JP2016020637A - Exhaust emission control system - Google Patents

Exhaust emission control system Download PDF

Info

Publication number
JP2016020637A
JP2016020637A JP2014143487A JP2014143487A JP2016020637A JP 2016020637 A JP2016020637 A JP 2016020637A JP 2014143487 A JP2014143487 A JP 2014143487A JP 2014143487 A JP2014143487 A JP 2014143487A JP 2016020637 A JP2016020637 A JP 2016020637A
Authority
JP
Japan
Prior art keywords
temperature
exhaust
oxidation catalyst
target temperature
increase control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014143487A
Other languages
Japanese (ja)
Other versions
JP6398401B2 (en
Inventor
朗義 工藤
Akiyoshi Kudo
朗義 工藤
治樹 濱田
Haruki Hamada
治樹 濱田
泰雄 岡本
Yasuo Okamoto
泰雄 岡本
嘉久 植田
Yoshihisa Ueda
嘉久 植田
久仁男 野田
Kunio Noda
久仁男 野田
信貴 石井
Nobutaka Ishii
信貴 石井
真治 原
Shinji Hara
真治 原
尊史 長谷山
Takashi Haseyama
尊史 長谷山
哲也 村田
Tetsuya Murata
哲也 村田
越智 直文
Naofumi Ochi
直文 越智
新一郎 河合
Shinichiro Kawai
新一郎 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014143487A priority Critical patent/JP6398401B2/en
Priority to PCT/JP2015/069767 priority patent/WO2016006656A1/en
Publication of JP2016020637A publication Critical patent/JP2016020637A/en
Application granted granted Critical
Publication of JP6398401B2 publication Critical patent/JP6398401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent excessive temperature rise of exhaust in supplying HC (unburned hydrocarbon) to an oxidation catalyst, and effectively suppress heat deterioration of an SCR catalyst.SOLUTION: An exhaust emission control system includes: a first oxidation catalyst 31 that is provided in an exhaust system of an internal combustion engine 10; a second oxidation catalyst 32 that is provided on the exhaust system on a downstream side with respect to the first oxidation catalyst 31; a selective reduction catalyst 41 that is provided on the downstream side with respect to the second oxidation catalyst 32 and reduces and purifies NOx in exhaust with NH3 generated from urea water as reductant; a third exhaust temperature sensor 53 detecting a temperature of exhaust inflowing to the selective reduction catalyst 41; a temperature rise control unit 62 periodically executing temperature rise control of supplying HC (unburned hydrocarbon) to the first oxidation catalyst 31 and increasing the exhaust temperature detected by the third exhaust temperature sensor 53 to a predetermined target temperature; and a target temperature correction unit 63 correcting a target temperature in temperature rise control executed next to the current temperature rise control, on the basis of the exhaust temperature detected by the third exhaust temperature sensor 53 during execution of temperature rise control and the target temperature.SELECTED DRAWING: Figure 4

Description

本発明は、排気浄化システムに関する。   The present invention relates to an exhaust purification system.

エンジンの排気浄化システムとして、例えば、特許文献1には、排気上流側から順に前段酸化触媒、ディーゼルパティキュレイトフィルタ(以下、DPF)、中段酸化触媒、選択的還元触媒(以下、SCR触媒)、後段酸化触媒を配置した構成が開示されている。   As an engine exhaust purification system, for example, Patent Document 1 discloses, in order from the exhaust upstream side, a pre-stage oxidation catalyst, a diesel particulate filter (hereinafter referred to as DPF), a middle-stage oxidation catalyst, a selective reduction catalyst (hereinafter referred to as SCR catalyst), The structure which has arrange | positioned the back | latter stage oxidation catalyst is disclosed.

特許文献1記載の技術では、排気中の粒子状物質(以下、PM)及び窒素化合物(以下、NOx)を同時に浄化しつつ、排気高温時はバイパス通路に高温排気を導入して中段酸化触媒に吸熱させることで、SCR触媒の熱劣化防止を図っている。   In the technology described in Patent Document 1, particulate matter (hereinafter referred to as PM) and nitrogen compound (hereinafter referred to as NOx) in exhaust gas are simultaneously purified, and high-temperature exhaust gas is introduced into a bypass passage at high exhaust temperature to form a middle-stage oxidation catalyst. By absorbing the heat, the thermal degradation of the SCR catalyst is prevented.

特開2013−2283号公報JP 2013-2283 A

ところで、特許文献1記載の技術では、前段酸化触媒と中段酸化触媒との間にDPFを配置し、さらに中段酸化触媒をバイパス通路に配置しているため、構造全体が複雑となり、装置の大型化やコスト上昇等を招く課題がある。   By the way, in the technique described in Patent Document 1, since the DPF is arranged between the front-stage oxidation catalyst and the middle-stage oxidation catalyst and the middle-stage oxidation catalyst is arranged in the bypass passage, the entire structure becomes complicated and the apparatus becomes larger. There is a problem that leads to an increase in costs.

