JP6973201B2 - ネットワーク設計装置及びネットワーク設計方法 - Google Patents

ネットワーク設計装置及びネットワーク設計方法 Download PDF

Info

Publication number
JP6973201B2
JP6973201B2 JP2018045517A JP2018045517A JP6973201B2 JP 6973201 B2 JP6973201 B2 JP 6973201B2 JP 2018045517 A JP2018045517 A JP 2018045517A JP 2018045517 A JP2018045517 A JP 2018045517A JP 6973201 B2 JP6973201 B2 JP 6973201B2
Authority
JP
Japan
Prior art keywords
optical signal
value
bandwidth
combination
osnr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045517A
Other languages
English (en)
Other versions
JP2019161448A (ja
Inventor
泰三 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018045517A priority Critical patent/JP6973201B2/ja
Priority to US16/292,532 priority patent/US10707963B2/en
Publication of JP2019161448A publication Critical patent/JP2019161448A/ja
Application granted granted Critical
Publication of JP6973201B2 publication Critical patent/JP6973201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

本件は、ネットワーク設計装置及びネットワーク設計方法に関する。
伝送装置の伝送方式として、例えばデジタルコヒーレント光伝送方式がある。デジタルコヒーレント光伝送方式において、光信号の多値変調方式は、ボーレートが一定であれば、光信号の伝送速度(ラインレート)に応じて伝送装置に設定される。
例えば、ボーレートを約32(Gbaud)とすると、ラインレートが100(Gbps)である場合、変調方式としてDP(Dual Polarization)−QPSK(Quadrature Phase Shift Keying)が選択される。また、ラインレートが200(Gbps)である場合、変調方式としてDP−16QAM(Quadrature Amplitude Modulation)が選択される。
近年、DSP(Digital Signal Processor)、アナログ−デジタル変換器、及びデジタル−アナログ変換器の性能が向上したことによって、ボーレートを、例えば32〜64(Gbaud)の範囲内で変更することができる伝送装置が研究開発されている。この種の伝送装置には、光伝送特性の観点から最適なボーレート及び多値変調方式の組み合わせを選択して設定することが求められる。なお、例えば特許文献1には、Q値を用いて光伝送特性の補償動作を制御する点が記載されている。
特開2005−64905号公報
多値変調方式の多値度が大きいほど、光信号のコンスタレーション内のシンボル同士の間隔は狭くなるため、受信側の光信号の位相及び振幅の余裕がなくなり、光アンプなどからの雑音の影響によりOSNR耐力が劣化する。これに対し、OSNR耐力が十分となるように多値度の小さい多値変調方式を選択することは可能であるが、多値度が小さくなるほど、シンボルごとのビット数は小さくなるため、所定のラインレートを実現しようとすると、高いボーレートを設定する必要がある。
しかし、ボーレートが高くなるほど、光信号の帯域幅(スペクトル)は広くなるため、例えば、光信号の伝送経路上の波長選択スイッチ(WSS: Wavelength Selective Switch)の波長フィルタによる帯域狭窄(PBN: Pass Band Narrowing)の影響が増加する。このように、ボーレート及び多値変調方式の間にはトレードオフが存在するため、ネットワーク設計の担当者が、人手により最適なボーレート及び多値変調方式の組み合わせを選択することが難しいという問題がある。
そこで本件は、帯域狭窄及びOSNRを考慮した適切なネットワーク設計を行うことができるネットワーク設計装置及びネットワーク設計方法を提供することを目的とする。
1つの態様では、ネットワーク設計装置は、光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部と、前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出する帯域算出部と、前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択する選択部とを有する。
1つの態様では、ネットワーク設計方法は、光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部を用い、前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択する方法である。
1つの側面として、帯域狭窄及びOSNRを考慮した適切なネットワーク設計を行うことができる。
WDM(WDM: Wavelength Division Multiplex)ネットワークの一例を示す構成図である。 多値度に対するOSNR耐力の変化の一例を示す図である。 ROADM(Reconfigurable Optical Add and Drop Multiplexer)の一例を示す構成図である。 トランスポンダの一例を示す構成図である。 再生中継器の一例を示す構成図である。 ネットワーク設計装置の一例を示す構成図である。 通信設定データベースの一例を示す図である。 通信設定データベースの生成処理の一例を示すフローチャートである。 通信設定処理の一例を示すフローチャートである。 通信設定処理の他の例を示すフローチャートである。 WDMネットワークの他の例を示す構成図である。 伝送経路を示す図である。 複数の光終端区間に分割された伝送経路を示す図である。
図1は、WDM(WDM: Wavelength Division Multiplex)ネットワーク91の一例を示す構成図である。WDMネットワーク91には、互いに伝送路(光ファイバ)90で接続されたノードA〜Dが含まれる。ノードA,C,Dには、波長多重光通信を行うためにROADM5が設けられ、ノードBには、ILA(Inline Amplifier)6が設けられている。
また、各ROADM5は、LAN(Local Area Network)などの制御用ネットワーク92を介してネットワーク設計装置1に接続されている。ネットワーク設計装置1は、WDMネットワーク91の光信号の伝送経路Rを設計し、各ROADM5に対し光信号の多値変調方式、FEC冗長度、及びボーレートを設定する。
本例において、光信号は、点線で示されるように、ノードA〜Dをこの順に経由する伝送経路Rに沿ってデジタルコヒーレント光伝送方式で伝送される。始点のノードAにおいて、送信側トランスポンダ(TP)2aは光信号をROADM5に送信し、終点のノードDにおいて、受信側トランスポンダ(TP)2bはROADM5から光信号を受信する。各ROADM5は、光信号を波長単位で挿入(Add)、分岐(Drop)、及び通過させる入力側波長選択スイッチ(WSS)30a及び出力側波長選択スイッチ30bを有する。
送信側TP2aからの光信号は、出力側WSS30bにより挿入されて、ノードBのILA6に入力される。ILA6には、例えば、EDFA(Erbium Doped Fiber Amplifier)60が設けられており、光信号はEDFA60を通過してノードCのROADM5に入力される。光信号は、ノードCのROADM5内の入力側及び出力側WSS30a,30bを通過してノードDのROADM5に入力される。ノードDにおいて、光信号は入力側WSS30aにより分岐されて受信側TP2bに入力される。
なお、以降の説明において、光信号が電気信号に変換されることなく伝送される区間を「光終端区間」と表記する。本例において、光終端区間は、送信側TP2aがあるノードAから、受信側TP2bがあるノードDまでの区間となる。
入力側及び出力側WSS30a,30bには、それぞれ、複数の波長光が多重された波長多重光信号から所定の波長光を抽出するための波長単位の波長フィルタが設けられている。このため、光信号は、入力側及び出力側WSS30a,30bを通るたびにその帯域が狭窄化される。
符号Gaは、ノードAにおいて、送信側TP2aから出力されたときの光信号のスペクトル波形の一例を示す。光信号は、送信側TP2aのボーレートに応じた帯域幅Waを有する。
符号Gbは、ノードCにおいて、ROADM5から出力されたときの光信号のスペクトル波形の一例を示す。光信号は、ノードAの出力側WSS30bとノードCの入力側及び出力側WSS30a,30bを通ることにより帯域が狭窄化される。このため、光信号の帯域幅Wbは、ノードAの帯域幅Waより狭くなっている。
符号Gcは、ノードDにおいて、ROADM5から出力されたときの光信号のスペクトル波形の一例を示す。光信号は、さらにノードDの入力側WSS30aを通ることにより帯域が狭窄化される。このため、光信号の帯域幅Wcは、ノードCの帯域幅Wbより狭くなっている。光信号の帯域幅は、そのボーレートが大きいほど広くなるため、狭窄化の影響も大きくなる。
また、光信号の品質は、その帯域の狭窄化だけでなく、受信側TP2bにおけるOSNRによっても決定される。OSNRは、光信号の多値変調方式の多値度に応じて変化する。
