JP6969423B2 - Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
JP6969423B2
JP6969423B2 JP2018027008A JP2018027008A JP6969423B2 JP 6969423 B2 JP6969423 B2 JP 6969423B2 JP 2018027008 A JP2018027008 A JP 2018027008A JP 2018027008 A JP2018027008 A JP 2018027008A JP 6969423 B2 JP6969423 B2 JP 6969423B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reducing agent
adsorption amount
nox
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027008A
Other languages
Japanese (ja)
Other versions
JP2019143513A (en
Inventor
洋 阿野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018027008A priority Critical patent/JP6969423B2/en
Priority to PCT/JP2019/004998 priority patent/WO2019159932A1/en
Priority to CN201980014018.8A priority patent/CN111788372A/en
Publication of JP2019143513A publication Critical patent/JP2019143513A/en
Application granted granted Critical
Publication of JP6969423B2 publication Critical patent/JP6969423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本開示は、内燃機関から排出される排気ガスを浄化する内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。 The present disclosure relates to an exhaust gas purification system for an internal combustion engine that purifies the exhaust gas discharged from the internal combustion engine, and a method for purifying the exhaust gas of the internal combustion engine.

ディーゼルエンジンや希薄燃焼ガソリンエンジン等の内燃機関においては、NOx低減のために、NOx吸蔵還元型触媒(LNT触媒、LNT:Lean NOx Trap)や選択還元型触媒(SCR触媒、SCR:Selective Catalytic Reduction)を組み合わせ、さらに、排気微粒子(PM:Particulate Matter)を捕集するフィルタ(例えば、DPF:Diesel Particulate Filter)を加えることで、低負荷〜高負荷まで幅広い運転領域でNOxを低減することを狙った排気ガス浄化システムが主流になってきている(例えば、特許文献1参照)。 In internal combustion engines such as diesel engines and lean combustion gasoline engines, NOx storage reduction catalysts (LNT catalyst, LNT: Lean NOx Trap) and selective catalytic reduction catalysts (SCR catalyst, SCR: Selective Catalytic Reduction) are used to reduce NOx. In addition, by adding a filter that collects exhaust fine particles (PM: Particulate Meter) (for example, DPF: Diesel Particulate Filter), we aimed to reduce NOx in a wide operating range from low load to high load. Exhaust gas purification systems are becoming mainstream (see, for example, Patent Document 1).

特表2006−512529号公報Special Table 2006-512259

ところで、このような排気ガス浄化システムでは、SCR触媒を使用するので、フィルタの再生制御時において、排気ガスの急速昇温によりSCR触媒に吸着していたNH3(アンモニア)が脱離して、アンモニアスリップが発生する可能性がある。そのため、SCR触媒に於けるNH3吸着量がある程度低下した状態から、フィルタ再生制御を開始する。 By the way, since an SCR catalyst is used in such an exhaust gas purification system, NH 3 (ammonia) adsorbed on the SCR catalyst is desorbed by the rapid temperature rise of the exhaust gas during the regeneration control of the filter, and ammonia is produced. Slip may occur. Therefore, the filter regeneration control is started from the state where the amount of NH 3 adsorbed in the SCR catalyst is lowered to some extent.

特に、SCR触媒を担持したSCR装置の前段にLNT触媒を担持したLNT装置が配置されている場合には、NOxがLNT装置のLNT触媒に吸蔵されてしまい、SCR装置におけるNH3消費量の低減効率が低下するので、NH3吸着量が低減するまでの待ち時間が長くなり、フィルタ再生開始までの時間が長くなる懸念がある。フィルタ再生開始間までの時間が長くなると、NOx排出量の増加などの懸念がある。 In particular, when the LNT device carrying the LNT catalyst is arranged in front of the SCR device carrying the SCR catalyst, NOx is occluded in the LNT catalyst of the LNT device, and the NH 3 consumption in the SCR device is reduced. Since the efficiency is lowered, the waiting time until the NH 3 adsorption amount is reduced becomes long, and there is a concern that the time until the start of filter regeneration becomes long. If the time until the start of filter regeneration becomes long, there is a concern that NOx emissions will increase.

本開示の目的は、フィルタ再生時において、SCR装置のSCR触媒に吸着されている還元剤が脱離及び放出されて、SCR装置の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題と、それに伴うNOx排出量の増加の懸念を解決できる、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することである。 An object of the present disclosure is to prevent the reducing agent adsorbed on the SCR catalyst of the SCR apparatus from being desorbed and released and flowing out to the downstream side of the SCR apparatus during filter regeneration until the start of filter regeneration. It is an object of the present invention to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine, which can solve the problem of long time and the concern about the increase in NOx emissions associated therewith.

上記の目的を達成するための本発明の態様の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた内燃機関の排気ガス浄化システムにおいて、前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出する推定還元剤吸着量算出手段と、前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、前記推定還元剤吸着量算出手段で算出された再生開始時の推定還元剤吸着量が予め設定した目標還元剤吸着量以上であるか否かを判定する還元剤吸着量判定手段と、前記還元剤吸着量判定手段で、前記推定還元剤吸着量算出手段で算出される推定還元剤吸着量が前記目標還元剤吸着量以上である場合は、前記推定還元剤吸着量算出手段で算出される推定還元剤吸着量が前記目標還元剤吸着量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行う吸着還元剤消費手段を備えて構成されている制御装置を有している。 The exhaust gas purification system of the internal combustion engine according to the embodiment of the present invention for achieving the above object includes a NOx adsorption reduction type catalyst device that absorbs NOx in the exhaust gas in order from the upstream side in the exhaust passage of the internal combustion engine. In the exhaust gas purification system of an internal combustion engine equipped with a selective reduction type catalyst device that reduces NOx in the exhaust gas with a reducing agent and a filter device that collects particulate matter in the exhaust gas in the exhaust passage. At the start of the estimation reduction agent adsorption amount calculation means for calculating the estimated reduction agent adsorption amount, which is an estimated value of the reduction agent adsorption amount in the selective reduction type catalyst apparatus, and the filter regeneration for burning and removing the particulate matter of the filter apparatus. A reducing agent adsorption amount determining means for determining whether or not the estimated reducing agent adsorption amount at the start of regeneration calculated by the estimated reducing agent adsorption amount calculating means is equal to or greater than a preset target reducing agent adsorption amount, and the reducing agent. When the estimated reducing agent adsorption amount calculated by the estimated reducing agent adsorption amount calculating means is equal to or larger than the target reducing agent adsorption amount in the adsorption amount determining means, the estimated reduction calculated by the estimated reducing agent adsorption amount calculating means. A control configured to include an adsorption-reducing agent consuming means for controlling the adsorption-reducing agent consumption to reduce the adsorption-reducing agent in the selective reduction type catalyst device so that the amount of the agent adsorbed is smaller than the target adsorbing amount of the reducing agent. Has a device.

また、上記の目的を達成するための本発明の態様の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出し、前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定還元剤吸着量が予め設定した目標還元剤吸着量以上であるか否かを判定し、前記推定還元剤吸着量が前記目標還元剤吸着量以上である場合は、算出される推定還元剤吸着量が前記目標還元剤吸着量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行うことを特徴とする方法である。 Further, the method for purifying the exhaust gas of the internal combustion engine according to the embodiment of the present invention for achieving the above object is a NOx occlusion reduction type catalyst device that occludes NOx in the exhaust gas in the exhaust passage of the internal combustion engine in order from the upstream side. And a selective reduction type catalyst device that reduces NOx in the exhaust gas with a reducing agent, and an exhaust gas purification method for an internal combustion engine provided with a filter device that collects particulate matter in the exhaust gas in the exhaust passage. At the start of filter regeneration in which the estimated reducing agent adsorption amount, which is an estimated value of the reducing agent adsorption amount in the selective reduction catalyst device, is calculated and the particulate matter of the filter device is burned and removed. It is determined whether or not the estimated reducing agent adsorption amount of is equal to or greater than the preset target reducing agent adsorption amount, and if the estimated reducing agent adsorption amount is equal to or greater than the target reducing agent adsorption amount, the estimated reducing agent is calculated. It is a method characterized by performing adsorption-reducing agent consumption control which reduces the adsorption-reducing agent in the selective reduction type catalyst apparatus so that the adsorption amount becomes smaller than the target reducing agent adsorption amount.