また、前段酸化触媒にサルフェートの堆積(サルフェート被毒)が進むと、DPF強制再生時のポスト噴射によって供給された未燃炭化水素(HC)が前段酸化触媒からスリップして中段酸化触媒で反応し、排気温度を過度に上昇させることで、直下流に配置されたSCR触媒の熱劣化を防止できない可能性もある。   In addition, when the accumulation of sulfate (sulfate poisoning) proceeds on the front-stage oxidation catalyst, unburned hydrocarbons (HC) supplied by post-injection during DPF forced regeneration slip from the front-stage oxidation catalyst and react with the middle-stage oxidation catalyst. Further, by excessively raising the exhaust gas temperature, there is a possibility that thermal degradation of the SCR catalyst arranged immediately downstream cannot be prevented.

また、サルフェート被毒以外にも、例えば、酸化触媒の経時的な熱劣化や、排気に流入したエンジンオイル中のリン(P)によって触媒金属が被毒すると、上述と同様のHCスリップによる排気過昇温が生じ、SCR触媒の熱劣化を防止できない可能性がある。   In addition to sulfate poisoning, if the catalyst metal is poisoned by, for example, thermal deterioration of the oxidation catalyst over time or phosphorus (P) in the engine oil that has flowed into the exhaust gas, exhaust excess due to HC slip as described above will occur. There is a possibility that the temperature rises and thermal deterioration of the SCR catalyst cannot be prevented.

本発明の目的は、酸化触媒に未燃炭化水素(HC)を供給する際の排気過昇温を防止して、SCR触媒の熱劣化を効果的に抑止することにある。   An object of the present invention is to prevent an excessive exhaust temperature rise when supplying unburned hydrocarbon (HC) to an oxidation catalyst, and effectively suppress thermal degradation of the SCR catalyst.

上述の目的を達成するため、本発明の排気浄化システムは、内燃機関の排気系に設けられて未燃炭化水素(HC)を酸化可能な第1酸化触媒と、前記第1酸化触媒よりも下流側の排気系に設けられて可溶性有機成分(SOF)を酸化可能な第2酸化触媒と、前記第2酸化触媒よりも下流側の排気系に設けられて尿素水から生成されるアンモニア(NH3)を還元剤として排気中の窒素化合物(NOx)を還元浄化する選択的還元触媒と、前記選択的還元触媒に流入する排気温度を検出する温度検出手段と、前記第1酸化触媒に未燃炭化水素(HC)を供給して前記温度検出手段で検出される排気温度を所定の目標温度まで上昇させる昇温制御を定期的に実行する昇温制御手段と、昇温制御の実行中に前記温度検出手段で検出された排気温度と目標温度との差に基づいて、当該昇温制御の次に実行される昇温制御の目標温度を補正する目標温度補正手段とを備える。   In order to achieve the above-described object, an exhaust purification system of the present invention includes a first oxidation catalyst that is provided in an exhaust system of an internal combustion engine and that can oxidize unburned hydrocarbons (HC), and is downstream of the first oxidation catalyst. A second oxidation catalyst provided in the exhaust system on the side and capable of oxidizing soluble organic components (SOF), and ammonia (NH 3) provided from the urea water provided in the exhaust system downstream from the second oxidation catalyst A selective reduction catalyst for reducing and purifying nitrogen compounds (NOx) in the exhaust gas using a reducing agent, temperature detection means for detecting an exhaust temperature flowing into the selective reduction catalyst, and unburned hydrocarbons in the first oxidation catalyst (HC) is supplied and the temperature rise control means for periodically executing the temperature rise control for raising the exhaust gas temperature detected by the temperature detection means to a predetermined target temperature; and the temperature detection during the temperature rise control. The exhaust temperature detected by the means Based on the difference between the target temperature, and a target temperature correction means for correcting the target temperature of the temperature increase control performed in the following the Atsushi Nobori control.

また、前記目標温度補正手段は、昇温制御の実行中に前記温度検出手段で検出された排気温度のピーク値が目標温度よりも高かった場合は、当該ピーク値から当該目標温度を減算した値を次に実行される昇温制御の目標温度から減算することが好ましい。   Further, the target temperature correction means is a value obtained by subtracting the target temperature from the peak value when the peak value of the exhaust temperature detected by the temperature detection means is higher than the target temperature during the temperature increase control. Is preferably subtracted from the target temperature of the temperature increase control to be executed next.

また、前記目標温度補正手段は、昇温制御の実行中に前記温度検出手段で検出された排気温度のピーク値が目標温度よりも低かった場合は、当該目標温度から当該ピーク値を減算した値を次に実行される昇温制御の目標温度に加算することが好ましい。   Further, the target temperature correction means is a value obtained by subtracting the peak value from the target temperature when the peak value of the exhaust gas temperature detected by the temperature detection means is lower than the target temperature during the temperature increase control. Is preferably added to the target temperature of the temperature increase control to be executed next.

また、前記内燃機関の燃料噴射を多段噴射で制御して前記内燃機関から排出される排気中のスート成分を低減させる燃焼制御手段さらに備えるものであってもよい。   Further, it may further comprise combustion control means for controlling the fuel injection of the internal combustion engine by multistage injection to reduce the soot component in the exhaust discharged from the internal combustion engine.

