JP6973452B2 - 発光装置、光源モジュールおよびプロジェクター - Google Patents

発光装置、光源モジュールおよびプロジェクター Download PDF

Info

Publication number
JP6973452B2
JP6973452B2 JP2019139486A JP2019139486A JP6973452B2 JP 6973452 B2 JP6973452 B2 JP 6973452B2 JP 2019139486 A JP2019139486 A JP 2019139486A JP 2019139486 A JP2019139486 A JP 2019139486A JP 6973452 B2 JP6973452 B2 JP 6973452B2
Authority
JP
Japan
Prior art keywords
axis
light
resonance
light emitting
direction along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019139486A
Other languages
English (en)
Other versions
JP2021021877A (ja
Inventor
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019139486A priority Critical patent/JP6973452B2/ja
Priority to US16/941,724 priority patent/US10908487B1/en
Publication of JP2021021877A publication Critical patent/JP2021021877A/ja
Application granted granted Critical
Publication of JP6973452B2 publication Critical patent/JP6973452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、発光装置およびプロジェクターに関する。
半導体レーザー素子を光源として用いたプロジェクターが実用化されている。
例えば特許文献1には、赤色光源装置と、青色光源装置と、励起光源装置からの射出光によって励起される蛍光発光装置による緑色光源装置と、を備えたプロジェクターが記載されている。
特開2013−190591号公報
上記のようなプロジェクターの光源として、等方的な配光角の光を射出する発光装置が求められている。等方的な配光角の光を射出する発光装置であれば、断面形状が円形で、一様な強度分布の光を得ることができるため、例えば蛍光体を励起する場合、効率よく蛍光体を励起することができる。
本発明に係る発光装置の一態様は、
フォトニック結晶構造体で構成される共振部を有する共振器をp個有し、
前記共振部において共振する光は、複数の共振方向に共振し、
前記共振部は、前記複数の共振方向における長さが全て等しく、
前記共振部は、第1軸に沿ってq個並んで列をなし、
前記列は、第2軸に沿ってr個並び、
p=q×rであり、
r個の前記列のうちで前記第2軸の最も一方側に位置する前記列において、前記第1軸の最も一方側に位置する前記共振部と、r個の前記列のうちで前記第2軸の最も他方側に位置する前記列において、前記第1軸の最も一方側に位置する前記共振部と、の間の距離と、
r個の前記列のうちで前記第2軸の最も一方側に位置する前記列において、前記第1軸の最も一方側に位置する前記共振部と、前記第1軸の最も他方側に位置する前記共振部と、の間の距離とは、異なり、
前記複数の共振方向は、前記第1軸に沿った方向および前記第2軸に沿った方向を含み、
前記第1軸および前記第2軸を含む平面と直交する第3軸に沿った方向から見た平面視において、前記共振部の前記第1軸に沿った長さと、前記共振部の前記第2軸に沿った長さとは、等しい。
前記発光装置の一態様において、
前記フォトニック結晶構造体のナノ構造体は、正方格子状に配列され、
前記第1軸および前記第2軸は、互いに直交し、
前記複数の共振方向は、前記第1軸に沿った方向および前記第2軸に沿った方向であってもよい。
前記発光装置の一態様において、
前記フォトニック結晶構造体のナノ構造体は、正三角格子状に配列され、
前記第2軸は、前記第1軸に対して120°傾き、
前記複数の共振方向は、前記第1軸に沿った方向、前記第2軸に沿った方向、および前記第1軸に対して60°傾く第4軸に沿った方向であってもよい。
本発明に係るプロジェクターの一態様は、
前記発光装置の一態様を有する。
前記プロジェクターの一態様において、
前記発光装置から射出された光を集光する集光光学系と、
前記集光光学系から射出された光によって励起される蛍光体と、
を有してもよい。
第1実施形態に係る発光装置を模式的に示す平面図。 第1実施形態に係る発光装置を模式的に示す平面図。 第1実施形態に係る発光装置を模式的に示す断面図。 第1実施形態に係る発光装置から射出される光を説明するための図。 第2実施形態に係る発光装置を模式的に示す平面図。 第2実施形態に係る発光装置を模式的に示す平面図。 第3実施形態に係るプロジェクターの光源モジュールを模式的に示す平面図。 第3実施形態に係るプロジェクターの光源モジュールを模式的に示す断面図。 第3実施形態に係るプロジェクターを模式的に示す図。 第3実施形態の変形例に係るプロジェクターを模式的に示す図。 第3実施形態の変形例に係るプロジェクターの集光光学系から射出された光を説明するための図。 第3実施形態の変形例に係るプロジェクターの集光光学系から射出された光を説明するための図。 第3実施形態の変形例に係るプロジェクターの蛍光体を模式的に示す図。
以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
1.1. 発光装置
まず、第1実施形態に係る発光装置について、図面を参照しながら説明する。図1は、第1本実施形態に係る発光装置100を模式的に示す平面図である。なお、図1では、互いに交わる3つの軸として、第1軸A1、第2軸A2、および第3軸A3を図示している。図示の例では、第1軸A1、第2軸A2、および第3軸A3は、互いに直交している。
発光装置100は、図1に示すように、共振部10を有する共振器12を有している。発光装置100は、p個の共振器12を有している。すなわち、発光装置100は、p個の共振部10を有している。図示の例では、発光装置100は、64個の共振部10を有している。共振部10は、光が共振する部分である。
共振部10は、第1軸A1に沿ってq個並んで列11をなしている。図示の例では、共振部10は、第1軸A1に沿って16個並んで列11をなしている。列11は、第2軸A2に沿ってr個並んでいる。図示の例では、列11は、第2軸A2に沿って4個並んでいる。なお、p=q×rである。図示の例では、p個の共振部10は、第1軸A1に沿った方向、および第2軸A2に沿った方向にマトリックス状に配列されている。p個の共振部10の形状および大きさは、例えば、互いに同じである。
列11aは、r個の列11のうちで、第2軸A2の最も一方側(図示の例では+A2軸方向)に位置する列11である。共振部10aは、列11aにおいて、第1軸A1の最も一方側(図示の例では+A1軸方向)に位置する共振部10である。共振部10bは、列11aにおいて、第1軸A1の最も他方側(図示の例では−A1軸方向)に位置する共振部10である。