本発明の態様の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、フィルタ再生時において、SCR装置のSCR触媒に吸着されている還元剤が脱離及び放出されて、SCR装置の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題を解決できる。 According to the exhaust gas purification system of the internal combustion engine and the exhaust gas purification method of the internal combustion engine according to the embodiment of the present invention, the reducing agent adsorbed on the SCR catalyst of the SCR apparatus is desorbed and released during the filter regeneration, and the SCR is released. It is possible to solve the problem that the time until the start of filter reproduction becomes long while avoiding the outflow to the downstream side of the device.

本発明の実施形態の内燃機関の排気ガス浄化システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the exhaust gas purification system of the internal combustion engine of embodiment of this invention. 本発明の実施形態の内燃機関の排気ガス浄化システムの制御装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the control device of the exhaust gas purification system of the internal combustion engine of embodiment of this invention. 本発明の実施形態の内燃機関の排気ガス浄化方法を実施するための制御フローの一例を示す図である。It is a figure which shows an example of the control flow for carrying out the exhaust gas purification method of the internal combustion engine of embodiment of this invention. LNT触媒とSCR触媒における、エンジン出口温度とNOx浄化率の関係を例示する図である。It is a figure which illustrates the relationship between the engine outlet temperature and NOx purification rate in an LNT catalyst and an SCR catalyst.

以下、本発明の実施形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。 Hereinafter, the exhaust gas purification system of the internal combustion engine and the exhaust gas purification method of the internal combustion engine according to the embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の実施形態の内燃機関の排気ガス浄化システム(以下、排気ガス浄化システム)1は、エンジン本体(E:内燃機関本体)10から排出される排気ガスGが通過する排気通路11に、上流側から順に、NOx吸蔵機能を有するLNT装置(NOx触媒装置)21と、排気ガスG中のPM(粒子状物質)を捕集するCSF装置(触媒付フィルタ装置)22と、尿素水(厳密にはNH3(アンモニア:還元剤)を発生させる還元剤発生物質であるが、ここでは、説明の簡略化のため還元剤とする)を供給する尿素水供給装置23と、尿素水から発生するNH3でNOxを還元浄化するSCR装置(例えば、尿素SCR触媒装置:選択還元型触媒装置)24と、SCR装置24から流出するNH3を酸化して浄化する、ASC(Ammonia Slip Catalyst:アンモニアスリップ触媒)と呼ばれるDOC装置(DOC:Diesel Oxidation Catalyst:酸化触媒)25を備えて構成される。 As shown in FIG. 1, the exhaust gas purification system (hereinafter, exhaust gas purification system) 1 of the internal combustion engine according to the embodiment of the present invention passes the exhaust gas G discharged from the engine main body (E: internal combustion engine main body) 10. The LNT device (NOx catalyst device) 21 having a NOx storage function and the CSF device (filter device with catalyst) 22 that collects PM (particulate substance) in the exhaust gas G in the exhaust passage 11 in order from the upstream side. And the urea water supply device 23 that supplies urea water (strictly speaking, it is a reducing agent generating substance that generates NH 3 (ammonia: reducing agent), but here, it is used as a reducing agent for the sake of simplicity of explanation). , SCR device (for example, urea SCR catalytic device: selective reduction catalytic device) 24 that reduces and purifies NOx with NH 3 generated from urea water, and ASC ( for example) that oxidizes and purifies NH 3 flowing out of the SCR device 24. It is configured to include a DOC device (DOC: Diesel Oxidation Catalyst: oxidation catalyst) 25 called an Amminoa Slip Catalyst (ammonia slip catalyst).

また、それと共に、尿素水供給装置23から噴射する尿素水Uの噴射量U1を制御する制御装置40を備えて構成される。この制御装置40は、通常はエンジン本体10の全般の制御を行うエンジンコントロールユニットと呼ばれる制御装置に組み込まれるが、別の制御装置とすることも可能である。 Along with this, a control device 40 for controlling the injection amount U1 of the urea water U injected from the urea water supply device 23 is provided. The control device 40 is usually incorporated in a control device called an engine control unit that controls the entire engine body 10, but it can also be another control device.

つまり、この排気ガス浄化システム1は、内燃機関の排気通路11に、上流側から順に、排気ガスG中のNOxを吸蔵するLNT装置21と、排気ガスG中のNOxを還元剤により還元するSCR触媒装置24とを備えるとともに、排気通路11に排気ガスG中のPMを捕集するCSF装置22を備えて構成されている。また、この排気ガス浄化システム1を制御するための制御装置40を備えている。 That is, the exhaust gas purification system 1 has an LNT device 21 that sucks NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side, and an SCR that reduces the NOx in the exhaust gas G with a reducing agent. It is provided with a catalyst device 24 and a CSF device 22 for collecting PM in the exhaust gas G in the exhaust passage 11. Further, a control device 40 for controlling the exhaust gas purification system 1 is provided.

なお、NOxを吸蔵するLNT装置21として、NOx吸蔵還元型触媒装置を例示しているが、NOxを吸蔵して排気ガス中のNOxを浄化する触媒であればよく、本発明は、このNOx吸蔵還元型触媒装置に限定されるものではない。また、PM(粒子状物質)を捕集するフィルタ装置として、触媒を担持したフィルタ装置の一つであるCSF装置を例示しているが、フィルタ再生を必要とするフィルタ装置であればよく、本発明は、このCSFに限定されるものではない。 As the LNT device 21 for storing NOx, a NOx storage reduction type catalyst device is exemplified, but any catalyst may be used as long as it is a catalyst that stores NOx and purifies NOx in the exhaust gas. It is not limited to the reduction type catalyst device. Further, as a filter device for collecting PM (particulate matter), a CSF device which is one of the filter devices carrying a catalyst is exemplified, but any filter device that requires filter regeneration may be used. The invention is not limited to this CSF.

さらに、この図1に示す排気ガス浄化システムは例示であり、本発明は、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置の下流に、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置が配置され、フィルタ再生を必要とするフィルタ装置が排気通路のいずれかに配置されている排気ガス浄化システムであればよい。 Further, the exhaust gas purification system shown in FIG. 1 is an example, and the present invention selects to reduce NOx in the exhaust gas with a reducing agent downstream of the NOx occlusion reduction type catalyst device that occludes NOx in the exhaust gas. It may be an exhaust gas purification system in which a reduction type catalyst device is arranged and a filter device requiring filter regeneration is arranged in any of the exhaust passages.

そして、LNT装置21としては、NOx吸蔵還元型触媒などを担持した装置が例示される。このNOx吸蔵還元型触媒は、触媒担体上に白金等の貴金属触媒とバリウム等のアルカリ土類金属等で形成されるNOx吸蔵材を担持した成型体などから構成されている。そして、排気ガス中のNOxをリーン状態のときに、NOx吸蔵材に一旦吸蔵させ、NOxの吸蔵量が飽和する前に排気ガスをNOxパージ制御でリッチ空燃比状態にすることで、NOx吸蔵材に吸蔵されたNOxを放出させて、貴金属触媒の三元機能により還元するものである。 An example of the LNT device 21 is a device carrying a NOx storage-reducing catalyst or the like. This NOx storage reduction type catalyst is composed of a molded body or the like in which a noble metal catalyst such as platinum and a NOx storage material formed of an alkaline earth metal such as barium are supported on a catalyst carrier. Then, when the NOx in the exhaust gas is in a lean state, the NOx storage material is temporarily stored, and the exhaust gas is brought into a rich air-fuel ratio state by NOx purge control before the NOx storage amount is saturated. NOx stored in the occlusal gas is released and reduced by the ternary function of the noble metal catalyst.

