WO2019159932A1 - Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine - Google Patents

Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
WO2019159932A1
WO2019159932A1 PCT/JP2019/004998 JP2019004998W WO2019159932A1 WO 2019159932 A1 WO2019159932 A1 WO 2019159932A1 JP 2019004998 W JP2019004998 W JP 2019004998W WO 2019159932 A1 WO2019159932 A1 WO 2019159932A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
nox
reducing agent
amount
Prior art date
Application number
PCT/JP2019/004998
Other languages
French (fr)
Japanese (ja)
Inventor
洋 阿野田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201980014018.8A priority Critical patent/CN111788372A/en
Publication of WO2019159932A1 publication Critical patent/WO2019159932A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust gas purification system and an exhaust gas purification method for purifying exhaust gas discharged from an internal combustion engine.
  • LNT catalyst LNT: Lean NOx Trap
  • SCR catalyst SCR: Selective Catalytic Reduction
  • PM Particulate Matter
  • DPF Diesel Particulate Matter Filter
  • An object of the present disclosure is to prevent the reductant adsorbed on the SCR catalyst of the SCR device from desorbing and releasing and flowing out downstream of the SCR device during filter regeneration,
  • An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine, which can solve the problem that the time is lengthened and the accompanying increase in NOx emission amount.
  • An exhaust gas purification system for an internal combustion engine includes a NOx occlusion reduction type catalyst device that occludes NOx in exhaust gas in an exhaust passage of the internal combustion engine in order from the upstream side, and NOx in exhaust gas as a reducing agent.
  • the selective reduction type catalytic device further comprising a selective reduction type catalytic device that reduces the amount of particulate matter in the exhaust gas in the exhaust passage.
  • a calculating unit that calculates an estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the filter, and at the start of filter regeneration that burns and removes particulate matter of the filter device, A determination unit that determines whether or not the estimated reducing agent adsorption amount is equal to or greater than a preset target amount; and the estimated reductant adsorption amount that is calculated by the calculation unit at the determination unit is greater than or equal to the target amount
  • a consumption unit that performs adsorption / reduction agent consumption control for reducing the adsorption / reduction agent in the selective catalytic reduction device so that the estimated reduction agent adsorption amount calculated by the calculation unit is smaller than the target amount. It has the control apparatus comprised.
  • an exhaust gas purification method for an internal combustion engine includes a NOx occlusion reduction type catalyst device that stores NOx in exhaust gas in the exhaust passage of the internal combustion engine in order from the upstream side, and NOx in exhaust gas.
  • a NOx occlusion reduction type catalyst device that stores NOx in exhaust gas in the exhaust passage of the internal combustion engine in order from the upstream side, and NOx in exhaust gas.
  • An estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the catalyst device is calculated, and the estimated reducing agent adsorption amount at the start of regeneration calculated at the start of filter regeneration for burning and removing the particulate matter of the filter device If the estimated reducing agent adsorption amount is equal to or greater than the target amount, the calculated estimated reducing agent adsorption amount is less than the target amount.
  • the adsorbent reducing agent adsorption reducing agent consumption control to reduce in the selective reduction catalyst device.
  • the reductant adsorbed on the SCR catalyst of the SCR device is desorbed and released during filter regeneration. It is possible to solve the problem that the time until the filter regeneration starts becomes long while avoiding the flow out to the downstream side of the apparatus.
  • FIG. 1 is a diagram schematically illustrating a configuration of an exhaust gas purification system for an internal combustion engine according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram schematically illustrating a configuration of a control device for an exhaust gas purification system for an internal combustion engine according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a control flow for carrying out the exhaust gas purification method for an internal combustion engine according to the embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating the relationship between the engine outlet temperature and the NOx purification rate in the LNT catalyst and the SCR catalyst.
  • an exhaust gas purification system (hereinafter referred to as an exhaust gas purification system) 1 for an internal combustion engine is an exhaust gas through which an exhaust gas G discharged from an engine body (E: internal combustion engine body) 10 passes.
  • SCR device for example, urea SCR catalyst device: selective reduction catalyst device
  • ASC that oxidizes and purifies NH 3 flowing out from SCR device 24
  • a DOC device (DOC: Diesel Oxidation Catalyst) 25 (Ammonia Slip Catalyst: ammonia slip catalyst) is provided.
  • a control device 40 for controlling the injection amount U1 of the urea water U injected from the urea water supply device 23 is provided.
  • the control device 40 is usually incorporated in a control device called an engine control unit that performs overall control of the engine body 10, but may be a separate control device.
  • the exhaust gas purification system 1 includes an LNT device 21 that stores NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side, and an SCR that reduces NOx in the exhaust gas G with a reducing agent.
  • the exhaust passage 11 includes a CSF device 22 that collects PM in the exhaust gas G.
  • the control apparatus 40 for controlling this exhaust gas purification system 1 is provided.
  • the NOx occlusion reduction type catalyst device is illustrated as the LNT device 21 that occludes NOx, but any catalyst that occludes NOx and purifies NOx in exhaust gas may be used, and the present disclosure discloses this NOx occlusion.
  • the present invention is not limited to a reduction catalyst device.
  • a filter device for collecting PM (particulate matter) a CSF device which is one of filter devices carrying a catalyst is illustrated, but any filter device that needs filter regeneration may be used. The disclosure is not limited to this CSF.
  • the exhaust gas purification system shown in FIG. 1 is an exemplification, and the present disclosure selects NOx in the exhaust gas with a reducing agent downstream of the NOx occlusion reduction type catalyst device that stores NOx in the exhaust gas. What is necessary is just an exhaust gas purification system in which a reduction-type catalyst device is disposed and a filter device requiring filter regeneration is disposed in any of the exhaust passages.
  • the LNT device 21 is exemplified by a device carrying a NOx storage reduction catalyst or the like.
  • This NOx occlusion reduction type catalyst is composed of a molded body carrying a NOx occlusion material formed of a noble metal catalyst such as platinum and an alkaline earth metal such as barium on a catalyst carrier. Then, when NOx in the exhaust gas is in a lean state, the NOx storage material is temporarily stored, and before the NOx storage amount is saturated, the exhaust gas is brought into a rich air-fuel ratio state by NOx purge control, so that the NOx storage material NOx occluded in the catalyst is released and reduced by the three-way function of the noble metal catalyst.
  • the CSF device (filter device with catalyst) 22 is formed of cordierite material, silicon carbide (SiC) material, or the like, and uses a thin ceramic wall as a filter by alternately closing both ends of the honeycomb ceramic cell. . Since this particulate collection filter is excellent in heat resistance, it is possible to burn and remove PM collected by heating at the time of filter regeneration, and the collection performance can be maintained by this filter regeneration treatment. . Further, an oxidation catalyst is supported in order to make PM combustion easier.
  • the urea water supply device 23 is an injection device for supplying urea water U supplied from the urea water tank 23a via the urea water supply pipe 23b to the SCR device 24.
  • the control device 40 causes the urea water U to be injected.
  • the presence / absence and the injection amount U1 are adjusted and controlled.
  • the SCR device 24 is configured to carry, for example, a urea selective reduction catalyst that reacts with NOx in the exhaust gas G by NH 3 generated using urea water as a reducing agent U to form nitrogen and water.
  • a urea selective reduction catalyst include zeolite catalyst such as iron ion exchange aluminosilicate and copper ion-exchanged aluminosilicate, adsorbs NH 3, has a function to reduce and purify NOx in NH 3 was the suction ing.
  • NH 3 is not directly used, but urea water is injected into the exhaust gas G to react NH 3 and NOx generated by hydrolysis from the urea water. To make NOx harmless.
  • the first NOx sensor 31 for detecting the first NOx concentration Cn1, which is the NOx concentration in the exhaust gas G flowing into the LNT device 21, is the LNT device. 21 is provided on the inlet side.
  • a second NOx sensor 32 for detecting a second NOx concentration Cn2, which is a NOx concentration in the exhaust gas G flowing into the SCR device 24, is provided on the inlet side of the SCR device 24.
  • a third NOx sensor 33 for detecting a third NOx concentration Cn3 that is the NOx concentration in the exhaust gas G flowing out from the DOC device 25 is provided on the outlet side of the DOC device 25.
  • the first lambda sensor 34 for detecting the first air-fuel ratio Ca1, which is the air-fuel ratio ( ⁇ ) of the exhaust gas G flowing into the LNT device 21, is an LNT. It is provided on the inlet side of the device 21.
  • a second lambda sensor 35 that detects the second air-fuel ratio Ca2 that is the air-fuel ratio ( ⁇ ) of the exhaust gas G flowing into the CSF device 22 is provided on the inlet side of the CSF device 22.
  • the first exhaust gas temperature sensor 36 that measures the first exhaust gas temperature Tg1 that is the temperature of the exhaust gas G that flows into the LNT device 21, and the second exhaust gas that is the temperature of the exhaust gas G that flows into the SCR device 24.
  • a second exhaust gas temperature sensor 37 for measuring the temperature Tg2 is provided.
  • the detection values of these various sensors 31 to 38 are input to the control device 40, and the control device 40 performs various calculations based on these input data and outputs a control command to the engine body 10.
  • a control command is also output to the urea water supply device 23 to adjust and control the injection amount U1 of the reducing agent U injected from the urea water supply device 23.
  • the exhaust gas purification system 1 performs filter regeneration control in which the temperature of the exhaust gas is raised in accordance with the control command of the control device 40 and the PM collected in the CSF device 22 is oxidized and removed in the CSF device 22.
  • the exhaust gas temperature is raised and the air-fuel ratio of the exhaust gas G is set to a rich air-fuel ratio, so that the stored NOx in the LNT device 21 is released and released by the three-way catalyst supported by the LNT device 21.
  • NOx purge control NOx regeneration control
  • Sulfur purge control is performed.
  • the control device 40 includes a filter regeneration control unit 41 that performs the above-described filter regeneration control, a NOx purge control unit 42 that performs NOx purge control, a sulfur purge control unit 43 that performs sulfur purge control, urea water
  • a filter regeneration control unit 41 that performs the above-described filter regeneration control
  • NOx purge control unit 42 that performs NOx purge control
  • sulfur purge control unit 43 that performs sulfur purge control
  • urea water In addition to the supply control unit 44, an estimated NH 3 adsorption amount calculation unit (calculation unit) 51, an NH 3 adsorption amount determination unit (determination unit) 52, and an adsorption NH 3 consumption unit (consumption unit) 53 are configured. ing.
  • the estimated NH 3 adsorption amount calculation unit 51 is a means for calculating an estimated NH 3 adsorption amount Se that is an estimated value of the NH 3 (reducing agent) adsorption amount in the SCR device 24. Further, the NH 3 adsorption amount determination unit 52 calculates the estimated NH 3 adsorption amount Se at the start of filter regeneration calculated by the estimated NH 3 adsorption amount calculation unit 51 at the start of filter regeneration for burning and removing PM of the CSF device 22. It is means for determining whether or not the target NH 3 adsorption amount St is greater than or equal to a preset value.