図2は、多値度に対するOSNR耐力の変化の一例を示す図である。図2において、横軸は多値度を示し、縦軸はOSNR耐力(dB)を示す。OSNR耐力は、光信号のビットエラーレートを0以下とするために必要とされるOSNRの下限値(つまり誤り訂正の限界値)である。このため、OSNR耐力が低いほど、光信号の品質は高くなる。
OSNR耐力は、多値度が高いほど、増加する(つまり劣化する)。これは、OSNR耐力が、光信号のコンスタレーション内のシンボル同士の間隔が狭いほど、高くなるためである。
符号G1は、多値度が2であるQPSKのコンスタレーションの一例を示し、符号G2は、多値度が3である16QAMのコンスタレーションの一例を示す。16QAMのコンスタレーション内のシンボル同士の間隔L2は、QPSKのコンスタレーション内のシンボル同士の間隔L1より狭くなる。このため、16QAMの場合のOSNR耐力は、QPSKの場合のOSNR耐力より高い。
このように、多値変調方式の多値度が大きいほど、光信号のコンスタレーション内のシンボル同士の間隔は狭くなるため、受信側の光信号の位相及び振幅の余裕がなくなり、ILA6などからの雑音の影響によりOSNR耐力が劣化する。これに対し、OSNR耐力が十分となるように多値度の小さい多値変調方式を選択することは可能であるが、多値度が小さくなるほど、シンボルごとのビット数は小さくなるため、所定のラインレートを実現しようとすると、高いボーレートを設定する必要がある。
しかし、ボーレートが高くなるほど、上述したように、光信号の帯域幅は広くなるため、例えば、光信号の伝送経路上のWSS30a,30bの波長フィルタによる帯域狭窄の影響が増加する。このように、ボーレート及び多値変調方式の間にはトレードオフが存在するため、ネットワーク設計の担当者が、人手により最適なボーレート及び多値変調方式の組み合わせを選択することが難しいという問題がある。
次に、ROADM5及びTP2a,2bの構成について述べる。
図3は、ROADM5の一例を示す構成図である。ROADM5は、WSS30a,30bと、プリアンプ31と、ポストアンプ32と、複数の光アンプ33,34と、複数の光スプリッタ(SPL)35a,35bと、複数の光カプラ(CPL)36a,36bと、装置制御部39と、1以上の再生中継器(REG: Regenerator)4とを有する。なお、図3には、一組の入力側方路及び出力側方路に対応する構成が記載されているが、符号Xに示される枠内の構成は他の組の方路に対応する。
入力側WSS30aの入力ポートには、プリアンプ31が接続され、入力側WSS30aの複数の出力ポートには、複数の光アンプ33及び出力側WSS30bが接続されている。また、出力側WSS30bの入力ポートには、入力側WSS30a及び複数の光アンプ34が接続され、出力側WSS30bの出力ポートには、ポストアンプ32が接続されている。プリアンプ31は入力側の伝送路90に接続され、ポストアンプ32は出力側の伝送路90に接続されている。
また、光アンプ33の出力ポートはSPL35a,35bの入力ポートに接続されている。SPL35aの出力ポートはTP2に接続されている。TP2は、送信側TP2a及び受信側TP2bの両方を備えるTPである。なお、SPL35aに接続されるTP2は送信側TP2aに該当する。
また、光アンプ34の入力ポートには、CPL36a,36bの出力ポートが接続されている。CPL36aの入力ポートはTP2に接続されている。なお、CPL36aに接続されるTP2は受信側TP2bに該当する。
SPL35bの出力ポートとCPL36bの入力ポートは、当該方路の組及び他の方路の組にそれぞれ対応する各REG4の入力ポートに接続されている。REG4は、入力ポートに入力された光信号を電気信号に変換し、電気信号を再び光信号に変換して出力ポートから出力する。当該方路の組のREG4と他の方路の組のREG4(符号Xの点線枠内のREG4)は、一部の入力ポート及び出力ポート同士が接続されている。このため、光信号は、入力元の方路から宛先に応じた方路に出力される。
装置制御部39は、例えば、CPU(Central Processing Unit)回路などを含み、ROADM5の動作を制御する。装置制御部39は、ネットワーク設計装置1からの制御に従い、各TP2、各REG4、及びWSS30a,30bに各種の設定を行う。例えば、装置制御部39は、入力側WSS30a、SPL35aに接続された各TP2、及びREG4に分岐対象の光信号の波長を設定し、出力側WSS30b、CPL36aに接続された各TP2、及びREG4に挿入対象の光信号の波長を設定する。
ROADM5に入力された波長多重光信号は、プリアンプ31により増幅されて入力側WSS30aに入力される。入力側WSS30aは、波長多重光信号を波長フィルタにより波長単位の光信号に分離し、分岐対象の光信号を光アンプ33に出力し、その他の光信号を合波して出力側WSS30bに出力する。
出力側WSS30bは、入力側WSS30aから入力された合波光を波長フィルタにより波長単位の光信号に分離し、光アンプ34から入力された挿入対象の光信号の合波光を波長フィルタにより波長単位の光信号に分離する。出力側WSS30bは、各光信号に合波することにより波長多重光信号を生成してポストアンプ32に出力する。ポストアンプ32は、波長多重光信号を増幅して伝送路90に出力する。
光アンプ33は光信号を増幅してSPL35a,35bに出力する。SPL35aは光信号を複数のTP2に分岐して出力する。TP2は、設定済みの波長の光信号を受信する。
CPL36aは、複数のTP2から入力された光信号を合波して光アンプ34に出力する。光アンプ34は、その合波光を増幅して出力側WSS30bに出力する。
SPL35bは、当該方路の組のREG4と、他の方路の組のREG4とに光信号を分岐して出力する。各REG4は、装置制御部39からの設定に従って、光信号をその宛先に応じた方路の組のCPL36bに出力する。CPL36bに入力された各光信号は合波されて光アンプ34に出力される。REG4は、光信号を終端して電気信号に変換し、再び光信号に変換して出力する。このため、REG4は光終端区間の境界に該当する。
上記の構成によると、光信号は、ROADM5を通過する場合、入力側WSS30aと出力側WSS30bを通り、ROADM5で分岐される場合、入力側WSS30aを通り、ROADM5で挿入される場合、出力側WSS30bを通る。このため、光信号は、通過対象である場合、2個の波長フィルタを通過し、分岐対象または挿入対象である場合、1個の波長フィルタを通る。光信号の帯域は、通過した波長フィルタの個数に応じた分だけ狭窄化される。
図4は、TP2の一例を示す構成図である。TP2は、DSP20と、光信号処理部21と、フレーマLSI(Large Scale Integration)22と、TP制御部23とを有する。なお、TP2は、伝送装置の一例である。
光信号処理部21は、送信部210と、受信部211と、LD(Laser Diode)212,214とを有する。DSP20は、送信処理回路200と、受信処理回路201と、DAC(Digital-to-Analog Converter)202と、ADC(Analog-to-Digital Converter)203とを有する。送信処理回路200は、FEC(Forward Error Correction)符号化回路200a、マッピング回路200b、及び予等化回路200cを有する。受信処理回路201は、等化回路201a、デマッピング回路201b、及びFEC復号化回路201cを有する。フレーマLSI22は、フレーム処理部(#1〜#n)(n:正の整数)220を有する。
各フレーム処理部220は、クライアントネットワークとの間でクライアント信号Scを送受信する。クライアント信号Scは、例えばイーサネット(登録商標)信号である。フレーム処理部220は、クライアントネットワークからクライアント信号Scを受信し、OTU(Optical channel Transport Unit)フレームに変換して送信処理回路200に出力する。送信処理回路200には、1以上のフレーム処理部220からOTUフレームが入力される。
また、フレーム処理部220は、受信処理回路201からOTUフレームを受信し、クライアント信号Scに変換してクライアントネットワークに送信する。受信処理回路201は、OTUフレームを1以上のフレーム処理部220に出力する。
なお、OTUフレームは、ITU−T(International Telecommunication Union Telecommunication Standardization Sector)勧告G.709に規定されている。また、WDMネットワーク91側のフレーム形式は、OTUフレームに限定されない。
FEC符号化回路200aは、OTUフレームの誤り訂正符号の一例としてFECを生成して、OTUフレーム内に挿入する。FEC符号化回路200aは、OTUフレームをマッピング回路200bに出力する。
マッピング回路200bは、TP制御部23から設定された多値変調方式に従って変調処理を行うことにより、OTUフレームのビットデータをシンボルにマッピングする。このとき、マッピング回路200bは、TP制御部23から設定されたボーレートで変調処理を行う。マッピング回路200bは、変調処理で得たデータ信号を予等化回路200cに出力する。
予等化回路200cは、データ信号に対し、伝送路9で生ずる各種の損失を予め補償する。例えば、予等化回路200cは、波長分散補償、周波数オフセット補償、DAC202の入出力特性補償、及びLD212の入出力特性補償を行う。予等化回路200cは、データ信号をDAC202に出力する。DAC202は、データ信号をデジタル信号からアナログ信号に変換して送信部210に出力する。
送信部210は、光変調器、偏波ビームスプリッタ、及び偏波ビームコンバイナなどを有する。送信部210は、LD212から入力された送信光LOsをH偏波及びV偏波に分離して、データ信号により光変調する。送信部210は、H偏波及びV偏波の変調光を合波することにより光信号Sを生成してROADM5に出力する。なお、光信号Sのラインレートは、クライアント信号の伝送速度を100(Gbps)とすると、N本(N:正の整数)のクライアント信号を光信号Sに収容した場合、100×N(Gbps)となる。