CSF装置(触媒付フィルタ装置)22は、コージェライト材料、若しくは炭化ケイ素(SiC)材料等で形成され、ハニカムセラミックスのセルの両端を交互に塞ぐことでセラミックスの薄い壁をフィルタとして使用している。この微粒子捕集フィルタは、耐熱性に優れているため、フィルタ再生時に加熱することで捕集されているPMを燃焼して除去することができ、このフィルタ再生処理により、捕集性能を維持できる。また、よりPMの燃焼が起こり易くするために酸化触媒を担持させている。 The CSF device (filter device with catalyst) 22 is made of a cordierite material, a silicon carbide (SiC) material, or the like, and alternately closes both ends of the honeycomb ceramic cell to use a thin wall of the ceramic as a filter. .. Since this fine particle collection filter has excellent heat resistance, PM collected can be burned and removed by heating during filter regeneration, and the collection performance can be maintained by this filter regeneration process. .. In addition, an oxidation catalyst is supported to facilitate the combustion of PM.

尿素水供給装置23は、尿素水タンク23aから尿素水供給配管23b経由で供給される尿素水UをSCR装置24に供給するための噴射装置であり、制御装置40により、尿素水Uの噴射の有無及びその噴射量U1を調整制御される。 The urea water supply device 23 is an injection device for supplying the urea water U supplied from the urea water tank 23a via the urea water supply pipe 23b to the SCR device 24, and the control device 40 is used to inject the urea water U. The presence / absence and its injection amount U1 are adjusted and controlled.

SCR装置24は、例えば、尿素水を還元剤Uとして、発生したNH3で排気ガスG中のNOxと反応させて窒素と水にする尿素選択還元型触媒を担持して構成される。この尿素選択還元型触媒としては、鉄イオン交換アルミノシリケートや銅イオン交換アルミノシリケートなどのゼオライト触媒などがあり、NH3を吸着して、この吸着したNH3でNOxを還元浄化する機能を有している。この選択還元型触媒装置24を使用することで、NH3を直接使用するのではなく、尿素水を排気ガスGの中に噴射して、尿素水から加水分解により発生するNH3とNOxを反応させることでNOxを無害化する。 The SCR device 24 is configured by carrying, for example, a urea selective reduction catalyst in which urea water is used as a reducing agent U and the generated NH 3 reacts with NOx in the exhaust gas G to form nitrogen and water. As the urea selective reduction catalyst, include zeolite catalyst such as iron ion exchange aluminosilicate and copper ion-exchanged aluminosilicate, adsorbs NH 3, has a function to reduce and purify NOx in NH 3 was the suction ing. By using this selective reduction type catalyst device 24, instead of using NH 3 directly, urea water is injected into the exhaust gas G to react NH 3 generated by hydrolysis from the urea water with NOx. By making it harmless, NOx is made harmless.

また、排気通路11に配置されるセンサ群の内のNOxセンサに関しては、LNT装置21に流入する排気ガスG中のNOx濃度である第1NOx濃度Cn1を検出するための第1NOxセンサ31がLNT装置21の入口側に設けられる。また、SCR装置24に流入する排気ガスG中のNOx濃度である第2NOx濃度Cn2を検出するための第2NOxセンサ32がSCR装置24の入口側に設けられる。さらに、DOC装置25から流出する排気ガスG中のNOx濃度である第3NOx濃度Cn3を検出するための第3NOxセンサ33がDOC装置25の出口側に設けられる。 Regarding the NOx sensor in the sensor group arranged in the exhaust passage 11, the first NOx sensor 31 for detecting the first NOx concentration Cn1 which is the NOx concentration in the exhaust gas G flowing into the LNT device 21 is the LNT device. It is provided on the entrance side of 21. Further, a second NOx sensor 32 for detecting the second NOx concentration Cn2, which is the NOx concentration in the exhaust gas G flowing into the SCR device 24, is provided on the inlet side of the SCR device 24. Further, a third NOx sensor 33 for detecting the third NOx concentration Cn3, which is the NOx concentration in the exhaust gas G flowing out from the DOC device 25, is provided on the outlet side of the DOC device 25.

更に、ラムダセンサ(空燃比センサ:酸素濃度センサ)に関しては、LNT装置21に流入する排気ガスGの空燃比(λ)である第1空燃比Ca1を検出するための第1ラムダセンサ34がLNT装置21の入口側に設けられる。また、CSF装置22に流入する排気ガスGの空燃比(λ)である第2空燃比Ca2を検出する第2ラムダセンサ35がCSF装置22の入口側に設けられる。 Further, regarding the lambda sensor (air-fuel ratio sensor: oxygen concentration sensor), the first lambda sensor 34 for detecting the first air-fuel ratio Ca1 which is the air-fuel ratio (λ) of the exhaust gas G flowing into the LNT device 21 is the LNT. It is provided on the inlet side of the device 21. Further, a second lambda sensor 35 for detecting the second air-fuel ratio Ca2, which is the air-fuel ratio (λ) of the exhaust gas G flowing into the CSF device 22, is provided on the inlet side of the CSF device 22.

また、排気ガス温度センサに関してはLNT装置21に流入する排気ガスGの温度である第1排気ガス温度Tg1を検出するための第1排気ガス温度センサ(第1温度検出装置)36がLNT装置21の入口側に設けられる。また、SCR装置24に流入する排気ガスGの温度である第2排気ガス温度Tg2を検出するための第2排気ガス温度センサ(第2温度検出装置)37がSCR装置24の入口側に設けられる。さらに、CSF装置22に流入する排気ガスGの温度である第3排気ガス温度Tg3を検出するための第3排気ガス温度センサ38がCSF装置22の入口側に設けられる。 Regarding the exhaust gas temperature sensor, the first exhaust gas temperature sensor (first temperature detection device) 36 for detecting the first exhaust gas temperature Tg1, which is the temperature of the exhaust gas G flowing into the LNT device 21, is the LNT device 21. It is installed on the entrance side of. Further, a second exhaust gas temperature sensor (second temperature detection device) 37 for detecting the second exhaust gas temperature Tg2, which is the temperature of the exhaust gas G flowing into the SCR device 24, is provided on the inlet side of the SCR device 24. .. Further, a third exhaust gas temperature sensor 38 for detecting the third exhaust gas temperature Tg3, which is the temperature of the exhaust gas G flowing into the CSF device 22, is provided on the inlet side of the CSF device 22.

つまり、LNT装置21へ流入する排気ガスGの温度である第1排気ガス温度Tg1を測定する第1排気ガス温度センサ36と、SCR装置24へ流入する排気ガスGの温度である第2排気ガス温度Tg2を測定する第2排気ガス温度センサ37を備えて構成されている。 That is, the first exhaust gas temperature sensor 36 that measures the first exhaust gas temperature Tg1, which is the temperature of the exhaust gas G flowing into the LNT device 21, and the second exhaust gas, which is the temperature of the exhaust gas G flowing into the SCR device 24. It is configured to include a second exhaust gas temperature sensor 37 that measures the temperature Tg2.

これらの各種センサ31〜38の検出値は、制御装置40に入力され、制御装置40はこれらの入力データを基にして、各種演算を行い、エンジン本体10に制御指令を出力する。それと共に、尿素水供給装置23にも制御指令を出力して、尿素水供給装置23から噴射する還元剤Uの噴射量U1を調整制御する。 The detected values of these various sensors 31 to 38 are input to the control device 40, and the control device 40 performs various calculations based on these input data and outputs a control command to the engine main body 10. At the same time, a control command is also output to the urea water supply device 23 to adjust and control the injection amount U1 of the reducing agent U injected from the urea water supply device 23.

また、排気ガス浄化システム1は、この制御装置40の制御指令に従って、排気ガス温度を昇温して、CSF装置22における、CSF装置22に捕集されたPMを酸化除去するフィルタ再生制御を行ったり、排気ガス温度の昇温と排気ガスGの空燃比をリッチ空燃比にして、LNT装置21における、吸蔵されたNOxを放出すると共に、LNT装置21で担持している三元触媒により放出されたNOxを還元浄化するNOxパージ制御(NOx再生制御)を行ったり、また、排気ガス温度をNOxパージ制御の温度よりも高い温度に昇温して、LNT装置21に吸蔵した硫黄成分を除去する硫黄パージ制御を行ったりする。 Further, the exhaust gas purification system 1 raises the exhaust gas temperature according to the control command of the control device 40, and performs filter regeneration control in the CSF device 22 to oxidize and remove the PM collected by the CSF device 22. Alternatively, the temperature of the exhaust gas is raised and the air-fuel ratio of the exhaust gas G is set to a rich air-fuel ratio to release the stored NOx in the LNT device 21 and to be released by the ternary catalyst carried by the LNT device 21. NOx purge control (NOx regeneration control) is performed to reduce and purify the NOx, and the exhaust gas temperature is raised to a temperature higher than the temperature of the NOx purge control to remove the sulfur component stored in the LNT device 21. Sulfur purge control is performed.