  • the adsorption NH 3 consumption unit 53 is the NH 3 adsorption amount determination unit 52, and when the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculation unit 51 is equal to or more than the target NH 3 adsorption amount St, Means for performing adsorption NH 3 consumption control for reducing the adsorbed NH 3 in the SCR device 24 so that the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculating unit 51 is smaller than the target NH 3 adsorption amount St. It is.
  • the first exhaust gas temperature Tg1 detected by the first exhaust gas temperature sensor 36 is equal to or higher than the first set temperature Tgc1 set in advance based on the NOx release temperature in the LNT device 21.
  • the first set temperature Tgc1 is a temperature at which the NOx purification rate in the LNT device 21 decreases so that there is a temperature at which the NOx purification rate of the LNT decreases due to the relationship between the NOx purification rate illustrated in FIG. 4 and the engine outlet temperature.
  • the temperature is set to a temperature at which the NOx occlusion ability decreases, for example, 400 ° C. or higher.
  • the NOx occluded in the LNT device 21 Due to the temperature rise of the NOx occlusion reduction type catalyst of the LNT device 21 caused by the temperature rise of the exhaust gas G, the NOx occluded in the LNT device 21 is released before the filter regeneration is started at the time of filter regeneration.
  • the released NOx flows into the SCR device 24 on the downstream side.
  • the inflowing NOx reacts with NH 3 adsorbed by the SCR device 24 to reduce and purify NOx, whereby the adsorbed NH 3 in the SCR device 24 can be reduced.
  • the temperature rise of the exhaust gas G at this time is preferably a lean state of the air-fuel ratio ( ⁇ ) in the exhaust gas G, unlike the NOx purge control.
  • the air-fuel ratio
  • NOx released from the NOx storage reduction catalyst is reduced and purified by the three-way catalyst, so that NOx flowing into the SCR device 24 is reduced, and the adsorbed NH 3 in the SCR device 24 is reduced. This is because the effect of reducing the decrease is reduced.
  • the adsorption NH 3 consumption unit 53 sets the second exhaust gas temperature Tg2 detected by the second exhaust gas temperature sensor 37 in advance based on the NH 3 consumption efficiency in the SCR device 24 in the adsorption NH 3 consumption control.
  • the second exhaust gas temperature Tg2 is raised or maintained so as to be equal to or higher than the second preset temperature Tgc2 and lower than or equal to a preset third preset temperature Tgc3 based on the NH 3 release temperature in the SCR device 24. It is preferable that it is comprised.
  • This second set temperature Tgc2 is a relationship between the NOx purification rate illustrated in FIG.
  • the temperature at which the rate increases is set to about 300 ° C., for example.
  • the third set temperature Tgc3 is a relationship between the NOx purification rate and the engine outlet temperature illustrated in FIG. 4, and the NOx purification rate is low and the consumption rate of the occluded NH 3 so that there is a temperature at which the NOx purification rate becomes low in SCR. Is set to a temperature at which the temperature decreases, for example, about 400 ° C. That is, the second exhaust gas temperature Tg2 is increased within a temperature range corresponding to the temperature range Ra in which the NOx purification rate in the SCR is high in the relationship between the NOx purification rate and the engine outlet temperature illustrated in FIG. Warm and maintain.
  • An exhaust gas purification method for an internal combustion engine (hereinafter referred to as an exhaust gas purification method) according to an embodiment of the present disclosure stores an NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side. 21 and an SCR device 24 for reducing NOx in the exhaust gas G with NH 3 , and an exhaust gas purification method provided with a CSF device 22 for collecting PM in the exhaust gas G in the exhaust passage 11. The method is as follows.
  • an estimated NH 3 adsorption amount Se which is an estimated value of the NH 3 adsorption amount in the SCR device 24, is calculated, and the calculated regeneration start is started at the start of filter regeneration for removing the PM of the CSF device 22 by combustion.
  • estimated adsorbed NH 3 amount Se is determined whether a target adsorbed NH 3 amount St above a preset time, when the estimated adsorbed NH 3 amount Se is the target adsorbed NH 3 amount St above is calculated
  • Adsorption NH 3 consumption control for reducing the adsorbed NH 3 in the SCR device 24 is performed so that the estimated NH 3 adsorption amount Se is smaller than the target NH 3 adsorption amount St.
  • the above control can be performed by an example control flow as shown in FIG.
  • the control flow of FIG. 3 is called from the advanced control flow when the internal combustion engine starts operation, and is executed in parallel with the operation control flow of the other exhaust gas purification system 1, and when the operation of the internal combustion engine ends. Shows that an interrupt occurs, returns to the advanced control flow, and ends with this advanced control flow.
  • a filter regeneration request (hereinafter, referred to as regeneration control) in the CSF device 22 is requested by “regeneration request?” In step S11.
  • regeneration control a filter regeneration request
  • step S11 If it is determined in step S11 that there is a regeneration request ?, if there is a regeneration request, the process proceeds to “stop NOx purge control” in step S12.
  • stop NOx purge control In “stop NOx purge control” in step S12, the NOx purge control of the NOx storage reduction catalyst is stopped, and the NOx reduction control (DeNOx control) of the NOx storage reduction catalyst is stopped. That is, the NOx purge control is stopped.
  • the second exhaust gas temperature Tg2 detected by the second exhaust gas temperature sensor 37 that is, the SCR inlet temperature is inputted.
  • the NH 3 adsorption amount Smax that can be adsorbed in the SCR device 24 is greatly influenced by the temperature of the SCR catalyst. Therefore, based on the second exhaust gas temperature Tg2, A target NH 3 adsorption amount St during filter regeneration (hereinafter referred to as regeneration) is set.
  • Target adsorbed NH 3 amount St at the time of reproduction, reproduction, exhaust gas flow rate is small, since the exhaust gas is KyuNoboru temperature, since ammonia slip is likely to occur, the target NH 3 in the normal non-playback Compared with the adsorption amount St0, a value smaller than this is set.
  • an estimated NH 3 adsorption amount Se that is an estimated value of the NH 3 adsorption amount in the SCR device 24 is calculated.
  • This supply NH 3 amount is the supply amount of NH 3 generated by hydrolysis from the urea water U, and this is calculated based on the injection amount U1 of the urea water U supplied from the urea water supply device 23 and the like.
  • the consumed NH 3 amount is the amount of NH 3 used to reduce the NOx amount generated from the engine body 10. This is because the amount of NOx flowing into the SCR device 24 and the temperature of the SCR catalyst (for example, substitute for the second exhaust gas temperature Tg2), the flow rate of the exhaust gas G, the ratio of NO to NO 2 , the NH 3 adsorption amount during the reaction, etc. Calculated based on The amount of NOx flowing into the SCR device 24 can be estimated by the amount of NOx per unit time obtained from the second NOx concentration Cn2 on the outlet side of the LNT device 21 and the flow rate of the exhaust gas G.
  • the NOx amount (SCR inlet NOx amount) flowing into the SCR device 24 is obtained by subtracting the NOx occlusion / desorption amount of the LNT device 21 and the NOx reduction amount of the LNT device 21 from the NOx amount at the engine outlet (SCR).
  • Inlet NOx amount NOx amount at engine outlet ⁇ NOx occlusion / desorption amount of LNT device ⁇ NOx reduction amount of LNT device).
  • the amount of NOx at the engine outlet can be estimated from the engine operating state, or can be calculated from the NOx sensor on the inlet side of the LNT device 21 and the exhaust gas flow rate.
  • the NOx occlusion / desorption amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, and the NOx occlusion amount.
  • the NOx reduction amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, the NOx occlusion amount, and the air-fuel ratio.
  • the NH 3 slip amount is calculated based on the NH 3 adsorption amount and temperature in the SCR device 24, the flow rate of the exhaust gas G, and the like.
  • step S14 it is determined whether or not the estimated NH 3 adsorption amount Se is larger than the target NH 3 adsorption amount St.
  • the estimated NH 3 adsorption amount Se is equal to or larger than the target NH 3 adsorption amount St (YES)
  • the process returns to step S13, and the new estimated NH 3 adsorption amount Se and the new target NH 3 adsorption amount St, which have changed at the preset time, are compared.
  • the calculated estimated NH 3 adsorption amount Se is smaller than the target NH 3 adsorption amount St, or the second exhaust gas temperature Tg2 is set to the second set temperature Tgc2 and the third set temperature.
  • Control to reduce the adsorbed NH 3 in the SCR device 24 is performed so as to be within a range between the Tgc 3 and the Tgc 3 .
  • the temperature of the exhaust gas G is raised or maintained so that the first exhaust gas temperature Tg1 becomes equal to or higher than the first set temperature Tgc1.
  • the fuel injection amount in the engine body 10 is increased, or the unburned fuel supplied to the exhaust passage 11 by post injection or in-pipe fuel injection is oxidized by the LNT device 21 to generate heat.
  • a method of increasing the temperature of the exhaust gas G is adopted.
  • step S16 it is determined whether or not the start condition for regeneration control in the CSF device 22 is satisfied. If the start condition for regeneration control is not satisfied (NO), it is set in advance. After the elapsed time has elapsed, the process returns to step S13.
  • step S16 if the regeneration control start condition is satisfied in “Regeneration condition established?” In step S16 (YES), the process goes to “regeneration control” in step S17 to perform regeneration control in the CSF device 22. After the reproduction control is completed, the process goes to return and returns to the upper control flow. After a preset time elapses, it is called again from the upper control flow and started, and this is repeated.
  • the third exhaust gas temperature Tg3 may be used. Furthermore, when estimating a more accurate catalyst temperature. Using the first exhaust gas temperature Tg1 and the third exhaust gas temperature Tg3, a simple average or a weighted average can be used as the catalyst temperature of the LNT device 21.
  • the second exhaust gas temperature Tg2 is used instead of the catalyst temperature of the SCR device 24.
  • a fourth exhaust gas temperature sensor is provided in the exhaust passage 11 between the SCR device 24 and the DOC device 25.
  • the fourth exhaust gas temperature Tg4 detected by the fourth exhaust gas temperature sensor may be used.
  • the second exhaust gas temperature Tg2 and the fourth exhaust gas temperature Tg4 are used. It is also possible to use the simple average or the weighted average as the catalyst temperature of the SCR device 24.
  • NH 3 adsorbed on the SCR catalyst of the SCR device 24 is removed during filter regeneration. It is possible to solve the problem that the time until the start of filter regeneration is lengthened while avoiding being released and released and flowing out to the downstream side of the SCR device 24.
  • the reducing agent adsorbed on the SCR catalyst of the SCR device is prevented from being desorbed and released and flowing out to the downstream side of the SCR device.
  • this is useful in that it solves the problem that the time until the filter regeneration starts becomes long and the concern about the increase in the NOx emission amount associated therewith.

Abstract

Provided is an internal combustion engine exhaust gas purification system in which a control device, at the start of filter regeneration for combusting and removing particulate matter from a filter device, determines whether an estimated amount of adsorbed reducing agent at the start of regeneration in a selective reducing catalyst device is greater than or equal to a preset target amount. If the estimated amount of adsorbed reducing agent is greater than or equal to the target amount, the control device implements a control to reduce the adsorbed reducing agent in the selective reducing catalyst device so that the estimated amount of adsorbed reducing agent in the selective reducing catalyst device becomes smaller than the target amount.

Description

内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
 本開示は、内燃機関から排出される排気ガスを浄化する排気ガス浄化システム及び排気ガス浄化方法に関する。 The present disclosure relates to an exhaust gas purification system and an exhaust gas purification method for purifying exhaust gas discharged from an internal combustion engine.
 ディーゼルエンジンや希薄燃焼ガソリンエンジン等の内燃機関においては、NOx低減のために、NOx吸蔵還元型触媒(LNT触媒、LNT:Lean NOx Trap)や選択還元型触媒(SCR触媒、SCR:Selective Catalytic Reduction)を組み合わせ、さらに、排気微粒子(PM:Particulate Matter)を捕集するフィルタ(例えば、DPF:Diesel Particulate Filter)を加えることで、低負荷~高負荷まで幅広い運転領域でNOxを低減することを狙った排気ガス浄化システムが主流になってきている(例えば、特許文献1参照)。 In internal combustion engines such as diesel engines and lean burn gasoline engines, NOx storage reduction catalysts (LNT catalyst, LNT: Lean NOx Trap) and selective reduction catalysts (SCR catalyst, SCR: Selective Catalytic Reduction) are used to reduce NOx. And a filter that collects exhaust particulates (PM: Particulate Matter) (for example, DPF: Diesel Particulate Matter Filter) was added to reduce NOx in a wide operating range from low to high loads. Exhaust gas purification systems have become mainstream (see, for example, Patent Document 1).
日本国特表2006-512529号公報Japan Special Table 2006-512529
 ところで、このような排気ガス浄化システムでは、SCR触媒を使用するので、フィルタの再生制御時において、排気ガスの急速昇温によりSCR触媒に吸着していたNH(アンモニア)が脱離して、アンモニアスリップが発生する可能性がある。そのため、SCR触媒に於けるNH吸着量がある程度低下した状態から、フィルタ再生制御を開始する。 By the way, in such an exhaust gas purification system, since the SCR catalyst is used, NH 3 (ammonia) adsorbed on the SCR catalyst is desorbed due to rapid temperature rise of the exhaust gas during the regeneration control of the filter, and ammonia Slip may occur. Therefore, the filter regeneration control is started from the state where the NH 3 adsorption amount in the SCR catalyst is reduced to some extent.
 特に、SCR触媒を担持したSCR装置の前段にLNT触媒を担持したLNT装置が配置されている場合には、NOxがLNT装置のLNT触媒に吸蔵されてしまい、SCR装置におけるNH消費量の低減効率が低下するので、NH吸着量が低減するまでの待ち時間が長くなり、フィルタ再生開始までの時間が長くなる懸念がある。フィルタ再生開始間までの時間が長くなると、NOx排出量の増加などの懸念がある。 In particular, when an LNT device carrying an LNT catalyst is arranged in front of an SCR device carrying an SCR catalyst, NOx is occluded in the LNT catalyst of the LNT device, and NH 3 consumption in the SCR device is reduced. Since the efficiency is lowered, there is a concern that the waiting time until the NH 3 adsorption amount is reduced becomes longer and the time until the filter regeneration starts becomes longer. If the time until the start of filter regeneration becomes longer, there is a concern such as an increase in NOx emissions.
 本開示の目的は、フィルタ再生時において、SCR装置のSCR触媒に吸着されている還元剤が脱離及び放出されて、SCR装置の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題と、それに伴うNOx排出量の増加の懸念を解決できる、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することである。 The purpose of the present disclosure is to prevent the reductant adsorbed on the SCR catalyst of the SCR device from desorbing and releasing and flowing out downstream of the SCR device during filter regeneration, An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine, which can solve the problem that the time is lengthened and the accompanying increase in NOx emission amount.
 本開示の態様の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた、前記内燃機関の排気ガス浄化システムにおいて、前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出する算出部と、前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、前記算出部で算出された再生開始時の推定還元剤吸着量が予め設定した目標量以上であるか否かを判定する判定部と、前記判定部で、前記算出部で算出される推定還元剤吸着量が前記目標量以上である場合は、前記算出部で算出される推定還元剤吸着量が前記目標量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行う消費部を備えて構成されている制御装置を有している。 An exhaust gas purification system for an internal combustion engine according to an aspect of the present disclosure includes a NOx occlusion reduction type catalyst device that occludes NOx in exhaust gas in an exhaust passage of the internal combustion engine in order from the upstream side, and NOx in exhaust gas as a reducing agent. In the exhaust gas purification system for an internal combustion engine, the selective reduction type catalytic device further comprising a selective reduction type catalytic device that reduces the amount of particulate matter in the exhaust gas in the exhaust passage. A calculating unit that calculates an estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the filter, and at the start of filter regeneration that burns and removes particulate matter of the filter device, A determination unit that determines whether or not the estimated reducing agent adsorption amount is equal to or greater than a preset target amount; and the estimated reductant adsorption amount that is calculated by the calculation unit at the determination unit is greater than or equal to the target amount In some cases, a consumption unit that performs adsorption / reduction agent consumption control for reducing the adsorption / reduction agent in the selective catalytic reduction device so that the estimated reduction agent adsorption amount calculated by the calculation unit is smaller than the target amount. It has the control apparatus comprised.
 また、本開示の態様の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた、前記内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出し、前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定還元剤吸着量が予め設定した目標量以上であるか否かを判定し、前記推定還元剤吸着量が前記目標量以上である場合は、算出される推定還元剤吸着量が前記目標量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行うことを特徴とする方法である。 In addition, an exhaust gas purification method for an internal combustion engine according to an aspect of the present disclosure includes a NOx occlusion reduction type catalyst device that stores NOx in exhaust gas in the exhaust passage of the internal combustion engine in order from the upstream side, and NOx in exhaust gas. In the exhaust gas purification method for an internal combustion engine, comprising the selective reduction type catalytic device for reducing with a reducing agent and the filter device for collecting particulate matter in the exhaust gas in the exhaust passage. An estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the catalyst device is calculated, and the estimated reducing agent adsorption amount at the start of regeneration calculated at the start of filter regeneration for burning and removing the particulate matter of the filter device If the estimated reducing agent adsorption amount is equal to or greater than the target amount, the calculated estimated reducing agent adsorption amount is less than the target amount. As a method which is characterized in that the adsorbent reducing agent adsorption reducing agent consumption control to reduce in the selective reduction catalyst device.
 本開示の態様の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、フィルタ再生時において、SCR装置のSCR触媒に吸着されている還元剤が脱離及び放出されて、SCR装置の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題を解決できる。 According to the exhaust gas purification system for an internal combustion engine and the exhaust gas purification method for an internal combustion engine according to an aspect of the present disclosure, the reductant adsorbed on the SCR catalyst of the SCR device is desorbed and released during filter regeneration. It is possible to solve the problem that the time until the filter regeneration starts becomes long while avoiding the flow out to the downstream side of the apparatus.
図1は、本開示の実施形態の内燃機関の排気ガス浄化システムの構成を模式的に示す図である。FIG. 1 is a diagram schematically illustrating a configuration of an exhaust gas purification system for an internal combustion engine according to an embodiment of the present disclosure. 図2は、本開示の実施形態の内燃機関の排気ガス浄化システムの制御装置の構成を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a configuration of a control device for an exhaust gas purification system for an internal combustion engine according to an embodiment of the present disclosure. 図3は、本開示の実施形態の内燃機関の排気ガス浄化方法を実施するための制御フローの一例を示す図である。FIG. 3 is a diagram illustrating an example of a control flow for carrying out the exhaust gas purification method for an internal combustion engine according to the embodiment of the present disclosure. 図4は、LNT触媒とSCR触媒における、エンジン出口温度とNOx浄化率の関係を例示する図である。FIG. 4 is a diagram illustrating the relationship between the engine outlet temperature and the NOx purification rate in the LNT catalyst and the SCR catalyst.
 以下、一実施形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。 Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine according to an embodiment will be described with reference to the drawings.
 図1に示すように、一実施形態の内燃機関の排気ガス浄化システム(以下、排気ガス浄化システム)1は、エンジン本体(E:内燃機関本体)10から排出される排気ガスGが通過する排気通路11に、上流側から順に、NOx吸蔵機能を有するLNT装置(NOx触媒装置)21と、排気ガスG中のPM(粒子状物質)を捕集するCSF装置(触媒付フィルタ装置)22と、尿素水(厳密にはNH(アンモニア:還元剤)を発生させる還元剤発生物質であるが、ここでは、説明の簡略化のため還元剤とする)を供給する尿素水供給装置23と、尿素水から発生するNHでNOxを還元浄化するSCR装置(例えば、尿素SCR触媒装置:選択還元型触媒装置)24と、SCR装置24から流出するNHを酸化して浄化する、ASC(Ammonia Slip Catalyst:アンモニアスリップ触媒)と呼ばれるDOC装置(DOC:Diesel Oxidation Catalyst:酸化触媒)25を備えて構成される。 As shown in FIG. 1, an exhaust gas purification system (hereinafter referred to as an exhaust gas purification system) 1 for an internal combustion engine according to an embodiment is an exhaust gas through which an exhaust gas G discharged from an engine body (E: internal combustion engine body) 10 passes. In the passage 11, in order from the upstream side, an LNT device (NOx catalyst device) 21 having a NOx occlusion function, a CSF device (filter device with catalyst) 22 for collecting PM (particulate matter) in the exhaust gas G, A urea water supply device 23 for supplying urea water (strictly speaking, a reducing agent generating substance that generates NH 3 (ammonia: a reducing agent), but here a reducing agent for simplification); SCR device (for example, urea SCR catalyst device: selective reduction catalyst device) 24 that reduces and purifies NOx with NH 3 generated from water, and ASC that oxidizes and purifies NH 3 flowing out from SCR device 24 A DOC device (DOC: Diesel Oxidation Catalyst) 25 (Ammonia Slip Catalyst: ammonia slip catalyst) is provided.
 また、それと共に、尿素水供給装置23から噴射する尿素水Uの噴射量U1を制御する制御装置40を備えて構成される。この制御装置40は、通常はエンジン本体10の全般の制御を行うエンジンコントロールユニットと呼ばれる制御装置に組み込まれるが、別の制御装置とすることも可能である。 In addition, a control device 40 for controlling the injection amount U1 of the urea water U injected from the urea water supply device 23 is provided. The control device 40 is usually incorporated in a control device called an engine control unit that performs overall control of the engine body 10, but may be a separate control device.
 つまり、この排気ガス浄化システム1は、内燃機関の排気通路11に、上流側から順に、排気ガスG中のNOxを吸蔵するLNT装置21と、排気ガスG中のNOxを還元剤により還元するSCR触媒装置24とを備えるとともに、排気通路11に排気ガスG中のPMを捕集するCSF装置22を備えて構成されている。また、この排気ガス浄化システム1を制御するための制御装置40を備えている。 That is, the exhaust gas purification system 1 includes an LNT device 21 that stores NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side, and an SCR that reduces NOx in the exhaust gas G with a reducing agent. In addition to the catalyst device 24, the exhaust passage 11 includes a CSF device 22 that collects PM in the exhaust gas G. Moreover, the control apparatus 40 for controlling this exhaust gas purification system 1 is provided.
 なお、NOxを吸蔵するLNT装置21として、NOx吸蔵還元型触媒装置を例示しているが、NOxを吸蔵して排気ガス中のNOxを浄化する触媒であればよく、本開示は、このNOx吸蔵還元型触媒装置に限定されるものではない。また、PM(粒子状物質)を捕集するフィルタ装置として、触媒を担持したフィルタ装置の一つであるCSF装置を例示しているが、フィルタ再生を必要とするフィルタ装置であればよく、本開示は、このCSFに限定されるものではない。 The NOx occlusion reduction type catalyst device is illustrated as the LNT device 21 that occludes NOx, but any catalyst that occludes NOx and purifies NOx in exhaust gas may be used, and the present disclosure discloses this NOx occlusion. The present invention is not limited to a reduction catalyst device. Further, as a filter device for collecting PM (particulate matter), a CSF device which is one of filter devices carrying a catalyst is illustrated, but any filter device that needs filter regeneration may be used. The disclosure is not limited to this CSF.
 さらに、この図1に示す排気ガス浄化システムは例示であり、本開示は、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置の下流に、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置が配置され、フィルタ再生を必要とするフィルタ装置が排気通路のいずれかに配置されている排気ガス浄化システムであればよい。 Further, the exhaust gas purification system shown in FIG. 1 is an exemplification, and the present disclosure selects NOx in the exhaust gas with a reducing agent downstream of the NOx occlusion reduction type catalyst device that stores NOx in the exhaust gas. What is necessary is just an exhaust gas purification system in which a reduction-type catalyst device is disposed and a filter device requiring filter regeneration is disposed in any of the exhaust passages.
 そして、LNT装置21としては、NOx吸蔵還元型触媒などを担持した装置が例示される。このNOx吸蔵還元型触媒は、触媒担体上に白金等の貴金属触媒とバリウム等のアルカリ土類金属等で形成されるNOx吸蔵材を担持した成型体などから構成されている。そして、排気ガス中のNOxをリーン状態のときに、NOx吸蔵材に一旦吸蔵させ、NOxの吸蔵量が飽和する前に排気ガスをNOxパージ制御でリッチ空燃比状態にすることで、NOx吸蔵材に吸蔵されたNOxを放出させて、貴金属触媒の三元機能により還元するものである。 The LNT device 21 is exemplified by a device carrying a NOx storage reduction catalyst or the like. This NOx occlusion reduction type catalyst is composed of a molded body carrying a NOx occlusion material formed of a noble metal catalyst such as platinum and an alkaline earth metal such as barium on a catalyst carrier. Then, when NOx in the exhaust gas is in a lean state, the NOx storage material is temporarily stored, and before the NOx storage amount is saturated, the exhaust gas is brought into a rich air-fuel ratio state by NOx purge control, so that the NOx storage material NOx occluded in the catalyst is released and reduced by the three-way function of the noble metal catalyst.
 CSF装置(触媒付フィルタ装置)22は、コージェライト材料、若しくは炭化ケイ素(SiC)材料等で形成され、ハニカムセラミックスのセルの両端を交互に塞ぐことでセラミックスの薄い壁をフィルタとして使用している。この微粒子捕集フィルタは、耐熱性に優れているため、フィルタ再生時に加熱することで捕集されているPMを燃焼して除去することができ、このフィルタ再生処理により、捕集性能を維持できる。また、よりPMの燃焼が起こり易くするために酸化触媒を担持させている。 The CSF device (filter device with catalyst) 22 is formed of cordierite material, silicon carbide (SiC) material, or the like, and uses a thin ceramic wall as a filter by alternately closing both ends of the honeycomb ceramic cell. . Since this particulate collection filter is excellent in heat resistance, it is possible to burn and remove PM collected by heating at the time of filter regeneration, and the collection performance can be maintained by this filter regeneration treatment. . Further, an oxidation catalyst is supported in order to make PM combustion easier.
 尿素水供給装置23は、尿素水タンク23aから尿素水供給配管23b経由で供給される尿素水UをSCR装置24に供給するための噴射装置であり、制御装置40により、尿素水Uの噴射の有無及びその噴射量U1を調整制御される。 The urea water supply device 23 is an injection device for supplying urea water U supplied from the urea water tank 23a via the urea water supply pipe 23b to the SCR device 24. The control device 40 causes the urea water U to be injected. The presence / absence and the injection amount U1 are adjusted and controlled.
 SCR装置24は、例えば、尿素水を還元剤Uとして、発生したNHで排気ガスG中のNOxと反応させて窒素と水にする尿素選択還元型触媒を担持して構成される。この尿素選択還元型触媒としては、鉄イオン交換アルミノシリケートや銅イオン交換アルミノシリケートなどのゼオライト触媒などがあり、NHを吸着して、この吸着したNHでNOxを還元浄化する機能を有している。この選択還元型触媒装置24を使用することで、NHを直接使用するのではなく、尿素水を排気ガスGの中に噴射して、尿素水から加水分解により発生するNHとNOxを反応させることでNOxを無害化する。 The SCR device 24 is configured to carry, for example, a urea selective reduction catalyst that reacts with NOx in the exhaust gas G by NH 3 generated using urea water as a reducing agent U to form nitrogen and water. As the urea selective reduction catalyst, include zeolite catalyst such as iron ion exchange aluminosilicate and copper ion-exchanged aluminosilicate, adsorbs NH 3, has a function to reduce and purify NOx in NH 3 was the suction ing. By using this selective reduction catalyst device 24, NH 3 is not directly used, but urea water is injected into the exhaust gas G to react NH 3 and NOx generated by hydrolysis from the urea water. To make NOx harmless.
 また、排気通路11に配置されるセンサ群の内のNOxセンサに関しては、LNT装置21に流入する排気ガスG中のNOx濃度である第1NOx濃度Cn1を検出するための第1NOxセンサ31がLNT装置21の入口側に設けられる。また、SCR装置24に流入する排気ガスG中のNOx濃度である第2NOx濃度Cn2を検出するための第2NOxセンサ32がSCR装置24の入口側に設けられる。さらに、DOC装置25から流出する排気ガスG中のNOx濃度である第3NOx濃度Cn3を検出するための第3NOxセンサ33がDOC装置25の出口側に設けられる。 As for the NOx sensors in the sensor group arranged in the exhaust passage 11, the first NOx sensor 31 for detecting the first NOx concentration Cn1, which is the NOx concentration in the exhaust gas G flowing into the LNT device 21, is the LNT device. 21 is provided on the inlet side. Further, a second NOx sensor 32 for detecting a second NOx concentration Cn2, which is a NOx concentration in the exhaust gas G flowing into the SCR device 24, is provided on the inlet side of the SCR device 24. Further, a third NOx sensor 33 for detecting a third NOx concentration Cn3 that is the NOx concentration in the exhaust gas G flowing out from the DOC device 25 is provided on the outlet side of the DOC device 25.
 更に、ラムダセンサ(空燃比センサ:酸素濃度センサ)に関しては、LNT装置21に流入する排気ガスGの空燃比(λ)である第1空燃比Ca1を検出するための第1ラムダセンサ34がLNT装置21の入口側に設けられる。また、CSF装置22に流入する排気ガスGの空燃比(λ)である第2空燃比Ca2を検出する第2ラムダセンサ35がCSF装置22の入口側に設けられる。 Further, regarding the lambda sensor (air-fuel ratio sensor: oxygen concentration sensor), the first lambda sensor 34 for detecting the first air-fuel ratio Ca1, which is the air-fuel ratio (λ) of the exhaust gas G flowing into the LNT device 21, is an LNT. It is provided on the inlet side of the device 21. A second lambda sensor 35 that detects the second air-fuel ratio Ca2 that is the air-fuel ratio (λ) of the exhaust gas G flowing into the CSF device 22 is provided on the inlet side of the CSF device 22.
 また、排気ガス温度センサに関してはLNT装置21に流入する排気ガスGの温度である第1排気ガス温度Tg1を検出するための第1排気ガス温度センサ(第1温度検出装置)36がLNT装置21の入口側に設けられる。また、SCR装置24に流入する排気ガスGの温度である第2排気ガス温度Tg2を検出するための第2排気ガス温度センサ(第2温度検出装置)37がSCR装置24の入口側に設けられる。さらに、CSF装置22に流入する排気ガスGの温度である第3排気ガス温度Tg3を検出するための第3排気ガス温度センサ38がCSF装置22の入口側に設けられる。 As for the exhaust gas temperature sensor, a first exhaust gas temperature sensor (first temperature detection device) 36 for detecting the first exhaust gas temperature Tg1, which is the temperature of the exhaust gas G flowing into the LNT device 21, is provided in the LNT device 21. It is provided on the entrance side. Further, a second exhaust gas temperature sensor (second temperature detection device) 37 for detecting a second exhaust gas temperature Tg2, which is the temperature of the exhaust gas G flowing into the SCR device 24, is provided on the inlet side of the SCR device 24. . Further, a third exhaust gas temperature sensor 38 for detecting a third exhaust gas temperature Tg3 that is the temperature of the exhaust gas G flowing into the CSF device 22 is provided on the inlet side of the CSF device 22.
 つまり、LNT装置21へ流入する排気ガスGの温度である第1排気ガス温度Tg1を測定する第1排気ガス温度センサ36と、SCR装置24へ流入する排気ガスGの温度である第2排気ガス温度Tg2を測定する第2排気ガス温度センサ37を備えて構成されている。 That is, the first exhaust gas temperature sensor 36 that measures the first exhaust gas temperature Tg1 that is the temperature of the exhaust gas G that flows into the LNT device 21, and the second exhaust gas that is the temperature of the exhaust gas G that flows into the SCR device 24. A second exhaust gas temperature sensor 37 for measuring the temperature Tg2 is provided.
 これらの各種センサ31~38の検出値は、制御装置40に入力され、制御装置40はこれらの入力データを基にして、各種演算を行い、エンジン本体10に制御指令を出力する。それと共に、尿素水供給装置23にも制御指令を出力して、尿素水供給装置23から噴射する還元剤Uの噴射量U1を調整制御する。 The detection values of these various sensors 31 to 38 are input to the control device 40, and the control device 40 performs various calculations based on these input data and outputs a control command to the engine body 10. At the same time, a control command is also output to the urea water supply device 23 to adjust and control the injection amount U1 of the reducing agent U injected from the urea water supply device 23.
 また、排気ガス浄化システム1は、この制御装置40の制御指令に従って、排気ガス温度を昇温して、CSF装置22における、CSF装置22に捕集されたPMを酸化除去するフィルタ再生制御を行ったり、排気ガス温度の昇温と排気ガスGの空燃比をリッチ空燃比にして、LNT装置21における、吸蔵されたNOxを放出すると共に、LNT装置21で担持している三元触媒により放出されたNOxを還元浄化するNOxパージ制御(NOx再生制御)を行ったり、また、排気ガス温度をNOxパージ制御の温度よりも高い温度に昇温して、LNT装置21に吸蔵した硫黄成分を除去する硫黄パージ制御を行ったりする。 Further, the exhaust gas purification system 1 performs filter regeneration control in which the temperature of the exhaust gas is raised in accordance with the control command of the control device 40 and the PM collected in the CSF device 22 is oxidized and removed in the CSF device 22. The exhaust gas temperature is raised and the air-fuel ratio of the exhaust gas G is set to a rich air-fuel ratio, so that the stored NOx in the LNT device 21 is released and released by the three-way catalyst supported by the LNT device 21. NOx purge control (NOx regeneration control) for reducing and purifying the NOx is performed, or the exhaust gas temperature is raised to a temperature higher than the temperature of the NOx purge control to remove the sulfur component stored in the LNT device 21. Sulfur purge control is performed.
 この制御装置40は、図2に示すように、上記のフィルタ再生制御を行うフィルタ再生制御部41、NOxパージ制御を行うNOxパージ制御部42、硫黄パージ制御を行う硫黄パージ制御部43、尿素水供給制御部44に加えて、推定NH吸着量算出部(算出部)51と、NH吸着量判定部(判定部)52と、吸着NH消費部(消費部)53を備えて構成されている。 As shown in FIG. 2, the control device 40 includes a filter regeneration control unit 41 that performs the above-described filter regeneration control, a NOx purge control unit 42 that performs NOx purge control, a sulfur purge control unit 43 that performs sulfur purge control, urea water In addition to the supply control unit 44, an estimated NH 3 adsorption amount calculation unit (calculation unit) 51, an NH 3 adsorption amount determination unit (determination unit) 52, and an adsorption NH 3 consumption unit (consumption unit) 53 are configured. ing.
 この推定NH吸着量算出部51は、SCR装置24におけるNH(還元剤)吸着量の推定値である推定NH吸着量Seを算出する手段である。また、NH吸着量判定部52は、CSF装置22のPMを燃焼除去するフィルタ再生の開始時に、推定NH吸着量算出部51で算出されたフィルタ再生開始時の推定NH吸着量Seが予め設定した目標NH吸着量St以上であるか否かを判定する手段である。 The estimated NH 3 adsorption amount calculation unit 51 is a means for calculating an estimated NH 3 adsorption amount Se that is an estimated value of the NH 3 (reducing agent) adsorption amount in the SCR device 24. Further, the NH 3 adsorption amount determination unit 52 calculates the estimated NH 3 adsorption amount Se at the start of filter regeneration calculated by the estimated NH 3 adsorption amount calculation unit 51 at the start of filter regeneration for burning and removing PM of the CSF device 22. It is means for determining whether or not the target NH 3 adsorption amount St is greater than or equal to a preset value.
 また、吸着NH消費部53は、NH吸着量判定部52で、推定NH吸着量算出部51で算出される推定NH吸着量Seが目標NH吸着量St以上である場合は、推定NH吸着量算出部51で算出される推定NH吸着量Seが目標NH吸着量Stよりも少なくなるように、SCR装置24における吸着NHを減少させる吸着NH消費制御を行う手段である。 Further, the adsorption NH 3 consumption unit 53 is the NH 3 adsorption amount determination unit 52, and when the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculation unit 51 is equal to or more than the target NH 3 adsorption amount St, Means for performing adsorption NH 3 consumption control for reducing the adsorbed NH 3 in the SCR device 24 so that the estimated NH 3 adsorption amount Se calculated by the estimated NH 3 adsorption amount calculating unit 51 is smaller than the target NH 3 adsorption amount St. It is.
 この吸着NH消費部53は、第1排気ガス温度センサ36で検出される第1排気ガス温度Tg1が、LNT装置21におけるNOx放出温度に基づいて予め設定された第1設定温度Tgc1以上になるように、排気ガスGを昇温又は維持する吸着還元剤消費制御を行うように構成されている。この第1設定温度Tgc1は、図4に例示するNOx浄化率とエンジン出口温度との関係で、LNTのNOx浄化率が低下する温度があるように、LNT装置21におけるNOx浄化率が低下する温度、言い換えれば、NOx吸蔵能力が低下する温度、例えば、400℃以上に設定される。 In the adsorption NH 3 consumption unit 53, the first exhaust gas temperature Tg1 detected by the first exhaust gas temperature sensor 36 is equal to or higher than the first set temperature Tgc1 set in advance based on the NOx release temperature in the LNT device 21. Thus, it is comprised so that adsorption | suction reduction agent consumption control which raises or maintains the exhaust gas G may be performed. The first set temperature Tgc1 is a temperature at which the NOx purification rate in the LNT device 21 decreases so that there is a temperature at which the NOx purification rate of the LNT decreases due to the relationship between the NOx purification rate illustrated in FIG. 4 and the engine outlet temperature. In other words, the temperature is set to a temperature at which the NOx occlusion ability decreases, for example, 400 ° C. or higher.
 この排気ガスGの昇温に起因するLNT装置21のNOx吸蔵還元型触媒の昇温により、フィルタ再生時において、フィルタ再生を開始する前に、LNT装置21に吸蔵されているNOxを放出させて、この放出されたNOxを下流側のSCR装置24に流入させる。この流入したNOxと、SCR装置24で吸着しているNHとが反応してNOxを還元浄化することにより、SCR装置24における吸着NHを減少させることができる。 Due to the temperature rise of the NOx occlusion reduction type catalyst of the LNT device 21 caused by the temperature rise of the exhaust gas G, the NOx occluded in the LNT device 21 is released before the filter regeneration is started at the time of filter regeneration. The released NOx flows into the SCR device 24 on the downstream side. The inflowing NOx reacts with NH 3 adsorbed by the SCR device 24 to reduce and purify NOx, whereby the adsorbed NH 3 in the SCR device 24 can be reduced.
 このときの排気ガスGの昇温は、NOxパージ制御とは異なり、排気ガスG中の空燃比(λ)はリーン状態とすることが好ましい。空燃比をリッチ状態とすると、NOx吸蔵還元型触媒から放出されたNOxが三元触媒により還元浄化されてしまうため、SCR装置24に流入するNOxが減少してしまい、SCR装置24における吸着NHの減少効果が低減してしまうからである。 The temperature rise of the exhaust gas G at this time is preferably a lean state of the air-fuel ratio (λ) in the exhaust gas G, unlike the NOx purge control. When the air-fuel ratio is in a rich state, NOx released from the NOx storage reduction catalyst is reduced and purified by the three-way catalyst, so that NOx flowing into the SCR device 24 is reduced, and the adsorbed NH 3 in the SCR device 24 is reduced. This is because the effect of reducing the decrease is reduced.
 さらに、吸着NH消費部53は、吸着NH消費制御では、第2排気ガス温度センサ37で検出される第2排気ガス温度Tg2が、SCR装置24におけるNH消費効率に基づいて予め設定された第2設定温度Tgc2以上で、かつ、SCR装置24におけるNH放出温度に基づいて予め設定された第3設定温度Tgc3以下になるように、第2排気ガス温度Tg2を昇温又は維持するように構成されていることが好ましい。この第2設定温度Tgc2は、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRでNOx浄化率が高くなる温度があるように、NOx浄化率が高く、吸蔵NHの消費率が多くなる温度、例えば、300℃程度に設定される。 Further, the adsorption NH 3 consumption unit 53 sets the second exhaust gas temperature Tg2 detected by the second exhaust gas temperature sensor 37 in advance based on the NH 3 consumption efficiency in the SCR device 24 in the adsorption NH 3 consumption control. The second exhaust gas temperature Tg2 is raised or maintained so as to be equal to or higher than the second preset temperature Tgc2 and lower than or equal to a preset third preset temperature Tgc3 based on the NH 3 release temperature in the SCR device 24. It is preferable that it is comprised. This second set temperature Tgc2 is a relationship between the NOx purification rate illustrated in FIG. 4 and the engine outlet temperature, so that the NOx purification rate is high such that there is a temperature at which the NOx purification rate becomes high in SCR, and the consumption of stored NH 3 The temperature at which the rate increases is set to about 300 ° C., for example.
 この排気ガスGの昇温に起因するSCR装置24のSCR触媒の昇温により、フィルタ再生時において、フィルタ再生を開始する前に、SCR装置24に吸着されているNHをNOxと反応させる。このNOx還元反応の効率、即ち、NH消費効率は、第2排気ガス温度Tg2が、上記で設定した第2設定温度Tgc2以上になると大きくなるので、短時間で、SCR装置24における吸蔵NHを減少させることができるようになる。 Due to the temperature rise of the SCR catalyst of the SCR device 24 caused by the temperature rise of the exhaust gas G, NH 3 adsorbed on the SCR device 24 is reacted with NOx before starting filter regeneration during filter regeneration. The efficiency of this NOx reduction reaction, that is, the NH 3 consumption efficiency, increases when the second exhaust gas temperature Tg2 becomes equal to or higher than the second set temperature Tgc2 set above, and therefore, the occluded NH 3 in the SCR device 24 in a short time. Can be reduced.
 また、SCR装置24のSCR触媒温度が高くなり過ぎると、SCR装置24におけるNOx浄化率が低下するため、第2排気ガス温度Tg2を上記で設定した第3設定温度Tgc3以下に抑える。この第3設定温度Tgc3は、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRでNOx浄化率が低くなる温度があるように、NOx浄化率が低く吸蔵NHの消費率が減少する温度、例えば、400℃程度に設定される。つまり、第2排気ガス温度Tg2を、図4に例示するNOx浄化率とエンジン出口温度との関係で、SCRにおけるNOx浄化率が高くなっている温度範囲Raに相当する温度範囲内になる、昇温及び維持する。 Further, if the SCR catalyst temperature of the SCR device 24 becomes too high, the NOx purification rate in the SCR device 24 decreases, so the second exhaust gas temperature Tg2 is suppressed to the third set temperature Tgc3 or less set above. The third set temperature Tgc3 is a relationship between the NOx purification rate and the engine outlet temperature illustrated in FIG. 4, and the NOx purification rate is low and the consumption rate of the occluded NH 3 so that there is a temperature at which the NOx purification rate becomes low in SCR. Is set to a temperature at which the temperature decreases, for example, about 400 ° C. That is, the second exhaust gas temperature Tg2 is increased within a temperature range corresponding to the temperature range Ra in which the NOx purification rate in the SCR is high in the relationship between the NOx purification rate and the engine outlet temperature illustrated in FIG. Warm and maintain.
 そして、本開示の実施の形態の内燃機関の排気ガス浄化方法(以下、排気ガス浄化方法)は、内燃機関の排気通路11に、上流側から順に、排気ガスG中のNOxを吸蔵するLNT装置21と、排気ガスG中のNOxをNHにより還元するSCR装置24とを備えるとともに、排気通路11に、排気ガスG中のPMを捕集するCSF装置22を備えた排気ガス浄化方法であり、次のような方法である。 An exhaust gas purification method for an internal combustion engine (hereinafter referred to as an exhaust gas purification method) according to an embodiment of the present disclosure stores an NOx in the exhaust gas G in the exhaust passage 11 of the internal combustion engine in order from the upstream side. 21 and an SCR device 24 for reducing NOx in the exhaust gas G with NH 3 , and an exhaust gas purification method provided with a CSF device 22 for collecting PM in the exhaust gas G in the exhaust passage 11. The method is as follows.
 この排気ガス浄化方法において、SCR装置24におけるNH吸着量の推定値である推定NH吸着量Seを算出し、CSF装置22のPMを燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定NH吸着量Seが予め設定した目標NH吸着量St以上であるか否かを判定し、推定NH吸着量Seが目標NH吸着量St以上である場合は、算出される推定NH吸着量Seが目標NH吸着量Stよりも少なくなるように、SCR装置24における吸着NHを減少させる吸着NH消費制御を行う。 In this exhaust gas purification method, an estimated NH 3 adsorption amount Se, which is an estimated value of the NH 3 adsorption amount in the SCR device 24, is calculated, and the calculated regeneration start is started at the start of filter regeneration for removing the PM of the CSF device 22 by combustion. estimated adsorbed NH 3 amount Se is determined whether a target adsorbed NH 3 amount St above a preset time, when the estimated adsorbed NH 3 amount Se is the target adsorbed NH 3 amount St above is calculated Adsorption NH 3 consumption control for reducing the adsorbed NH 3 in the SCR device 24 is performed so that the estimated NH 3 adsorption amount Se is smaller than the target NH 3 adsorption amount St.
 この上記の制御は、図3に示すような一例の制御フローで実施することができる。この図3の制御フローは内燃機関が運転を開始すると、上級の制御フローから呼ばれて、他の排気ガス浄化システム1の運転制御フローと並行して実施され、内燃機関の運転が終了する際には、割り込みが生じて、上級の制御フローに戻って、この上級の制御フローと共に終了するものとして示してある。 The above control can be performed by an example control flow as shown in FIG. The control flow of FIG. 3 is called from the advanced control flow when the internal combustion engine starts operation, and is executed in parallel with the operation control flow of the other exhaust gas purification system 1, and when the operation of the internal combustion engine ends. Shows that an interrupt occurs, returns to the advanced control flow, and ends with this advanced control flow.
 図3の制御フローが上位の制御フローから呼ばれてスタートすると、ステップS11の「再生要求あり?」で、CSF装置22におけるフィルタ再生制御(以下、再生制御とする)を要求するフィルタ再生要求(以下、再生要求とする)が有るか否かの判定をする。この判定で、再生要求が無い場合は、リターンし、上位の制御フローに戻って、予め設定した時間を経過した後、再度上位の制御フローから呼ばれてスタートし、これを繰り返す。 When the control flow of FIG. 3 is called from the upper control flow and starts, a filter regeneration request (hereinafter, referred to as regeneration control) in the CSF device 22 is requested by “regeneration request?” In step S11. Hereinafter, it is determined whether or not there is a reproduction request. In this determination, if there is no regeneration request, the process returns, returns to the upper control flow, and after a preset time has elapsed, it is called again from the upper control flow and started, and this is repeated.
 ステップS11の「再生要求あり?」の判定で、再生要求が有る場合は、ステップS12の「NOxパージ制御の停止」に行く。このステップS12の「NOxパージ制御の停止」では、NOx吸蔵還元型触媒のNOxパージ制御を停止し、NOx吸蔵還元型触媒のNOx低減制御(DeNOx制御)を停止する。つまり、NOxパージ制御の停止を行う。 If it is determined in step S11 that there is a regeneration request ?, if there is a regeneration request, the process proceeds to “stop NOx purge control” in step S12. In “stop NOx purge control” in step S12, the NOx purge control of the NOx storage reduction catalyst is stopped, and the NOx reduction control (DeNOx control) of the NOx storage reduction catalyst is stopped. That is, the NOx purge control is stopped.
 次のステップS13の「SCR入口温度の入力」では、第2排気ガス温度センサ37で検出される第2排気ガス温度Tg2、つまり、SCR入口温度を入力する。そして、「目標NH吸着量Stの設定」では、SCR装置24における吸着可能なNH吸着量Smaxは、SCR触媒の温度の影響を大きく受けるので、この第2排気ガス温度Tg2に基づいて、フィルタ再生時(以下再生時とする)の目標NH吸着量Stを設定する。この再生時の目標NH吸着量Stは、再生時は、排気ガス流量が小さく、排気ガスが急昇温するため、アンモニアスリップが発生し易くなるので、再生時以外の通常時の目標NH吸着量St0と比較して、これより小さい値に設定される。 In the next “input of SCR inlet temperature” in step S13, the second exhaust gas temperature Tg2 detected by the second exhaust gas temperature sensor 37, that is, the SCR inlet temperature is inputted. In the “setting of the target NH 3 adsorption amount St”, the NH 3 adsorption amount Smax that can be adsorbed in the SCR device 24 is greatly influenced by the temperature of the SCR catalyst. Therefore, based on the second exhaust gas temperature Tg2, A target NH 3 adsorption amount St during filter regeneration (hereinafter referred to as regeneration) is set. Target adsorbed NH 3 amount St at the time of reproduction, reproduction, exhaust gas flow rate is small, since the exhaust gas is KyuNoboru temperature, since ammonia slip is likely to occur, the target NH 3 in the normal non-playback Compared with the adsorption amount St0, a value smaller than this is set.
 さらに、「推定NH吸着量Seの算出」では、SCR装置24におけるNH吸着量の推定値である推定NH吸着量Seを算出する。この推定NH吸着量Seは、供給NH量から消費NH量を減算し、さらに、NHスリップ量を減算したものである(推定NH吸着量Se=前回推定NH吸着量+供給NH量-消費NH量-NHスリップ量)。 Further, in “calculation of estimated NH 3 adsorption amount Se”, an estimated NH 3 adsorption amount Se that is an estimated value of the NH 3 adsorption amount in the SCR device 24 is calculated. The estimated adsorbed NH 3 amount Se subtracts the consumed amount of NH 3 from the supply amount of NH 3, further is obtained by subtracting the NH 3 slip amount (estimated adsorbed NH 3 amount Se = previously estimated adsorbed NH 3 amount + supply NH 3 amount−consumed NH 3 amount−NH 3 slip amount).
 この供給NH量は、尿素水Uから加水分解により発生したNHの供給量であり、これは尿素水供給装置23から供給した尿素水Uの噴射量U1などを基にして算出される。 This supply NH 3 amount is the supply amount of NH 3 generated by hydrolysis from the urea water U, and this is calculated based on the injection amount U1 of the urea water U supplied from the urea water supply device 23 and the like.
 消費NH量は、エンジン本体10から発生したNOx量を還元するのに使用したNHの量である。これは、SCR装置24に流入するNOx量とSCR触媒の温度(例えば、第2排気ガス温度Tg2で代用)、排気ガスGの流量、NOとNOの比率、反応時のNH吸着量等を基にして計算される。このSCR装置24に流入するNOx量は、LNT装置21の出口側の第2NOx濃度Cn2と排気ガスGの流量とから得られる単位時間ごとのNOx量で推定することができる。 The consumed NH 3 amount is the amount of NH 3 used to reduce the NOx amount generated from the engine body 10. This is because the amount of NOx flowing into the SCR device 24 and the temperature of the SCR catalyst (for example, substitute for the second exhaust gas temperature Tg2), the flow rate of the exhaust gas G, the ratio of NO to NO 2 , the NH 3 adsorption amount during the reaction, etc. Calculated based on The amount of NOx flowing into the SCR device 24 can be estimated by the amount of NOx per unit time obtained from the second NOx concentration Cn2 on the outlet side of the LNT device 21 and the flow rate of the exhaust gas G.
 また、このSCR装置24に流入するNOx量(SCR入口NOx量)は、エンジン出口のNOx量からLNT装置21のNOx吸蔵脱離量とLNT装置21のNOx還元量を減算したものである(SCR入口NOx量=エンジン出口のNOx量-LNT装置のNOx吸蔵脱離量-LNT装置のNOx還元量)。 Further, the NOx amount (SCR inlet NOx amount) flowing into the SCR device 24 is obtained by subtracting the NOx occlusion / desorption amount of the LNT device 21 and the NOx reduction amount of the LNT device 21 from the NOx amount at the engine outlet (SCR). Inlet NOx amount = NOx amount at engine outlet−NOx occlusion / desorption amount of LNT device−NOx reduction amount of LNT device).
 そして、このエンジン出口のNOx量は、エンジン運転状態から推定したり、LNT装置21の入口側のNOxセンサと排気ガス流量から計算したりすることができる。また、LNT装置21のNOx吸蔵脱離量はLNT温度、排気ガス流量、NOx吸蔵量から計算できる。そして、LNT装置21のNOx還元量はLNT温度、排気ガス流量、NOx吸蔵量、空燃比から計算できる。 The amount of NOx at the engine outlet can be estimated from the engine operating state, or can be calculated from the NOx sensor on the inlet side of the LNT device 21 and the exhaust gas flow rate. The NOx occlusion / desorption amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, and the NOx occlusion amount. The NOx reduction amount of the LNT device 21 can be calculated from the LNT temperature, the exhaust gas flow rate, the NOx occlusion amount, and the air-fuel ratio.
 また、NHスリップ量は、SCR装置24におけるNH吸着量と温度と排気ガスGの流量などを基にして計算される。 Further, the NH 3 slip amount is calculated based on the NH 3 adsorption amount and temperature in the SCR device 24, the flow rate of the exhaust gas G, and the like.
 そして、次のステップS14の「Se≧St」の判定では、推定NH吸着量Seが目標NH吸着量Stより大きいか否かを判定する。このステップS14の「Se≧St」の判定で、推定NH吸着量Seが目標NH吸着量St以上である場合は(YES)、ステップS15の「吸着NH消費制御」に行き、予め設定した時間を経過した後、ステップS13に戻り、この予め設定した時間で変化した、新たな推定NH吸着量Seと新たな目標NH吸着量Stを比較する。 In the next determination of “Se ≧ St” in step S14, it is determined whether or not the estimated NH 3 adsorption amount Se is larger than the target NH 3 adsorption amount St. In the determination of “Se ≧ St” in step S14, if the estimated NH 3 adsorption amount Se is equal to or larger than the target NH 3 adsorption amount St (YES), go to “adsorption NH 3 consumption control” in step S15 and set in advance. After the elapsed time has elapsed, the process returns to step S13, and the new estimated NH 3 adsorption amount Se and the new target NH 3 adsorption amount St, which have changed at the preset time, are compared.
 この吸着NH消費制御では、算出される推定NH吸着量Seが目標NH吸着量Stよりも少なくなるように、あるいは、第2排気ガス温度Tg2が第2設定温度Tgc2と第3設定温度Tgc3との間の範囲内になるように、SCR装置24における吸着NHを減少させる制御を行う。具体的には、この吸着NH消費制御では、第1排気ガス温度Tg1が第1設定温度Tgc1以上になるように、排気ガスGの温度を昇温又は維持する。この排気ガスGの昇温としては、エンジン本体10における燃料噴射量を増加したり、ポスト噴射や排気管内燃料噴射で排気通路11に供給した未燃燃料をLNT装置21で酸化して発熱させたりするなどの、排気ガスGの温度を上昇させる方法が採用される。 In this adsorption NH 3 consumption control, the calculated estimated NH 3 adsorption amount Se is smaller than the target NH 3 adsorption amount St, or the second exhaust gas temperature Tg2 is set to the second set temperature Tgc2 and the third set temperature. Control to reduce the adsorbed NH 3 in the SCR device 24 is performed so as to be within a range between the Tgc 3 and the Tgc 3 . Specifically, in this adsorption NH 3 consumption control, the temperature of the exhaust gas G is raised or maintained so that the first exhaust gas temperature Tg1 becomes equal to or higher than the first set temperature Tgc1. As for the temperature rise of the exhaust gas G, the fuel injection amount in the engine body 10 is increased, or the unburned fuel supplied to the exhaust passage 11 by post injection or in-pipe fuel injection is oxidized by the LNT device 21 to generate heat. For example, a method of increasing the temperature of the exhaust gas G is adopted.
 そして、ステップS14の「Se≧St」の判定で、推定NH吸着量Seが目標NH吸着量St未満である場合は、ステップS16の「再生条件成立?」に行く。このステップS16の「再生条件成立?」では、CSF装置22における再生制御の開始条件が満たされているか否かを判定し、再生制御の開始条件が満たされていない場合は(NO)、予め設定した時間を経過した後、ステップS13に戻る。 If the estimated NH 3 adsorption amount Se is smaller than the target NH 3 adsorption amount St in the determination of “Se ≧ St” in step S14, the process proceeds to “regeneration condition satisfied?” In step S16. In “regeneration condition satisfied?” In step S16, it is determined whether or not the start condition for regeneration control in the CSF device 22 is satisfied. If the start condition for regeneration control is not satisfied (NO), it is set in advance. After the elapsed time has elapsed, the process returns to step S13.
 一方、このステップS16の「再生条件成立?」で、再生制御の開始条件が満たされている場合は(YES)、ステップS17の「再生制御」に行き、CSF装置22における再生制御を行い、この再生制御が完了した後、リターンに行き、上位の制御フローに戻り、予め設定した時間を経過した後、再度上位の制御フローから呼ばれてスタートし、これを繰り返す。 On the other hand, if the regeneration control start condition is satisfied in “Regeneration condition established?” In step S16 (YES), the process goes to “regeneration control” in step S17 to perform regeneration control in the CSF device 22. After the reproduction control is completed, the process goes to return and returns to the upper control flow. After a preset time elapses, it is called again from the upper control flow and started, and this is repeated.
 なお、図3の制御フローの途中で、内燃機関の運転が終了されると、割り込みにより、図示しないが必要な制御の終了処理を行ってから、リターンして上級の制御フローに戻り、この上級の制御フローと共に終了する。 If the operation of the internal combustion engine is terminated in the middle of the control flow of FIG. 3, an interrupt is performed to perform necessary control termination processing (not shown), and then return to the upper control flow. It ends with the control flow.
 なお、LNT装置21の触媒温度の代わりに第1排気ガス温度Tg1を使用しているが、第3排気ガス温度Tg3を用いてもよく、さらには、より精度良い触媒温度を推定する場合には、第1排気ガス温度Tg1と第3排気ガス温度Tg3を用いて、単純平均や重み付き平均をLNT装置21の触媒温度とすることも可能である。 Although the first exhaust gas temperature Tg1 is used instead of the catalyst temperature of the LNT device 21, the third exhaust gas temperature Tg3 may be used. Furthermore, when estimating a more accurate catalyst temperature. Using the first exhaust gas temperature Tg1 and the third exhaust gas temperature Tg3, a simple average or a weighted average can be used as the catalyst temperature of the LNT device 21.
 また、SCR装置24の触媒温度の代わりに第2排気ガス温度Tg2を使用しているが、SCR装置24とDOC装置25の間の排気通路11に、第4排気ガス温度センサを設けて、この第4排気ガス温度センサで検出される第4排気ガス温度Tg4を用いてもよく、さらには、より精度良い触媒温度を推定する場合には、第2排気ガス温度Tg2と第4排気ガス温度Tg4を用いて、単純平均や重み付き平均を、SCR装置24の触媒温度とすることも可能である。 Further, the second exhaust gas temperature Tg2 is used instead of the catalyst temperature of the SCR device 24. A fourth exhaust gas temperature sensor is provided in the exhaust passage 11 between the SCR device 24 and the DOC device 25. The fourth exhaust gas temperature Tg4 detected by the fourth exhaust gas temperature sensor may be used. Furthermore, when a more accurate catalyst temperature is estimated, the second exhaust gas temperature Tg2 and the fourth exhaust gas temperature Tg4 are used. It is also possible to use the simple average or the weighted average as the catalyst temperature of the SCR device 24.
 上記のように、この実施の形態の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、フィルタ再生時において、SCR装置24のSCR触媒に吸着されているNHが脱離及び放出されて、SCR装置24の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題を解決できる。 As described above, according to the exhaust gas purification system 1 for an internal combustion engine and the exhaust gas purification method for an internal combustion engine of this embodiment, NH 3 adsorbed on the SCR catalyst of the SCR device 24 is removed during filter regeneration. It is possible to solve the problem that the time until the start of filter regeneration is lengthened while avoiding being released and released and flowing out to the downstream side of the SCR device 24.
 特に、SCR触媒を担持したSCR装置24の前段にLNT触媒を担持したLNT装置21が配置されている場合には、NOxがLNT装置21のLNT触媒に吸蔵されてしまい、SCR装置24におけるNH消費量の低減効率が低下するので、NH吸着量が低減するまでの待ち時間が長くなり、フィルタ再生開始までの時間が長くなるが、この問題をより効果的に解決できる。 In particular, when the LNT device 21 carrying the LNT catalyst is arranged in the front stage of the SCR device 24 carrying the SCR catalyst, NOx is occluded in the LNT catalyst of the LNT device 21 and NH 3 in the SCR device 24 is stored. Since the reduction efficiency of consumption decreases, the waiting time until the NH 3 adsorption amount decreases increases and the time until filter regeneration starts increases, but this problem can be solved more effectively.
 つまり、SCR装置24におけるNH吸着量が多く、LNT装置21のNOx吸蔵量が少ない場合は、LNT装置21のNOx吸蔵量を飽和させて、SCR装置24の吸着NHを消費する必要があり、時間を要する。こうしたケースに対して、LNT装置21のNOx吸蔵効率が低下する温度まで昇温することで、LNT装置21からの放出NOxによるSCR装置24における吸着NHの消費と、LNT装置21におけるNOx吸蔵飽和を不要にすることと、SCR装置24のSCR触媒の温度上昇による反応効率の向上(=NH消費効率の向上)との総合的な効果が得られ、フィルタ再生開始までの時間を短縮することができる。これによって、NOx排出量を低減でき、CSF装置22へのPM過堆積も抑制することが可能となる。 That is, when the NH 3 adsorption amount in the SCR device 24 is large and the NOx occlusion amount of the LNT device 21 is small, it is necessary to saturate the NOx occlusion amount of the LNT device 21 and consume the adsorption NH 3 of the SCR device 24. Takes time. In such a case, by raising the temperature to a temperature at which the NOx occlusion efficiency of the LNT device 21 is reduced, the consumption of adsorbed NH 3 in the SCR device 24 due to the NOx released from the LNT device 21 and the NOx occlusion saturation in the LNT device 21. And a comprehensive effect of improving the reaction efficiency (= improvement of NH 3 consumption efficiency) by increasing the temperature of the SCR catalyst of the SCR device 24, and shortening the time until the start of filter regeneration Can do. As a result, the NOx emission amount can be reduced, and PM overdeposition on the CSF device 22 can be suppressed.
 本出願は、2018年2月19日付で出願された日本国特許出願(特願2018-027008)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2018-027008) filed on February 19, 2018, the contents of which are incorporated herein by reference.
 本開示の排気ガス浄化システム及び排気ガス浄化方法は、フィルタ再生時において、SCR装置のSCR触媒に吸着されている還元剤が脱離及び放出されて、SCR装置の下流側に流出することを回避しつつ、フィルタ再生開始までの時間が長くなるという問題と、それに伴うNOx排出量の増加の懸念を解決するといった点において有用である。 In the exhaust gas purification system and the exhaust gas purification method of the present disclosure, during filter regeneration, the reducing agent adsorbed on the SCR catalyst of the SCR device is prevented from being desorbed and released and flowing out to the downstream side of the SCR device. However, this is useful in that it solves the problem that the time until the filter regeneration starts becomes long and the concern about the increase in the NOx emission amount associated therewith.
1 内燃機関の排気ガス浄化システム
10 エンジン本体
11 排気通路
21 LNT装置(吸蔵還元型触媒装置)
22 CSF装置(触媒付きフィルタ装置)
23 尿素水供給装置(還元剤供給装置)
24 SCR装置(選択還元型触媒装置)
25 DOC装置(ASC:酸化触媒装置)
31 第1NOxセンサ
32 第2NOxセンサ
33 第3NOxセンサ
34 第1ラムダセンサ
35 第2ラムダセンサ
36 第1排気ガス温度センサ(第1温度検出装置)
37 第2排気ガス温度センサ(第2温度検出装置)
38 第3排気ガス温度センサ
40 制御装置
41 フィルタ再生制御部
42 NOxパージ制御部
43 硫黄パージ制御部
44 尿素水供給制御部
51 推定NH吸蔵量算出部(算出部)
52 NH吸着量判定部(判定部)
53 吸蔵NH消費部(消費部)
G 排気ガス
U 尿素水(還元剤)
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 10 of internal combustion engine Engine body 11 Exhaust passage 21 LNT device (Occlusion reduction type catalyst device)
22 CSF device (filter device with catalyst)
23 Urea water supply device (reducing agent supply device)
24 SCR device (selective reduction catalyst device)
25 DOC equipment (ASC: oxidation catalyst equipment)
31 1st NOx sensor 32 2nd NOx sensor 33 3rd NOx sensor 34 1st lambda sensor 35 2nd lambda sensor 36 1st exhaust gas temperature sensor (1st temperature detection device)
37 Second exhaust gas temperature sensor (second temperature detection device)
38 Third exhaust gas temperature sensor 40 Control device 41 Filter regeneration control unit 42 NOx purge control unit 43 Sulfur purge control unit 44 Urea water supply control unit 51 Estimated NH 3 occlusion amount calculation unit (calculation unit)
52 NH 3 adsorption amount determination unit (determination unit)
53 Occlusion NH 3 Consumption Department (Consumption Department)
G exhaust gas U urea water (reducing agent)

Claims (4)

  1.  内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた、前記内燃機関の排気ガス浄化システムにおいて、
     前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出する算出部と、
     前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、前記算出部で算出された再生開始時の推定還元剤吸着量が予め設定した目標量以上であるか否かを判定する判定部と、
     前記判定部で、前記算出部で算出される推定還元剤吸着量が前記目標量以上である場合は、前記算出部で算出される推定還元剤吸着量が前記目標量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行う消費部を備えて構成されている制御装置を有していることを特徴とする排気ガス浄化システム。
    The exhaust passage of the internal combustion engine includes, in order from the upstream side, a NOx storage reduction catalyst device that stores NOx in the exhaust gas, and a selective reduction catalyst device that reduces NOx in the exhaust gas with a reducing agent. In the exhaust gas purification system of the internal combustion engine, comprising a filter device for collecting particulate matter in the exhaust gas in the exhaust passage,
    A calculating unit that calculates an estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the selective catalytic reduction device;
    A determination unit that determines whether or not the estimated reducing agent adsorption amount at the start of regeneration calculated by the calculation unit is greater than or equal to a preset target amount at the start of filter regeneration that burns and removes particulate matter of the filter device When,
    In the determination unit, when the estimated reducing agent adsorption amount calculated by the calculation unit is equal to or greater than the target amount, the estimated reducing agent adsorption amount calculated by the calculation unit is less than the target amount. An exhaust gas purification system comprising a control unit comprising a consumption unit that performs adsorption / reduction agent consumption control for reducing adsorption / reduction agent in the selective catalytic reduction device.
  2.  前記NOx吸蔵還元型触媒装置へ流入する排気ガスの温度を測定する第1温度検出装置を備えると共に、
     前記消費部が、前記吸着還元剤消費制御では、前記第1温度検出装置で検出される第1排気ガス温度が、前記吸蔵還元型触媒装置におけるNOx放出温度に基づいて予め設定された第1設定温度以上になるように、排気ガス温度を昇温又は維持するように構成されていることを特徴とする請求項1に記載の排気ガス浄化システム。
    A first temperature detector for measuring the temperature of the exhaust gas flowing into the NOx occlusion reduction catalyst device;
    In the adsorption reducing agent consumption control, the consumption unit performs a first setting in which the first exhaust gas temperature detected by the first temperature detection device is preset based on the NOx release temperature in the storage reduction catalyst device. The exhaust gas purification system according to claim 1, wherein the exhaust gas temperature is raised or maintained so as to be equal to or higher than the temperature.
  3.  前記選択還元型触媒装置へ流入する排気ガスの温度を測定する第2温度検出装置を備えると共に、
     前記消費部が、前記吸着還元剤消費制御では、前記第2温度検出装置で検出される第2排気ガス温度が、前記選択還元型触媒装置における還元剤消費効率に基づいて予め設定された第2設定温度以上で、かつ、前記選択還元型触媒装置における還元剤放出温度に基づいて予め設定された第3設定温度以下になるように、排気ガス温度を昇温又は維持するように構成されていることを特徴とする請求項1又は2に記載の排気ガス浄化システム。
    A second temperature detecting device for measuring the temperature of the exhaust gas flowing into the selective catalytic reduction device,
    In the adsorption reducing agent consumption control by the consumption unit, a second exhaust gas temperature detected by the second temperature detection device is preset based on a reducing agent consumption efficiency in the selective catalytic reduction device. The exhaust gas temperature is raised or maintained so as to be equal to or higher than a preset temperature and lower than or equal to a preset third preset temperature based on the reducing agent release temperature in the selective catalytic reduction device. The exhaust gas purification system according to claim 1 or 2, characterized in that.
  4.  内燃機関の排気通路に、上流側から順に、排気ガス中のNOxを吸蔵するNOx吸蔵還元型触媒装置と、排気ガス中のNOxを還元剤により還元する選択還元型触媒装置とを備えるとともに、前記排気通路に排気ガス中の粒子状物質を捕集するフィルタ装置を備えた、前記内燃機関の排気ガス浄化方法において、
     前記選択還元型触媒装置における還元剤吸着量の推定値である推定還元剤吸着量を算出し、
     前記フィルタ装置の粒子状物質を燃焼除去するフィルタ再生の開始時に、算出された再生開始時の推定還元剤吸着量が予め設定した目標量以上であるか否かを判定し、
     前記推定還元剤吸着量が前記目標量以上である場合は、算出される推定還元剤吸着量が前記目標量よりも少なくなるように、前記選択還元型触媒装置における吸着還元剤を減少させる吸着還元剤消費制御を行うことを特徴とする排気ガス浄化方法。
    The exhaust passage of the internal combustion engine includes, in order from the upstream side, a NOx storage reduction catalyst device that stores NOx in the exhaust gas, and a selective reduction catalyst device that reduces NOx in the exhaust gas with a reducing agent. In the exhaust gas purification method for an internal combustion engine, comprising a filter device for collecting particulate matter in the exhaust gas in the exhaust passage,
    Calculating an estimated reducing agent adsorption amount that is an estimated value of the reducing agent adsorption amount in the selective catalytic reduction device,
    At the start of filter regeneration for burning and removing particulate matter of the filter device, it is determined whether or not the estimated reducing agent adsorption amount at the start of regeneration is equal to or greater than a preset target amount,
    When the estimated reducing agent adsorption amount is equal to or larger than the target amount, the adsorption reduction for reducing the adsorption reducing agent in the selective catalytic reduction device so that the calculated estimated reducing agent adsorption amount is smaller than the target amount. Exhaust gas purification method characterized by performing agent consumption control.
PCT/JP2019/004998 2018-02-19 2019-02-13 Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine WO2019159932A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980014018.8A CN111788372A (en) 2018-02-19 2019-02-13 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018027008A JP6969423B2 (en) 2018-02-19 2018-02-19 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2018-027008 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159932A1 true WO2019159932A1 (en) 2019-08-22

Family

ID=67619373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004998 WO2019159932A1 (en) 2018-02-19 2019-02-13 Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6969423B2 (en)
CN (1) CN111788372A (en)
WO (1) WO2019159932A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173465A (en) * 2013-03-07 2014-09-22 Isuzu Motors Ltd Control method of exhaust gas post-treatment device
JP2015108359A (en) * 2013-12-05 2015-06-11 トヨタ自動車株式会社 Exhaust control device for internal combustion engine
JP2015151929A (en) * 2014-02-14 2015-08-24 いすゞ自動車株式会社 Exhaust emission control device, and control method for the same
JP2016176429A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2016176428A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187385B2 (en) * 2014-05-26 2017-08-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6388208B2 (en) * 2014-11-20 2018-09-12 株式会社デンソー Exhaust gas purification device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173465A (en) * 2013-03-07 2014-09-22 Isuzu Motors Ltd Control method of exhaust gas post-treatment device
JP2015108359A (en) * 2013-12-05 2015-06-11 トヨタ自動車株式会社 Exhaust control device for internal combustion engine
JP2015151929A (en) * 2014-02-14 2015-08-24 いすゞ自動車株式会社 Exhaust emission control device, and control method for the same
JP2016176429A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2016176428A (en) * 2015-03-20 2016-10-06 三菱自動車工業株式会社 Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP2019143513A (en) 2019-08-29
JP6969423B2 (en) 2021-11-24
CN111788372A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5296291B2 (en) Exhaust gas purification system
JP4304539B2 (en) NOx purification system control method and NOx purification system
JP4274270B2 (en) NOx purification system and control method of NOx purification system
JP5118331B2 (en) Exhaust purification device
WO2014136832A1 (en) Control method for exhaust gas aftertreatment device
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
WO2006123510A1 (en) Exhaust gas purification method and exhaust gas purification system
JP2003286832A (en) Exhaust gas control system and control method
WO2014132839A1 (en) Exhaust purification device for internal combustion engine
JP2010180861A (en) Exhaust emission control device
JP2011089434A (en) Exhaust emission control device in internal combustion engine
JP2009041430A (en) Nox emission control method and nox emission control system
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP5062539B2 (en) Exhaust gas purification device for internal combustion engine
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5177441B2 (en) Exhaust gas purification device for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
KR20130008881A (en) System for purifying exhaust gas and method for controlling the same
WO2019159932A1 (en) Internal combustion engine exhaust gas purification system, and exhaust gas purification method for internal combustion engine
JP2010185369A (en) Fuel supply device of engine
JP2018080657A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP6149686B2 (en) HC catalyst poisoning detection system for SCR catalyst and HC catalyst poisoning detection method for SCR catalyst
JP6252375B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754866

Country of ref document: EP

Kind code of ref document: A1