また、受信部211には、ROADM5から分岐対象の光信号Sが入力される。受信部211は、偏波ビームスプリッタ及び光−電気変換器などを有する。受信部211は、光信号SをH偏波及びV偏波の各成分に分離して、LD214から入力された局発光LOrにより光信号Sを受信し、電気的なデータ信号に変換してADC203に出力する。ADC203は、データ信号をアナログ信号からデジタル信号に変換して受信処理回路201に出力する。
等化回路201aは、データ信号に対し、伝送路90で生じた損失を補償する。例えば、等化回路201aは、波長分散補償、周波数オフセット補償、偏波モード分散補償、及び搬送波位相復元を行う。等化回路201aは、データ信号をデマッピング回路201bに出力する。
デマッピング回路201bは、データ信号をデマッピング処理することによりシンボルを検出してビットデータに変換する。これにより、データ信号がOTUフレームに復調処理される。デマッピング回路201bは、OTUフレームをFEC復号化回路201cに出力する。
FEC復号化回路201cは、OTUフレームからFECを取り出してデータ誤り訂正を行う。FEC復号化回路201cは、OTUフレームをフレーム処理部220に出力する。
TP制御部23は、例えばCPU回路により構成され、DSP20、フレーマLSI22、及び光信号処理部21を制御する。TP制御部23は、ネットワーク設計装置1からの制御に従い、DSP20、フレーマLSI22、及び光信号処理部21に各種の設定を行う。例えば、TP制御部23は、マッピング回路200b及びデマッピング回路201bに多値変調方式及びボーレートを設定し、FEC符号化回路200a及びFEC復号化回路201cにFECの冗長度を設定する。また、TP制御部23は、フレーム処理部220にラインレートを設定する。
このように、TP1には、帯域狭窄及びOSNRに影響するパラメータが設定される。ボーレート及び多値変調方式の影響については上述した通りである。また、FECの冗長度は、OTUフレームに挿入されるFEC領域の比率(%)を示し、その値が大きいほど、誤り訂正能力が高くなるため、OSNR耐力が向上する。しかし、FECの冗長度が大きくなるほど、ボーレートを大きくする必要があるため、帯域狭窄の影響も増加する。なお、本例では、誤り訂正方式としてFECを挙げるが、他の誤り訂正方式が用いられてもよい。
図5は、REG4の一例を示す構成図である。図5において、図4と共通する構成には同一の符号を付し、その説明は省略する。
REG4は、DSP40a,40bと、フレーマLSI41a,41bと、光信号処理部42a,42bと、REG制御部43とを有する。REG4は、2つのTP2をクライアントネットワーク側のインターフェース同士で接続した構成を有する。
フレーマLSI41a,41bは、それぞれ、複数のフレーム処理部220を有する。フレーマLSI41aのフレーム処理部220とフレーマLSI41bのフレーム処理部220は、互いにクライアント信号を送受信する。また、DSP40a,40bは、TP2のDSP20と同様の構成を有し、光信号処理部42a,42bは、TP2の光信号処理部21と同様の構成を有する。また、REG制御部43は、例えばCPU回路により構成され、ネットワーク設計装置1の指示に従って、フレーム処理部220、送信処理回路200、及び受信処理回路201にTP制御部23と同様の設定を行う。
上記の構成により、REG4は、ある方路から入力された光信号を一方の光信号処理部42a,42bで電気信号に変換した後、他方の光信号処理部42b,42aで再び光信号に変換して他の方路に出力することができる。このため、光信号は、伝送路90上にREG4が存在する場合、REG4により一時的に終端される。
ネットワーク設計装置1は、TP2及びROADM5を含むWDMネットワーク91の設計を行う。例えば、ネットワーク設計装置1は、光信号の伝送経路Rを算出し、TP2に対し帯域狭窄及びOSNRを考慮した適切な設定を行う。このとき、ネットワーク設計装置1は、光信号が伝送経路Rを伝送することができないと判定した場合、伝送経路Rの途中にREG4を配置することにより伝送経路Rを複数の光終端区間に分割する。以下に、ネットワーク設計装置1について述べる。
図6は、ネットワーク設計装置1の一例を示す構成図である。ネットワーク設計装置1は、CPU10、ROM(Read Only Memory)11、RAM(Random Access Memory)12、HDD(Hard Disk Drive)13、通信ポート14、入力装置15、及び出力装置16を有する。CPU10は、互いに信号の入出力ができるように、ROM11、RAM12、HDD13、通信ポート14、入力装置15、及び出力装置16と、バス19を介して接続されている。
ROM11は、CPU10を駆動するプログラムが格納されている。プログラムには、ネットワーク設計方法を実行するネットワーク設計プログラムが含まれる。RAM12は、CPU10のワーキングメモリとして機能する。通信ポート14は、例えば無線LANカードやNIC(Network Interface Card)であり、CPU10とTP2、REG4、及びROADM5の間に通信を処理する。
入力装置15は、ネットワーク設計装置1に情報を入力する装置である。入力装置15としては、例えばキーボード、マウス、及びタッチパネルなどが挙げられる。入力装置15は、入力された情報を、バス19を介しCPU10に出力する。
出力装置16は、ネットワーク設計装置1の情報を出力する装置である。出力装置16としては、例えばディスプレイ、タッチパネル、及びプリンタなどが挙げられる。出力装置16は、CPU10からバス19を介して情報を取得して出力する。
CPU10は、ROM11からプログラムを読み込むと、機能として、動作制御部100、データベース生成部101、経路算出部102、帯域狭窄(PBN)算出部103、通信設定選択部104、及び設定処理部105が形成される。動作制御部100、データベース生成部101、経路算出部102、PBN算出部103、通信設定選択部104、及び設定処理部105は、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specified Integrated Circuit)などのハードウェアにより構成されてもよい。
また、HDD13には、ネットワーク構成データベース(DB)130、伝送経路データベース(DB)131、及び通信設定データベース(DB)132が格納される。なお、HDD13は記憶部の一例である。
ネットワーク構成DB130には、図1に示されるようなノードA〜DごとのTP2及びROADM5の配置及び接続関係を示すネットワーク構成情報などが予め登録されている。伝送経路DB131には、CPU10が算出した伝送経路Rを示す伝送経路情報が登録される。伝送経路情報には、例えば、伝送経路Rが経由するノードA〜DごとのTP2及びWSS30a,30bの識別子などが含まれる。
通信設定DB132には、多値変調方式、ラインレート、及びFEC冗長度の組み合わせで規定される複数の動作モードと、その動作モードに対応するボーレートなどのパラメータが対応付けて登録される。以下に通信設定DB132の例を挙げて説明する。
図7は、通信設定DB132の一例を示す図である。通信設定DB132には、動作モードを示す動作モード番号(#1〜#7)、その動作モードを規定するモードパラメータ、多値度、ボーレート、帯域限界値(Bo)、ペナルティ、及びOSNR耐力の対応関係が登録されている。
動作モード番号、モードパラメータ、多値度、及びボーレートは、予め通信設定DB132に登録されている。モードパラメータには、多値変調方式、ラインレート、及びFEC冗長度が含まれる。多値変調方式には、一例として、DSP20,40a,40bが実行可能な変調処理に対応するDP−QPSK、DP−8QAM、及びDP−16QAMなどが登録されている。
ラインレートには、一例として、クライアント信号の伝送速度を例えば100(Gbps)とすると、2つのクライアント信号を収容する光信号に対応する200(Gbps)(=100×2)、及び3つのクライアント信号を収容する光信号に対応する300(Gbps)(=100×3)が登録されている。FEC冗長度には、一例として、15(%)及び20(%)が登録されている。
また、多値度は、多値変調方式に応じて決定された値が登録されている。例えば、DP−QPSKの場合、多値度「2」が登録され、DP−16QAMの場合、多値度「4」が登録されている。ボーレートは、多値変調方式、ラインレート、及びFEC冗長度から算出された値が登録されている。
帯域限界値、ペナルティ、及びOSNR耐力には、CPU10がモードパラメータ、多値度、及びボーレートからシミュレーションにより算出した値が登録される。帯域限界値は、光信号の所定の品質を維持するための光信号の帯域幅の下限値の一例である。例えば、帯域限界値は、受信側のTP2(受信側TP2b)が、同期エラーを検出することなく、正常に光信号を受信することができる帯域幅の下限値を示す。
ペナルティは、受信側のTP2(受信側TP2b)におけるQ値の劣化量の一例である。例えば、ペナルティは光信号のパワーの低下量を示す。また、OSNR耐力は、上述した通りであり、光信号の所定の品質を維持するため(例えば、ビットエラーレートが0以下となるため)のOSNRの最小値である。
このように、HDD13は、モードパラメータ、多値度、及びボーレートの組み合わせと、帯域限界値、ペナルティ、及びOSNR耐力との対応関係を記憶する。
再び図6を参照すると、動作制御部100は、ネットワーク設計処理が所定のシーケンスで実行されるように、データベース生成部101、経路算出部102、PBN算出部103、通信設定選択部104、及び設定処理部105の動作を制御する。データベース生成部101、経路算出部102、PBN算出部103、通信設定選択部104、及び設定処理部105は、動作制御部100から各種の指示及び数値が入力され、その入力に応じて各種の処理を実行し、その結果を動作制御部100に出力する。
データベース生成部101は、ネットワーク設計前に、通信設定DB132の各動作モードに対応する帯域限界値、ペナルティ、及びOSNR耐力を算出し、通信設定DB132に登録する。データベース生成部101は、例えば、各種の条件に基づいて伝送性能を計算するシミュレータを有し、そのシミュレーション結果として、帯域限界値、ペナルティ、及びOSNR耐力を算出する。なお、帯域限界値、ペナルティ、及びOSNR耐力は、伝送経路Rとは無関係に、送信側のTP2(送信側TP2a)のモードパラメータ、多値度、及びボーレートから算出される。
経路算出部102は、ネットワーク構成DB130に基づいて、光信号が伝送される1以上の伝送経路Rを算出し、その伝送経路情報を伝送経路DB131に登録する。例えば、経路算出部102は、入力装置15から入力された始点ノード及び終点ノードの情報を取得し、ダイクストラ法などにより始点ノードと終点ノードを結ぶ最短の伝送経路Rを算出する。
PBN算出部103は、帯域算出部の一例であり、光信号の伝送経路R上の波長フィルタの個数から、波長フィルタにより狭窄化された後の光信号の帯域幅B(以下、「狭窄化帯域幅」と表記)を算出する。例えば、PBN算出部103は、伝送経路R上のWSS30a,30bの個数を計数し、その個数により各WSS30a,30bの狭窄量を積算することにより狭窄化帯域幅Bを算出する。狭窄化帯域幅Bは、例えば図1に示された伝送経路Rの場合、その最終段のWSS30aから出力された光信号の帯域幅Wcに該当する。狭窄化帯域幅は、通信設定選択部104により動作モードの選択に用いられる。
通信設定選択部104は、入力装置15から入力されたラインレートの動作モードを通信設定DB132から選択する。これにより、通信設定選択部104は、通信設定DB132からラインレートの要求を満たす動作モードを絞り込む。
通信設定選択部104は、選択部の一例であり、通信設定DB132の各動作モードから、帯域限界値Boが狭窄化帯域幅B以下である動作モードを選択する。このとき、通信設定DB132の各動作モードの多値変調方式、ボーレート、及びFEC冗長度の組み合わせは複数の組み合わせの一例であり、選択された動作モードの多値変調方式、ボーレート、及びFEC冗長度の組み合わせは第1の組み合わせの一例である。
このため、通信設定選択部104は、通信設定DB132から、伝送経路R上のWSS30a,30bにより生ずる帯域狭窄に耐えられる動作モードを選択することができる。これにより、DSP20,40a,40bに設定するボーレートの候補が、帯域狭窄を考慮した所定値以下のボーレートに絞り込まれる。
また、通信設定選択部104は、狭窄化帯域幅Bに基づき選択済みの各動作モードから、OSNR耐力に基づき動作モードをさらに選択する。このとき、選択された動作モードの多値変調方式、ボーレート、及びFEC冗長度の組み合わせは第2の組み合わせの一例である。
このため、通信設定選択部104は、通信設定DB132から、良好なOSNR耐力の動作モードを選択することができる。これにより、DSP20,40a,40bに設定する多値変調方式の候補が、OSNRを考慮した所定値以下の多値度の多値変調方式に絞り込まれる。
したがって、通信設定選択部104は、帯域狭窄及びOSNRの観点から好適な動作モードを選択することができる。よって、ネットワーク設計装置1は、帯域狭窄及びOSNRを考慮した適切なネットワーク設計を行うことができる。
通信設定選択部104は、一例として、OSNR耐力が最も小さい動作モードを選択する。このため、通信設定選択部104は、最良のOSNR耐力の動作モードを選択することができる。なお、通信設定選択部104は、最も小さいOSNR耐力の動作モードに限定されず、OSNR耐力が所定値以下の動作モードを選択してもよい。
また、通信設定選択部104は、最も小さいOSNR耐力の動作モードが複数ある場合、その動作モードのうち、ペナルティが最も小さい動作モードを選択する。このため、通信設定選択部104は、ペナルティに基づき動作モードを絞り込むことができる。
通信設定選択部104は、上記のようにして絞り込んだ動作モードを、例えば出力装置16に出力する。出力装置16は、例えば動作モードを画面に表示する。これにより、WDMネットワーク91のオペレータは、最適な動作モードを確認することができる。
設定処理部105は、上記のようにして絞り込んだ動作モードの多値変調方式、ラインレート、FEC冗長度、及びボーレートを送信側及び受信側の各TP2に設定する。このため、オペレータが手動で各TP2を設定する手間が省かれる。
次に、ネットワーク設計装置1の処理を説明する。ネットワーク設計装置1の処理の手順は、ネットワーク設計方法の一例である。
図8は、通信設定DB132の生成処理の一例を示すフローチャートである。本処理は、ネットワーク設計前に実行される。
データベース生成部101は、通信設定DB132から1つの動作モードを選択する(ステップSt1)。なお、動作モードの選択順に限定はない。
次に、データベース生成部101は、モードパラメータ、多値度、及びボーレートから帯域限界値を算出する(ステップSt2)。次に、データベース生成部101は、モードパラメータ、多値度、及びボーレートからペナルティを算出する(ステップSt3)。次に、データベース生成部101は、モードパラメータ、多値度、及びボーレートからOSNR耐力を算出する(ステップSt4)。
次に、データベース生成部101は、算出したOSNR耐力、帯域限界値、及びペナルティを通信設定DB132に登録する(ステップSt5)。次に、データベース生成部101は、通信設定DB132の各動作モードのうち、未選択の動作モードの有無を判定する(ステップSt6)。未選択の動作モードが有る場合(ステップSt6のYes)、ステップSt1以降の各処理が再び実行される。
また、未選択の動作モードが無い場合(ステップSt6のNo)、処理は終了する。このようにして、通信設定DB132の生成処理は実行される。
図9は、通信設定処理の一例を示すフローチャートである。本処理は、例えば、動作制御部100が入力装置15からネットワーク設計の指示を受けたことを契機として実行される。ネットワーク設計の指示には、例えば、光信号の伝送経路Rの始点ノード及び終点ノードと、ラインレートとが指定されている。なお、本例では、図1に示された伝送経路Rを挙げて説明する。
経路算出部102は、ネットワーク構成DB130に基づいて、始点ノードA及び終点ノードDを結ぶ伝送経路Rを算出する(ステップSt11)。伝送経路Rの算出手法としては、ダイクストラ法が挙げられるが、これに限定されない。
次に、PBN算出部103は、伝送経路R上のWSS数、つまり波長フィルタの個数を計数する(ステップSt12)。伝送経路Rには4個のWSS30a,30bが存在するため、WSS数は4個となる。なお、WSS30a,30bに代えて、またはWSS30a,30bに加えて、AWG(Arrayed Waveguide Grating)が伝送経路R上に設けられている場合、PBN算出部103は、WSS30a,30bと同様にAWGの波長フィルタの個数を計数する。
次に、PBN算出部103は、WSS数から狭窄化帯域幅Bを算出する(ステップSt13)。このとき、PBN算出部103は、WSS数により各WSS30a,30bの狭窄量を積算することにより狭窄化帯域幅Bを算出する。狭窄化帯域幅Bは、例えばWSS数=4から47(GHz)と算出される。
次に、通信設定選択部104は、入力装置15を介して要求されたラインレートの動作モードを選択する(ステップSt14)。例えばラインレートが200(Gbps)である場合、動作モード番号#1〜#5の各動作モードが選択される。
次に、通信設定選択部104は、動作モード番号#1〜#5の各動作モードから、帯域限界値Boが狭窄化帯域幅B以下である動作モードを選択する(ステップSt15)。狭窄化帯域幅Bが47(GHz)である場合、通信設定選択部104は、帯域限界値Bo=46(GHz)の動作モード番号#2、帯域限界値Bo=30(GHz)の動作モード番号#3、及び帯域限界値Bo=28(GHz)の動作モード番号#5の各動作モードを選択する。なお、動作モード番号#2,#3,#5の各動作モードの多値変調方式、ボーレート、及びFEC冗長度の組み合わせは第1の組み合わせに該当する。
次に、通信設定選択部104は、動作モード番号#2,#3,#5の各動作モードのうち、OSNR耐力が最小である動作モードを選択する(ステップSt16)。動作モード番号#2,#3,#5の各動作モードのOSNR耐力は、それぞれ、20(dB)、25(dB)、及び30(dB)であるため、通信設定選択部104は、動作モード番号#2の動作モードを選択する。なお、動作モード番号#2の動作モードの多値変調方式、ボーレート、及びFEC冗長度の組み合わせは第2の組み合わせに該当する。
次に、設定処理部105は、動作モード番号#2の動作モードの通信設定を実行する(ステップSt17)。例えば、設定処理部105は、動作モード番号#2の動作モードのラインレート(200(Gbps))、多値変調方式(DP−8QAM)、ボーレート(46(Gbaud))、及びFEC冗長度(20(%))を送信側TP2a及び受信側TP2bに設定する。このようにして、通信設定処理は実行される。なお、本例では、モードパラメータにFEC冗長度が含まれるため、通信設定選択部104は、適切なFEC冗長度を選択することができるが、モードパラメータにFEC冗長度が含まれていなくてもよい。
また、本例において、経路算出部102は、1つの伝送経路Rだけを算出したが、複数の伝送経路を算出してもよい。この場合、通信設定選択部104は、伝送経路ごとに受信側のQ値を算出し、Q値に基づき光信号の伝送可否を判定する。通信設定選択部104は、光信号が伝送不可能である伝送経路を複数の光終端区間に分割し、光終端区間が最も少ない伝送経路をWDMネットワーク91に設定する。この場合のネットワーク設計装置1の処理を以下に述べる。