この制御装置40は、図2に示すように、上記のフィルタ再生制御を行うフィルタ再生制御手段41、NOxパージ制御を行うNOxパージ制御手段42、硫黄パージ制御を行う硫黄パージ制御手段43、尿素水供給制御手段44に加えて、推定NH3吸着量算出手段(推定還元剤吸着量算出手段)51と、NH3吸着量判定手段(還元剤吸着量判定手段)52と、吸着NH3消費手段(吸着還元剤消費手段)53を備えて構成されている。 As shown in FIG. 2, the control device 40 includes a filter regeneration control means 41 for performing the filter regeneration control, a NOx purge control means 42 for performing NOx purge control, a sulfur purge control means 43 for performing sulfur purge control, and urea water. In addition to the supply control means 44, an estimated NH 3 adsorption amount calculation means (estimated reducing agent adsorption amount calculation means) 51, an NH 3 adsorption amount determination means (reducing agent adsorption amount determination means) 52, and an adsorption NH 3 consumption means ( It is configured to include an adsorption reducing agent consuming means) 53.

この推定NH3吸着量算出手段51は、SCR装置24におけるNH3(還元剤)吸着量の推定値である推定NH3吸着量Seを算出する手段である。また、NH3吸着量判定手段52は、CSF装置22のPMを燃焼除去するフィルタ再生の開始時に、推定NH3吸着量算出手段51で算出されたフィルタ再生開始時の推定NH3吸着量Seが予め設定した目標NH3吸着量St以上であるか否かを判定する手段である。 The estimated NH 3 adsorption amount calculation means 51 is a means for calculating the estimated NH 3 adsorption amount Se, which is an estimated value of the NH 3 (reducing agent) adsorption amount in the SCR device 24. Further, the NH 3 adsorption amount determining means 52 has an estimated NH 3 adsorption amount Se at the start of filter regeneration calculated by the estimated NH 3 adsorption amount calculation means 51 at the start of filter regeneration for burning and removing PM of the CSF device 22. It is a means for determining whether or not the target NH 3 adsorption amount St or more is set in advance.

また、吸着NH3消費手段53は、NH3吸着量判定手段52で、推定NH3吸着量算出手段51で算出される推定NH3吸着量Seが目標NH3吸着量St以上である場合は、推定NH3吸着量算出手段51で算出される推定NH3吸着量Seが目標NH3吸着量Stよりも少なくなるように、SCR装置24における吸着NH3を減少させる吸着NH3消費制御を行う手段である。 Further, the adsorption NH 3 consuming means 53 is the NH 3 adsorption amount determining means 52, and when the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculation means 51 is equal to or more than the target NH 3 adsorption amount St, Means for controlling the adsorption NH 3 consumption to reduce the adsorption NH 3 in the SCR device 24 so that the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculation means 51 is smaller than the target NH 3 adsorption amount St. Is.

この吸着NH3消費手段53は、第1排気ガス温度センサ36で検出される第1排気ガス温度Tg1が、LNT装置21におけるNOx放出温度に基づいて予め設定された第1設定温度Tgc1以上になるように、排気ガスGを昇温又は維持する吸着還元剤消費制御を行うように構成されている。この第1設定温度Tgc1は、図4に例示するNOx浄化率とエンジン出口温度との関係で、LNTのNOx浄化率が低下する温度があるように、LNT装置21におけるNOx浄化率が低下する温度、言い換えれば、NOx吸蔵能力が低下する温度、例えば、400℃以上に設定される。 In the adsorption NH 3 consuming means 53, the first exhaust gas temperature Tg1 detected by the first exhaust gas temperature sensor 36 becomes equal to or higher than the first set temperature Tgc1 preset based on the NOx emission temperature in the LNT device 21. As described above, it is configured to control the consumption of the adsorption-reducing agent for raising or maintaining the temperature of the exhaust gas G. The first set temperature Tgc1 is a temperature at which the NOx purification rate of the LNT device 21 decreases so that there is a temperature at which the NOx purification rate of LNT decreases in relation to the NOx purification rate exemplified in FIG. 4 and the engine outlet temperature. In other words, it is set to a temperature at which the NOx storage capacity decreases, for example, 400 ° C. or higher.

この排気ガスGの昇温に起因するLNT装置21のNOx吸蔵還元型触媒の昇温により、フィルタ再生時において、フィルタ再生を開始する前に、LNT装置21に吸蔵されているNOxを放出させて、この放出されたNOxを下流側のSCR装置24に流入させる。この流入したNOxと、SCR装置24で吸着しているNH3とが反応してNOxを還元浄化することにより、SCR装置24における吸着NH3を減少させることができる。 Due to the temperature rise of the NOx storage reduction catalyst of the LNT device 21 due to the temperature rise of the exhaust gas G, the NOx stored in the LNT device 21 is released at the time of filter regeneration before the filter regeneration is started. , The released NOx is allowed to flow into the downstream SCR device 24. By reacting the inflowing NOx with the NH 3 adsorbed by the SCR device 24 to reduce and purify the NOx, the adsorbed NH 3 in the SCR device 24 can be reduced.

このときの排気ガスGの昇温は、NOxパージ制御とは異なり、排気ガスG中の空燃比(λ)はリーン状態とすることが好ましい。空燃比をリッチ状態とすると、NOx吸蔵還元型触媒から放出されたNOxが三元触媒により還元浄化されてしまうため、SCR装置24に流入するNOxが減少してしまい、SCR装置24における吸着NH3の減少効果が低減してしまうからである。 The temperature rise of the exhaust gas G at this time is different from the NOx purge control, and it is preferable that the air-fuel ratio (λ) in the exhaust gas G is in a lean state. When the air-fuel ratio is in a rich state, the NOx released from the NOx storage reduction catalyst is reduced and purified by the three-way catalyst, so that the NOx flowing into the SCR device 24 decreases, and the adsorbed NH 3 in the SCR device 24 decreases. This is because the reduction effect of is reduced.

さらに、吸着NH3消費手段53は、吸着NH3消費制御では、第2排気ガス温度センサ37で検出される第2排気ガス温度Tg2が、SCR装置24におけるNH3消費効率に基づいて予め設定された第2設定温度Tgc2以上で、かつ、SCR装置24におけるNH3放出温度に基づいて予め設定された第3設定温度Tgc3以下になるように、第2排気ガス温度Tg2を昇温又は維持するように構成されていることが好ましい。この第2設定温度Tgc2は、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRでNOx浄化率が高くなる温度があるように、NOx浄化率が高く、吸蔵NH3の消費率が多くなる温度、例えば、300℃程度に設定される。 Further, in the adsorption NH 3 consumption means 53, in the adsorption NH 3 consumption control, the second exhaust gas temperature Tg 2 detected by the second exhaust gas temperature sensor 37 is preset based on the NH 3 consumption efficiency in the SCR device 24. The second exhaust gas temperature Tg2 is raised or maintained so as to be equal to or higher than the second set temperature Tgc2 and lower than the preset third set temperature Tgc3 based on the NH 3 emission temperature in the SCR device 24. It is preferable that it is configured in. This second set temperature Tgc2 has a high NOx purification rate and consumes the occluded NH 3 so that there is a temperature at which the NOx purification rate becomes high in SCR in relation to the NOx purification rate exemplified in FIG. 4 and the engine outlet temperature. It is set to a temperature at which the rate increases, for example, about 300 ° C.