本発明の排気浄化システムによれば、酸化触媒に未燃炭化水素(HC)を供給する際の排気過昇温を防止して、SCR触媒の熱劣化を効果的に抑止することができる。   According to the exhaust purification system of the present invention, it is possible to prevent an excessive exhaust temperature rise when supplying unburned hydrocarbon (HC) to the oxidation catalyst, and to effectively suppress thermal degradation of the SCR catalyst.

本実施形態の排気浄化システムを示す模式的な全体構成図である。It is a typical whole block diagram which shows the exhaust gas purification system of this embodiment. 本実施形態の電子制御ユニット(ECU)を示す機能ブロック図である。It is a functional block diagram which shows the electronic control unit (ECU) of this embodiment. 本実施形態の排気浄化システムによる昇温制御を説明するフローチャート図である。It is a flowchart figure explaining the temperature rising control by the exhaust gas purification system of this embodiment. 本実施形態の排気浄化システムによる昇温制御の目標温度補正を説明する図である。It is a figure explaining the target temperature correction | amendment of the temperature rising control by the exhaust gas purification system of this embodiment. HCスリップが生じた場合のDOC出口温度とSCR入口温度とを比較した図である。It is the figure which compared the DOC exit temperature when HC slip arises, and the SCR entrance temperature.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust purification system according to an embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、コモンレール(不図示)に畜圧した高圧燃料を各気筒内に直接噴射するインジェクタ11がそれぞれ設けられている。これら各インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)60から入力される指示信号に応じてコントロールされる。   As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an injector 11 that directly injects high-pressure fuel pressured by a common rail (not shown) into each cylinder. . The fuel injection amount and fuel injection timing of each injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 60.

エンジン10の吸気マニホールド10Aには、新気を導入する吸気通路12が接続されている。排気マニホールド10Bには、排気を導出する排気通路16が接続されている。排気通路16には、排気上流側から順に前段後処理装置30、後段後処理装置40等が設けられている。   An intake passage 12 for introducing fresh air is connected to the intake manifold 10 </ b> A of the engine 10. An exhaust passage 16 for leading the exhaust is connected to the exhaust manifold 10B. The exhaust passage 16 is provided with a pre-stage post-treatment device 30, a post-stage post-treatment device 40, and the like in order from the exhaust upstream side.

前段後処理装置30は、ケース30A内に上流側から順に第1酸化触媒31、第2酸化触媒32を配置して構成されている。第1酸化触媒31よりも上流側のケース30Aには、第1酸化触媒31の入口排気温度(以下、DOC入口温度という)を検出する第1排気温度センサ50が設けられている。また、第1酸化触媒31と第2酸化触媒32との間のケース30Aには、第1酸化触媒31の出口排気温度(以下、DOC出口温度という)を検出する第2排気温度センサ51が設けられている。これらセンサ50,51のセンサ値は、電気的に接続されたECU60に送信される。   The pre-stage post-processing apparatus 30 is configured by arranging a first oxidation catalyst 31 and a second oxidation catalyst 32 in order from the upstream side in a case 30A. A case 30 </ b> A upstream of the first oxidation catalyst 31 is provided with a first exhaust temperature sensor 50 that detects an inlet exhaust temperature of the first oxidation catalyst 31 (hereinafter referred to as a DOC inlet temperature). The case 30A between the first oxidation catalyst 31 and the second oxidation catalyst 32 is provided with a second exhaust temperature sensor 51 that detects the outlet exhaust temperature of the first oxidation catalyst 31 (hereinafter referred to as DOC outlet temperature). It has been. The sensor values of these sensors 50 and 51 are transmitted to the electrically connected ECU 60.

第1酸化触媒31は、例えば多孔質セラミック担体にNO2生成触媒等を担持して形成されており、排気中に含まれるNOからNO2を生成する機能や、ポスト噴射によって供給される未燃炭化水素(HC)を酸化する機能を有している。   The first oxidation catalyst 31 is formed, for example, by supporting a NO2 generating catalyst or the like on a porous ceramic carrier, and functions to generate NO2 from NO contained in the exhaust, and unburned hydrocarbons supplied by post injection. It has a function of oxidizing (HC).

第2酸化触媒32は、例えば多孔質セラミック担体にSOF酸化触媒を担持して形成されており、排気に含まれるPM中の主にSOF成分を酸化浄化する機能を有している。   The second oxidation catalyst 32 is formed, for example, by supporting a SOF oxidation catalyst on a porous ceramic carrier, and has a function of oxidizing and purifying mainly SOF components in PM contained in exhaust gas.

後段後処理装置40は、ケース40A内に上流側から順にSCR触媒41、第3酸化触媒42を配置して構成されている。SCR触媒41よりも上流側の排気通路16には、尿素水噴射装置43の尿素添加弁44及び、SCR触媒41に流入する排気中のNOx値を検出するNOxセンサ52が設けられている。さらに、SCR触媒41よりも上流側の排気通路16には、SCR触媒41の入口排気温度(以下、SCR入口温度という)を検出する第3排気温度センサ53が設けられている。これらセンサ52,53のセンサ値は、電気的に接続されたECU60に送信される。   The post-stage post-treatment device 40 is configured by arranging an SCR catalyst 41 and a third oxidation catalyst 42 in order from the upstream side in the case 40A. The exhaust passage 16 upstream of the SCR catalyst 41 is provided with a urea addition valve 44 of the urea water injector 43 and a NOx sensor 52 that detects the NOx value in the exhaust gas flowing into the SCR catalyst 41. Further, a third exhaust temperature sensor 53 for detecting an inlet exhaust temperature of the SCR catalyst 41 (hereinafter referred to as SCR inlet temperature) is provided in the exhaust passage 16 upstream of the SCR catalyst 41. The sensor values of these sensors 52 and 53 are transmitted to the electrically connected ECU 60.