図10は、通信設定処理の他の例を示すフローチャートである。図10において、図9と共通する処理には同一の符号を付し、その説明は省略する。
経路算出部102は、複数の伝送経路を算出する(ステップSt11a)。算出された複数の伝送経路は、伝送経路DB131に登録される。次に、通信設定選択部104は、伝送経路DB131の各伝送経路から1つの伝送経路を選択する(ステップSt11b)。
次に、通信設定選択部104は、選択中の伝送経路の光終端区間の1つを選択する(ステップSt11c)。次に、通信設定選択部104は、選択中の光終端区間について、上記のステップSt12〜St16の各処理を実行する。
次に、通信設定選択部104は、選択中の光終端区間に光信号が伝送されたときの受信側のQ値を算出する(ステップSt17a)。このとき、通信設定選択部104は、ステップSt16で選択した動作モードのラインレート、多値変調方式、ボーレート、及びFEC冗長度から例えばシミュレーションを実行することにより受信側のQ値を算出する。
次に、通信設定選択部104は、受信側のQ値を所定の閾値THと比較する(ステップSt18)。通信設定選択部104は、受信側のQ値が閾値TH未満である場合(ステップSt18のNo)、選択中の伝送経路の光終端区間には光信号を伝送することが不可能であると判定して、選択中の光終端区間を複数の光終端区間に分割する(ステップSt19)。
より具体的には、通信設定選択部104は、選択中の光終端区間の途中のノードのROADM5にREG4が接続されたと仮定し、そのREG4を境界として新たな光終端区間を生成する。その後、分割で得られた新たな光終端区間の各々について、ステップSt11c〜St18の処理が再び実行される。これにより、通信設定選択部104は、受信側のQ値が所定の閾値TH未満である伝送経路を、受信側のQ値がそれぞれ所定の閾値TH以上となる複数の光終端区間に分割する。
通信設定選択部104は、受信側のQ値が所定の閾値TH以上である場合(ステップSt18のYes)、未選択の光終端区間の有無を判定する(ステップSt20)。未選択の光終端区間が有る場合(ステップSt20のYes)、他の光終端区間が選択され(ステップSt11c)、その光終端区間についてステップSt12以降の各処理が再び実行される。
未選択の光終端区間がない場合(ステップSt20のNo)、通信設定選択部104は、伝送経路DB131の各伝送経路のうち、未選択の伝送経路の有無を判定する(ステップSt21)。未選択の伝送経路が有る場合(ステップSt21のYes)、他の伝送経路が選択され(ステップSt11b)、その伝送経路についてステップSt11c以降の各処理が再び実行される。
未選択の伝送経路がない場合(ステップSt21のNo)、通信設定選択部104は、伝送経路DB131の各伝送経路のうち、光終端区間の数が最も少ない伝送経路、つまりREG4が最も少ない伝送経路を選択する(ステップSt22)。このため、伝送経路上のREG4の数が最少となり、WDMネットワークの設備コストが低減される。
次に、設定処理部105は、選択した伝送経路のWDMネットワークに対する設定を実行する(ステップSt23)。このとき、設定処理部105は、REG4の有無に応じ、伝送経路上の各ノードのROADM5に対しWSS30a,30bの波長設定などを実行する。
次に、設定処理部105は、ステップSt16において選択した動作モードの通信設定を実行する(ステップSt24)。このようにして、通信設定処理は実行される。
次に、本例の通信設定処理の動作例を挙げて説明する。
図11は、WDMネットワーク91の他の例を示す構成図である。WDMネットワーク91には、リング状となるように接続されたノードA〜Jが含まれている。なお、WDMネットワーク91の形態は、リング状に限定されず、メッシュ状であってもよい。
ノードC〜Fには、ILA6が設けられており(点線丸参照)、他のノードA,B,H,I,JにはROADM5が設けられている。ここで、始点ノードはノードAであり、終点ノードはノードBであると仮定する。
また、経路算出部102は、2つの伝送経路Ra,Rbを算出すると仮定する。伝送経路Raは、ノードA,C〜G,Bをこの順に経由し、伝送経路Rbは、ノードA,H,I,J,Bをこの順に経由する。
図12は、伝送経路Ra,Rbを示す図である。図12において、図1と共通する構成には同一の符号を付し、その説明は省略する。以下に図12と図6を参照しながら、図10に示されたフローチャートに沿ってネットワーク設計装置1の処理を述べる。
経路算出部102は、伝送経路Ra,Rbを算出する(ステップSt11a)。通信設定選択部104は、伝送経路Raを選択し(ステップSt11b)、次に、伝送経路Raの光終端区間#1Aを選択する(ステップSt11c)。伝送経路Ra上にはREG4が設けられていないため、始点ノードAの送信側TP2aから終点ノードBまでの光終端区間#1Aだけが存在し、他に光終端区間はない。
次に、PBN算出部103は、伝送経路Ra上の波長フィルタの個数として、WSS30a,30bの個数である4個を計数する(ステップSt12)。次に、PBN算出部103は、狭窄化帯域幅Bとして47(GHz)を算出する(ステップSt13)。
次に、通信設定選択部104は、通信設定DB132の動作モードのうち、入力装置15を介して要求されたラインレートの200(Gbps)に該当する動作モード番号#1〜#5の各動作モードを選択する(ステップSt14)。次に、通信設定選択部104は、動作モード番号#1〜#5の各動作モードのうち、帯域限界値Boが狭窄化帯域幅B以下である動作モード番号#2,#3,#5の各動作モード(第1の組み合わせに該当)を選択する(ステップSt15)。
次に、通信設定選択部104は、動作モード番号#2,#3,#5の各動作モードのうち、OSNR耐力が最も小さい動作モード番号#2の動作モード(第2の組み合わせに該当)を選択する(ステップSt16)。次に、通信設定選択部104は、動作モード番号#2の動作モードのモードパラメータ、多値度、及びボーレートに従って受信側のQ値を算出する(ステップSt17)。ここで、受信側のQ値を10(dB)とする。
次に、通信設定選択部104は、受信側のQ値を閾値THと比較する(ステップSt18)。閾値THを7(dB)とすると、通信設定選択部104は、受信側のQ値≧閾値THが成立するため(ステップSt18のYes)、光終端区間#1Aに光信号を伝送することが可能であると判定し、光終端区間#1Aに関する処理を終了する。
次に、通信設定選択部104は、他に光終端区間がないため(ステップSt20のNo)、他方の伝送経路Rbを選択する(ステップSt21のYes、St11b)。伝送経路Rb上にはREG4が設けられていないため、始点ノードAの送信側TP2aから終点ノードBまでの光終端区間#1Bだけが存在し、他に光終端区間はない。
次に、通信設定選択部104は、伝送経路Rb上の波長フィルタの個数として、WSS30a,30bの個数である8個を計数する(ステップSt12)。次に、PBN算出部103は、狭窄化帯域幅Bとして29(GHz)を算出する(ステップSt13)。
次に、通信設定選択部104は、通信設定DB132の動作モードのうち、入力装置15を介して要求されたラインレートの200(Gbps)に該当する動作モード番号#1〜#5の各動作モードを選択する(ステップSt14)。次に、通信設定選択部104は、動作モード番号#1〜#5の各動作モードのうち、帯域限界値Boが狭窄化帯域幅B以下である動作モード番号#5の動作モード(第1の組み合わせに該当)を選択する(ステップSt15)。
次に、通信設定選択部104は、選択中の動作モードが1つしかないが、OSNR耐力が最も小さい動作モード番号#5の動作モード(第2の組み合わせに該当)を選択する(ステップSt16)。次に、通信設定選択部104は、動作モード番号#2の動作モードのモードパラメータ、多値度、及びボーレートに従って受信側のQ値を算出する(ステップSt17)。ここで、受信側のQ値を4(dB)とする。
次に、通信設定選択部104は、受信側のQ値を閾値THと比較する(ステップSt18)。閾値THを7(dB)とすると、通信設定選択部104は、受信側のQ値<閾値THが成立するため(ステップSt18のNo)、選択中の光終端区間#1BをREG4により複数の光終端区間に分割する(ステップSt19)。
図13は、複数の光終端区間#2B,#3Bに分割された伝送経路Rbを示す図である。通信設定選択部104は、例えば、伝送経路Rbの中間地点であるノードIにREG4が設けられたと仮定して、REG4を境界として光終端区間#2B,#3Bを設定する。光終端区間#2Bは、始点ノードAの送信側TP2aからノードIのREG4までの区間であり、光終端区間#3Bは、ノードIのREG4から終点ノードBの受信側TP2bまでの区間である。なお、以下の説明では図13を参照する。
通信設定選択部104は、光終端区間#2Bを選択する(ステップSt11c)。次に、PBN算出部103は、光終端区間#2B上の波長フィルタの個数として、WSS30a,30bの個数である4個を計数する(ステップSt12)。次に、PBN算出部103は、狭窄化帯域幅Bとして47(GHz)を算出する(ステップSt13)。
次に、通信設定選択部104は、通信設定DB132の動作モードのうち、入力装置15を介して要求されたラインレートの200(Gbps)に該当する動作モード番号#1〜#5の各動作モードを選択する(ステップSt14)。次に、通信設定選択部104は、動作モード番号#1〜#5の各動作モードのうち、帯域限界値Boが狭窄化帯域幅B以下である動作モード番号#2,#3,#5の各動作モード(第1の組み合わせに該当)を選択する(ステップSt15)。
次に、通信設定選択部104は、動作モード番号#2,#3,#5の各動作モードのうち、OSNR耐力が最も小さい動作モード番号#2の動作モード(第2の組み合わせに該当)を選択する(ステップSt16)。次に、通信設定選択部104は、動作モード番号#2の動作モードのモードパラメータ、多値度、及びボーレートに従って受信側のQ値を算出する(ステップSt17)。ここで、受信側のQ値を10(dB)とする。
次に、通信設定選択部104は、受信側のQ値を閾値THと比較する(ステップSt18)。閾値THを7(dB)とすると、通信設定選択部104は、受信側のQ値≧閾値THが成立するため(ステップSt18のYes)、光終端区間#2Bに光信号を伝送することが可能であると判定し、光終端区間#2Bに関する処理を終了する。
次に、通信設定選択部104は、未選択の光終端区間#3Bが有るため(ステップSt20のYes)、その光終端区間#3Bを選択する(ステップSt11c)。次に、PBN算出部103は、光終端区間#3B上の波長フィルタの個数として、WSS30a,30bの個数である4個を計数する(ステップSt12)。次に、PBN算出部103は、狭窄化帯域幅Bとして47(GHz)を算出する(ステップSt13)。
次に、通信設定選択部104は、通信設定DB132の動作モードのうち、入力装置15を介して要求されたラインレートの200(Gbps)に該当する動作モード番号#1〜#5の各動作モードを選択する(ステップSt14)。次に、通信設定選択部104は、動作モード番号#1〜#5の各動作モードのうち、帯域限界値Boが狭窄化帯域幅B以下である動作モード番号#2,#3,#5の各動作モード(第1の組み合わせに該当)を選択する(ステップSt15)。
次に、通信設定選択部104は、動作モード番号#2,#3,#5の各動作モードのうち、OSNR耐力が最も小さい動作モード番号#2の動作モード(第2の組み合わせに該当)を選択する(ステップSt16)。次に、通信設定選択部104は、動作モード番号#2の動作モードのモードパラメータ、多値度、及びボーレートに従って受信側のQ値を算出する(ステップSt17)。ここで、受信側のQ値を10(dB)とする。
次に、通信設定選択部104は、受信側のQ値を閾値THと比較する(ステップSt18)。閾値THを7(dB)とすると、通信設定選択部104は、受信側のQ値≧閾値THが成立するため(ステップSt18のYes)、光終端区間#3Bに光信号を伝送することが可能であると判定し、光終端区間#3Bに関する処理を終了する。
次に、通信設定選択部104は、他に光終端区間がなく(ステップSt20のNo)、未選択の伝送経路もないため(ステップSt21のNo)、光終端区間数が最小である伝送経路Raを選択する(ステップSt22)。つまり、通信設定選択部104は、伝送経路Ra,Rb上のREG4が最も少ない伝送経路を選択する。これにより、REG4の設置コストが低減される。なお、このようにして設計された伝送経路Ra,Rbの伝送経路情報は伝送経路DB131に登録される。
次に、設定処理部105は、伝送経路Ra,RbのWDMネットワーク91に対する設定を実行し(ステップSt23)、伝送経路Ra,Rbごとの動作モードの通信設定をTP2(送信側TP2aと受信側TP2b)及びREG4に対して実行する(ステップSt24)。
このように、通信設定選択部104は、OSNR耐力に基づいて選択した動作モードのモードパラメータ、多値度、及びボーレートに従って光信号の受信側のQ値を算出し、受信側のQ値に基づき伝送経路Ra,Rbの1つを選択する。このため、ネットワーク設計装置1は、複数の伝送経路Ra,Rbから最も伝送品質の良い伝送経路Raを選択することができる。
さらに、通信設定選択部104は、受信側のQ値が所定の閾値TH未満である伝送経路Rbを、受信側のQ値がそれぞれ所定の閾値TH以上である複数の光終端区間#2B,#3Bに分割し、伝送経路Ra,Rbのうち、光終端区間数が最も少ない伝送経路Raを選択する。このため、ネットワーク設計装置1は、REG4の設置コストが低減されるようにWDMネットワーク91を設計することができる。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形して実施可能である。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部と、
前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出する帯域算出部と、
前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択する選択部とを有することを特徴とするネットワーク設計装置。
(付記2) 前記選択部は、前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さい第2の組み合わせを選択することを特徴とする付記1に記載のネットワーク設計装置。
(付記3) 前記記憶部は、前記複数の組み合わせと、前記帯域幅の下限値、及び前記OSNRの最小値、及び前記光信号の受信側のQ値の劣化量との対応関係を記憶し、
前記選択部は、前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さく、前記劣化量が最も小さい前記第2の組み合わせを選択することを特徴とする付記2に記載のネットワーク設計装置。
(付記4) 前記光信号が伝送される複数の伝送経路を算出する経路算出部を有し、
前記帯域算出部は、前記複数の伝送経路の各々について前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、
前記選択部は、前記複数の伝送経路の各々について、前記複数の組み合わせから前記1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから前記第2の組み合わせを選択し、該選択した前記第2の組み合わせに従って前記光信号の受信側のQ値を算出し、前記受信側のQ値に基づき前記複数の伝送経路の1つを選択することを特徴とする付記1乃至3の何れかに記載のネットワーク設計装置。
(付記5) 前記選択部は、
前記複数の伝送経路のうち、前記受信側のQ値が所定の閾値未満である伝送経路を、前記受信側のQ値がそれぞれ前記所定の閾値以上であって、前記光信号がそれぞれ終端される複数の光終端区間に分割し、
前記複数の伝送経路のうち、前記複数の光終端区間の数が最も少ない伝送経路を選択することを特徴とする付記4に記載のネットワーク設計装置。
(付記6) 前記第2の組み合わせに含まれる前記多値変調方式及び前記ボーレートを前記伝送装置に設定する設定処理部を有することを特徴とする付記1乃至5の何れかに記載のネットワーク設計装置。
(付記7) 前記記憶部は、前記伝送装置に設定される前記光信号の前記多値変調方式、前記ボーレート、及び誤り訂正符号の冗長度の前記複数の組み合わせと、前記伝送装置に前記多値変調方式、前記ボーレート、及び前記誤り訂正符号の冗長度が設定された場合に前記光信号の前記所定の品質を維持するための前記光信号の前記帯域幅の下限値及び前記OSNRの最小値との対応関係を記憶することを特徴とする付記1乃至6の何れかに記載のネットワーク設計装置。
(付記8) 光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部を用い、
前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、
前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、
前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択することを特徴とするネットワーク設計方法。
(付記9) 前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さい第2の組み合わせを選択することを特徴とする付記8に記載のネットワーク設計方法。
(付記10) 前記記憶部は、前記複数の組み合わせと、前記帯域幅の下限値、及び前記OSNRの最小値、及び前記光信号の受信側のQ値の劣化量との対応関係を記憶し、
前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さく、前記劣化量が最も小さい前記第2の組み合わせを選択することを特徴とする付記9に記載のネットワーク設計方法。
(付記11) 前記光信号が伝送される複数の伝送経路を算出し、
前記複数の伝送経路の各々について前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、
前記複数の伝送経路の各々について、前記複数の組み合わせから前記1以上の第1の組み合わせを選択し、
前記OSNRの最小値に基づき前記1以上の第1の組み合わせから前記第2の組み合わせを選択し、
該選択した前記第2の組み合わせに従って前記光信号の受信側のQ値を算出し、前記受信側のQ値に基づき前記複数の伝送経路の1つを選択することを特徴とする付記8乃至10の何れかに記載のネットワーク設計方法。
(付記12) 前記複数の伝送経路のうち、前記受信側のQ値が所定の閾値未満である伝送経路を、前記受信側のQ値がそれぞれ前記所定の閾値以上であって、前記光信号がそれぞれ終端される複数の光終端区間に分割し、
前記複数の伝送経路のうち、前記複数の光終端区間の数が最も少ない伝送経路を選択することを特徴とする付記11に記載のネットワーク設計方法。
(付記13) 前記第2の組み合わせに含まれる前記多値変調方式及び前記ボーレートを前記伝送装置に設定することを特徴とする付記8乃至12の何れかに記載のネットワーク設計方法。
(付記14) 前記記憶部は、前記伝送装置に設定される前記光信号の前記多値変調方式、前記ボーレート、及び誤り訂正符号の冗長度の前記複数の組み合わせと、前記伝送装置に前記多値変調方式、前記ボーレート、及び前記誤り訂正符号の冗長度が設定された場合に前記光信号の前記所定の品質を維持するための前記光信号の前記帯域幅の下限値及び前記OSNRの最小値との対応関係を記憶することを特徴とする付記8乃至13の何れかに記載のネットワーク設計方法。
1 ネットワーク設計装置
10 CPU
13 HDD
90 伝送路
91 WDMネットワーク
102 経路算出部
103 PBN算出部
104 通信設定選択部
105 設定処理部
132 通信設定データベース