この排気ガスGの昇温に起因するSCR装置24のSCR触媒の昇温により、フィルタ再生時において、フィルタ再生を開始する前に、SCR装置24に吸着されているNH3をNOxと反応させる。このNOx還元反応の効率、即ち、NH3消費効率は、第2排気ガス温度Tg2が、上記で設定した第2設定温度Tgc2以上になると大きくなるので、短時間で、SCR装置24における吸蔵NH3を減少させることができるようになる。 Due to the temperature rise of the SCR catalyst of the SCR device 24 due to the temperature rise of the exhaust gas G, NH 3 adsorbed on the SCR device 24 is reacted with NOx at the time of filter regeneration before the filter regeneration is started. Efficiency of the NOx reduction reaction, i.e., NH 3 consumption efficiency, the second exhaust gas temperature Tg2 is, becomes larger becomes the second set temperature Tgc2 or set above, short time, storage NH 3 in the SCR device 24 Will be able to be reduced.

また、SCR装置24のSCR触媒温度が高くなり過ぎると、SCR装置24におけるNOx浄化率が低下するため、第2排気ガス温度Tg2を上記で設定した第3設定温度Tgc3以下に抑える。この第3設定温度Tgc3は、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRでNOx浄化率が低くなる温度があるように、NOx浄化率が低く吸蔵NH3の消費率が減少する温度、例えば、400℃程度に設定される。つまり、第2排気ガス温度Tg2を、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRにおけるNOx浄化率が高くなっている温度範囲Raに相当する温度範囲内になる、昇温及び維持する。 Further, if the SCR catalyst temperature of the SCR device 24 becomes too high, the NOx purification rate in the SCR device 24 decreases, so that the second exhaust gas temperature Tg2 is suppressed to the third set temperature Tgc3 or less set above. This third set temperature Tgc 3 has a low NOx purification rate and a consumption rate of occluded NH 3 so that there is a temperature at which the NOx purification rate becomes low in SCR due to the relationship between the NOx purification rate exemplified in FIG. 4 and the engine outlet temperature. Is set to a temperature at which the temperature decreases, for example, about 400 ° C. That is, the second exhaust gas temperature Tg2 rises within the temperature range corresponding to the temperature range Ra in which the NOx purification rate in SCR is high in relation to the NOx purification rate exemplified in FIG. 4 and the engine outlet temperature. Keep warm and maintain.

そして、本発明の実施の形態の内燃機関の排気ガス浄化方法(以下、排気ガス浄化方法)は、内燃機関の排気通路11に、上流側から順に、排気ガスG中のNOxを吸蔵するLNT装置21と、排気ガスG中のNOxをNH3により還元するSCR装置24とを備えるとともに、排気通路11に、排気ガスG中のPMを捕集するCSF装置22を備えた排気ガス浄化方法であり、次のような方法である。 The exhaust gas purification method for an exhaust gas engine according to the embodiment of the present invention (hereinafter referred to as an exhaust gas purification method) is an LNT device that stores NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side. This is an exhaust gas purification method including 21 and an SCR device 24 that reduces NOx in the exhaust gas G by NH 3, and a CSF device 22 that collects PM in the exhaust gas G in the exhaust passage 11. , The method is as follows.

この排気ガス浄化方法において、SCR装置24におけるNH3吸着量の推定値である推定NH3吸着量Seを算出し、CSF装置22のPMを燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定NH3吸着量Seが予め設定した目標NH3吸着量St以上であるか否かを判定し、推定NH3吸着量Seが目標NH3吸着量St以上である場合は、算出される推定NH3吸着量Seが目標NH3吸着量Stよりも少なくなるように、SCR装置24における吸着NH3を減少させる吸着NH3消費制御を行う。 In this exhaust gas purification method, the estimated NH 3 adsorption amount Se, which is an estimated value of the NH 3 adsorption amount in the SCR device 24, is calculated, and the calculated regeneration start is performed at the start of the filter regeneration that burns and removes the PM of the CSF device 22. estimated adsorbed NH 3 amount Se is determined whether a target adsorbed NH 3 amount St above a preset time, when the estimated adsorbed NH 3 amount Se is the target adsorbed NH 3 amount St above is calculated Adsorption NH 3 consumption control is performed to reduce the adsorption NH 3 in the SCR device 24 so that the estimated NH 3 adsorption amount Se becomes smaller than the target NH 3 adsorption amount St.

この上記の制御は、図3に示すような一例の制御フローで実施することができる。この図3の制御フローは内燃機関が運転を開始すると、上級の制御フローから呼ばれて、他の排気ガス浄化システム1の運転制御フローと並行して実施され、内燃機関の運転が終了する際には、割り込みが生じて、上級の制御フローに戻って、この上級の制御フローと共に終了するものとして示してある。 This above-mentioned control can be carried out by an example control flow as shown in FIG. The control flow of FIG. 3 is called from the advanced control flow when the internal combustion engine starts operation, is executed in parallel with the operation control flow of the other exhaust gas purification system 1, and when the operation of the internal combustion engine ends. Shows that an interrupt occurs, returns to the advanced control flow, and ends with this advanced control flow.

図3の制御フローが上位の制御フローから呼ばれてスタートすると、ステップS11の「再生要求あり?」で、CSF装置22におけるフィルタ再生制御(以下、再生制御とする)を要求するフィルタ再生要求(以下、再生要求とする)が有るか否かの判定をする。この判定で、再生要求が無い場合は、リターンし、上位の制御フローに戻って、予め設定した時間を経過した後、再度上位の制御フローから呼ばれてスタートし、これを繰り返す。 When the control flow of FIG. 3 is called from a higher-level control flow and starts, a filter reproduction request (hereinafter referred to as reproduction control) for requesting filter reproduction control (hereinafter referred to as reproduction control) in the CSF device 22 in "is there a reproduction request?" In step S11 (hereinafter referred to as reproduction control). Hereinafter, it is determined whether or not there is a reproduction request). In this determination, if there is no reproduction request, it returns, returns to the upper control flow, elapses a preset time, is called from the upper control flow again, starts, and repeats this.

ステップS11の「再生要求あり?」の判定で、再生要求が有る場合は、ステップS12の「NOxパージ制御の停止」に行く。このステップS12の「NOxパージ制御の停止」では、NOx吸蔵還元型触媒のNOxパージ制御を停止し、NOx吸蔵還元型触媒のNOx低減制御(DeNOx制御)を停止する。つまり、NOxパージ制御の停止を行う。 If there is a reproduction request in the determination of "reproduction request?" In step S11, the process goes to "stop NOx purge control" in step S12. In the “stop NOx purge control” in step S12, the NOx purge control of the NOx storage reduction catalyst is stopped, and the NOx reduction control (DeNOx control) of the NOx storage reduction catalyst is stopped. That is, the NOx purge control is stopped.

次のステップS13の「SCR入口温度の入力」では、第2排気ガス温度センサ37で検出される第2排気ガス温度Tg2、つまり、SCR入口温度を入力する。そして、「目標NH3吸着量Stの設定」では、SCR装置24における吸着可能なNH3吸着量Smaxは、SCR触媒の温度の影響を大きく受けるので、この第2排気ガス温度Tg2に基づいて、フィルタ再生時(以下再生時とする)の目標NH3吸着量Stを設定する。この再生時の目標NH3吸着量Stは、再生時は、排気ガス流量が小さく、排気ガスが急昇温するため、アンモニアスリップが発生し易くなるので、再生時以外の通常時の目標NH3吸着量St0と比較して、これより小さい値に設定される。 In the "input of the SCR inlet temperature" in the next step S13, the second exhaust gas temperature Tg2 detected by the second exhaust gas temperature sensor 37, that is, the SCR inlet temperature is input. Then, in the " setting of the target NH 3 adsorption amount St", the NH 3 adsorption amount Smax that can be adsorbed by the SCR device 24 is greatly affected by the temperature of the SCR catalyst. Therefore, based on this second exhaust gas temperature Tg2, Set the target NH 3 adsorption amount St during filter regeneration (hereinafter referred to as regeneration). The target NH 3 adsorption amount St during regeneration is the target NH 3 at normal times other than during regeneration because the exhaust gas flow rate is small during regeneration and the exhaust gas rises rapidly, so that ammonia slip is likely to occur. It is set to a value smaller than this as compared with the adsorption amount St0.