尿素水噴射装置43は、ECU60から入力される指示信号に応じて尿素添加弁44を開閉動作させることで、SCR触媒41よりも上流側の排気通路16内に、尿素水タンク45内から尿素水ポンプ46によって圧送される尿素水を噴射する。噴射された尿素水は排気熱により加水分解されてNH3に生成され、下流側のSCR触媒41に還元剤として供給される。   The urea water injection device 43 opens and closes the urea addition valve 44 in response to an instruction signal input from the ECU 60, so that the urea water is supplied from the urea water tank 45 into the exhaust passage 16 upstream of the SCR catalyst 41. The urea water pumped by the pump 46 is injected. The injected urea water is hydrolyzed by exhaust heat to be generated as NH3, and supplied to the SCR catalyst 41 on the downstream side as a reducing agent.

SCR触媒41は、例えば多孔質セラミック担体にゼオライト等を担持して形成されている。SCR触媒41は、尿素水噴射装置43から還元剤として供給されるNH3を吸着すると共に、吸着したNH3で通過する排気中からNOxを選択的に還元浄化する。   The SCR catalyst 41 is formed, for example, by supporting zeolite or the like on a porous ceramic carrier. The SCR catalyst 41 adsorbs NH3 supplied as a reducing agent from the urea water injection device 43, and selectively reduces and purifies NOx from the exhaust gas passing through the adsorbed NH3.

第3酸化触媒42は、例えば多孔質セラミック担体に酸化触媒を担持して形成されており、SCR触媒41から下流側にスリップしたNH3を酸化する機能を有している。   The third oxidation catalyst 42 is formed, for example, by supporting an oxidation catalyst on a porous ceramic carrier, and has a function of oxidizing NH 3 slipped downstream from the SCR catalyst 41.

ECU60は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。また、ECU60は、図2に示すように、PM低減燃焼制御部61と、昇温制御部62と、目標温度補正部63とを一部の機能要素として有する。これら各機能要素は、本実施形態では一体のハードウェアであるECU60に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 60 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. Further, as shown in FIG. 2, the ECU 60 includes a PM reduction combustion control unit 61, a temperature increase control unit 62, and a target temperature correction unit 63 as some functional elements. In the present embodiment, these functional elements are described as being included in the ECU 60, which is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.

PM低減燃焼制御部61は、各インジェクタ11の燃料噴射をマルチ噴射で制御することで、排気に含まれるPM中の主にスート成分を低減させるPM低減噴射制御を実行する。このように、本実施形態では、PM中のスート成分をエンジン10の燃焼制御によって低減し、PM中のSOF成分を第2酸化触媒32で酸化浄化することにより、DPFを省略してもPMの大気への放出を効果的に抑制できるように構成されている。なお、このPM低減噴射制御と併せて、何れも図示しない可変容量型過給機やEGR装置の開度を調整して過給圧を上昇させる制御を実行してもよい。   The PM reduction combustion control unit 61 executes PM reduction injection control that mainly reduces soot components in PM contained in exhaust gas by controlling the fuel injection of each injector 11 by multi-injection. As described above, in the present embodiment, the soot component in the PM is reduced by the combustion control of the engine 10, and the SOF component in the PM is oxidized and purified by the second oxidation catalyst 32, so that the DPM is omitted even if the DPF is omitted. It is configured to effectively suppress the release to the atmosphere. In addition to the PM reduction injection control, control for increasing the supercharging pressure by adjusting the opening of a variable capacity supercharger or EGR device (not shown) may be executed.

昇温制御部62は、(1)第1酸化触媒31に堆積したサルフェートの除去、(2)尿素水から生成された白色堆積物の除去、(3)エンジン10から排出されてSCR触媒41に堆積したHCの除去及び、(4)SCR触媒41に吸蔵されたNH3の除去により推定NH3吸蔵量と実NH3吸蔵量との誤差修正を目的とする昇温制御を実行する。本実施形態において、この昇温制御は排気行程で所定量の燃料を噴射するポスト噴射によって第1酸化触媒31に未燃炭化水素(HC)を供給し、酸化反応熱で排気温度を昇温することで実現される。以下、昇温制御の詳細を図3のフローチャートに基づいて説明する。   The temperature raising control unit 62 (1) removes the sulfate deposited on the first oxidation catalyst 31, (2) removes white deposits generated from the urea water, and (3) is discharged from the engine 10 to the SCR catalyst 41. The temperature increase control is performed for the purpose of correcting the error between the estimated NH3 occlusion amount and the actual NH3 occlusion amount by removing the accumulated HC and (4) removing NH3 occluded in the SCR catalyst 41. In this embodiment, this temperature increase control supplies unburned hydrocarbons (HC) to the first oxidation catalyst 31 by post injection that injects a predetermined amount of fuel in the exhaust stroke, and raises the exhaust temperature with oxidation reaction heat. This is realized. Hereinafter, the details of the temperature rise control will be described based on the flowchart of FIG.