Claims (8)

  1. 光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部と、
    前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出する帯域算出部と、
    前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択する選択部とを有することを特徴とするネットワーク設計装置。
  2. 前記選択部は、前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さい第2の組み合わせを選択することを特徴とする請求項1に記載のネットワーク設計装置。
  3. 前記記憶部は、前記複数の組み合わせと、前記帯域幅の下限値、及び前記OSNRの最小値、及び前記光信号の受信側のQ値の劣化量との対応関係を記憶し、
    前記選択部は、前記1以上の第1の組み合わせから、前記OSNRの最小値が最も小さく、前記劣化量が最も小さい前記第2の組み合わせを選択することを特徴とする請求項2に記載のネットワーク設計装置。
  4. 前記光信号が伝送される複数の伝送経路を算出する経路算出部を有し、
    前記帯域算出部は、前記複数の伝送経路の各々について前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、
    前記選択部は、前記複数の伝送経路の各々について、前記複数の組み合わせから前記1以上の第1の組み合わせを選択し、前記OSNRの最小値に基づき前記1以上の第1の組み合わせから前記第2の組み合わせを選択し、該選択した前記第2の組み合わせに従って前記光信号の受信側のQ値を算出し、前記受信側のQ値に基づき前記複数の伝送経路の1つを選択することを特徴とする請求項1乃至3の何れかに記載のネットワーク設計装置。
  5. 前記選択部は、
    前記複数の伝送経路のうち、前記受信側のQ値が所定の閾値未満である伝送経路を、前記受信側のQ値がそれぞれ前記所定の閾値以上であって、前記光信号がそれぞれ終端される複数の光終端区間に分割し、
    前記複数の伝送経路のうち、前記複数の光終端区間の数が最も少ない伝送経路を選択することを特徴とする請求項4に記載のネットワーク設計装置。
  6. 前記第2の組み合わせに含まれる前記多値変調方式及び前記ボーレートを前記伝送装置に設定する設定処理部を有することを特徴とする請求項1乃至5の何れかに記載のネットワーク設計装置。
  7. 前記記憶部は、前記伝送装置に設定される前記光信号の前記多値変調方式、前記ボーレート、及び誤り訂正符号の冗長度の前記複数の組み合わせと、前記伝送装置に前記多値変調方式、前記ボーレート、及び前記誤り訂正符号の冗長度が設定された場合に前記光信号の前記所定の品質を維持するための前記光信号の前記帯域幅の下限値及び前記OSNRの最小値との対応関係を記憶することを特徴とする請求項1乃至6の何れかに記載のネットワーク設計装置。
  8. 光信号を送受信する伝送装置に設定される前記光信号の多値変調方式及びボーレートの複数の組み合わせと、前記伝送装置に前記多値変調方式及び前記ボーレートが設定された場合に前記光信号の所定の品質を維持するための前記光信号の帯域幅の下限値及びOSNRの最小値との対応関係を記憶する記憶部を用い、
    前記光信号の伝送経路上の波長フィルタの個数から、前記波長フィルタにより狭窄化された後の前記光信号の帯域幅を算出し、
    前記複数の組み合わせから、前記帯域幅の下限値が、前記狭窄化された後の前記光信号の帯域幅以下である1以上の第1の組み合わせを選択し、
    前記OSNRの最小値に基づき前記1以上の第1の組み合わせから第2の組み合わせを選択することを特徴とするネットワーク設計方法。
JP2018045517A 2018-03-13 2018-03-13 ネットワーク設計装置及びネットワーク設計方法 Active JP6973201B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018045517A JP6973201B2 (ja) 2018-03-13 2018-03-13 ネットワーク設計装置及びネットワーク設計方法
US16/292,532 US10707963B2 (en) 2018-03-13 2019-03-05 Network design apparatus, network design method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045517A JP6973201B2 (ja) 2018-03-13 2018-03-13 ネットワーク設計装置及びネットワーク設計方法

Publications (2)

Publication Number Publication Date
JP2019161448A JP2019161448A (ja) 2019-09-19
JP6973201B2 true JP6973201B2 (ja) 2021-11-24

Family

ID=67906300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045517A Active JP6973201B2 (ja) 2018-03-13 2018-03-13 ネットワーク設計装置及びネットワーク設計方法

Country Status (2)

Country Link
US (1) US10707963B2 (ja)
JP (1) JP6973201B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265163B2 (ja) * 2019-09-06 2023-04-26 富士通株式会社 ネットワークシステム及びネットワーク設計プログラム
WO2021176492A1 (ja) * 2020-03-02 2021-09-10 三菱電機株式会社 光送受信器、送信信号決定方法及び光通信システム
JP2022108790A (ja) 2021-01-14 2022-07-27 富士通株式会社 伝送装置及び伝送パラメータの設定方法
US11606141B2 (en) * 2021-05-10 2023-03-14 Fujitsu Limited Routing of optical signals

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401707B2 (ja) 2003-08-13 2010-01-20 ソフトバンクテレコム株式会社 Q値及びビット誤り率を用いる光伝送特性測定及び補償方法、装置
JP5417759B2 (ja) * 2008-07-31 2014-02-19 富士通株式会社 フレーム処理装置,光受信装置,光送受信装置,光伝送システムおよび制御方法
JP5141455B2 (ja) * 2008-09-08 2013-02-13 富士通株式会社 ネットワーク設計装置、ネットワーク設計プログラム及びネットワーク設計方法
JP5398839B2 (ja) * 2009-09-14 2014-01-29 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
US8744262B2 (en) * 2009-12-08 2014-06-03 Vello Systems, Inc. Optical subchannel routing, protection switching and security
US8805204B2 (en) * 2011-02-23 2014-08-12 Tyco Electronics Subsea Communications Llc Generating higher-level quadrature amplitude modulation (QAM) using a delay line interferometer and systems and methods incorporating same
US9900104B2 (en) * 2011-04-01 2018-02-20 Infinera Corporation Multiplexer and modulation arrangements for multi-carrier optical modems
EP2745443B1 (en) * 2011-09-16 2018-05-16 Telefonaktiebolaget LM Ericsson (publ) A method and apparatus for allocating slots for transmission of data
JP5689829B2 (ja) * 2012-02-02 2015-03-25 日本電信電話株式会社 送信装置、及び送信制御方法
US10257596B2 (en) * 2012-02-13 2019-04-09 Ciena Corporation Systems and methods for managing excess optical capacity and margin in optical networks
US9191103B2 (en) * 2012-05-10 2015-11-17 Telefonaktiebolaget L M Ericsson (Publ) Node and method for iterative improvement of spectral use
WO2014005613A1 (en) * 2012-07-02 2014-01-09 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for configuring an optical path

Also Published As

Publication number Publication date
US20190288775A1 (en) 2019-09-19
US10707963B2 (en) 2020-07-07
JP2019161448A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6973201B2 (ja) ネットワーク設計装置及びネットワーク設計方法
JP7073884B2 (ja) 不均等サブキャリア間隔を用いるマルチキャリアチャネルの到達距離拡張
JP6257866B2 (ja) 光中継装置
US9628879B2 (en) Hierarchical guided search for N-tuple disjoint optical paths
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
US10396899B1 (en) Probabilistic constellation shaping using set-partitioned M-QAM
US8666252B2 (en) Optical network system
US10530490B1 (en) Probabilistic constellation shaping for optical networks with diverse transmission media
JP6638539B2 (ja) 伝送基準に基づくスーパーチャネルパワーフリープリエンファシス
US11265086B2 (en) Low rate loss bit-level distribution matcher for constellation shaping
US10700807B1 (en) Fiber input power selection for probabilistically shaped signals in optical networks
US20190097747A1 (en) Method and system for assigning modulation format in optical networks
Paolucci et al. Disaggregated edge-enabled C+ L-band filterless metro networks
US20190097720A1 (en) Virtual optical network service with guaranteed availability
JP7031245B2 (ja) 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和
JP2017212736A (ja) 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化
US10348439B1 (en) Spectral slot assignment and placement of wavelength shifters in flexible grid optical networks
Oliveira et al. Toward terabit autonomic optical networks based on a software defined adaptive/cognitive approach
JP6988296B2 (ja) 伝送装置及び信号監視方法
Guo et al. Impact of the band upgrade sequence on the capacity and capital expenditure of multi-band optical networks
JP6711103B2 (ja) 光トランスポートネットワークにおけるスペクトル反転を用いる非線形ペナルティ推定
WO2017178431A1 (en) Optical communications
JP6477183B2 (ja) Nタプル分離光経路の階層的誘導検索
US20200228228A1 (en) Transmission device, control device, and transmission method
US11196485B2 (en) Network system, management device, and network design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150