さらに、「推定NH3吸着量Seの算出」では、SCR装置24におけるNH3吸着量の推定値である推定NH3吸着量Seを算出する。この推定NH3吸着量Seは、供給NH3量から消費NH3量を減算し、さらに、NH3スリップ量を減算したものである(推定NH3吸着量Se=前回推定NH3吸着量+供給NH3量−消費NH3量−NH3スリップ量)。 Furthermore, in the "calculation of the estimated adsorbed NH 3 amount Se", it calculates the estimated adsorbed NH 3 amount Se is an estimate of the adsorbed NH 3 amount in the SCR device 24. The estimated adsorbed NH 3 amount Se subtracts the consumed amount of NH 3 from the supply amount of NH 3, further is obtained by subtracting the NH 3 slip amount (estimated adsorbed NH 3 amount Se = previously estimated adsorbed NH 3 amount + supply NH 3 amount-consumed NH 3 amount-NH 3 slip amount).

この供給NH3量は、尿素水Uから加水分解により発生したNH3の供給量であり、これは尿素水供給装置23から供給した尿素水Uの噴射量U1などを基にして算出される。 This supply NH 3 amount is the supply amount of NH 3 generated by hydrolysis from the urea water U, and this is calculated based on the injection amount U1 of the urea water U supplied from the urea water supply device 23 and the like.

消費NH3量は、エンジン本体10から発生したNOx量を還元するのに使用したNH3の量である。これは、SCR装置24に流入するNOx量とSCR触媒の温度(例えば、第2排気ガス温度Tg2で代用)、排気ガスGの流量、NOとNO2の比率、反応時のNH3吸着量等を基にして計算される。このSCR装置24に流入するNOx量は、LNT装置21の出口側の第2NOx濃度Cn2と排気ガスGの流量とから得られる単位時間ごとのNOx量で推定することができる。 The amount of NH 3 consumed is the amount of NH 3 used to reduce the amount of NOx generated from the engine body 10. This includes the amount of NOx flowing into the SCR device 24, the temperature of the SCR catalyst (for example, the second exhaust gas temperature Tg2 is used as a substitute), the flow rate of the exhaust gas G, the ratio of NO and NO 2 , the amount of NH 3 adsorbed during the reaction, etc. It is calculated based on. The amount of NOx flowing into the SCR device 24 can be estimated by the amount of NOx per unit time obtained from the second NOx concentration Cn2 on the outlet side of the LNT device 21 and the flow rate of the exhaust gas G.

また、このSCR装置24に流入するNOx量(SCR入口NOx量)は、エンジン出口のNOx量からLNT装置21のNOx吸蔵脱離量とLNT装置21のNOx還元量を減算したものである(SCR入口NOx量=エンジン出口のNOx量−LNT装置のNOx吸蔵脱離量−LNT装置のNOx還元量)。 The NOx amount flowing into the SCR device 24 (SCR inlet NOx amount) is obtained by subtracting the NOx storage desorption amount of the LNT device 21 and the NOx reduction amount of the LNT device 21 from the NOx amount at the engine outlet (SCR). Inlet NOx amount = NOx amount at engine outlet-NOx storage / desorption amount of LNT device-NOx reduction amount of LNT device).

そして、このエンジン出口のNOx量は、エンジン運転状態から推定したり、LNT装置21の入口側のNOxセンサと排気ガス流量から計算したりすることができる。また、LNT装置21のNOx吸蔵脱離量はLNT温度、排気ガス流量、NOx吸蔵量から計算できる。そして、LNT装置21のNOx還元量はLNT温度、排気ガス流量、NOx吸蔵量、空燃比から計算できる。 The NOx amount at the engine outlet can be estimated from the engine operating state, or can be calculated from the NOx sensor on the inlet side of the LNT device 21 and the exhaust gas flow rate. Further, the NOx storage desorption amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, and the NOx storage amount. The NOx reduction amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, the NOx storage amount, and the air-fuel ratio.

また、NH3スリップ量は、SCR装置24におけるNH3吸着量と温度と排気ガスGの流量などを基にして計算される。 Further, the NH 3 slip amount is calculated based on the NH 3 adsorption amount in the SCR device 24, the temperature, the flow rate of the exhaust gas G, and the like.

そして、次のステップS14の「Se≧St」の判定では、推定NH3吸着量Seが目標NH3吸着量Stより大きいか否かを判定する。このステップS14の「Se≧St」の判定で、推定NH3吸着量Seが目標NH3吸着量St以上である場合は(YES)、ステップS15の「吸着NH3消費制御」に行き、予め設定した時間を経過した後、ステップS13に戻り、この予め設定した時間で変化した、新たな推定NH3吸着量Seと新たな目標NH3吸着量Stを比較する。 Then, in the determination of “Se ≧ St” in the next step S14, it is determined whether or not the estimated NH 3 adsorption amount Se is larger than the target NH 3 adsorption amount St. If the estimated NH 3 adsorption amount Se is equal to or greater than the target NH 3 adsorption amount St in the determination of “Se ≧ St” in step S14 (YES), go to “Adsorption NH 3 consumption control” in step S15 and set in advance. After the elapsed time has elapsed, the process returns to step S13, and the new estimated NH 3 adsorption amount Se and the new target NH 3 adsorption amount St, which have changed at this preset time, are compared.

この吸着NH3消費制御では、算出される推定NH3吸着量Seが目標NH3吸着量Stよりも少なくなるように、あるいは、第2排気ガス温度Tg2が第2設定温度Tgc2と第3設定温度Tgc3との間の範囲内になるように、SCR装置24における吸着NH3を減少させる制御を行う。具体的には、この吸着NH3消費制御では、第1排気ガス温度Tg1が第1設定温度Tgc1以上になるように、排気ガスGの温度を昇温又は維持する。この排気ガスGの昇温としては、エンジン本体10における燃料噴射量を増加したり、ポスト噴射や排気管内燃料噴射で排気通路11に供給した未燃燃料をLNT装置21で酸化して発熱させたりするなどの、排気ガスGの温度を上昇させる方法が採用される。 In this adsorption NH 3 consumption control, the calculated estimated NH 3 adsorption amount Se becomes smaller than the target NH 3 adsorption amount St, or the second exhaust gas temperature Tg2 is the second set temperature Tgc2 and the third set temperature. Control is performed to reduce the adsorbed NH 3 in the SCR device 24 so as to be within the range between Tgc 3 and Tgc 3. Specifically, in this adsorption NH 3 consumption control, the temperature of the exhaust gas G is raised or maintained so that the first exhaust gas temperature Tg1 becomes equal to or higher than the first set temperature Tgc1. To raise the temperature of the exhaust gas G, the fuel injection amount in the engine body 10 may be increased, or the unburned fuel supplied to the exhaust passage 11 by post injection or fuel injection in the exhaust pipe may be oxidized by the LNT device 21 to generate heat. A method of raising the temperature of the exhaust gas G is adopted.

そして、ステップS14の「Se≧St」の判定で、推定NH3吸着量Seが目標NH3吸着量St未満である場合は、ステップS16の「再生条件成立?」に行く。このステップS16の「再生条件成立?」では、CSF装置22における再生制御の開始条件が満たされているか否かを判定し、再生制御の開始条件が満たされていない場合は(NO)、予め設定した時間を経過した後、ステップS13に戻る。 Then, in the determination of “Se ≧ St” in step S14, if the estimated NH 3 adsorption amount Se is less than the target NH 3 adsorption amount St, the process goes to “Regeneration condition satisfied?” In step S16. In the "reproduction condition satisfied?" In step S16, it is determined whether or not the reproduction control start condition in the CSF device 22 is satisfied, and if the reproduction control start condition is not satisfied (NO), it is set in advance. After the elapsed time has elapsed, the process returns to step S13.

一方、このステップS16の「再生条件成立?」で、再生制御の開始条件が満たされている場合は(YES)、ステップS17の「再生制御」に行き、CSF装置22における再生制御を行い、この再生制御が完了した後、リターンに行き、上位の制御フローに戻り、予め設定した時間を経過した後、再度上位の制御フローから呼ばれてスタートし、これを繰り返す。 On the other hand, if the start condition of the reproduction control is satisfied in the "reproduction condition satisfied?" In the step S16 (YES), the reproduction control in the CSF device 22 is performed by going to the "regeneration control" in the step S17. After the reproduction control is completed, it goes to the return, returns to the upper control flow, elapses a preset time, is called from the upper control flow again, starts, and repeats this.

なお、図3の制御フローの途中で、内燃機関の運転が終了されると、割り込みにより、図示しないが必要な制御の終了処理を行ってから、リターンして上級の制御フローに戻り、この上級の制御フローと共に終了する。 When the operation of the internal combustion engine is terminated in the middle of the control flow of FIG. 3, an interrupt is used to perform necessary control termination processing (not shown), and then returns to return to the advanced control flow. It ends with the control flow of.

なお、LNT装置21の触媒温度の代わりに第1排気ガス温度Tg1を使用しているが、第3排気ガス温度Tg3を用いてもよく、さらには、より精度良い触媒温度を推定する場合には、第1排気ガス温度Tg1と第3排気ガス温度Tg3を用いて、単純平均や重み付き平均をLNT装置21の触媒温度とすることも可能である。 Although the first exhaust gas temperature Tg1 is used instead of the catalyst temperature of the LNT device 21, the third exhaust gas temperature Tg3 may be used, and further, when estimating a more accurate catalyst temperature, It is also possible to use the first exhaust gas temperature Tg1 and the third exhaust gas temperature Tg3 to set a simple average or a weighted average as the catalyst temperature of the LNT device 21.

また、SCR装置24の触媒温度の代わりに第2排気ガス温度Tg2を使用しているが、SCR装置24とDOC装置25の間の排気通路11に、第4排気ガス温度センサを設けて、この第4排気ガス温度センサで検出される第4排気ガス温度Tg4を用いてもよく、さらには、より精度良い触媒温度を推定する場合には、第2排気ガス温度Tg2と第4排気ガス温度Tg4を用いて、単純平均や重み付き平均を、SCR装置24の触媒温度とすることも可能である。 Further, although the second exhaust gas temperature Tg2 is used instead of the catalyst temperature of the SCR device 24, a fourth exhaust gas temperature sensor is provided in the exhaust passage 11 between the SCR device 24 and the DOC device 25. The fourth exhaust gas temperature Tg4 detected by the fourth exhaust gas temperature sensor may be used, and further, when estimating the catalyst temperature with higher accuracy, the second exhaust gas temperature Tg2 and the fourth exhaust gas temperature Tg4 It is also possible to use a simple average or a weighted average as the catalyst temperature of the SCR device 24.

上記のように、この実施の形態の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、フィルタ再生時において、SCR装置24のSCR触媒に吸着されているNH3が脱離及び放出されて、SCR装置24の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題を解決できる。 As described above, according to the exhaust gas purification system 1 of the internal combustion engine and the exhaust gas purification method of the internal combustion engine of this embodiment, NH 3 adsorbed on the SCR catalyst of the SCR device 24 is removed during filter regeneration. It is possible to solve the problem that the time until the start of filter reproduction becomes long while avoiding being separated and released and flowing out to the downstream side of the SCR device 24.

特に、SCR触媒を担持したSCR装置24の前段にLNT触媒を担持したLNT装置21が配置されている場合には、NOxがLNT装置21のLNT触媒に吸蔵されてしまい、SCR装置24におけるNH3消費量の低減効率が低下するので、NH3吸着量が低減するまでの待ち時間が長くなり、フィルタ再生開始までの時間が長くなるが、この問題をより効果的に解決できる。 In particular, when the LNT device 21 carrying the LNT catalyst is arranged in front of the SCR device 24 carrying the SCR catalyst, NOx is occluded by the LNT catalyst of the LNT device 21 and NH 3 in the SCR device 24. Since the efficiency of reducing the consumption is lowered, the waiting time until the NH 3 adsorption amount is reduced becomes longer, and the time until the start of filter regeneration becomes longer, but this problem can be solved more effectively.

つまり、SCR装置24におけるNH3吸着量が多く、LNT装置21のNOx吸蔵量が少ない場合は、LNT装置21のNOx吸蔵量を飽和させて、SCR装置24の吸着NH3を消費する必要があり、時間を要する。こうしたケースに対して、LNT装置21のNOx吸蔵効率が低下する温度まで昇温することで、LNT装置21からの放出NOxによるSCR装置24における吸着NH3の消費と、LNT装置21におけるNOx吸蔵飽和を不要にすることと、SCR装置24のSCR触媒の温度上昇による反応効率の向上(=NH3消費効率の向上)との総合的な効果が得られ、フィルタ再生開始までの時間を短縮することができる。これによって、NOx排出量を低減でき、CSF装置22へのPM過堆積も抑制することが可能となる。 That is, when the amount of NH 3 adsorbed in the SCR device 24 is large and the amount of NOx stored in the LNT device 21 is small, it is necessary to saturate the amount of NOx stored in the LNT device 21 and consume the adsorbed NH 3 in the SCR device 24. It takes time. In such a case, by raising the temperature to a temperature at which the NOx storage efficiency of the LNT device 21 decreases , the consumption of the adsorption NH 3 in the SCR device 24 by the NOx released from the LNT device 21 and the NOx storage saturation in the LNT device 21 The overall effect of eliminating the need for the SCR device 24 and improving the reaction efficiency (= improving the NH 3 consumption efficiency) by increasing the temperature of the SCR catalyst of the SCR device 24 can be obtained, and the time until the start of filter regeneration can be shortened. Can be done. This makes it possible to reduce NOx emissions and suppress PM over-deposition on the CSF device 22.

1 内燃機関の排気ガス浄化システム
10 エンジン本体
11 排気通路
21 LNT装置(NOx吸蔵還元型触媒装置)
22 CSF装置(触媒付きフィルタ装置)
23 尿素水供給装置(還元剤供給装置)
24 SCR装置(選択還元型触媒装置)
25 DOC装置(ASC:酸化触媒装置)
31 第1NOxセンサ
32 第2NOxセンサ
33 第3NOxセンサ
34 第1ラムダセンサ
35 第2ラムダセンサ
36 第1排気ガス温度センサ(第1温度検出装置)
37 第2排気ガス温度センサ(第2温度検出装置)
38 第3排気ガス温度センサ
40 制御装置
41 フィルタ再生制御手段
42 NOxパージ制御手段
43 硫黄パージ制御手段
44 尿素水供給制御手段
51 推定NH3吸蔵量算出手段(推定還元剤吸蔵量算出手段)
52 NH3吸着量判定手段(還元剤吸着量判定手段)
53 吸蔵NH3消費手段(吸蔵還元剤消費手段)
G 排気ガス
U 尿素水(還元剤)
1 Exhaust gas purification system for internal combustion engine 10 Engine body 11 Exhaust passage 21 LNT device (NOx storage reduction catalyst device)
22 CSF device (filter device with catalyst)
23 Urea water supply device (reducing agent supply device)
24 SCR device (selective reduction catalyst device)
25 DOC device (ASC: oxidation catalyst device)
31 1st NOx sensor 32 2nd NOx sensor 33 3rd NOx sensor 34 1st lambda sensor 35 2nd lambda sensor 36 1st exhaust gas temperature sensor (1st temperature detection device)
37 Second exhaust gas temperature sensor (second temperature detector)
38 Third exhaust gas temperature sensor 40 Control device 41 Filter regeneration control means 42 NOx purge control means 43 Sulfur purge control means 44 Urea water supply control means 51 Estimated NH 3 occlusion calculation means (estimated reducing agent occlusion calculation means)
52 NH 3 Adsorption amount determination means (reducing agent adsorption amount determination means)
53 Occlusion NH 3 Consumption Means (Occlusion Reducing Agent Consumption Means)
G Exhaust gas U Urea water (reducing agent)

Claims (4)

内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた内燃機関の排気ガス浄化システムにおいて、
前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出する推定還元剤吸着量算出手段と、
前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、前記推定還元剤吸着量算出手段で算出された再生開始時の推定還元剤吸着量が予め設定した目標還元剤吸着量以上であるか否かを判定する還元剤吸着量判定手段と、
前記還元剤吸着量判定手段で、前記推定還元剤吸着量算出手段で算出される推定還元剤吸着量が前記目標還元剤吸着量以上である場合は、前記推定還元剤吸着量算出手段で算出される推定還元剤吸着量が前記目標還元剤吸着量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行う吸着還元剤消費手段を備えて構成されている制御装置を有していることを特徴とする内燃機関の排気ガス浄化システム。
The exhaust passage of the internal combustion engine is provided with a NOx storage reduction type catalyst device for storing NOx in the exhaust gas and a selective reduction type catalyst device for reducing NOx in the exhaust gas with a reducing agent in order from the upstream side. In an exhaust gas purification system of an internal combustion engine equipped with a filter device that collects particulate matter in the exhaust gas in the exhaust passage.
An estimated reducing agent adsorption amount calculating means for calculating an estimated reducing agent adsorption amount, which is an estimated value of the reducing agent adsorption amount in the selective reduction type catalyst device, and
At the start of filter regeneration for burning and removing particulate matter from the filter device, the estimated reducing agent adsorption amount at the start of regeneration calculated by the estimated reducing agent adsorption amount calculation means is equal to or greater than the preset target reducing agent adsorption amount. Reducing agent adsorption amount determining means for determining whether or not,
When the estimated reducing agent adsorption amount calculated by the estimated reducing agent adsorption amount calculation means by the reducing agent adsorption amount determining means is equal to or larger than the target reducing agent adsorption amount, it is calculated by the estimated reducing agent adsorption amount calculation means. It is configured to include an adsorption-reducing agent consuming means for controlling the consumption of the adsorption-reducing agent in the selective reducing-type catalyst device so that the estimated reducing agent adsorbing amount is smaller than the target reducing agent adsorbing amount. An exhaust gas purification system for an internal combustion engine, characterized by having a controlling device.
前記NOx吸蔵還元型触媒装置へ流入する排気ガスの温度を測定する第1温度検出装置を備えると共に、
前記吸着還元剤消費手段が、前記吸着還元剤消費制御では、前記第1温度検出装置で検出される第1排気ガス温度が、前記NOx還元型触媒装置におけるNOx放出温度に基づいて予め設定された第1設定温度以上になるように、排気ガス温度を昇温又は維持するように構成されていることを特徴とする請求項1に記載の内燃機関の排気ガス浄化システム。
It is provided with a first temperature detecting device for measuring the temperature of the exhaust gas flowing into the NOx storage reduction type catalyst device, and is also provided.
In the adsorption-reducing agent consumption control, the first exhaust gas temperature detected by the first temperature detecting device is preset based on the NOx emission temperature of the NOx-reducing catalyst device. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas temperature is raised or maintained so as to be equal to or higher than the first set temperature.
前記選択還元型触媒装置へ流入する排気ガスの温度を測定する第2温度検出装置を備えると共に、
前記吸着還元剤消費手段が、前記吸着還元剤消費制御では、前記第2温度検出装置で検出される第2排気ガス温度が、前記選択還元型触媒装置における還元剤消費効率に基づいて予め設定された第2設定温度以上で、かつ、前記選択還元型触媒装置における還元剤放出温度に基づいて予め設定された第3設定温度以下になるように、排気ガス温度を昇温又は維持するように構成されていることを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化システム。
A second temperature detecting device for measuring the temperature of the exhaust gas flowing into the selective reduction catalyst device is provided, and the device is provided with a second temperature detecting device.
In the adsorption-reducing agent consumption control, the second exhaust gas temperature detected by the second temperature detecting device is preset based on the reducing agent consumption efficiency of the selective reducing catalyst device. It is configured to raise or maintain the exhaust gas temperature so as to be equal to or higher than the second set temperature and lower than the third set temperature preset based on the reducing agent discharge temperature in the selective reduction type catalyst device. The exhaust gas purification system for an internal combustion engine according to claim 1 or 2, wherein the exhaust gas purification system is characterized by the above.
内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた内燃機関の排気ガス浄化方法において、
前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出し、
前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定還元剤吸着量が予め設定した目標還元剤吸着量以上であるか否かを判定し、
前記推定還元剤吸着量が前記目標還元剤吸着量以上である場合は、算出される推定還元剤吸着量が前記目標還元剤吸着量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
The exhaust passage of the internal combustion engine is provided with a NOx storage reduction type catalyst device for storing NOx in the exhaust gas and a selective reduction type catalyst device for reducing NOx in the exhaust gas with a reducing agent in order from the upstream side. In an exhaust gas purification method for an internal combustion engine equipped with a filter device that collects particulate matter in the exhaust gas in the exhaust passage.
The estimated reducing agent adsorption amount, which is an estimated value of the reducing agent adsorption amount in the selective reduction type catalyst device, is calculated.
At the start of filter regeneration that burns and removes particulate matter from the filter device, it is determined whether or not the calculated estimated reducing agent adsorption amount at the start of regeneration is equal to or greater than the preset target reducing agent adsorption amount.
When the estimated reducing agent adsorption amount is equal to or larger than the target reducing agent adsorption amount, the adsorption reduction in the selective reduction type catalyst device is performed so that the calculated estimated reducing agent adsorption amount is smaller than the target reducing agent adsorption amount. A method for purifying exhaust gas from an internal combustion engine, which is characterized by controlling the consumption of an adsorption-reducing agent that reduces the amount of the agent.
JP2018027008A 2018-02-19 2018-02-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Active JP6969423B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018027008A JP6969423B2 (en) 2018-02-19 2018-02-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
PCT/JP2019/004998 WO2019159932A1 (en) 2018-02-19 2019-02-13 Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine
CN201980014018.8A CN111788372A (en) 2018-02-19 2019-02-13 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027008A JP6969423B2 (en) 2018-02-19 2018-02-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019143513A JP2019143513A (en) 2019-08-29
JP6969423B2 true JP6969423B2 (en) 2021-11-24

Family

ID=67619373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027008A Active JP6969423B2 (en) 2018-02-19 2018-02-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6969423B2 (en)
CN (1) CN111788372A (en)
WO (1) WO2019159932A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135198B2 (en) * 2013-03-07 2017-05-31 いすゞ自動車株式会社 Control method of exhaust gas aftertreatment device
JP6052146B2 (en) * 2013-12-05 2016-12-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2015151929A (en) * 2014-02-14 2015-08-24 いすゞ自動車株式会社 Exhaust emission control device, and control method for the same
JP6187385B2 (en) * 2014-05-26 2017-08-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6388208B2 (en) * 2014-11-20 2018-09-12 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP6617865B2 (en) * 2015-03-20 2019-12-11 三菱自動車工業株式会社 Engine exhaust purification system
JP6663126B2 (en) * 2015-03-20 2020-03-11 三菱自動車工業株式会社 Engine exhaust purification device

Also Published As

Publication number Publication date
JP2019143513A (en) 2019-08-29
WO2019159932A1 (en) 2019-08-22
CN111788372A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5296291B2 (en) Exhaust gas purification system
JP4304539B2 (en) NOx purification system control method and NOx purification system
JP4093301B2 (en) Exhaust gas purification system and control method thereof
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP4715581B2 (en) Exhaust gas purification system control method and exhaust gas purification system
WO2014132839A1 (en) Exhaust purification device for internal combustion engine
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP5092511B2 (en) NOx purification system and control method of NOx purification system
JP2015151929A (en) Exhaust emission control device, and control method for the same
JPWO2014102932A1 (en) Exhaust gas purification system for internal combustion engine
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP6149686B2 (en) HC catalyst poisoning detection system for SCR catalyst and HC catalyst poisoning detection method for SCR catalyst
JP6969423B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5811300B2 (en) Exhaust gas purification device for internal combustion engine
JP2018080657A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP5332664B2 (en) Engine exhaust purification system
JP6252375B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2006161668A (en) Exhaust emission control system and desulfurization control method for exhaust emission control system
JP4639967B2 (en) Exhaust gas purification system for internal combustion engine
JP2016020637A (en) Exhaust emission control system
JP2019167864A (en) Exhaust emission control device
JP2017150326A (en) Exhaust gas treatment method using lnt, and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150