ステップ(以下、ステップを単にSという)100では、前回の昇温制御完了から現在までの経過時間(以下、インターバルという)が所定の第1閾値時間に達したか否かが判定される。インターバルが第1閾値時間に達した場合(Yes)、本制御はS110に進みパージフラグFをオンにする。   In step (hereinafter, simply referred to as S) 100, it is determined whether or not an elapsed time (hereinafter referred to as an interval) from the completion of the previous temperature increase control to the present has reached a predetermined first threshold time. When the interval reaches the first threshold time (Yes), the present control proceeds to S110 and the purge flag F is turned on.

S120では、第1排気温度センサ50で検出されるDOC入口温度が触媒活性状態を示す所定の第1閾値温度以上か否かが判定される。さらに、S130では、第2排気温度センサ51で検出されるDOC出口温度が第1閾値温度以上か否かが判定される。これら何れの条件も満たす場合(Yes)は、S140に進む。一方、これら何れかの条件を満たさない場合(No)は、パージフラグFをオンにしたまま待機状態となる。   In S120, it is determined whether or not the DOC inlet temperature detected by the first exhaust temperature sensor 50 is equal to or higher than a predetermined first threshold temperature indicating a catalyst active state. Further, in S130, it is determined whether or not the DOC outlet temperature detected by the second exhaust temperature sensor 51 is equal to or higher than the first threshold temperature. If any of these conditions is satisfied (Yes), the process proceeds to S140. On the other hand, if any of these conditions is not satisfied (No), the purge flag F is kept on and a standby state is entered.

S140では、第3排気温度センサ53で検出されるSCR入口温度が所定の目標温度Tnとなるように排気温度を上昇させるポスト噴射が開始される。この目標温度Tnは、後述する目標温度補正部63によって必要に応じて補正される。 In S140, the post-injection SCR inlet temperature detected by the third exhaust temperature sensor 53 is the exhaust gas temperature is raised to a predetermined target temperature T n is started. The target temperature T n is corrected as necessary by a target temperature correction unit 63 described later.

S150では、第1排気温度センサ50で検出されるDOC入口温度が第1閾値温度以上を維持しているか否かが判定され、さらに、S160では、第2排気温度センサ51で検出されるDOC出口温度が第1閾値温度を維持しているか否かが判定される。これら何れの条件も満たす場合(Yes)はS170に進む一方、これら何れかの条件を満たさない場合(No)は、再び条件が満たされるまでポスト噴射は中断される。   In S150, it is determined whether or not the DOC inlet temperature detected by the first exhaust temperature sensor 50 is equal to or higher than the first threshold temperature. In S160, the DOC outlet detected by the second exhaust temperature sensor 51 is determined. It is determined whether or not the temperature maintains the first threshold temperature. If any of these conditions is satisfied (Yes), the process proceeds to S170. If any of these conditions is not satisfied (No), post injection is interrupted until the condition is satisfied again.

S170では、ポスト噴射の累積噴射量が所定の上限噴射量に達したか否かが判定される。累積噴射量が上限噴射量に達した場合(Yes)は、S200でパージフラグFをオフにして本制御は終了する(昇温制御:失敗)。一方、累積噴射量が上限噴射量に達していない場合(No)はS180に進む。   In S170, it is determined whether or not the cumulative injection amount of post injection has reached a predetermined upper limit injection amount. If the cumulative injection amount has reached the upper limit injection amount (Yes), the purge flag F is turned off in S200, and the present control ends (temperature increase control: failure). On the other hand, when the cumulative injection amount has not reached the upper limit injection amount (No), the process proceeds to S180.

S180では、昇温制御の終了判定が実行される。この昇温制御の終了は、第2排気温度センサ51が上述の(1)〜(4)に規定したサルフェート、白色堆積物、HC、NH3を除去可能な所定の第2閾値温度以上を計測した累積時間に基づいて判定される。累積時間が所定の第2閾値時間に達した場合(Yes)は、S190に進みパージフラグFをオフにして本制御は終了する(昇温制御:成功)。一方、累積時間が第2閾値時間に達していない場合(No)は、昇温制御を継続すべく本制御はS140に戻される。   In S180, termination determination of the temperature rise control is executed. The end of the temperature increase control was measured by the second exhaust temperature sensor 51 at a predetermined second threshold temperature or higher that can remove the sulfate, white deposit, HC, and NH3 defined in the above (1) to (4). It is determined based on the accumulated time. When the accumulated time reaches the predetermined second threshold time (Yes), the process proceeds to S190, the purge flag F is turned off, and the present control ends (temperature increase control: success). On the other hand, when the accumulated time has not reached the second threshold time (No), the present control is returned to S140 to continue the temperature increase control.

