワー半導体素子の駆動装置が提供される。このパワー半導体素子の駆動装置は、パワー半導体素子の閾値電圧を検出する閾値検出部と、閾値検出部によって検出された閾値電圧の変動に応じて閾値電圧の変動を抑制するゲート信号をパワー半導体素子に印加する閾値変動抑制部と、を備えている。また、閾値検出部は、パワー半導体素子がオン状態にあるときにパワー半導体素子の主電極間の電圧を検出する電圧検出部と、主電極間の電圧および閾値電圧の相関に基づき電圧検出部で検出した主電極間の電圧から閾値電圧を推測する換算部とを有する。 In the present invention, in order to solve the above problems, a drive device for a power semiconductor element is provided. The drive device of this power semiconductor element has a threshold detection unit that detects the threshold voltage of the power semiconductor element and a gate signal that suppresses the fluctuation of the threshold voltage according to the fluctuation of the threshold voltage detected by the threshold detection unit. It is provided with a threshold fluctuation suppressing unit to be applied to. Further, the threshold detection unit is a voltage detection unit that detects the voltage between the main electrodes of the power semiconductor element when the power semiconductor element is in the ON state, and a voltage detection unit based on the correlation between the voltage between the main electrodes and the threshold voltage. It has a conversion unit that estimates the threshold voltage from the detected voltage between the main electrodes.

このようなパワー半導体素子の駆動装置によれば、一定時間駆動させたときに閾値電圧が変動したとしても、その変動方向と逆方向に閾値電圧が変動するようにパワー半導体素子を駆動するので、閾値電圧の変動によりパワー半導体素子が誤動作することがなくなる。 According to such a power semiconductor element drive device, even if the threshold voltage fluctuates when driven for a certain period of time, the power semiconductor element is driven so that the threshold voltage fluctuates in the direction opposite to the fluctuation direction. The power semiconductor element does not malfunction due to the fluctuation of the threshold voltage.

上記構成のパワー半導体素子の駆動装置は、パワー半導体素子の閾値電圧の変動に応じて閾値電圧の変動を抑制するような動作をするので、パワー半導体素子が誤オンなどの誤動作をすることがなくなるという利点がある。 Since the drive device of the power semiconductor element having the above configuration operates so as to suppress the fluctuation of the threshold voltage according to the fluctuation of the threshold voltage of the power semiconductor element, the power semiconductor element does not malfunction such as erroneous on. There is an advantage.

第1の実施の形態に係るパワー半導体素子の駆動装置を適用したスイッチングレギュレータの出力部を示す図である。It is a figure which shows the output part of the switching regulator which applied the drive device of the power semiconductor element which concerns on 1st Embodiment. 第2の実施の形態に係るパワー半導体素子の駆動装置を示す図である。It is a figure which shows the drive device of the power semiconductor element which concerns on 2nd Embodiment. パワー半導体素子がオン状態でのドレイン・ソース間電圧と閾値電圧との関係を示す図である。It is a figure which shows the relationship between the drain-source voltage and the threshold voltage when a power semiconductor element is on. SiC素子をある一定時間駆動させたときに逆導通試験を行ったときの閾値電圧の変動を示す図である。It is a figure which shows the fluctuation of the threshold voltage when the reverse continuity test is performed when the SiC element is driven for a certain period of time. 第2の実施の形態に係るパワー半導体素子の駆動装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow | flow of the operation of the drive device of the power semiconductor element which concerns on 2nd Embodiment. パワー半導体素子のゲート電圧の波形例を示す図であって、(A)は同期整流を行わない場合を示し、(B)は同期整流を行う場合を示している。It is a figure which shows the waveform example of the gate voltage of a power semiconductor element, (A) shows the case where synchronous rectification is not performed, (B) shows the case where synchronous rectification is performed. 閾値電圧変動抑制制御時におけるパワー半導体素子のゲート電圧の波形例を示す図である。It is a figure which shows the waveform example of the gate voltage of the power semiconductor element at the time of the threshold voltage fluctuation suppression control. 第3の実施の形態に係るパワー半導体素子の駆動装置を示す図である。It is a figure which shows the drive device of the power semiconductor element which concerns on 3rd Embodiment. パワー半導体素子のオフ時のゲート抵抗回路を示す図である。It is a figure which shows the gate resistance circuit at the time of turning off of a power semiconductor element. パワー半導体素子をある一定時間駆動させたときのオフ時のゲート電圧の波形を示す図である。It is a figure which shows the waveform of the gate voltage at the time of off when a power semiconductor element is driven for a certain period of time. パワー半導体素子をある一定時間駆動させたときの閾値変動の変化の傾向を示す図である。It is a figure which shows the tendency of the change of the threshold value when the power semiconductor element is driven for a certain period of time. 第3の実施の形態に係るパワー半導体素子の駆動装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow | flow of the operation of the drive device of the power semiconductor element which concerns on 3rd Embodiment.

以下、本発明の実施の形態について、ワイドバンドギャップ半導体のパワー半導体素子を2個用いた同期整流式のスイッチングレギュレータに適用した場合を例に図面を参照して詳細に説明する。なお、図中、同一の符号で示される部分は、同一の構成要素を示している。また、各実施の形態は、矛盾のない範囲で複数の実施の形態を部分的に組み合わせて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking as an example a case where the present invention is applied to a synchronous rectification type switching regulator using two power semiconductor elements of a wide bandgap semiconductor. In the figure, the parts indicated by the same reference numerals indicate the same components. In addition, each embodiment can be implemented by partially combining a plurality of embodiments within a consistent range.

[第1の実施の形態]
図1は第1の実施の形態に係るパワー半導体素子の駆動装置を適用したスイッチングレギュレータの出力部を示す図である。
[First Embodiment]
FIG. 1 is a diagram showing an output unit of a switching regulator to which a drive device for a power semiconductor element according to the first embodiment is applied.

スイッチングレギュレータの出力部は、電源とグランドとの間に上アーム用のパワー半導体素子SW1と下アーム用のパワー半導体素子SW2が直列に接続されている。ここで、パワー半導体素子SW1,SW2は、炭化珪素MOSFET(SiC−MOSFET)であり、それぞれ内蔵ダイオードを有している。パワー半導体素子SW1のソースとパワー半導体素子SW2のドレインとの接続点は、インダクタLの一方の端子に接続され、インダクタLの他方の端子は、コンデンサCの一方の端子に接続されている。コンデンサCの他方の端子は、パワー半導体素子SW2のソースに接続されている。 In the output unit of the switching regulator, a power semiconductor element SW1 for the upper arm and a power semiconductor element SW2 for the lower arm are connected in series between the power supply and the ground. Here, the power semiconductor elements SW1 and SW2 are silicon carbide MOSFETs (SiC- MOSFETs), each of which has a built-in diode. The connection point between the source of the power semiconductor element SW1 and the drain of the power semiconductor element SW2 is connected to one terminal of the inductor L, and the other terminal of the inductor L is connected to one terminal of the capacitor C. The other terminal of the capacitor C is connected to the source of the power semiconductor element SW2.

パワー半導体素子SW1のゲートは、上アーム用駆動装置1Uに接続されている。上アーム用駆動装置1Uは、パワー半導体素子SW1の閾値電圧Vthを検出する閾値検出部2Uと、パワー半導体素子SW1の閾値電圧Vthの変動を抑制する閾値変動抑制部3Uとを有している。パワー半導体素子SW2のゲートは、下アーム用駆動装置1Dに接続されている。下アーム用駆動装置1Dは、パワー半導体素子SW2の閾値電圧Vthを検出する閾値検出部2Dと、パワー半導体素子SW2の閾値電圧Vthの変動を抑制する閾値変動抑制部3Dとを有している。 The gate of the power semiconductor element SW1 is connected to the upper arm drive device 1U. The upper arm drive device 1U has a threshold value detection unit 2U for detecting the threshold voltage Vth of the power semiconductor element SW1 and a threshold value fluctuation suppression unit 3U for suppressing the fluctuation of the threshold voltage Vth of the power semiconductor element SW1. The gate of the power semiconductor element SW2 is connected to the lower arm drive device 1D. The lower arm drive device 1D has a threshold value detection unit 2D for detecting the threshold voltage Vth of the power semiconductor element SW2 and a threshold value fluctuation suppression unit 3D for suppressing the fluctuation of the threshold voltage Vth of the power semiconductor element SW2.

以上の構成のスイッチングレギュレータにおいて、パワー半導体素子SW1,SW2が交互にスイッチング動作をすることによって、入力された電圧Vinは、電圧Voutに変換され、図示しない負荷に供給される。すなわち、パワー半導体素子SW1がオンするように駆動されると、電流は、インダクタLを通って負荷に流れる。次に、パワー半導体素子SW1がオフすると、インダクタLに流れていた電流は、流れを維持しようとする。このとき、パワー半導体素子SW1のオフ動作に同期してパワー半導体素子SW2をオンすると、パワー半導体素子SW2による逆導通の電流パスが形成され、パワー半導体素子SW2のソースからドレインに逆方向の還流電流が流れる。これにより、負荷には、同一方向の電流が継続して流れることになる。 In the switching regulator having the above configuration, the power semiconductor elements SW1 and SW2 alternately perform switching operations, so that the input voltage Vin is converted into a voltage Vout and supplied to a load (not shown). That is, when the power semiconductor element SW1 is driven to turn on, the current flows through the inductor L to the load. Next, when the power semiconductor element SW1 is turned off, the current flowing through the inductor L tries to maintain the flow. At this time, when the power semiconductor element SW2 is turned on in synchronization with the off operation of the power semiconductor element SW1, a reverse conduction current path is formed by the power semiconductor element SW2, and a reverse current return current from the source to the drain of the power semiconductor element SW2 is formed. Flows. As a result, current in the same direction continuously flows through the load.

このとき、上アーム用駆動装置1Uでは、閾値検出部2Uがパワー半導体素子SW1の閾値電圧Vthを監視している。ここで、閾値検出部2Uが閾値電圧Vthの異常な変動を検出すると、閾値変動抑制部3Uがパワー半導体素子SW1の閾値電圧Vthの変動を抑制するようにパワー半導体素子SW1のゲートを駆動する。同様に、下アーム用駆動装置1Dでは、閾値検出部2Dがパワー半導体素子SW2の閾値電圧Vthを監視している。ここで、閾値検出部2Dが閾値電圧Vthの異常な変動を検出すると、閾値変動抑制部3Dがパワー半導体素子SW2の閾値電圧Vthの変動を抑制するようにパワー半導体素子SW2のゲートを駆動する。 At this time, in the upper arm drive device 1U, the threshold value detection unit 2U monitors the threshold voltage Vth of the power semiconductor element SW1. Here, when the threshold value detection unit 2U detects an abnormal fluctuation of the threshold voltage Vth, the threshold fluctuation suppression unit 3U drives the gate of the power semiconductor element SW1 so as to suppress the fluctuation of the threshold voltage Vth of the power semiconductor element SW1. Similarly, in the lower arm drive device 1D, the threshold value detection unit 2D monitors the threshold voltage Vth of the power semiconductor element SW2. Here, when the threshold value detection unit 2D detects an abnormal fluctuation of the threshold voltage Vth, the threshold fluctuation suppression unit 3D drives the gate of the power semiconductor element SW2 so as to suppress the fluctuation of the threshold voltage Vth of the power semiconductor element SW2.

このように、上アーム用駆動装置1Uおよび下アーム用駆動装置1Dは、閾値電圧Vthの異常な変動を検出していないときは、通常通りの制御によりパワー半導体素子SW1,SW2を駆動する。上アーム用駆動装置1Uおよび下アーム用駆動装置1Dは、閾値電圧Vthの異常な変動を検出したときだけ、パワー半導体素子SW1,SW2の駆動方法を閾値電圧Vthの変動が抑制される方向に動的に切り替えている。 As described above, when the upper arm drive device 1U and the lower arm drive device 1D do not detect an abnormal fluctuation of the threshold voltage Vth, the power semiconductor elements SW1 and SW2 are driven by normal control. The upper arm drive device 1U and the lower arm drive device 1D move the drive method of the power semiconductor elements SW1 and SW2 in a direction in which the fluctuation of the threshold voltage Vth is suppressed only when an abnormal fluctuation of the threshold voltage Vth is detected. Switching.

なお、この実施の形態では、パワー半導体素子SW1,SW2をSiC−MOSFETで構成したが、SiC素子のIGBTとFWD(Free Wheeling Diode)との組み合わせで構成してもよい。 In this embodiment, the power semiconductor elements SW1 and SW2 are composed of SiC- MOSFETs, but they may be configured by a combination of the SiC elements IGBT and FWD (Free Wheeling Diode).

[第2の実施の形態]
図2は第2の実施の形態に係るパワー半導体素子の駆動装置を示す図、図3はパワー半導体素子がオン状態でのドレイン・ソース間電圧と閾値電圧との関係を示す図、図4はSiC素子をある一定時間駆動させたときに逆導通試験を行ったときの閾値電圧の変動を示す図である。図5は第2の実施の形態に係るパワー半導体素子の駆動装置の動作の流れを示すフローチャートである。なお、第1の実施の形態で示した上アーム用駆動装置1Uおよび下アーム用駆動装置1Dは、同じ構成を有しているので、この第2の実施の形態では、そのうちの一方の構成だけを示し、他方の構成を省略している。したがって、以下では、特に、上アームおよび下アームの要素を区別しないで説明する場合、要素を示す符号は簡単にしている。すなわち、パワー半導体素子SW1,SW2は、パワー半導体素子SWとし、上アーム用駆動装置1Uおよび下アーム用駆動装置1Dは、駆動装置1としている。また、閾値検出部2Uおよび閾値検出部2Dは、閾値検出部2とし、閾値変動抑制部3Uおよび閾値変動抑制部3Dは、閾値変動抑制部3としている。
[Second Embodiment]
FIG. 2 is a diagram showing a drive device of the power semiconductor element according to the second embodiment, FIG. 3 is a diagram showing the relationship between the drain-source voltage and the threshold voltage when the power semiconductor element is on, and FIG. 4 is a diagram. It is a figure which shows the fluctuation of the threshold voltage when the reverse continuity test is performed when the SiC element is driven for a certain period of time. FIG. 5 is a flowchart showing the operation flow of the drive device of the power semiconductor element according to the second embodiment. Since the upper arm drive device 1U and the lower arm drive device 1D shown in the first embodiment have the same configuration, in the second embodiment, only one of them is configured. Is shown, and the other configuration is omitted. Therefore, in the following, in particular, when the elements of the upper arm and the lower arm are described without distinction, the reference numerals indicating the elements are simplified. That is, the power semiconductor elements SW1 and SW2 are power semiconductor element SWs, and the upper arm drive device 1U and the lower arm drive device 1D are drive devices 1. Further, the threshold value detection unit 2U and the threshold value detection unit 2D are referred to as a threshold value detection unit 2, and the threshold value fluctuation suppression unit 3U and the threshold value fluctuation suppression unit 3D are referred to as a threshold value fluctuation suppression unit 3.

パワー半導体素子SWの駆動装置1は、電圧検出部11、換算部12、比較部13、ゲートドライバ14およびスイッチング素子Tr1,Tr2,Tr3を備えている。ここで、電圧検出部11および換算部12は、閾値検出部2を構成し、比較部13、ゲートドライバ14およびスイッチング素子Tr1,Tr2,Tr3は、閾値変動抑制部3を構成している。 The drive device 1 of the power semiconductor element SW includes a voltage detection unit 11, a conversion unit 12, a comparison unit 13, a gate driver 14, and switching elements Tr1, Tr2, and Tr3. Here, the voltage detection unit 11 and the conversion unit 12 constitute the threshold value detection unit 2, and the comparison unit 13, the gate driver 14, and the switching elements Tr1, Tr2, and Tr3 constitute the threshold value fluctuation suppression unit 3.

閾値検出部2の電圧検出部11の入力は、パワー半導体素子SWのドレインおよびソースに接続され、出力は、換算部12の入力に接続されている。換算部12の出力は、閾値変動抑制部3の比較部13の入力に接続され、比較部13の出力は、ゲートドライバ14の入力に接続されている。ゲートドライバ14の出力は、スイッチング素子Tr1,Tr2,Tr3のゲートに接続されている。スイッチング素子Tr1のドレインは、電圧VHの電源に接続され、スイッチング素子Tr2のドレインは、電圧VLの電源に接続され、スイッチング素子Tr3のドレインは、電圧VMの電源に接続されている。電圧VH,VL,VMは、VH>VM>VLの関係を有している。スイッチング素子Tr1,Tr2,Tr3のソースは、パワー半導体素子SWのゲートに接続されている。 The input of the voltage detection unit 11 of the threshold value detection unit 2 is connected to the drain and source of the power semiconductor element SW, and the output is connected to the input of the conversion unit 12. The output of the conversion unit 12 is connected to the input of the comparison unit 13 of the threshold value fluctuation suppression unit 3, and the output of the comparison unit 13 is connected to the input of the gate driver 14. The output of the gate driver 14 is connected to the gate of the switching elements Tr1, Tr2 and Tr3. The drain of the switching element Tr1 is connected to the power supply of the voltage VH, the drain of the switching element Tr2 is connected to the power supply of the voltage VL, and the drain of the switching element Tr3 is connected to the power supply of the voltage VM. The voltages VH, VL, and VM have a relationship of VH> VM> VL. The sources of the switching elements Tr1, Tr2, and Tr3 are connected to the gate of the power semiconductor element SW.

パワー半導体素子SWのドレインおよびソースに接続された電圧検出部11は、パワー半導体素子SWがオン状態でのドレイン・ソース(主電極)間の電圧Vonを検出する。この電圧Vonの検出は、動作中のパワー半導体素子SWの閾値電圧Vthを直接検出することが難しいので、電圧Vonから閾値電圧Vthを間接的に検出するためのものである。すなわち、図3に示したように、パワー半導体素子SWがオンしているときのドレイン・ソース間の電圧Vonの変動は、閾値電圧Vthの変動と相関がある。つまり、電圧Vonおよび閾値電圧Vthは、電圧Vonが上がると閾値電圧Vthも上がり、電圧Vonが下がると閾値電圧Vthも下がるという比例関係を有している。閾値検出部2は、この関係を用いて、電圧Vonを検出することにより電圧Vonと相関のある閾値電圧Vthを求め、閾値電圧Vthの変動を推測している。 The voltage detection unit 11 connected to the drain and source of the power semiconductor element SW detects the voltage Von between the drain and the source (main electrode) when the power semiconductor element SW is on. Since it is difficult to directly detect the threshold voltage Vth of the power semiconductor element SW in operation, the detection of the voltage Von is for indirectly detecting the threshold voltage Vth from the voltage Von. That is, as shown in FIG. 3, the fluctuation of the voltage Von between the drain and the source when the power semiconductor device SW is on correlates with the fluctuation of the threshold voltage Vth. That is, the voltage Von and the threshold voltage Vth have a proportional relationship in which the threshold voltage Vth also rises when the voltage Von rises, and the threshold voltage Vth also falls when the voltage Von falls. Using this relationship, the threshold value detection unit 2 obtains the threshold voltage Vth that correlates with the voltage Von by detecting the voltage Von, and estimates the fluctuation of the threshold voltage Vth.

電圧Vonの検出は、スイッチングレギュレータの動作を停止させてからパワー半導体素子SWをオンして検出してもよいが、好ましくは、リアルタイム検出を行うのがよい。検出のタイミングは、スイッチングごとに実施してもよいし、一定時間ごとに実施してもよい。ただし、検出間隔が長時間になりすぎるとその間に電圧Vonが大きく変動する可能性があるため、100時間を超えない一定時間ごとに検出を実施するのが望ましい。 The voltage Von may be detected by stopping the operation of the switching regulator and then turning on the power semiconductor element SW, but it is preferable to perform real-time detection. The timing of detection may be performed for each switching or may be performed at regular time intervals. However, if the detection interval becomes too long, the voltage Von may fluctuate significantly during that period, so it is desirable to perform detection at regular intervals not exceeding 100 hours.

その後、換算部12において、検出した電圧Vonの変動から閾値電圧Vthの変動が推測される。この推測された閾値電圧Vthは、閾値変動抑制部3の比較部13に送られる。 After that, in the conversion unit 12, the fluctuation of the threshold voltage Vth is estimated from the fluctuation of the detected voltage Von. The estimated threshold voltage Vth is sent to the comparison unit 13 of the threshold fluctuation suppression unit 3.

閾値変動抑制部3において、比較部13は、推測された閾値電圧Vthの変動に対応するパワー半導体素子SWの電気特性を把握し、ゲートドライバ14が推測された閾値電圧Vthの変動に応じてその変動を抑えるようにパワー半導体素子SWを駆動する。また、比較部13では、閾値電圧Vthの許容値を設定する必要がある。 In the threshold fluctuation suppression unit 3, the comparison unit 13 grasps the electrical characteristics of the power semiconductor element SW corresponding to the estimated fluctuation of the threshold voltage Vth, and the gate driver 14 grasps the electrical characteristics of the power semiconductor element SW according to the estimated fluctuation of the threshold voltage Vth. The power semiconductor element SW is driven so as to suppress fluctuations. Further, in the comparison unit 13, it is necessary to set an allowable value of the threshold voltage Vth.

パワー半導体素子SWの電気特性および閾値電圧Vthの許容値は、半導体素材、ゲート構造、素子構造、素子作製プロセスなどにより変動する可能性があるため、あらかじめ典型的な素子において検出しておくのが望ましい。 Since the electrical characteristics of the power semiconductor device SW and the allowable value of the threshold voltage Vth may vary depending on the semiconductor material, gate structure, device structure, device manufacturing process, etc., it is recommended to detect them in advance in a typical device. desirable.

ここで、図4は、あるSiC素子に逆導通試験を行った際の閾値電圧Vthの変動を示している。この図4において、閾値電圧Vthは、このSiC素子においては、ドレイン電流Ids=18mA、ドレイン・ソース間電圧Vds=20Vとなるときのゲート・ソース間電圧Vgsとして定義され、このSiC素子では、約2Vである。閾値電圧Vthの基準となる電流は、任意であるが、定格電流の1/1000程度にするのが望ましい。図4によれば、ゲート・ソース間電圧Vgsを負の値にして内蔵ダイオードに逆導通電流を流すと、閾値電圧Vthが低下する方向に変動する。また、ゲート・ソース間電圧Vgsを+2.5V〜+5Vとしたときに逆導通電流が流れると、閾値電圧Vthは上昇している。この電圧領域を反転領域と呼ぶ。さらに、ゲート・ソース間電圧VgsをVgs>+7.5Vとしたときには、チャネルが完全に強反転領域となり、このとき閾値電圧Vthの変動は、ほぼなくなる。この強反転領域は、通常逆導通と呼ばれ、同期整流で逆導通させるときに最も使われる領域である。そして、閾値電圧Vthの許容値は、初期値に対して、回路上、誤オンの発生や損失の増大がないような範囲に決められ、たとえば、初期値±0.1V程度に設定される。 Here, FIG. 4 shows the fluctuation of the threshold voltage Vth when a reverse continuity test is performed on a certain SiC element. In FIG. 4, the threshold voltage Vth is defined as the gate-source voltage Vgs when the drain current Ids = 18 mA and the drain-source voltage Vds = 20 V in this SiC element, and is about about in this SiC element. It is 2V. The reference current of the threshold voltage Vth is arbitrary, but it is desirable that the current is about 1/1000 of the rated current. According to FIG. 4, when the gate-source voltage Vgs is set to a negative value and a reverse conduction current is passed through the built-in diode, the threshold voltage Vth fluctuates in a direction of decreasing. Further, when the reverse conduction current flows when the gate-source voltage Vgs is set to + 2.5V to + 5V, the threshold voltage Vth rises. This voltage region is called an inversion region. Further, when the gate-source voltage Vgs is set to Vgs> +7.5 V, the channel completely becomes a strong inversion region, and at this time, the fluctuation of the threshold voltage Vth is almost eliminated. This strong inversion region is usually called reverse conduction, and is the region most used when reverse conduction is performed by synchronous rectification. Then, the allowable value of the threshold voltage Vth is determined in a range in which the occurrence of erroneous on and the increase in loss do not occur in the circuit with respect to the initial value, and is set to, for example, about ± 0.1 V as the initial value.

比較部13では、以上のようなSiC素子の電気特性に基づいて、閾値電圧Vthの変動に対する対処の方法を判断している。すなわち、比較部13は、閾値電圧Vthの変動がその許容値の範囲内にあるかどうか、閾値電圧Vthの変動がその許容値より高いかどうか、そして、閾値電圧Vthの変動がその許容値より低いかどうかを比較判断する。ここで、図4の電気特性から閾値電圧Vthが低下する方向に変動している場合には、ゲート・ソース間電圧Vgsを閾値電圧Vthが上昇する方向に変動する動作条件にすればよいことが分かる。逆に、閾値電圧Vthが上昇する方向に変動している場合には、ゲート・ソース間電圧Vgsを閾値電圧Vthが低下する方向に変動する動作条件にすればよいことが分かる。すなわち、閾値電圧Vthが許容値より低い方向に変動していれば、反転領域を逆導通させ、閾値電圧Vthが許容値より高い方向に変動していれば、内蔵ダイオードを逆導通させる。 The comparison unit 13 determines a method for coping with the fluctuation of the threshold voltage Vth based on the electrical characteristics of the SiC element as described above. That is, the comparison unit 13 determines whether the fluctuation of the threshold voltage Vth is within the permissible value, whether the fluctuation of the threshold voltage Vth is higher than the permissible value, and whether the fluctuation of the threshold voltage Vth is higher than the permissible value. Compare and judge whether it is low or not. Here, when the threshold voltage Vth fluctuates in the direction of decreasing from the electrical characteristics of FIG. 4, the gate-source voltage Vgs may be set to the operating condition of fluctuating in the direction of increasing the threshold voltage Vth. I understand. On the contrary, when the threshold voltage Vth fluctuates in the direction of increasing, it can be seen that the gate-source voltage Vgs may be set to the operating condition of fluctuating in the direction of decreasing the threshold voltage Vth. That is, if the threshold voltage Vth fluctuates in a direction lower than the permissible value, the inversion region is reverse-conducted, and if the threshold voltage Vth fluctuates in a direction higher than the permissible value, the built-in diode is reverse-conducted.

ゲートドライバ14は、比較部13での判断結果を基にしてパワー半導体素子SWのゲート電圧Vgを可変する。すなわち、閾値電圧Vthが許容値より低い方向に変動していれば、ゲートドライバ14は、スイッチング素子Tr3をオンさせ、パワー半導体素子SWのゲート電圧Vgを、たとえば電圧VMの5Vにする。これにより、パワー半導体素子SWは、反転領域が逆導通となり、閾値電圧Vthが上昇する動作条件となる。逆に、閾値電圧Vthが許容値より高い方向に変動していれば、ゲートドライバ14は、スイッチング素子Tr2をオンさせ、パワー半導体素子SWのゲート電圧Vgを、たとえば電圧VLの−10Vにする。これにより、パワー半導体素子SWは、内蔵ダイオードが逆導通となり、閾値電圧Vthが低下する動作条件となる。また、閾値電圧Vthが許容値の範囲内にあってほとんど変動していなければ、ゲートドライバ14は、スイッチング素子Tr1をオンさせ、パワー半導体素子SWのゲート電圧Vgを、たとえば電圧VHの15Vにする。これにより、パワー半導体素子SWは、通常逆導通となり、閾値電圧Vthが変化しない動作条件となる。 The gate driver 14 changes the gate voltage Vg of the power semiconductor element SW based on the determination result of the comparison unit 13. That is, if the threshold voltage Vth fluctuates in a direction lower than the permissible value, the gate driver 14 turns on the switching element Tr3 and sets the gate voltage Vg of the power semiconductor element SW to, for example, 5V of the voltage VM. As a result, in the power semiconductor device SW, the inverting region becomes reverse conduction, and the operating condition is that the threshold voltage Vth rises. On the contrary, if the threshold voltage Vth fluctuates in a direction higher than the allowable value, the gate driver 14 turns on the switching element Tr2 and sets the gate voltage Vg of the power semiconductor element SW to, for example, -10V of the voltage VL. As a result, in the power semiconductor element SW, the built-in diode becomes reverse conduction, and the operating condition is that the threshold voltage Vth is lowered. Further, if the threshold voltage Vth is within the allowable value range and hardly fluctuates, the gate driver 14 turns on the switching element Tr1 and sets the gate voltage Vg of the power semiconductor element SW to, for example, 15V of the voltage VH. .. As a result, the power semiconductor device SW usually has reverse conduction, and the operating condition is such that the threshold voltage Vth does not change.

なお、ゲートドライバ14は、ここでは、閾値電圧Vthの変動を抑制することに絞って説明したが、パワー半導体素子SWをオン・オフさせる通常の制御でも使用されている。すなわち、ゲートドライバ14は、パワー半導体素子SWをオンするとき、スイッチング素子Tr1をオンさせ、パワー半導体素子SWをオフするときには、スイッチング素子Tr2をオンさせており、閾値電圧Vthの変動抑制制御と兼用している。 Although the gate driver 14 has been described here focusing on suppressing fluctuations in the threshold voltage Vth, it is also used in normal control for turning on / off the power semiconductor element SW. That is, the gate driver 14 turns on the switching element Tr1 when the power semiconductor element SW is turned on, and turns on the switching element Tr2 when the power semiconductor element SW is turned off, and also serves as a fluctuation suppression control of the threshold voltage Vth. doing.

次に、以上のパワー半導体素子SWの駆動装置の全体の動作について説明する。パワー半導体素子SWの駆動装置では、図5に示したように、まず、パワー半導体素子SWがオン状態でのドレイン・ソース間の電圧Vonを電圧検出部11が検出する(ステップS1)。次に、電圧Vonと閾値電圧Vthとの関係を用いて、換算部12が、検出した電圧Vonに対応する閾値電圧Vthを求め、閾値電圧Vthの変動を推測する(ステップS2)。比較部13では、推測された閾値電圧Vthとあらかじめ設定された許容値とを比較し(ステップS3)、推測された閾値電圧Vthが許容値より低いかどうかが判断される(ステップS4)。ステップS4において、閾値電圧Vthが許容値より低いと判断されると、ゲートドライバ14がスイッチング素子Tr3をオンしてパワー半導体素子SWを反転領域逆導通の状態にする(ステップS5)。 Next, the overall operation of the drive device for the power semiconductor element SW described above will be described. In the drive device for the power semiconductor element SW, as shown in FIG. 5, the voltage detection unit 11 first detects the voltage Von between the drain and the source when the power semiconductor element SW is on (step S1). Next, using the relationship between the voltage Von and the threshold voltage Vth, the conversion unit 12 obtains the threshold voltage Vth corresponding to the detected voltage Von and estimates the fluctuation of the threshold voltage Vth (step S2). The comparison unit 13 compares the estimated threshold voltage Vth with the preset allowable value (step S3), and determines whether or not the estimated threshold voltage Vth is lower than the allowable value (step S4). When it is determined in step S4 that the threshold voltage Vth is lower than the allowable value, the gate driver 14 turns on the switching element Tr3 to bring the power semiconductor element SW into a state of reverse conduction in the inverting region (step S5).

ステップS4において、閾値電圧Vthが許容値より低くないと判断されると、比較部13は、閾値電圧Vthが許容値以内かどうかを判断する(ステップS6)。ステップS6において、閾値電圧Vthが許容値以内と判断されると、ゲートドライバ14がスイッチング素子Tr1をオンしてパワー半導体素子SWを通常逆導通の状態にする(ステップS7)。ステップS6において、閾値電圧Vthが許容値より高いと判断されると、ゲートドライバ14がスイッチング素子Tr2をオンしてパワー半導体素子SWを内蔵ダイオード逆導通の状態にする(ステップS8)。 If it is determined in step S4 that the threshold voltage Vth is not lower than the permissible value, the comparison unit 13 determines whether or not the threshold voltage Vth is within the permissible value (step S6). When it is determined in step S6 that the threshold voltage Vth is within the allowable value, the gate driver 14 turns on the switching element Tr1 to bring the power semiconductor element SW into a normal reverse conduction state (step S7). When it is determined in step S6 that the threshold voltage Vth is higher than the permissible value, the gate driver 14 turns on the switching element Tr2 and puts the power semiconductor element SW in a state of reverse conduction of the built-in diode (step S8).

ゲートドライバ14およびスイッチング素子Tr1,Tr2,Tr3によるパワー半導体素子SWの駆動が終わると、パワー半導体素子SWの駆動装置は、一定時間動作を継続させる(ステップS9)。すなわち、パワー半導体素子SWの駆動装置は、比較部13による判断結果を保持し、その判断結果を使って変動抑制制御を一定時間継続させる。一定時間経過すると、パワー半導体素子SWの駆動装置は、ステップS1に戻り、ドレイン・ソース間の電圧Vonの検出を再開する。 When the drive of the power semiconductor element SW by the gate driver 14 and the switching elements Tr1, Tr2, Tr3 is completed, the drive device of the power semiconductor element SW continues to operate for a certain period of time (step S9). That is, the drive device of the power semiconductor element SW holds the determination result by the comparison unit 13, and uses the determination result to continue the fluctuation suppression control for a certain period of time. After a lapse of a certain period of time, the drive device of the power semiconductor element SW returns to step S1 and restarts the detection of the voltage Von between the drain and the source.

次に、パワー半導体素子SWの駆動装置を図1に示したスイッチングレギュレータの出力部に適用したときの2つのパワー半導体素子SW1,SW2の相互の動作について説明する。 Next, the mutual operation of the two power semiconductor elements SW1 and SW2 when the drive device of the power semiconductor element SW is applied to the output unit of the switching regulator shown in FIG. 1 will be described.

図6はパワー半導体素子のゲート電圧の波形例を示す図であって、(A)は同期整流を行わない場合を示し、(B)は同期整流を行う場合を示している。図7は閾値電圧変動抑制制御時におけるパワー半導体素子のゲート電圧の波形例を示す図である。 6A and 6B are diagrams showing an example of a waveform of a gate voltage of a power semiconductor element, where FIG. 6A shows a case where synchronous rectification is not performed, and FIG. 6B shows a case where synchronous rectification is performed. FIG. 7 is a diagram showing an example of a waveform of the gate voltage of the power semiconductor element at the time of threshold voltage fluctuation suppression control.

パワー半導体素子SW1,SW2は、PWM(Pulse Width Modulation)制御のゲート信号によって駆動される。ここで、同期整流を行わない場合、図6(A)に示したように、パワー半導体素子SW1,SW2の一方のゲートにPWM制御のゲート信号が印加されている期間、他方のゲートには、一定の電圧VLのゲート電圧Vgが印加されている。このとき、たとえば、上アームのパワー半導体素子SW1のゲートにPWM制御のゲート信号が印加されている期間であって、ゲート電圧Vgが電圧VHから電圧VLに遷移した後に流れる還流電流は、パワー半導体素子SW2に逆並列接続された内蔵ダイオードだけを流れることになる。 The power semiconductor elements SW1 and SW2 are driven by a gate signal controlled by PWM (Pulse Width Modulation). Here, when synchronous rectification is not performed, as shown in FIG. 6A, during the period in which the PWM control gate signal is applied to one gate of the power semiconductor elements SW1 and SW2, the other gate is used. A gate voltage Vg of a constant voltage VL is applied. At this time, for example, the recirculation current flowing after the gate voltage Vg transitions from the voltage VH to the voltage VL during the period in which the PWM control gate signal is applied to the gate of the power semiconductor element SW1 of the upper arm is the power semiconductor. Only the built-in diode connected in antiparallel to the element SW2 will flow.

一方、同期整流を行う場合、図6(B)に示したように、パワー半導体素子SW1,SW2の一方のゲートにPWM制御のゲート信号が印加されている期間、他方のゲートには、同期整流のためのPWM制御のゲート信号が印加されている。ここで、パワー半導体素子SW1,SW2の他方は、同期整流のためのPWM制御のゲート信号が印加されている間、通常逆導通の状態になる。 On the other hand, when synchronous rectification is performed, as shown in FIG. 6B, while the PWM control gate signal is applied to one gate of the power semiconductor elements SW1 and SW2, synchronous rectification is performed to the other gate. A PWM control gate signal for is applied. Here, the other of the power semiconductor elements SW1 and SW2 is normally in a reverse conduction state while the PWM control gate signal for synchronous rectification is applied.

次に、図7に示した閾値電圧変動抑制制御をパワー半導体素子SW1またはSW2に対して行う場合について説明する。図7に図示した例では、パワー半導体素子SW2のみ閾値電圧変動抑制制御を行い、パワー半導体素子SW1には閾値電圧変動抑制制御を行っていない。 Next, a case where the threshold voltage fluctuation suppression control shown in FIG. 7 is performed on the power semiconductor element SW1 or SW2 will be described. In the example shown in FIG. 7, only the power semiconductor element SW2 is controlled to suppress the threshold voltage fluctuation, and the power semiconductor element SW1 is not controlled to suppress the threshold voltage fluctuation.

パワー半導体素子SW2において、その閾値電圧Vthがその許容値より高いとき、パワー半導体素子SW1がPWM制御している期間、ゲートドライバ14がスイッチング素子Tr2をオンのままにしてゲート電圧を電圧VLのままにし、同期整流はしていない。パワー半導体素子SW2は、閾値電圧Vthが低下する方向に変化するゲート電圧Vgがゲートに印加されることになる。また、パワー半導体素子SW2がPWM制御している期間、パワー半導体素子SW1のゲートには、同期整流のためのPWM制御のゲート信号が印加されている。 In the power semiconductor device SW2, when the threshold voltage Vth is higher than the permissible value, the gate driver 14 keeps the switching element Tr2 on and the gate voltage remains the voltage VL during the period during which the power semiconductor device SW1 is PWM-controlled. However, synchronous rectification is not performed. In the power semiconductor element SW2, a gate voltage Vg that changes in the direction in which the threshold voltage Vth decreases is applied to the gate. Further, during the period during which the power semiconductor element SW2 is PWM controlled, a PWM control gate signal for synchronous rectification is applied to the gate of the power semiconductor element SW1.

パワー半導体素子SW2の閾値電圧Vthがその許容値以内のとき、パワー半導体素子SW1がPWM制御している期間、ゲートドライバ14は、スイッチング素子Tr1,Tr2を使ってパワー半導体素子SW2を同期整流のためのPWM制御をしている。すなわち、ゲートドライバ14は、パワー半導体素子SW2をオンにするタイミングでスイッチング素子Tr1をオンにし、パワー半導体素子SW2をオフにするタイミングでスイッチング素子Tr2をオンにする。これにより、パワー半導体素子SW2は、オンのときにゲート電圧が電圧VHとなり、オフのときにゲート電圧が電圧VLとなる。つまり、このときのパワー半導体素子SW2のゲートには、閾値電圧変動抑制制御の必要のない通常の値の電圧VH,VLが印加される。また、パワー半導体素子SW2がPWM制御している期間、パワー半導体素子SW1のゲートには、同期整流のためのPWM制御のゲート信号が印加されている。 When the threshold voltage Vth of the power semiconductor element SW2 is within the permissible value, the gate driver 14 uses the switching elements Tr1 and Tr2 to synchronously rectify the power semiconductor element SW2 during the period during which the power semiconductor element SW1 is PWM-controlled. PWM control is performed. That is, the gate driver 14 turns on the switching element Tr1 at the timing when the power semiconductor element SW2 is turned on, and turns on the switching element Tr2 at the timing when the power semiconductor element SW2 is turned off. As a result, in the power semiconductor element SW2, the gate voltage becomes the voltage VH when it is on, and the gate voltage becomes the voltage VL when it is off. That is, normal values of voltages VH and VL that do not require threshold voltage fluctuation suppression control are applied to the gate of the power semiconductor element SW2 at this time. Further, during the period during which the power semiconductor element SW2 is PWM controlled, a PWM control gate signal for synchronous rectification is applied to the gate of the power semiconductor element SW1.

パワー半導体素子SW2の閾値電圧Vthがその許容値より低いとき、パワー半導体素子SW1がPWM制御している期間、ゲートドライバ14は、スイッチング素子Tr2,Tr3を使ってパワー半導体素子SW2を同期整流のためのPWM制御をしている。すなわち、ゲートドライバ14は、パワー半導体素子SW2をオンにするタイミングでスイッチング素子Tr3をオンにし、パワー半導体素子SW2をオフにするタイミングでスイッチング素子Tr2をオンにする。これにより、パワー半導体素子SW2は、オンのときにゲート電圧が電圧VMとなり、オフのときにゲート電圧が電圧VLとなる。この結果、パワー半導体素子SW2は、閾値電圧Vthが上昇する方向に変化するゲート電圧Vgがゲートに印加されることになる。また、パワー半導体素子SW2がPWM制御している期間、パワー半導体素子SW1のゲートには、同期整流のためのPWM制御のゲート信号が印加されている。 When the threshold voltage Vth of the power semiconductor element SW2 is lower than the permissible value, the gate driver 14 uses the switching elements Tr2 and Tr3 to synchronously rectify the power semiconductor element SW2 during the period during which the power semiconductor element SW1 is PWM-controlled. PWM control is performed. That is, the gate driver 14 turns on the switching element Tr3 at the timing when the power semiconductor element SW2 is turned on, and turns on the switching element Tr2 at the timing when the power semiconductor element SW2 is turned off. As a result, in the power semiconductor element SW2, the gate voltage becomes the voltage VM when it is on, and the gate voltage becomes the voltage VL when it is off. As a result, in the power semiconductor device SW2, a gate voltage Vg that changes in the direction in which the threshold voltage Vth rises is applied to the gate. Further, during the period during which the power semiconductor element SW2 is PWM controlled, a PWM control gate signal for synchronous rectification is applied to the gate of the power semiconductor element SW1.

以上の図7の例では、閾値電圧変動抑制制御を下アームのパワー半導体素子SW2に適用した場合を示したが、上アームのパワー半導体素子SW1にも同様に適用することができる。この場合、上アームのパワー半導体素子SW1の閾値電圧変動抑制制御は、下アームのパワー半導体素子SW2の閾値電圧変動抑制制御と異なる時間帯に実施される。 In the above example of FIG. 7, the case where the threshold voltage fluctuation suppression control is applied to the power semiconductor element SW2 of the lower arm is shown, but it can be similarly applied to the power semiconductor element SW1 of the upper arm. In this case, the threshold voltage fluctuation suppression control of the power semiconductor element SW1 of the upper arm is performed at a time zone different from the threshold voltage fluctuation suppression control of the power semiconductor element SW2 of the lower arm.

[第3の実施の形態]
図8は第3の実施の形態に係るパワー半導体素子の駆動装置を示す図、図9はパワー半導体素子のオフ時のゲート抵抗回路を示す図である。図10はパワー半導体素子をある一定時間駆動させたときのオフ時のゲート電圧の波形を示す図、図11はパワー半導体素子をある一定時間駆動させたときの閾値変動の変化の傾向を示す図である。図12は第3の実施の形態に係るパワー半導体素子の駆動装置の動作の流れを示すフローチャートである。なお、図8において、図2に示した構成要素と同じまたは均等の構成要素については同じ符号を付してその詳細な説明は省略する。
[Third Embodiment]
FIG. 8 is a diagram showing a driving device of the power semiconductor element according to the third embodiment, and FIG. 9 is a diagram showing a gate resistance circuit when the power semiconductor element is off. FIG. 10 is a diagram showing a waveform of the gate voltage when the power semiconductor element is driven for a certain period of time, and FIG. 11 is a diagram showing a tendency of a change in threshold value when the power semiconductor element is driven for a certain period of time. Is. FIG. 12 is a flowchart showing a flow of operation of the drive device of the power semiconductor element according to the third embodiment. In FIG. 8, the same or equivalent components as those shown in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

この第3の実施の形態に係るパワー半導体素子の駆動装置は、第2の実施の形態に係るパワー半導体素子の駆動装置がゲート電圧を変更して閾値電圧変動を抑制しているのに対し、ゲート抵抗を変更して閾値電圧変動を抑制している。 In the power semiconductor element drive device according to the third embodiment, the power semiconductor element drive device according to the second embodiment changes the gate voltage to suppress the threshold voltage fluctuation. The gate resistance is changed to suppress the threshold voltage fluctuation.

パワー半導体素子SWの駆動装置1は、電圧検出部11、換算部12、比較部13、スイッチング素子Tr11,Tr12、ゲート抵抗Rg、オン時ゲート抵抗Rg(on)およびオフ時ゲート抵抗Rg(off)を備えている。ここで、電圧検出部11および換算部12は、閾値検出部2を構成し、比較部13およびオフ時ゲート抵抗Rg(off)は、閾値変動抑制部3を構成している。 The drive device 1 of the power semiconductor element SW includes a voltage detection unit 11, a conversion unit 12, a comparison unit 13, switching elements Tr11, Tr12, a gate resistance Rg, an on-time gate resistance Rg (on), and an off-time gate resistance Rg (off). It is equipped with. Here, the voltage detection unit 11 and the conversion unit 12 constitute the threshold value detection unit 2, and the comparison unit 13 and the off-time gate resistance Rg (off) constitute the threshold value fluctuation suppression unit 3.

この駆動装置1では、スイッチング素子Tr11,Tr12のゲートは、ゲート抵抗Rgを介してゲート信号が入力される入力端子21に接続されている。スイッチング素子Tr11のドレインは、正極ゲート電圧Vg(+)に接続され、スイッチング素子Tr11のソースは、オン時ゲート抵抗Rg(on)の一方の端子に接続されている。オン時ゲート抵抗Rg(on)の他方の端子は、パワー半導体素子SWのゲートおよびオフ時ゲート抵抗Rg(off)の一方の端子に接続されている。オフ時ゲート抵抗Rg(off)の他方の端子は、スイッチング素子Tr12のソースに接続され、スイッチング素子Tr12のドレインは、負極ゲート電圧Vg(−)に接続されている。ここで、オフ時ゲート抵抗Rg(off)は、その制御端子が比較部13の出力に接続されており、比較部13が出力する制御信号によって抵抗値が変化する可変抵抗である。 In this drive device 1, the gates of the switching elements Tr11 and Tr12 are connected to the input terminal 21 to which the gate signal is input via the gate resistor Rg. The drain of the switching element Tr11 is connected to the positive electrode gate voltage Vg (+), and the source of the switching element Tr11 is connected to one terminal of the on-time gate resistance Rg (on). The other terminal of the on-time gate resistance Rg (on) is connected to one terminal of the power semiconductor element SW gate and the off-time gate resistance Rg (off). The other terminal of the off gate resistance Rg (off) is connected to the source of the switching element Tr12, and the drain of the switching element Tr12 is connected to the negative electrode gate voltage Vg (−). Here, the off gate resistance Rg (off) is a variable resistance whose control terminal is connected to the output of the comparison unit 13 and whose resistance value changes depending on the control signal output by the comparison unit 13.

オフ時ゲート抵抗Rg(off)は、図9に例示したように、スイッチング素子Tr13,Tr14と抵抗Rg1,Rg2とを備えている。抵抗Rg1,Rg2の一方の端子は、オン時ゲート抵抗Rg(on)の他方の端子に接続されている。抵抗Rg1の他方の端子は、スイッチング素子Tr13のソースに接続され、抵抗Rg2の他方の端子は、スイッチング素子Tr14のソースに接続されている。スイッチング素子Tr13,Tr14のドレインは、スイッチング素子Tr12のソースに接続され、スイッチング素子Tr13,Tr14のゲートは、比較部13の出力に接続されている。なお、このオフ時ゲート抵抗Rg(off)では、抵抗Rg1,Rg2の値をRg1>Rg2の関係にしている。 As illustrated in FIG. 9, the off gate resistance Rg (off) includes switching elements Tr13 and Tr14 and resistors Rg1 and Rg2. One terminal of the resistors Rg1 and Rg2 is connected to the other terminal of the gate resistance Rg (on) at ON. The other terminal of the resistor Rg1 is connected to the source of the switching element Tr13, and the other terminal of the resistor Rg2 is connected to the source of the switching element Tr14. The drains of the switching elements Tr13 and Tr14 are connected to the source of the switching element Tr12, and the gates of the switching elements Tr13 and Tr14 are connected to the output of the comparison unit 13. In this off-time gate resistance Rg (off), the values of the resistances Rg1 and Rg2 are in a relationship of Rg1> Rg2.

以上の構成のパワー半導体素子SWの駆動装置において、電圧検出部11は、パワー半導体素子SWがオン状態でのドレイン・ソース間の電圧Vonを検出し、換算部12では、検出された電圧Vonの変動から閾値電圧Vthの変動が推測される。比較部13では、推測された閾値電圧Vthの変動と閾値電圧Vthの許容値とを比較し、閾値電圧Vthの変動が閾値電圧Vthの許容値より低いか、閾値電圧Vthの変動が閾値電圧Vthの許容値以内かを判断する。なお、閾値電圧Vthの許容値は、初期値に対して、誤オンの発生などの問題が出ないような範囲に決められる。 In the drive device of the power semiconductor element SW having the above configuration, the voltage detection unit 11 detects the voltage Von between the drain and the source when the power semiconductor element SW is on, and the conversion unit 12 detects the detected voltage Von. The fluctuation of the threshold voltage Vth is estimated from the fluctuation. The comparison unit 13 compares the estimated fluctuation of the threshold voltage Vth with the permissible value of the threshold voltage Vth, and either the fluctuation of the threshold voltage Vth is lower than the permissible value of the threshold voltage Vth or the fluctuation of the threshold voltage Vth is the threshold voltage Vth. Judge whether it is within the allowable value of. The allowable value of the threshold voltage Vth is determined within a range in which problems such as erroneous ON occurrence do not occur with respect to the initial value.

ここで、比較部13は、閾値電圧Vthの変動が閾値電圧Vthの許容値以内の場合、スイッチング素子Tr13をオンにする制御信号を出力し、オフ時ゲート抵抗Rg(off)を抵抗Rg1に設定する。閾値電圧Vthの変動が閾値電圧Vthの許容値より低い場合、比較部13は、スイッチング素子Tr14をオンにする制御信号を出力し、オフ時ゲート抵抗Rg(off)を抵抗Rg1よりも値の小さな抵抗Rg2に設定する。 Here, the comparison unit 13 outputs a control signal for turning on the switching element Tr13 when the fluctuation of the threshold voltage Vth is within the allowable value of the threshold voltage Vth, and sets the gate resistance Rg (off) at the time of off to the resistance Rg1. do. When the fluctuation of the threshold voltage Vth is lower than the allowable value of the threshold voltage Vth, the comparison unit 13 outputs a control signal for turning on the switching element Tr14, and the off gate resistance Rg (off) has a smaller value than the resistance Rg1. Set the resistance Rg2.

この閾値変動抑制制御は、パワー半導体素子SWの以下の電気特性に基づいている。すなわち、パワー半導体素子SWをある一定時間駆動させると、オフ時のゲート電圧Vgは、図10に示したように、オフ時ゲート抵抗Rg(off)の値によってアンダーシュート電圧UVの大きさが変化する。なお、オフ時ゲート抵抗Rg(off)は、AからDの順に小さくした場合を示している。ここで、アンダーシュート電圧UVは、図中の矢印部の大きさで定義される(図では、オフ時ゲート抵抗Rg(off)をDにしたときの跳ね上がり電圧を示している)。一方、図11に示したように、パワー半導体素子SWがターンオフするときのアンダーシュート電圧UVを大きくすると、閾値電圧Vthの上昇幅が大きくなる傾向がある。このことから、閾値電圧Vthの変動が許容値の範囲内であれば、オフ時ゲート抵抗Rg(off)の値を大きく(通常の値に)しておくことで、オフ時のゲート電圧Vgは、過剰なアンダーシュート電圧UVの発生が抑制されることが分かる。また、閾値電圧Vthが許容値より低下した場合には、閾値電圧Vthが上昇する方向に制御すればよい。このためには、オフ時ゲート抵抗Rg(off)の値を通常の値より小さくすることで、オフ時のゲート電圧Vgは、アンダーシュート電圧UVが大きくなる方向に変化する。これにより、閾値電圧Vthの上昇幅が大きくなることから、閾値電圧Vthが許容値から大きく外れることが抑制され、パワー半導体素子SWの閾値電圧Vthの変動を抑制することができる。 This threshold fluctuation suppression control is based on the following electrical characteristics of the power semiconductor element SW. That is, when the power semiconductor element SW is driven for a certain period of time, the magnitude of the undershoot voltage UV changes depending on the value of the gate resistance Rg (off) when the power semiconductor element SW is turned off, as shown in FIG. do. The off gate resistance Rg (off) is shown in the case where the gate resistance Rg (off) is reduced in the order of A to D. Here, the undershoot voltage UV is defined by the size of the arrow portion in the figure (in the figure, the jump voltage when the gate resistance Rg (off) at off is set to D). On the other hand, as shown in FIG. 11, when the undershoot voltage UV when the power semiconductor device SW is turned off is increased, the increase width of the threshold voltage Vth tends to increase. From this, if the fluctuation of the threshold voltage Vth is within the allowable value range, the gate voltage Vg at the time of off can be increased by increasing the value of the gate resistance Rg (off) at the time of off (to a normal value). It can be seen that the generation of excessive undershoot voltage UV is suppressed. Further, when the threshold voltage Vth is lower than the permissible value, the threshold voltage Vth may be controlled in the increasing direction. For this purpose, by making the value of the gate resistance Rg (off) at the time of off smaller than the normal value, the gate voltage Vg at the time of off changes in the direction in which the undershoot voltage UV increases. As a result, since the increase width of the threshold voltage Vth becomes large, it is possible to suppress the threshold voltage Vth from deviating significantly from the permissible value, and it is possible to suppress the fluctuation of the threshold voltage Vth of the power semiconductor element SW.

なお、この閾値変動抑制制御において、閾値電圧Vthの検出は、パワー半導体素子SWの動作中にリアルタイムに実施することができるが、定期的に装置を停止し個別に検出してもよい。このときの閾値電圧Vthが許容値の範囲内であったときは、オフ時ゲート抵抗Rg(off)の通常の値、すなわち、抵抗Rg1の値は、スイッチング損失などを考慮して決めるのが望ましい。また、閾値電圧Vthの検出およびオフ時ゲート抵抗Rg(off)の切り替えは、一定時間ごとに行うのがよい。 In this threshold value fluctuation suppression control, the threshold voltage Vth can be detected in real time during the operation of the power semiconductor device SW, but the apparatus may be periodically stopped and individually detected. When the threshold voltage Vth at this time is within the allowable value range, it is desirable to determine the normal value of the off gate resistance Rg (off), that is, the value of the resistance Rg1 in consideration of switching loss and the like. .. Further, it is preferable to detect the threshold voltage Vth and switch the gate resistance Rg (off) at the time of off at regular time intervals.

次に、以上のパワー半導体素子SWの駆動装置の全体の動作について説明する。パワー半導体素子SWの駆動装置では、図12に示したように、まず、パワー半導体素子SWがオン状態でのドレイン・ソース間の電圧Vonを電圧検出部11が検出する(ステップS11)。次に、電圧Vonと閾値電圧Vthとの関係を用いて、換算部12が、検出した電圧Vonに対応する閾値電圧Vthを求め、閾値電圧Vthの変動を推測する(ステップS12)。 Next, the overall operation of the drive device for the power semiconductor element SW described above will be described. In the drive device for the power semiconductor element SW, as shown in FIG. 12, the voltage detection unit 11 first detects the voltage Von between the drain and the source when the power semiconductor element SW is on (step S11). Next, using the relationship between the voltage Von and the threshold voltage Vth, the conversion unit 12 obtains the threshold voltage Vth corresponding to the detected voltage Von and estimates the fluctuation of the threshold voltage Vth (step S12).

比較部13では、推測された閾値電圧Vthとあらかじめ設定された許容値とを比較し(ステップS13)、推測された閾値電圧Vthが許容値以内かどうかを判断する(ステップS14)。ステップS14において、閾値電圧Vthが許容値以内と判断されると、比較部13は、スイッチング素子Tr13をオンする制御信号を出力し、オフ時ゲート抵抗Rg(off)を通常の値の抵抗Rg1に切り替える(ステップS15)。ステップS14において、閾値電圧Vthが許容値より低いと判断されると、比較部13は、スイッチング素子Tr14をオンする制御信号を出力し、オフ時ゲート抵抗Rg(off)を通常の値より小さな抵抗Rg2に切り替える(ステップS16)。 The comparison unit 13 compares the estimated threshold voltage Vth with the preset allowable value (step S13), and determines whether or not the estimated threshold voltage Vth is within the allowable value (step S14). When it is determined in step S14 that the threshold voltage Vth is within the allowable value, the comparison unit 13 outputs a control signal for turning on the switching element Tr13, and sets the off gate resistance Rg (off) to the normal value resistance Rg1. Switching (step S15). When it is determined in step S14 that the threshold voltage Vth is lower than the permissible value, the comparison unit 13 outputs a control signal for turning on the switching element Tr14, and sets the off gate resistance Rg (off) to a resistance smaller than the normal value. Switch to Rg2 (step S16).

オフ時ゲート抵抗Rg(off)の切り替えが終わると、パワー半導体素子SWの駆動装置は、一定時間動作を継続させる(ステップS17)。一定時間経過すると、パワー半導体素子SWの駆動装置は、ステップS11に戻り、ドレイン・ソース間の電圧Vonの検出を再開する。 When the switching of the gate resistance Rg (off) at the time of off is completed, the drive device of the power semiconductor element SW continues to operate for a certain period of time (step S17). After a lapse of a certain period of time, the drive device of the power semiconductor element SW returns to step S11 and restarts the detection of the voltage Von between the drain and the source.

この第3の実施の形態では、検出した閾値電圧Vthに基づいてオフ時ゲート抵抗Rg(off)を2段階に切り替えているが、必要に応じて3以上の複数段階に切り替えるようにしてもよい。 In this third embodiment, the off gate resistance Rg (off) is switched to two stages based on the detected threshold voltage Vth, but it may be switched to a plurality of stages of three or more as necessary. ..

1 駆動装置
1D 下アーム用駆動装置
1U 上アーム用駆動装置
2 閾値検出部
2D 閾値検出部
2U 閾値検出部
3 閾値変動抑制部
3D 閾値変動抑制部
3U 閾値変動抑制部
11 電圧検出部
12 換算部
13 比較部
14 ゲートドライバ
21 入力端子
C コンデンサ
L インダクタ
Rg(off) オフ時ゲート抵抗
Rg(on) オン時ゲート抵抗
Rg ゲート抵抗
Rg1,Rg2 抵抗
SW,SW1,SW2 パワー半導体素子
Tr1,Tr2,Tr3,Tr11,Tr12,Tr13,Tr14 スイッチング素子
1 Drive device 1D Lower arm drive device 1U Upper arm drive device 2 Threshold detection unit 2D Threshold detection unit 2U Threshold detection unit 3 Threshold fluctuation suppression unit 3D Threshold fluctuation suppression unit 3U Threshold fluctuation suppression unit 11 Voltage detection unit 12 Conversion unit 13 Comparison unit 14 Gate driver 21 Input terminal C Capacitor L Inductor Rg (off) Off gate resistance Rg (on) On gate resistance Rg Gate resistance Rg1, Rg2 resistance SW, SW1, SW2 Power semiconductor element Tr1, Tr2, Tr3, Tr11 , Tr12, Tr13, Tr14 Switching element

Claims (6)

パワー半導体素子の閾値電圧を検出する閾値検出部と、
前記閾値検出部によって検出された前記閾値電圧の変動に応じて閾値電圧の変動を抑制するゲート信号を前記パワー半導体素子に印加する閾値変動抑制部と、
を備え、
前記閾値検出部は、前記パワー半導体素子がオン状態にあるときに前記パワー半導体素子の主電極間の電圧を検出する電圧検出部と、前記主電極間の電圧および前記閾値電圧の相関に基づき前記電圧検出部で検出した前記主電極間の電圧から前記閾値電圧を推測する換算部とを有する、
ワー半導体素子の駆動装置。
A threshold detector that detects the threshold voltage of a power semiconductor device,
A threshold fluctuation suppressing unit that applies a gate signal that suppresses the fluctuation of the threshold voltage according to the fluctuation of the threshold voltage detected by the threshold detection unit to the power semiconductor element.
Equipped with
The threshold detection unit is based on the correlation between the voltage detection unit that detects the voltage between the main electrodes of the power semiconductor element when the power semiconductor element is in the ON state, the voltage between the main electrodes, and the threshold voltage. It has a conversion unit that estimates the threshold voltage from the voltage between the main electrodes detected by the voltage detection unit.
Drive of power semiconductor devices.
前記閾値変動抑制部は、前記換算部によって推測された前記閾値電圧の変動と前記閾値電圧の変動の許容値とを比較する比較部と、前記比較部によって前記閾値電圧の変動が前記許容値の範囲内にあると判断されたときに前記パワー半導体素子のゲートに正の第1の電圧を印加する第1のスイッチング素子と、前記比較部によって前記閾値電圧の変動が前記許容値よりも高いと判断されたときに前記パワー半導体素子のゲートに負の第2の電圧を印加する第2のスイッチング素子と、前記比較部によって前記閾値電圧の変動が前記許容値よりも低いと判断されたときに前記パワー半導体素子のゲートに前記第1の電圧よりも低い正の第3の電圧を印加する第3のスイッチング素子とを有する、請求項記載のパワー半導体素子の駆動装置。 The threshold fluctuation suppressing unit includes a comparison unit that compares the fluctuation of the threshold voltage estimated by the conversion unit with the allowable value of the fluctuation of the threshold voltage, and the comparison unit that causes the fluctuation of the threshold voltage to be the allowable value. The first switching element that applies a positive first voltage to the gate of the power semiconductor element when it is determined to be within the range, and the comparison unit indicate that the fluctuation of the threshold voltage is higher than the allowable value. When it is determined by the second switching element that applies a negative second voltage to the gate of the power semiconductor element and the comparison unit that the fluctuation of the threshold voltage is lower than the allowable value. drive of the third and a switching element, a power semiconductor device according to claim 1 for applying a third voltage of a low positive than the first voltage to the gate of the power semiconductor device. 前記第1のスイッチング素子、前記第2のスイッチング素子および前記第3のスイッチング素子は、前記パワー半導体素子に対して同期整流を行うタイミングでオン動作させる、請求項記載のパワー半導体素子の駆動装置。 The drive device for a power semiconductor element according to claim 2 , wherein the first switching element, the second switching element, and the third switching element are turned on at the timing of performing synchronous rectification with respect to the power semiconductor element. .. さらに、前記パワー半導体素子をオンさせるゲート信号を受けてオンされる第1のスイッチング素子と、前記第1のスイッチング素子と前記パワー半導体素子のゲートとの間に接続されて前記第1のスイッチング素子がオンされたときに正のゲート電圧を前記パワー半導体素子のゲートに印加するオン時ゲート抵抗と、前記パワー半導体素子をオフさせるゲート信号を受けてオンされる第2のスイッチング素子とを備え、
前記閾値変動抑制部は、前記換算部によって推測された前記閾値電圧の変動と前記閾値電圧の変動の許容値とを比較し、前記閾値電圧の変動が前記許容値の範囲内にあるとき第1の制御信号を出力し、前記閾値電圧の変動が前記許容値の範囲よりも低いとき第2の制御信号を出力する比較部と、前記パワー半導体素子のゲートと前記第2のスイッチング素子との間に接続され、前記第1の制御信号または前記第2の制御信号を受けて抵抗値が切り替えられ、前記第2のスイッチング素子がオンされたときに負のゲート電圧を前記パワー半導体素子のゲートに印加するオフ時ゲート抵抗とを有する、
請求項記載のパワー半導体素子の駆動装置。
Further, the first switching element that is turned on by receiving the gate signal that turns on the power semiconductor element, and the first switching element that is connected between the first switching element and the gate of the power semiconductor element. It comprises an on-time gate resistor that applies a positive gate voltage to the gate of the power semiconductor device when is turned on, and a second switching element that is turned on in response to a gate signal that turns off the power semiconductor device.
The threshold fluctuation suppressing unit compares the fluctuation of the threshold voltage estimated by the conversion unit with the permissible value of the fluctuation of the threshold voltage, and when the fluctuation of the threshold voltage is within the range of the permissible value, the first. Between the comparison unit that outputs the control signal of the above and outputs the second control signal when the fluctuation of the threshold voltage is lower than the allowable value range, and the gate of the power semiconductor element and the second switching element. When the resistance value is switched in response to the first control signal or the second control signal and the second switching element is turned on, a negative gate voltage is applied to the gate of the power semiconductor element. With off gate resistance to apply,
The drive device for a power semiconductor element according to claim 1.
前記オフ時ゲート抵抗は、前記第1の制御信号を受けてオンする第3のスイッチング素子と、前記第3のスイッチング素子がオンしたときに接続されて第1の抵抗値を有する第1の抵抗と、前記第2の制御信号を受けてオンする第4のスイッチング素子と、前記第4のスイッチング素子がオンしたときに接続されて前記第1の抵抗値よりも小さな第2の抵抗値を有する第2の抵抗とを有する、請求項記載のパワー半導体素子の駆動装置。 The off-gate resistance is a first resistor that is connected to a third switching element that is turned on by receiving the first control signal and has a first resistance value when the third switching element is turned on. And a fourth switching element that is turned on by receiving the second control signal, and a second resistance value that is connected when the fourth switching element is turned on and is smaller than the first resistance value. The driving device for a power semiconductor element according to claim 4 , which has a second resistor. 前記パワー半導体素子は、ワイドバンドギャップ半導体を用いた半導体装置である、請求項1記載のパワー半導体素子の駆動装置。 The power semiconductor device according to claim 1, wherein the power semiconductor device is a semiconductor device using a wide bandgap semiconductor.
JP2017214668A 2017-11-07 2017-11-07 Drive device for power semiconductor devices Active JP6973749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017214668A JP6973749B2 (en) 2017-11-07 2017-11-07 Drive device for power semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017214668A JP6973749B2 (en) 2017-11-07 2017-11-07 Drive device for power semiconductor devices

Publications (2)

Publication Number Publication Date
JP2019088104A JP2019088104A (en) 2019-06-06
JP6973749B2 true JP6973749B2 (en) 2021-12-01

Family

ID=66764398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017214668A Active JP6973749B2 (en) 2017-11-07 2017-11-07 Drive device for power semiconductor devices

Country Status (1)

Country Link
JP (1) JP6973749B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041887B2 (en) * 2017-12-26 2022-03-25 国立大学法人山梨大学 Load drive
WO2020261910A1 (en) * 2019-06-28 2020-12-30 東洋紡株式会社 Release film for manufacturing ceramic green sheet
JPWO2022201357A1 (en) * 2021-03-24 2022-09-29

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207821A (en) * 2012-03-27 2013-10-07 Panasonic Corp Power conversion circuit
JP5959901B2 (en) * 2012-04-05 2016-08-02 株式会社日立製作所 Semiconductor drive circuit and power conversion device
JP6683510B2 (en) * 2016-03-17 2020-04-22 東京エレクトロンデバイス株式会社 Semiconductor device, maintenance device, and maintenance method

Also Published As

Publication number Publication date
JP2019088104A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US9496864B2 (en) Gate drive circuit and method of operating same
US10038438B2 (en) Power semiconductor element driving circuit
JP5477407B2 (en) Gate drive circuit
JP6302760B2 (en) Power conversion device having degradation diagnosis function
JP6973749B2 (en) Drive device for power semiconductor devices
JP6398872B2 (en) Drive device
JP5831528B2 (en) Semiconductor device
KR101761526B1 (en) Semiconductor device
JP4957822B2 (en) Power supply
WO2020084808A1 (en) Driving circuit for switching element and switching circuit
JP6610468B2 (en) Semiconductor device
US10365679B2 (en) Regenerative current detection circuit, charge current detection circuit, and motor current detection system
JP2012205356A (en) Rectification switch unit, rectification circuit, and switching power supply device
JP2017017688A (en) Power semiconductor circuit having field effect transistor
JP5133648B2 (en) Gate drive device for voltage controlled switching device
JP6033737B2 (en) Inverter control device
US20210288571A1 (en) Power conversion device
JP6724453B2 (en) Semiconductor control circuit
US9791881B2 (en) Self-driven synchronous rectification for a power converter
JP6642074B2 (en) Driving device for switching element
JP6514175B2 (en) Switching power supply
JP5930816B2 (en) Switch circuit
JP7086291B2 (en) Driving device for switching devices
JP7127453B2 (en) charge control circuit
JP3227989B2 (en) Output circuit for PWM inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6973749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150