列11bは、r個の列11のうちで、第2軸A2の最も他方側(図示の例では−A2軸方向)に位置する列11である。共振部10cは、列11bにおいて、第1軸A1の最も一方側(図示の例では+A1軸方向)に位置する共振部10である。
共振部10aと共振部10cとの間の距離D1と、共振部10aと共振部10bとの間の距離D2とは、異なる。第1軸A1および第2軸A2を含む平面と直交する第3軸A3に沿った方向から見た平面視において(以下、単に「平面視において」ともいう)、共振部10aの中心と共振部10cの中心との間の距離と、共振部10aの中心と共振部10bの中心との間の距離とは、異なる。図示の例では、共振部10aと共振部10cとの間の距離D1は、共振部10aと共振部10bとの間の距離D2よりも小さい。
ここで、図2は、第1本実施形態に係る発光装置100を模式的に示す平面図である。図3は、第1本実施形態に係る発光装置100を模式的に示す図2のIII−III線断面図である。
発光装置100は、図2および図3に示すように、例えば、基板102と、基板102に設けられた積層体103と、第1電極122と、第2電極124と、を有している。積層体103は、反射層104と、バッファー層106と、フォトニック結晶構造体108と、半導体層120と、を有している。なお、便宜上、図1では、発光装置100を簡略化して図示している。また、図2では、フォトニック結晶構造体108の柱状部110以外の部材の図示を省略している。
基板102は、例えば、Si基板、GaN基板、サファイア基板などである。
反射層104は、基板102上に設けられている。反射層104は、例えば、DBR(distribution Bragg reflector)層である。反射層104は、例えば、AlGaN層とGaN層とを交互に積層させたもの、AlInN層とGaN層とを交互に積層させたものなどである。反射層104は、フォトニック結晶構造体108の柱状部110の発光層114で発生する光を、第2電極124側に向けて反射させる。
なお、本明細書では、積層体103の積層方向(以下、単に「積層方向」ともいう)において、発光層114を基準とした場合、発光層114から半導体層116に向かう方向を「上」とし、発光層114から半導体層112に向かう方向を「下」として説明する。また、「積層体の積層方向」とは、半導体層112と発光層114との積層方向をいう。
バッファー層106は、反射層104上に設けられている。バッファー層106は、半導体からなる層であり、例えば、Siがドープされたn型のGaN層などである。図示の例では、バッファー層106上には、柱状部110を成長させるためのマスク層128が設けられている。マスク層128は、例えば、酸化シリコン層、窒化シリコン層などである。
フォトニック結晶構造体108は、バッファー層106上に設けられている。フォトニック結晶構造体108は、例えば、柱状部110と、光伝搬層118と、を有している。
フォトニック結晶構造体108は、フォトニック結晶の効果を発現することができ、フォトニック結晶構造体108の発光層114が発する光を、基板102の面内方向に閉じ込め、積層方向に射出させる。ここで、「基板102の面内方向」とは、積層方向と直交する方向のことである。
柱状部110は、バッファー層106上に設けられている。柱状部110の平面形状は、正六角形等の多角形、円などである。図2に示す例では、柱状部110の平面形状は、正六角形である。柱状部110の径は、例えば、nmオーダーであり、具体的には10nm以上500nm以下である。柱状部110は、フォトニック結晶構造体108を構成するナノ構造体である。柱状部110の積層方向の大きさは、例えば、0.1μm以上5μm以下である。
なお、「径」とは、柱状部110の平面形状が円の場合は、直径であり、柱状部110の平面形状が円ではない形状の場合は、最小包含円の直径である。例えば、柱状部110の径は、柱状部110の平面形状が多角形の場合、該多角形を内部に含む最小の円の直径であり、柱状部110の平面形状が楕円の場合、該楕円を内部に含む最小の円の直径である。また、「柱状部110の中心」とは、柱状部110の平面形状が円の場合は、該円の中心であり、柱状部110の平面形状が円ではない形状の場合は、最小包含円の中心である。例えば、柱状部110の中心は、柱状部110の平面形状が多角形の場合、該多角形を内部に含む最小の円の中心であり、柱状部110の平面形状が楕円の場合、該楕円を内部に含む最小の円の中心である。
柱状部110は、複数設けられている。隣り合う柱状部110の間隔は、例えば、1nm以上500nm以下である。柱状部110は、所定の方向に所定のピッチで周期的に配置されている。
図2に示す例では、柱状部110は、正方格子状に配列されている。図示の例では、柱状部110は、第1軸A1に沿って所定のピッチで配置され、第2軸A2に沿って所定のピッチで配置されている。柱状部110の第1軸A1に沿うピッチと、柱状部110の第2軸A2に沿うピッチとは、等しい。ここでいう柱状部110の第1軸A1に沿うピッチとは、第1軸A1に沿って隣り合う柱状部110の中心間の距離である。柱状部110の第2軸A2に沿うピッチとは、第2軸A2に沿って隣り合う柱状部110の中心間の距離である。
柱状部110は、図3に示すように、半導体層112と、発光層114と、半導体層116と、を有している。
半導体層112は、バッファー層106上に設けられている。半導体層112は、例えば、Siがドープされたn型のGaN層である。
発光層114は、半導体層112上に設けられている。発光層114は、半導体層112と半導体層116との間に設けられている。発光層114は、例えば、GaN層とInGaN層とから構成された量子井戸構造を有している。発光層114は、電流が注入されることで光を発することが可能な層である。
半導体層116は、発光層114上に設けられている。半導体層116は、半導体層112と導電型の異なる層である。半導体層116は、例えば、Mgがドープされたp型のGaN層である。半導体層112,116は、発光層114に光を閉じ込める機能を有するクラッド層である。
光伝搬層118は、隣り合う柱状部110の間に設けられている。図示の例では、光伝搬層118は、マスク層128上に設けられている。光伝搬層118の屈折率は、例えば、発光層114の屈折率よりも低い。光伝搬層118は、例えば、酸化シリコン層、酸化アルミニウム層、酸化チタン層などである。発光層114で発生した光は、光伝搬層118を伝搬することが可能である。
共振部10は、フォトニック結晶構造体108で構成されている。p個の共振部10は、互いに離間している。図示の例では、隣り合う共振部10の間に柱状部110は、設けられていない。p個の共振部10は、1つの基板102を共通の基板としている。隣り合う共振部10において、一方の共振部10において共振する光は、他方の共振部10に至らない。隣り合う共振部10の間の距離は、発光層114で発生する光の波長よりも大きい。これにより、隣り合う共振部10において、一方の共振部10において共振する光が、他方の共振部10に至らないようにすることができる。
なお、図示はしないが、隣り合う共振部10の間に光を吸収する光吸収部が設けられていてもよい。光吸収部は、共振部10において共振する光よりも狭いバンドギャップを有する物質で構成されている。該物質としては、例えば、InGaN、InNが挙げられる。光吸収部は、例えば、柱状や壁状の結晶体である。これにより、隣り合う共振部10において、一方の共振部10において共振する光が、他方の共振部10に至らないようにすることができる。
また、図示はしないが、隣り合う共振部10の間に光を反射させる光反射部が設けられていてもよい。例えば、隣り合う共振部10の間に、共振部10を構成する柱状部110よりもピッチや径が小さい柱状部110を設けることにより、光反射部を形成することができる。これにより、隣り合う共振部10において、一方の共振部10において共振する光が、他方の共振部10に至らないようにすることができる。
平面視において、共振部10の第1軸A1に沿った長さL1と、共振部10の第2軸A2に沿った長さL2とは、等しい。長さL1と長さL2とが等しいため、図4に示すように、共振部10から射出された光において、第1軸A1に沿った配光角θ1と、第2軸A2に沿った配光角θ2とは、等しくなる。このように、共振部10から射出された光の配光角により、長さLxと長さLyとが等しいか否かを確認することができる。
平面視において、共振部10の形状は、例えば、正方形である。平面視において、1つの共振部10を構成する複数の柱状部110のうち最外周に位置する柱状部110の中心を結ぶ直線によって形成される図形は、例えば、正方形である。該図形が正方形や正六角形であれば、共振部10から射出された光は、図4に示すように、射出軸αに対して、配光角が回転対称形となる。図示の例では、射出軸αは、第3軸A3と平行な軸である。
共振部10において共振する光は、複数の共振方向に共振する。共振部10は、複数の共振方向における長さが全て等しい。共振部10から射出された光の配光角により、共振部10の共振方向における長さが全て等しいか否かを確認することができる。複数の共振方向は、第1軸A1に沿った方向と、第2軸A2に沿った方向と、を含む。図示の例では、複数の共振方向は、第1軸A1に沿った方向および第2軸A2に沿った方向である。平面視において、例えば、共振部10において、第1軸A1の最も一方側に位置する柱状部110の中心と、第1軸A1の最も他方側に位置する柱状部110の中心と、の間の距離と、第2軸A2の最も一方側に位置する柱状部110の中心と、第2軸A2の最も他方側に位置する柱状部110の中心と、の間の距離とは、等しい。
例えば、図1に示すように、共振部10aを構成する複数の柱状部110のうち最も−A2軸方向に位置する柱状部110の中心と、共振部10cを構成する複数の柱状部110のうち最も+A2軸方向に位置する柱状部110の中心と、の間の距離と、共振部10aを構成する複数の柱状部110のうち最も−A1軸方向に位置する柱状部110の中心と、共振部10bを構成する複数の柱状部110のうち最も+A1軸方向に位置する柱状部110の中心と、の間の距離とは、異なる。
発光装置100では、p型の半導体層116、不純物がドーピングされていない発光層114、およびn型の半導体層112により、pinダイオードが構成される。半導体層112,116は、発光層114よりもバンドギャップが大きい層である。発光装置100では、第1電極122と第2電極124との間に、pinダイオードの順バイアス電圧を印加して電流を注入すると、発光層114において電子と正孔との再結合が起こる。この再結合により発光が生じる。発光層114において発生した光は、半導体層112,116により基板102の面内方向に光伝搬層118を通って伝搬して、フォトニック結晶構造体108によるフォトニック結晶の効果により定在波を形成し、基板102の面内方向に閉じ込められる。閉じ込められた光は、発光層114において利得を受けてレーザー発振する。すなわち、発光層114において発生した光は、フォトニック結晶構造体108により基板102の面内方向に共振し、レーザー発振する。具体的には、発光層114において発生した光は、フォトニック結晶構造体108で構成された共振器12の共振部10において基板102の面内方向に共振し、レーザー発振する。そして、+1次回折光および−1次回折光は、レーザー光として積層方向に進行する。
積層方向に進行したレーザー光のうち反射層104側に向かうレーザー光は、反射層104において反射され、第2電極124側に向かう。これにより、発光装置100は、第2電極124側から光を射出することができる。
半導体層120は、フォトニック結晶構造体108上に設けられている。半導体層120は、例えば、Mgがドープされたp型のGaN層である。
第1電極122は、バッファー層106上に設けられている。バッファー層106は、第1電極122とオーミックコンタクトしていてもよい。図示の例では、第1電極122は、バッファー層106を介して、半導体層112と電気的に接続されている。第1電極122は、発光層114に電流を注入するための一方の電極である。第1電極122としては、例えば、バッファー層106側から、Ti層、Al層、Au層の順序で積層したものなどを用いる。
第2電極124は、半導体層120上に設けられている。半導体層120は、第2電極124とオーミックコンタクトしていてもよい。第2電極124は、半導体層116と電気的に接続されている。図示の例では、第2電極124は、半導体層120を介して、半導体層116と電気的に接続されている。第2電極124は、発光層114に電流を注入するための他方の電極である。第2電極124としては、例えば、ITO(Indium Tin Oxide)を用いる。隣り合うフォトニック結晶構造体108の一方に設けられた第2電極124と他方に設けられた第2電極124とは、図示せぬ配線によって電気的に接続されている。
なお、上記では、InGaN系の発光層114について説明したが、発光層114としては、射出される光の波長に応じて、電流が注入されることで発光可能なあらゆる材料系を用いることができる。例えば、AlGaN系、AlGaAs系、InGaAs系、InGaAsP系、InP系、GaP系、AlGaP系などの半導体材料を用いることができる。また、射出される光の波長に応じて、柱状部110の大きさや配列のピッチを変更してもよい。
また、上記では、フォトニック結晶構造体108は、周期的に設けられた柱状部110を有していたが、フォトニック結晶効果を発現させるために、ナノ結晶構造体として周期的に設けられた孔部を有していてもよい。
発光装置100は、例えば、以下の効果を有する。
発光装置100では、フォトニック結晶構造体108で構成される共振部10を有する共振器12を有し、平面視において、共振部10の第1軸A1に沿った長さL1と、共振部10の第2軸A2に沿った長さL2とは、等しい。そのため、発光装置100では、共振部10から射出される光において、第1軸A1に沿った配光角と第2軸A2に沿った配光角とを等しくすることができる。これにより、発光装置100では、長さL1と長さL2とが異なる場合に比べて、第1軸A1に沿った方向および第2軸A2に沿った方向において、等方的な配光角の光を射出することができる。
さらに、発光装置100では、共振部10a,10c間の距離D1と、共振部10a,10b間の距離D2とは、異なる(例えば、複数の共振部10が配置されてなる領域は略長方形状となる)。そのため、発光装置100では、距離D1と距離D2とが等しい場合(例えば、複数の共振部10が配置されてなる領域は略正方形状となる)と比べて、発光装置100の外周の割合(複数の共振部10が配置されてなる領域における面積に対する外周辺の長さ)を大きくし易い。共振部10が帯熱すると発光効率が低下するが、発光装置100では、複数の共振部10が配置されてなる領域の形状を略長方形状としていることにより、共振部10は放熱し易くなり、大きな光出力を得ることができる。
1.2. 発光装置の製造方法
次に、第1実施形態に係る発光装置100の製造方法について、図面を参照しながら説明する。
図3に示すように、基板102上に、反射層104およびバッファー層106を、この順でエピタキシャル成長させる。エピタキシャル成長させる方法としては、例えば、MOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法などが挙げられる。
次に、バッファー層106上に、MOCVD法やMBE法などでマスク層128を形成する。次に、マスク層128をマスクとして、バッファー層106上に、半導体層112、発光層114、および半導体層116を、この順でエピタキシャル成長させる。エピタキシャル成長させる方法としては、例えば、MOCVD法、MBE法などが挙げられる。本工程により、柱状部110を形成することができる。次に、スピンコート法などにより、隣り合う柱状部110の間に、光伝搬層118を形成する。本工程により、フォトニック結晶構造体108を形成することができる。
次に、例えばMOCVD法やMBE法などにより、柱状部110および光伝搬層118上に、半導体層120を形成する。
次に、例えば真空蒸着法などにより、第1電極122および第2電極124を形成する。
以上の工程により、発光装置100を製造することができる。
2. 第2実施形態
2.1. 発光装置
次に、第2実施形態に係る発光装置について、図面を参照しながら説明する。図5および図6は、第2実施形態に係る発光装置200を模式的に示す平面図である。なお、便宜上、図5では、発光装置200を簡略化して図示している。また、図6では、フォトニック結晶構造体108の柱状部110以外の部材の図示を省略している。また、図5および図6では、互いに交わる4つの軸として、第1軸A1、第2軸A2、第3軸A3、および第4軸A4を図示している。
以下、第2実施形態に係る発光装置200において、上述した第1実施形態に係る発光装置100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述した発光装置100では、図2に示すように、柱状部110は、正方格子状に配列されていた。さらに、発光装置100では、共振部10は、第1軸A1に沿ってq個並んで列11をなし、列11は、第1軸A1と直交する第2軸A2に沿ってr個並んでいた。
これに対し、発光装置200では、図6に示すように、柱状部110は、正三角格子状に配列されている。
発光装置200では、図5および図6に示すように、第2軸A2は、第1軸A1に対して120°傾いている。すなわち、列11は、第1軸A1に対して120°傾いた第2軸A2に沿ってr個並んでいる。第4軸A4は、第1軸A1に対して60°傾いている。第4軸A4は、第2軸A2に対して60°傾いている。第3軸A3は、第1軸A1、第2軸A2、および第4軸A4を含む平面に対して直交している。
図6に示すように、複数の柱状部110のうち柱状部110aは、柱状部110bに対して、第1軸A1を時計回りに30°回転させた軸に沿う方向において、隣り合う柱状部110である。複数の柱状部110のうち柱状部110cは、柱状部110bに対して、第1軸A1を反時計回りに30°回転させた軸に沿う方向において、隣り合う柱状部110である。柱状部110aの中心と柱状部110bの中心とを結ぶ直線、柱状部110bの中心と柱状部110cの中心とを結ぶ直線、および柱状部110cの中心と柱状部110aの中心とを結ぶ直線によって形成される図形は、正三角形である。
発光装置200では、複数の共振方向は、第1軸A1に沿った方向、第2軸A2に沿った方向、および第4軸A4に沿った方向である。共振部10は、第1軸A1に沿った方向、第2軸A2に沿った方向、および第4軸A4に沿った方向の長さが全て等しい。平面視において、例えば、共振部10において、第1軸A1の最も一方側に位置する柱状部110の中心と、第1軸A1の最も他方側に位置する柱状部110の中心と、の間の距離と、第2軸A2の最も一方側に位置する柱状部110の中心と、第2軸A2の最も他方側に位置する柱状部110の中心と、の間の距離と、第4軸A4の最も一方側に位置する柱状部110の中心と、第4軸A4の最も他方側に位置する柱状部110の中心と、の間の距離とは、等しい。平面視において、共振部10の形状は、例えば、正六角形である。平面視において、1つの共振部10を構成する複数の柱状部110のうち最外周に位置する柱状部110の中心を結ぶ直線によって形成される図形は、例えば、正六角形である
2.2. 発光装置の製造方法
次に、第2実施形態に係る発光装置200の製造方法について説明する。第2実施形態に係る発光装置200の製造方法は、上述した第1実施形態に係る発光装置100の製造方法と、基本的に同じである。したがって、その詳細な説明を省略する。
3. 第3実施形態
3.1. プロジェクター
次に、第3実施形態に係るプロジェクターについて、図面を参照しながら説明する。まず、第3実施形態に係るプロジェクターが有する光源モジュールについて説明する。図7は、第3実施形態に係るプロジェクター300の光源モジュール310を模式的に示す平面図である。図8は、第3実施形態に係るプロジェクター300の光源モジュール310を模式的に示す図7のVIII−VIII線断面図である。
光源モジュール310は、図7および図8に示すように、例えば、発光装置100と、ベース部材312と、枠部材314と、蓋部材316と、サブマウント318と、を有している。なお、便宜上、図7では、蓋部材316の図示を省略している。また、図7および図8では、発光装置100を簡略化して図示している。
ベース部材312は、例えば、板状の部材である。ベース部材312の熱伝導率は、高いことが好ましい。これにより、発光装置100で発生した熱を放熱させることができる。ベース部材312の材質は、例えば、銅、コバール(鉄にニッケル、コバルトを配合した合金)、窒化アルミニウムである。
枠部材314は、図8に示すように、ベース部材312と蓋部材316とを接続している。枠部材314は、平面視において、ベース部材312の外周に沿って設けられている。枠部材314の熱膨張率は、蓋部材316の熱膨張率に近いことが好ましい。これにより、枠部材314と蓋部材316との熱膨張率の差によって光源モジュール310に生じる応力を小さくすることができる。枠部材314の材質は、例えば、コバールである。
枠部材314には、端子315が設けられている。図示の例では、端子315は、枠部材314を貫通している。端子315は、図示せぬ配線を介して、発光装置100と電気的に接続されている。
蓋部材316は、ベース部材312および枠部材314によって規定された凹部の開口を塞ぐ封止部材である。蓋部材316は、発光装置100から射出された光を透過させる。蓋部材316としては、例えば、サファイア基板を用いる。発光装置100は、ベース部材312、枠部材314、および蓋部材316によって形成された空間2に設けられている。空間2は、窒素雰囲気であってもよい。
サブマウント318は、ベース部材312上に設けられている。サブマウント318は、ベース部材312と発光装置100との間に設けられている。サブマウント318は、複数の発光装置100に対応して複数設けられている。
サブマウント318の熱伝導率は、高いことが好ましい。これにより、発光装置100で発生した熱を放熱させることができる。サブマウント318の熱膨張率は、ベース部材312の熱膨張率および発光装置100の熱膨張率に近いことが好ましい。これにより、サブマウント318とベース部材312との熱膨張率の差、およびサブマウント318と発光装置100との熱膨張率の差によって光源モジュール310に生じる応力を小さくすることができる。サブマウント318の材質は、例えば、窒化アルミニウム、酸化アルミニウムである。
発光装置100は、サブマウント318上に設けられている。発光装置100は、例えば、複数設けられている。図示の例では、複数の発光装置100は、第1軸A1に沿った方向、および第2軸A2に沿った方向にマトリックス状に配列されている。第1軸A1に沿った方向において隣り合う発光装置100の間の距離D3と、第2軸A2に沿った方向において隣り合う発光装置100の間の距離D4とは、例えば、等しい。なお、第1軸A1に沿った方向において隣り合う発光装置100において、複数の共振部10が配置されてなる領域間の第1距離と、第2軸A2に沿った方向において隣り合う発光装置100において、複数の共振部10が配置されてなる領域間の第2距離とは、等しくてもよい。また、第1軸A1に沿った方向において隣り合う発光装置100において、複数の共振部10が配置されてなる領域の略中心間の第3距離と、第2軸A2に沿った方向において隣り合う発光装置100において、複数の共振部10が配置されてなる領域の略中心間の第4距離とは、等しくてもよい。発光装置100は、等方的な配光角を有する光を射出することができるため、D3=D4とすることにより、発光装置100から所定距離Lだけ離れた照明対象上では、略均一な強度分布の照明光を得ることができる。複数の共振部10が配置されてなる領域の大きさと、距離Lと、の大小関係によっては、第1距離=第2距離としても上記の効果を得ることができるし、第3距離=第4距離としても上記の効果を得ることができる。
次に、プロジェクター300の構成について説明する。図9は、第3実施形態に係るプロジェクター300を模式的に示す図である。
プロジェクター300は、図9に示すように、例えば、光源モジュール310R,310G,310Bと、拡散素子320と、第1偏光板330と、第2偏光板340と、光変調素子350と、色光合成プリズム360と、投射レンズ370と、を有している。なお、便宜上、図9では、光源モジュール310R,310G,310Bを簡略化して図示している。
光源モジュール310Rは、赤色光を射出する。光源モジュール310Gは、緑色光を射出する。光源モジュール310Bは、青色光を射出する。光源モジュール310R,310G,310Bは、例えば、発光装置100を有する光源モジュール310である。図示の例では、光源モジュール310R,310G,310Bの一方の面には、放熱フィン302が配置されている。放熱フィン302は、光源モジュール310R,310G,310Bで発生した熱を放熱させる。これにより、光源モジュール310R,310G,310Bにおける帯熱を抑制して、発光効率を高めることができる。
光源モジュール310R,310G,310Bから射出された光は、拡散素子320に入射する。拡散素子320は、光源モジュール310R,310G,310Bから射出された光の強度分布を均一化させる。
光変調素子350は、光源モジュール310R,310G,310Bから射出された光を、画像情報に応じて変調させる。光変調素子350は、例えば、光源モジュール310R,310G,310Bから射出された光を透過させる透過型の液晶ライトバルブである。プロジェクター300は、LCD(liquid crystal display)プロジェクターである。
光変調素子350の入射側には、第1偏光板330が設けられている。第1偏光板330は、光源モジュール310R,310G,310Bから射出された光の偏光方向と偏光度とを調整する。具体的には、第1偏光板330は、特定方向の直線偏光のみを透過させる光学素子である。第1偏光板330によって、光変調素子350に入射する光の偏光方向を揃えることができる。
光変調素子350の射出側には、第2偏光板340が設けられている。第2偏光板340は、光源モジュール310R,310G,310Bから射出された光に対して検光子として機能する。第2偏光板340から射出された光は、色光合成プリズム360に入射する。
色光合成プリズム360は、光源モジュール310Rから射出されて光変調素子350を透過した光、光源モジュール310Gから射出されて光変調素子350を透過した光、および光源モジュール310Bから射出されて光変調素子350を透過した光を合成する。色光合成プリズム360は、例えば、4つの直角プリズムを貼り合わせて形成され、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが配置されたクロスダイクロイックプリズムである。
投射レンズ370は、色光合成プリズム360で合成された光、すなわち、光変調素子350によって形成された画像光を、図示せぬスクリーン上に投射する。スクリーンには、拡大された画像が表示される。
プロジェクター300は、等方的な配光角の光を射出することができ、放熱し易い発光装置100を有するため、高輝度化を図ることができる。そのため、高い表示性能を実現することができる。
なお、図示はしないが、プロジェクター300は、光源モジュール310R,310G,310Bから射出された光を反射させる反射型の液晶ライトバルブを有するLCoS(Liquid Crystal on Silicon)プロジェクターであってもよい。
3.2. プロジェクターの変形例
次に、第3実施形態の変形例に係るプロジェクターについて、図面を参照しながら説明する。図10は、第3実施形態の変形例に係るプロジェクター400を模式的に示す図である。
以下、第3実施形態の変形例に係るプロジェクター400において、上述した第3実施形態に係るプロジェクター300の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述したプロジェクター300では、図9に示すように、光源モジュール310R,310G,310Bを有していた。
これに対し、プロジェクター400では、図10に示すように、光源モジュール310Bを有し、光源モジュール310R,310Gを有していない。
プロジェクター400は、図10に示すように、光源410と、色分離光学系420と、光変調素子430R,430G,430Bと、色光合成プリズム360と、投射レンズ370と、を有している。
光源410は、光源モジュール310Bと、集光光学系411と、蛍光体412と、コリメート光学系413と、レンズアレイ414,415と、偏光変換素子416と、重畳レンズ417と、を有している。
集光光学系411には、光源モジュール310Bから射出された光が入射する。集光光学系411は、光源モジュール310Bから射出された光を集光する。集光光学系411は、例えば、凸レンズで構成されている。集光光学系411から射出された光は、蛍光体412に入射する。集光光学系411の焦点は、蛍光体412に略設定されているため、蛍光体412に入射する光の断面形状および強度分布は、光源モジュール310Bからの射出された光の配光角を反映したものとなる。
蛍光体を励起して蛍光を発生させる場合、蛍光発生効率は、基本的には励起光の強度に比例するものの、所定強度を超えると蛍光発生効率が低下する。したがって、蛍光体を励起する場合には、光の強度に鋭いピークを有しないトップハット型に近い略均一な強度分布を有する光を用いることが望ましい。
光源モジュール310Bの発光装置100から射出される光は、上記のように等方的な配光角を有するため、例えば、少ない屈折面を備えた簡単な集光光学系411でトップハット型に近い強度分布の励起光を得ることができる。これにより、プロジェクター400では、高い蛍光発生効率を実現でき、大きな光出力を得ることができる。したがって、高輝度のプロジェクターを実現することができる。一方、射出された光が等方的でないと、例えば、多数の屈折面やトーリック面を備えた集光光学系を用いる必要があり、集光光学系が複雑化する場合がある。
図11および図12は、集光光学系411から射出された光の強度分布を説明するための図である。なお、図11では、白色の部分ほど、光の強度が強い部分であることを示している。また、図12は、図11のXII−XII線の断面図である。図11のXIIa−XIIa線の断面も図12と同様の強度分布を有する。図11および図12に示すように、集光光学系411から射出された光は、トップハット型に近い強度分布を有することができる。
図13は、蛍光体412を模式的に示す図である。図10の蛍光体412は、図13のX−X線断面図に相当する。
蛍光体412は、図10および図13に示すように、モーター412aにより回転可能な円板412bに設けられている。蛍光体412は、円板412bの周方向に沿って設けられている。蛍光体412は、集光光学系411から射出された光によって励起されて、赤色光および緑色光からなる蛍光光、すなわち黄色光からなる蛍光光を射出する。蛍光体412は、集光光学系411から射出された青色光の一部を透過させる。蛍光体412は、例えば、賦活剤としてセリウムを含むCe:YAG(Yttrium Aluminum Garnet)系蛍光体である。
円板412bは、光源モジュール310Bから射出された青色光を透過させる。円板412bの材質は、例えば、石英ガラス、水晶、サファイア、樹脂などである。
コリメート光学系413は、図10に示すように、蛍光体412から射出された光の広がりを抑えるレンズ413aと、レンズ413aから射出された光を平行化するレンズ413bと、を有し、全体として蛍光体412から射出された光を平行化する。レンズ413a,413bは、凸レンズで構成されている。
レンズアレイ414は複数のレンズ414aを、レンズアレイ415は複数のレンズ415aを各々有しており、レンズ414aとレンズ415aとは1対1で対応する様に設定されている。レンズアレイ414に入射した光は、複数のレンズ414aで複数の光束に分割されつつ、レンズアレイ415の対応するレンズ415aに入射する。
偏光変換素子416は、レンズアレイ415の複数のレンズ415aから射出された光束の偏光状態を揃え、例えば、P偏光として射出する。
重畳レンズ417は、偏光変換素子416から射出された複数の光束の進行方向を変えて、光変調素子350の被照明領域上に集光する。以上によって、コリメート光学系413から射出された光は、レンズアレイ414,415と偏光変換素子416と重畳レンズ417によって、光の偏光状態を揃えられると共に、光変調素子350の被照明領域上で均一な強度分布を有する光に変換される。
色分離光学系420は、ダイクロイックミラー421,422と、ミラー423,424,425と、リレーレンズ426,427と、フィールドレンズ428R,428G,428Bと、を有している。ダイクロイックミラー421,422は、例えば、ガラス表面に誘電体多層膜を積層したものである。ダイクロイックミラー421,422は、所定の波長帯域の色光を選択的に反射させ、それ以外の波長帯域の色光を透過させる特性を有している。ここでは、ダイクロイックミラー421は、緑色光および青色光を反射させる。ダイクロイックミラー422は、緑色光を反射させる。
重畳レンズ417から射出された光は、赤色光R、緑色光G、青色光Bを含む白色光であり、ダイクロイックミラー421に入射する。
白色光に含まれる赤色光Rは、ダイクロイックミラー421を通ってミラー423に入射し、ミラー423で反射してフィールドレンズ428Rに入射する。赤色光Rは、フィールドレンズ428Rにより平行化された後に、光変調素子430Rに入射する。
白色光に含まれる緑色光Gは、ダイクロイックミラー421で反射した後、さらにダイクロイックミラー422で反射してフィールドレンズ428Gに入射する。緑色光Gは、フィールドレンズ428Gにより平行化された後に、光変調素子430Gに入射する。
白色光に含まれる青色光Bは、ダイクロイックミラー421で反射した後、ダイクロイックミラー422およびリレーレンズ426を通ってミラー424で反射し、さらに、リレーレンズ427を透過して通ってミラー425で反射してフィールドレンズ428Bに入射する。青色光Bは、フィールドレンズ428Bにより平行化された後に、光変調素子430Bに入射する。
光変調素子430R,430G,430Bは、例えば、透過型の液晶ライトバルブである。光変調素子430R,430G,430Bは、画像情報を含んだ画像信号を供給するPC(Personal Computer)等の信号源と電気的に接続されている。光変調素子430R,430G,430Bは、供給された画像信号に基づいて、入射光を画素ごとに変調して画像を形成する。光変調素子430R,430G,430Bは、それぞれ赤色画像、緑色画像、青色画像を形成する。光変調素子430R,430G,430Bにより変調された画像光は、色光合成プリズム360に入射する。
色光合成プリズム360では、3色の画像光が重ね合わされて合成され、合成されたカラーの画像光が投射レンズ370によってスクリーン440に拡大投射され、カラー画像を形成する。
本発明は、本願に記載の特徴や効果を有する範囲で一部の構成を省略したり、各実施形態や変形例を組み合わせたりしてもよい。
本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に同一の構成とは、例えば、機能、方法、および結果が同一の構成、あるいは目的および効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
2…空間、10,10a,10b,10c…共振部、11,11a,11b…列、12…共振器、100…発光装置、102…基板、103…積層体、104…反射層、106…バッファー層、108…フォトニック結晶構造体、110,110a,110b,110c…柱状部、112…半導体層、114…発光層、116…半導体層、118…光伝搬層、120…半導体層、122…第1電極、124…第2電極、128…マスク層、200…発光装置、300…プロジェクター、302…放熱フィン、310,310R,310G,310B…光源モジュール、312…ベース部材、314…枠部材、315…端子、316…蓋部材、318…サブマウント、320…拡散素子、330…第1偏光板、340…第2偏光板、350…光変調素子、360…色光合成プリズム、370…投射レンズ、400…プロジェクター、410…光源、411…集光光学系、412…蛍光体、412a…モーター、412b…円板、413…コリメート光学系、413a,413b…レンズ、414…レンズアレイ、414a…レンズ、415…レンズアレイ、415a…レンズ、416…偏光変換素子、417…重畳レンズ、420…色分離光学系、421,422…ダイクロイックミラー、423,424,425…ミラー、426,427…リレーレンズ、428R,428G,428B…フィールドレンズ、430R,430G,430B…光変調素子、440…スクリーン

Claims (7)

  1. フォトニック結晶構造体で構成される共振部を有する複数の共振器と、
    前記共振部に電流を注入するための第1電極および第2電極と、を有し、
    前記複数の共振器の各々において、前記共振部は、第1半導体層と、前記第1半導体層
    と導電型の異なる第2半導体層と、第1半導体層と第2半導体層との間に設けられた発光
    層と、を含み、
    前記複数の共振器における各々の第1半導体層は、互いに電気的に接続され、かつ、前
    記第1電極と電気的に接続され、
    前記複数の共振器における各々の第2半導体層は、互いに電気的に接続され、かつ、前
    記第2電極と電気的に接続され、
    前記複数の共振器の各々において、前記発光層から発した光は前記共振部において共振
    し、
    前記共振部において共振する光は、複数の共振方向に沿って共振し、
    前記複数の共振方向は、第1軸に沿う共振方向と、第2軸に沿う共振方向と、を含み、
    前記複数の共振器の数は、p個であり、
    前記共振部は、第1軸に沿って複数個並んで列をなし、
    前記列の数は複数であり、
    前記複数の列の各々における前記共振部の数は、q個であり、
    前記複数の列は、第2軸に沿ってr個並び、
    p=q×rであり、かつ、q≠rであり、
    前記共振部は、前記第1軸および前記第2軸を含む平面と直交する第3軸に沿った方向
    から見た平面視において、前記複数の共振方向における長さが全て等しく、
    r個の前記列のうちで前記第2軸の最も一方側に位置する前記列において、前記第1軸
    の最も一方側に位置する前記共振部と、r個の前記列のうちで前記第2軸の最も他方側に
    位置する前記列において、前記第1軸の最も一方側に位置する前記共振部と、の間の距離
    と、
    r個の前記列のうちで前記第2軸の最も一方側に位置する前記列において、前記第1軸
    の最も一方側に位置する前記共振部と、前記第1軸の最も他方側に位置する前記共振部と
    、の間の距離と、は異なり
    前記第1軸および前記第2軸を含む平面と直交する第3軸に沿った方向から見た平面視
    において、前記共振部の前記第1軸に沿った長さと、前記共振部の前記第2軸に沿った長
    さとは、等しい、発光装置。
  2. 請求項1において、
    前記フォトニック結晶構造体のナノ構造体は、正方格子状に配列され、
    前記第1軸および前記第2軸は、互いに直交し、
    前記複数の共振方向は、前記第1軸に沿った方向および前記第2軸に沿った方向である
    、発光装置。
  3. 請求項1において、
    前記フォトニック結晶構造体のナノ構造体は、正三角格子状に配列され、
    前記第2軸は、前記第1軸に対して120°傾き、
    前記複数の共振方向は、前記第1軸に沿った方向、前記第2軸に沿った方向、および前
    記第1軸に対して60°傾く第4軸に沿った方向である、発光装置。
  4. 請求項1ないし3のいずれか1項に記載の発光装置を複数有し、
    前記複数の発光装置は、前記第1軸に沿った方向および前記第2軸に沿った方向にマト
    リックス状に配列している、光源モジュール。
  5. 請求項1ないし3のいずれか1項に記載の発光装置を有する、プロジェクター。
  6. 請求項4に記載の発光モジュールを有する、プロジェクター。
  7. 請求項5あるいは6において、
    前記発光装置から射出された光を集光する集光光学系と、
    前記集光光学系から射出された光によって励起される蛍光体と、
    を有する、プロジェクター。
JP2019139486A 2019-07-30 2019-07-30 発光装置、光源モジュールおよびプロジェクター Active JP6973452B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019139486A JP6973452B2 (ja) 2019-07-30 2019-07-30 発光装置、光源モジュールおよびプロジェクター
US16/941,724 US10908487B1 (en) 2019-07-30 2020-07-29 Light emitting device and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139486A JP6973452B2 (ja) 2019-07-30 2019-07-30 発光装置、光源モジュールおよびプロジェクター

Publications (2)

Publication Number Publication Date
JP2021021877A JP2021021877A (ja) 2021-02-18
JP6973452B2 true JP6973452B2 (ja) 2021-12-01

Family

ID=74258317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139486A Active JP6973452B2 (ja) 2019-07-30 2019-07-30 発光装置、光源モジュールおよびプロジェクター

Country Status (2)

Country Link
US (1) US10908487B1 (ja)
JP (1) JP6973452B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954562B2 (ja) * 2017-09-15 2021-10-27 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
JP7056628B2 (ja) * 2019-06-28 2022-04-19 セイコーエプソン株式会社 発光装置およびプロジェクター
US20210168338A1 (en) * 2019-11-29 2021-06-03 Seiko Epson Corporation Light emitting apparatus and projector

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013886B2 (ja) 1996-09-27 2000-02-28 富士ゼロックス株式会社 2次元素子アレイ、2次元面発光レーザアレイおよび画像形成装置
JP4594814B2 (ja) * 2004-10-25 2010-12-08 株式会社リコー フォトニック結晶レーザ、フォトニック結晶レーザの製造方法、面発光レーザアレイ、光伝送システム、及び書き込みシステム
WO2006055602A2 (en) * 2004-11-16 2006-05-26 Canon Kabushiki Kaisha Light-emitting photonic device
JP4164535B2 (ja) * 2006-11-16 2008-10-15 キヤノン株式会社 フォトニック結晶を用いた構造体、及び面発光レーザ
JP4338211B2 (ja) * 2007-08-08 2009-10-07 キヤノン株式会社 フォトニック結晶を有する構造体、面発光レーザ
JP5093480B2 (ja) 2008-01-09 2012-12-12 ソニー株式会社 面発光型半導体レーザおよびその製造方法
JP5171318B2 (ja) * 2008-03-05 2013-03-27 キヤノン株式会社 面発光レーザアレイ
JP2010219307A (ja) * 2009-03-17 2010-09-30 Seiko Epson Corp 光源装置、プロジェクター
JP5430217B2 (ja) * 2009-05-07 2014-02-26 キヤノン株式会社 面発光レーザアレイ
JP2011119349A (ja) * 2009-12-01 2011-06-16 Sumitomo Electric Ind Ltd 半導体レーザ素子及びその製造方法
JP5910868B2 (ja) 2012-03-14 2016-04-27 カシオ計算機株式会社 光源装置及びプロジェクタ
JP7008295B2 (ja) * 2017-07-31 2022-01-25 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2019040982A (ja) * 2017-08-24 2019-03-14 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
JP7105442B2 (ja) * 2018-08-06 2022-07-25 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7188689B2 (ja) * 2018-08-06 2022-12-13 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7188690B2 (ja) * 2018-08-22 2022-12-13 セイコーエプソン株式会社 プロジェクター

Also Published As

Publication number Publication date
US10908487B1 (en) 2021-02-02
JP2021021877A (ja) 2021-02-18
US20210033955A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110970798B (zh) 发光装置以及投影仪
JP6973452B2 (ja) 発光装置、光源モジュールおよびプロジェクター
JP7188689B2 (ja) 発光装置およびプロジェクター
JP5772090B2 (ja) プロジェクター
CN111385552B (zh) 投影仪
JP2020154209A (ja) 光源装置および光学エンジン
US11626533B2 (en) Light emitting device and projector
JP2022011468A (ja) 発光装置およびプロジェクター
JP2011048226A (ja) プロジェクター
US20110122373A1 (en) Light emitting apparatus and projector
JP2022063970A (ja) 発光装置およびプロジェクター
JP6981444B2 (ja) 発光装置、発光装置の製造方法、およびプロジェクター
CN112882330B (zh) 发光装置和投影仪
JP5299251B2 (ja) 発光装置およびプロジェクター
JP2022102588A (ja) 発光装置の製造方法
JP2020106732A (ja) プロジェクター
US11803115B2 (en) Light-emitting device and projector
US11747720B2 (en) Light source module and projector
US20230139048A1 (en) Light-emitting device and projector
JP2020141049A (ja) 発光装置の製造方法、発光装置およびプロジェクター
JP7230901B2 (ja) 発光装置およびプロジェクター
JP7392426B2 (ja) 発光装置およびプロジェクター
JP2023065943A (ja) 発光装置およびプロジェクター
JP2022110674A (ja) 発光装置およびプロジェクター
JP5344173B2 (ja) 発光装置およびプロジェクター

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150