目標温度補正部63は、昇温制御中に第3排気温度センサ53で検出されるSCR入口温度に基づいて目標温度Tnを増減させる温度補正を実行する。具体的には、n回目(nは1以上の自然数)の昇温制御中に第3温度センサ53で検出されたSCR入口温度のピーク値Tpeak_nをECU60の図示しない記録部に記録させておき、n+1回目の昇温制御を実行する際は、その目標温度Tn+1をn回目の目標温度Tnとピーク値Tpeak_nとの差ΔTn(=Tn−Tpeak_n)に応じて増減補正する。例えば、図4に示すように、n回目のピーク値Tpeak_nが目標温度Tnよりも高かった場合は、その差ΔTnだけn+1回目の目標温度Tn+1を減少させる(Tn+1=Tn−(Tpeak_n−Tn))。さらに、n+1回目のピーク値Tpeak_n+1が目標温度Tn+1よりも低かった場合は、その差ΔTn+1だけn+2回目の目標温度Tn+2を増加させる(Tn+2=Tn+1+(Tn+1−Tpeak_n+1))。このように、昇温制御中のSCR入口温度と目標温度との差に応じて次回以降の目標温度を段階的に増減補正することで、SCR触媒41の過昇温を効果的に抑止することができる。 The target temperature correction unit 63 performs temperature correction for increasing or decreasing the target temperature T n based on the SCR inlet temperature detected by the third exhaust temperature sensor 53 during the temperature rise control. Specifically, the peak value Tpeak_n of the SCR inlet temperature detected by the third temperature sensor 53 during the n-th (n is a natural number of 1 or more) temperature increase control is recorded in a recording unit (not shown ) of the ECU 60. when performing n + 1 th temperature increase control is increased or decreased in accordance with the target temperature T n + 1 in the difference ΔT n (= T n -T peak_n ) the n-th target temperature T n and the peak value T Peak_n to correct. For example, as shown in FIG. 4, when n-th peak value T Peak_n is higher than the target temperature T n, decreases the target temperature T n + 1 of the (n + 1) th by the difference [Delta] T n (T n + 1 = T n - (T peak_n -T n)). Furthermore, if (n + 1) th peak value T peak_n + 1 is lower than the target temperature T n + 1, to increase the difference [Delta] T n + 1 by n + 2 th target temperature T n + 2 (T n + 2 = T n + 1 + (T n + 1 -T peak_n + 1)). As described above, the excessive increase in the temperature of the SCR catalyst 41 is effectively suppressed by correcting the target temperature from the next time stepwise in accordance with the difference between the SCR inlet temperature during the temperature increase control and the target temperature. Can do.

次に、本実施形態に係る排気浄化システムの作用効果を説明する。   Next, the effect of the exhaust gas purification system according to this embodiment will be described.

本実施形態の排気浄化システムは、排気上流側から順にNO2を生成する第1酸化触媒31、未燃燃料や潤滑油等を主成分とするPM中のSOF成分を酸化浄化する第2酸化触媒32、NOxを還元浄化するSCR触媒41、NH3スリップを防止する第3酸化触媒42を配置して構成されている。さらに、エンジン10の燃料噴射は、マルチ噴射によりPM中の主にスート成分を低減させるPM低減噴射によって制御されるようになっている。すなわち、PM中のスート成分等をエンジン10の燃焼制御によって低減し、SOF成分を第2酸化触媒32で浄化することで、DPFを用いることなく排気エミッション性能を効果的に維持できるように構成されている。したがって、DPFを省略することが可能となり、装置の大型化やコスト上昇を効果的に抑制することができる。   The exhaust purification system of this embodiment includes a first oxidation catalyst 31 that generates NO2 in order from the exhaust upstream side, and a second oxidation catalyst 32 that oxidizes and purifies SOF components in PM mainly composed of unburned fuel, lubricating oil, and the like. , A SCR catalyst 41 for reducing and purifying NOx and a third oxidation catalyst 42 for preventing NH3 slip are arranged. Furthermore, fuel injection of the engine 10 is controlled by PM reduction injection that mainly reduces soot components in PM by multi-injection. That is, the exhaust emission performance can be effectively maintained without using the DPF by reducing the soot component in the PM by the combustion control of the engine 10 and purifying the SOF component by the second oxidation catalyst 32. ing. Therefore, it is possible to omit the DPF, and it is possible to effectively suppress an increase in size and cost of the apparatus.

また、DPFを省略したことで、ポスト噴射や排気管内噴射によるフィルタ強制再生を行う必要が無くなり、燃費性能を効果的に向上することができる。また、DPFの省略によって、アッシュを除去するDPFの定期的な掃除等が不要になり、メンテナンス性も効果的に向上することができる。   Further, by omitting the DPF, it is not necessary to perform forced regeneration by post injection or in-pipe injection, and fuel efficiency can be improved effectively. Further, the omission of the DPF eliminates the need for periodic cleaning of the DPF for removing ash, and the maintenance performance can be effectively improved.

また、第1酸化触媒31のサルフェート被毒に対しては定期的な昇温制御によって除去すること可能だが、リン被毒や経時的な熱劣化に対しては対応できない課題がある。そのため、これらリン被毒や経年熱劣化の影響を考慮することなく昇温制御を行うと、図5に示すように、HCスリップによってSCR入口温度がDOC出口温度に対して高くなり、排気過昇温によるSCR触媒41の劣化を防止できない可能性がある。   In addition, the sulfate poisoning of the first oxidation catalyst 31 can be removed by periodic temperature increase control, but there is a problem that it is not possible to cope with phosphorus poisoning and thermal degradation over time. Therefore, if temperature rise control is performed without considering the effects of phosphorus poisoning and aging heat deterioration, as shown in FIG. 5, the SCR inlet temperature becomes higher than the DOC outlet temperature due to HC slip, and the exhaust gas is excessively heated. There is a possibility that deterioration of the SCR catalyst 41 due to temperature cannot be prevented.

本実施形態の排気浄化システムは、サルフェート被毒に対しては昇温制御を定期的に行うことで確実に除去しつつ、リン被毒や経年劣化に対しては昇温制御の目標温度を適宜補正することで、昇温制御中のHCスリップを効果的に防止するように構成されている。したがって、昇温制御中の排気過昇温を効果的に抑制することが可能となり、SCR触媒41の熱劣化を確実に防止することができる。   The exhaust purification system of the present embodiment reliably removes sulfate poisoning by periodically performing temperature rise control, while appropriately setting a target temperature for temperature rise control for phosphorus poisoning and aging deterioration. By correcting, it is configured to effectively prevent HC slip during temperature rise control. Therefore, it is possible to effectively suppress the exhaust excessive temperature rise during the temperature rise control, and the thermal deterioration of the SCR catalyst 41 can be surely prevented.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、昇温制御はポスト噴射で行うものとして説明したが、第1酸化触媒31よりも上流側の排気通路16に燃料噴射装置を設けて排気管噴射で行うように構成してもよい。   For example, although the temperature increase control has been described as being performed by post injection, a fuel injection device may be provided in the exhaust passage 16 upstream of the first oxidation catalyst 31 and may be performed by exhaust pipe injection.

10 エンジン
11 インジェクタ
16 排気通路
30 前段後処理装置
31 第1酸化触媒
32 第2酸化触媒
40 後段後処理装置
41 SCR触媒
42 第3酸化触媒
50 第1排気温度センサ
51 第2排気温度センサ
53 第3排気温度センサ
60 ECU
61 PM低減燃焼制御部
62 昇温制御部
63 目標温度補正部
DESCRIPTION OF SYMBOLS 10 Engine 11 Injector 16 Exhaust passage 30 Pre-stage post-processing apparatus 31 1st oxidation catalyst 32 2nd oxidation catalyst 40 Post-stage post-treatment apparatus 41 SCR catalyst 42 3rd oxidation catalyst 50 1st exhaust temperature sensor 51 2nd exhaust temperature sensor 53 3rd Exhaust temperature sensor 60 ECU
61 PM reduction combustion control unit 62 Temperature rise control unit 63 Target temperature correction unit

Claims (4)

内燃機関の排気系に設けられて未燃炭化水素(HC)を酸化可能な第1酸化触媒と、
前記第1酸化触媒よりも下流側の排気系に設けられて可溶性有機成分(SOF)を酸化可能な第2酸化触媒と、
前記第2酸化触媒よりも下流側の排気系に設けられて尿素水から生成されるアンモニア(NH3)を還元剤として排気中の窒素化合物(NOx)を還元浄化する選択的還元触媒と、
前記選択的還元触媒に流入する排気温度を検出する温度検出手段と、
前記第1酸化触媒に未燃炭化水素(HC)を供給して前記温度検出手段で検出される排気温度を所定の目標温度まで上昇させる昇温制御を定期的に実行する昇温制御手段と、
昇温制御の実行中に前記温度検出手段で検出された排気温度と目標温度との差に基づいて、当該昇温制御の次に実行される昇温制御の目標温度を補正する目標温度補正手段と、を備える
排気浄化システム。
A first oxidation catalyst provided in an exhaust system of an internal combustion engine and capable of oxidizing unburned hydrocarbon (HC);
A second oxidation catalyst provided in an exhaust system downstream of the first oxidation catalyst and capable of oxidizing soluble organic components (SOF);
A selective reduction catalyst that is provided in an exhaust system downstream of the second oxidation catalyst and that reduces and purifies nitrogen compounds (NOx) in the exhaust gas using ammonia (NH3) generated from urea water as a reducing agent;
Temperature detecting means for detecting an exhaust temperature flowing into the selective reduction catalyst;
A temperature increase control means for periodically performing a temperature increase control for supplying unburned hydrocarbon (HC) to the first oxidation catalyst and increasing the exhaust temperature detected by the temperature detection means to a predetermined target temperature;
Based on the difference between the exhaust temperature detected by the temperature detection means and the target temperature during the temperature increase control, the target temperature correction means corrects the target temperature of the temperature increase control executed next to the temperature increase control. And an exhaust purification system.
前記目標温度補正手段は、
昇温制御の実行中に前記温度検出手段で検出された排気温度のピーク値が目標温度よりも高かった場合は、当該ピーク値から当該目標温度を減算した値を次に実行される昇温制御の目標温度から減算する
請求項1に記載の排気浄化システム。
The target temperature correction means includes
When the peak value of the exhaust temperature detected by the temperature detection means is higher than the target temperature during the temperature increase control, the temperature increase control is executed next by subtracting the target temperature from the peak value. The exhaust gas purification system according to claim 1, wherein the exhaust gas purification system is subtracted from a target temperature.
前記目標温度補正手段は、
昇温制御の実行中に前記温度検出手段で検出された排気温度のピーク値が目標温度よりも低かった場合は、当該目標温度から当該ピーク値を減算した値を次に実行される昇温制御の目標温度に加算する
請求項1又は2に記載の排気浄化システム。
The target temperature correction means includes
When the peak value of the exhaust temperature detected by the temperature detection means during execution of the temperature increase control is lower than the target temperature, the temperature increase control is executed next by subtracting the peak value from the target temperature. The exhaust gas purification system according to claim 1 or 2, wherein the exhaust gas purification system is added to the target temperature.
前記内燃機関の燃料噴射を多段噴射で制御して前記内燃機関から排出される排気中のスート成分を低減させる燃焼制御手段さらに備える
請求項1から3の何れか一項に記載の排気浄化システム。
The exhaust emission control system according to any one of claims 1 to 3, further comprising combustion control means for controlling fuel injection of the internal combustion engine by multi-stage injection to reduce a soot component in exhaust discharged from the internal combustion engine.
JP2014143487A 2014-07-11 2014-07-11 Exhaust purification system Expired - Fee Related JP6398401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014143487A JP6398401B2 (en) 2014-07-11 2014-07-11 Exhaust purification system
PCT/JP2015/069767 WO2016006656A1 (en) 2014-07-11 2015-07-09 Exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143487A JP6398401B2 (en) 2014-07-11 2014-07-11 Exhaust purification system

Publications (2)

Publication Number Publication Date
JP2016020637A true JP2016020637A (en) 2016-02-04
JP6398401B2 JP6398401B2 (en) 2018-10-03

Family

ID=55064284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143487A Expired - Fee Related JP6398401B2 (en) 2014-07-11 2014-07-11 Exhaust purification system

Country Status (2)

Country Link
JP (1) JP6398401B2 (en)
WO (1) WO2016006656A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592952B (en) * 2022-03-04 2023-03-21 潍柴动力股份有限公司 Control method and system for post-processing system for protecting SCR

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256632A (en) * 2004-03-09 2005-09-22 Hiroshi Matsuoka Exhaust emission control system
JP2005288362A (en) * 2004-04-01 2005-10-20 Ne Chemcat Corp Diesel engine exhaust gas purification apparatus
JP2010516948A (en) * 2007-01-31 2010-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for regenerating a soot filter in an exhaust system of a lean engine and an exhaust system for the same
JP2011241775A (en) * 2010-05-19 2011-12-01 Isuzu Motors Ltd Scr system
JP2012007557A (en) * 2010-06-25 2012-01-12 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2012092675A (en) * 2010-10-25 2012-05-17 Isuzu Motors Ltd Internal combustion engine control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256632A (en) * 2004-03-09 2005-09-22 Hiroshi Matsuoka Exhaust emission control system
JP2005288362A (en) * 2004-04-01 2005-10-20 Ne Chemcat Corp Diesel engine exhaust gas purification apparatus
JP2010516948A (en) * 2007-01-31 2010-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for regenerating a soot filter in an exhaust system of a lean engine and an exhaust system for the same
JP2011241775A (en) * 2010-05-19 2011-12-01 Isuzu Motors Ltd Scr system
JP2012007557A (en) * 2010-06-25 2012-01-12 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2012092675A (en) * 2010-10-25 2012-05-17 Isuzu Motors Ltd Internal combustion engine control device

Also Published As

Publication number Publication date
JP6398401B2 (en) 2018-10-03
WO2016006656A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP4947036B2 (en) Engine exhaust purification method
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
KR100797503B1 (en) Exhaust gas purifying apparatus for internal combustion engine
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
JP2009138704A (en) Exhaust emission aftertreatment device
JP2008121629A (en) Exhaust emission control device
EP3184787B1 (en) Regeneration device for exhaust-gas purifying device
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
CN109154223B (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP6287539B2 (en) Exhaust purification system
JP2010249076A (en) Exhaust emission control device of internal combustion engine
US20150308320A1 (en) Exhaust gas purification system for internal combustion engine
JP6398401B2 (en) Exhaust purification system
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP6729473B2 (en) Filter regeneration control device and filter regeneration control method
JP6398402B2 (en) Exhaust purification system
JP2013253540A (en) Exhaust cleaning system for internal combustion engine
JP2018044471A (en) Exhaust emission control device and exhaust emission control method
JP2020041428A (en) Post-exhaust treatment device
WO2017047678A1 (en) Catalyst deterioration degree estimation device
JP2016173037A (en) Exhaust emission control system
JP6686516B2 (en) Exhaust gas treatment method and device using LNT
WO2016006655A1 (en) Air purification system
JP2022054626A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees