JP6966471B2 - 座標測定プローブ本体 - Google Patents

座標測定プローブ本体 Download PDF

Info

Publication number
JP6966471B2
JP6966471B2 JP2018554696A JP2018554696A JP6966471B2 JP 6966471 B2 JP6966471 B2 JP 6966471B2 JP 2018554696 A JP2018554696 A JP 2018554696A JP 2018554696 A JP2018554696 A JP 2018554696A JP 6966471 B2 JP6966471 B2 JP 6966471B2
Authority
JP
Japan
Prior art keywords
probe body
component
configuration
compliant
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018554696A
Other languages
English (en)
Other versions
JP2019515260A (ja
Inventor
スコット アレン ハーシラ,
リチャード アラン ウィスナー,
ビョルン エリック ベルティル ヤンソン,
聡 古賀
章憲 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2019515260A publication Critical patent/JP2019515260A/ja
Application granted granted Critical
Publication of JP6966471B2 publication Critical patent/JP6966471B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/001Constructional details of gauge heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

(関連出願への相互参照)
本願は、2016年4月21日に出願された仮出願第62/325,763号の利益を主張し、これにより、その開示全体は、本明細書に参照によって援用される。
(背景)
ある座標の測定システム、例えば、座標測定機(CMM)等の1次元または3次元測定システムは、タッチプローブのスタイラスがワークピースに接触するときを検出するように構成されるタッチプローブを使用してワークピースの測定値を得る。Fuchs et al.の米国特許第5,526,576号(参照によって、全体が本明細書に援用される)に説明される例示的先行技術CMMは、ワークピースに接触するタッチプローブと、タッチプローブを移動させるための複数の駆動部を備える移動機構と、タッチプローブ本体もしくはヘッド内またはタッチプローブ本体もしくはヘッドからの処理信号に関する特徴を含む関連電子システムとを含む。
タッチプローブは、種々のタイプの高感度変位センサを使用し、タッチプローブスタイラスがワークピースに接触したことのインジケーションのためのタッチプローブスタイラスの偏りを感知する。タッチプローブにおいて、タッチプローブスタイラスの最も小さい偏りが、最も小さい可能な接触力から感知されることが、望ましい。
例示的タッチプローブが、McMurtryの米国特許第5,755,038号(参照によって、全体が本明細書に援用される)に開示される。McMurtryは、遠位スタイラスモジュールに解放可能に係合するタッチプローブ本体または感知モジュールを有するタッチプローブを開示する。最も深く理解されるように、McMurtryは、中心の弾性的に支持される移動負荷部材を囲繞する堅性支持構造を備える3つの柱状物の間に軸方向に延在する、弾性的に支持される移動負荷部材を有するプローブ本体を開示する。特定用途向け集積回路(「ASIC」)信号プロセッサを含むプリント回路基板は、堅性支持構造上の弾性的に支持される負荷部材の周囲に搭載される。弾性的に支持される移動負荷部材は、実質的に、その中心軸に沿った感知モジュールの長さ全体に沿って延在し、弾性振動板への堅性支持構造の上端近傍に接続される。3つのコンプライアント支柱は、移動負荷部材を堅性支持構造の下側端部に接続する。支柱はそれぞれ、堅性支持構造に対する負荷部材の移動に応答するトリガ信号を生成するASIC信号プロセッサに接続される歪ゲージを含む。加工、組み立て、および修理するためにより経済的である高精度タッチプローブ本体のための構成が、望ましい。
米国特許第5,526,576号明細書 米国特許第5,755,038号明細書
(概要)
本概要は、以下の詳細な説明においてさらに説明される、一連の概念を簡略化された形態において導入するために提供される。本概要は、請求される主題の重要な特徴を識別することを意図するものではなく、請求される主題の範囲の決定における補助として使用されることを意図するものでもない。
従来技術のタッチプローブ本体構成は、上記に示されたプローブ本体構成を含み、困難な組立、完全組立に先行するサブシステムの不十分または困難な試験、困難な組立後試験および/またはプログラミング、ならびに困難な組立後修理を含む、種々の望ましくない側面を有すると決定された。例えば、スタイラスを支持する移動要素を懸吊するコンプライアント要素は、脆性でありかつ容易に損傷される。その上に搭載され得る歪ゲージもまた、脆性であり、歪ゲージアセンブリは、低収率動作である。上記に示されたもの等の先行技術プローブ本体構成は、完全または略完全な組立に先行する、経済的なサブシステムおよびサブシステム検証を促進しない。その結果、収率は低く、アセンブリの完成は、複雑かつ高価で、修理は、高価または非現実的であり得る。これらの問題の改善解決策を妨害する1つの要素は、同様の高精度測定器(例えば、ミクロンまたはサブミクロンレベルの再現性)を同様の小型構成(例えば、直径12〜15mmのオーダーで、または、およそヒトの「小指」サイズ)で達成する代替構成を提供することが、困難であると証明されたことである。これらの問題に対する改善解決策をもたらすこと困難は、電子的構成要素およびプローブ本体自体内で実施される信号処理を増加させることが所望されるとき、さらに増加される。
タッチプローブ本体内に現在要求される性能レベルおよび小型化は、そのようなデバイス内で組み合わせられる全ての要素間のトレードオフを余儀なくさせる(構造剛度の低減が、正確度を低下させる振動に起因する偏りを可能にし、剛度の増加が、電子的構成要素および要求される移動要素のための空間を低減させる材料を追加する等)。前述の全てのものは、サブアセンブリおよび/またはサブアセンブリ試験および/または修理のために便利である特徴の追加を複雑にする。
従来技術と対照的に、上記に概説された問題を解決する特徴の一意の組み合わせを含むタッチプローブ本体のための構成が、本明細書に開示される。1つの実施形態では、プローブ本体は、プローブ本体軸の方向に沿って比較的により大きな長さ寸法と、プローブ本体軸を横断する方向に沿って比較的により短い横断面寸法とを有し得る。プローブ本体は、上側搭載部と、プローブ本体軸の方向に沿って延在する軸方向延在部と、コンプライアント要素搭載フレームとを備える堅性プローブ本体構造と、スタイラスに結合する移動要素と、コンプライアント要素搭載フレームから移動要素を懸吊するように配列されるコンプライアント要素の構成とを含むスタイラス懸吊部と、コンプライアント要素搭載フレームおよび堅性プローブ本体構造のうちの少なくとも1つに対する移動要素の変位を感知するように配列される変位感知構成であって、変位感知構成は、それぞれの変位信号を出力する少なくとも1つの変位センサを備える、変位感知構成と、プローブ本体軸の方向に沿って延在する略平面状の部分である少なくとも第1、第2、および第3の構成要素搭載部を備える回路基板アセンブリとを備え得る。種々の実施形態では、コンプライアント要素搭載フレームから移動要素を懸吊するように配列されるコンプライアント要素は、回路基板アセンブリの遠位端に対して遠位に位置するコンプライアント要素搭載フレームの取付部に取り付けられ、回路基板アセンブリの少なくとも第1、第2、および第3の構成要素搭載部は、堅性プローブ本体構造の軸方向延在部の周囲に、かつ上側搭載部とコンプライアント要素搭載フレームの取付部との間に配列される。
いくつかの実施形態では、少なくとも第1、第2、および第3の構成要素搭載部は、少なくとも1つの可撓性コネクタ構成要素と電気的に相互接続され、これにより、第1、第2、および第3の構成要素搭載部ならびに少なくとも1つの可撓性コネクタ構成要素が、折曲可能な回路基板アセンブリを形成する。いくつかの実施形態では、折曲可能な回路基板アセンブリは、フィールドプログラマブルゲートアレイを備え、少なくとも1つの可撓性コネクタ構成要素の暴露端部は、フィールドプログラマブルゲートアレイへのプログラム可能なアクセスを提供するように構成される接続要素を備える。
いくつかの実施形態では、コンプライアント要素搭載フレームから移動要素を懸吊するコンプライアント要素の全て、およびコンプライアント要素搭載フレームの取付部は、回路基板アセンブリの遠位端に対して遠位に位置する。いくつかの実施形態では、コンプライアント素搭載フレームは、堅性プローブ本体構造の残部に堅性的にかつ解放可能に(例えば、孔内の柱によって)結合され、これにより、移動要素、コンプライアント要素搭載フレームから移動要素を懸吊するコンプライアント要素の全て、変位感知構成、およびコンプライアント要素搭載フレームが、堅性プローブ本体構造の残部から分離可能である懸吊モジュールを形成する。いくつかの実施形態では、可撓性回路コネクタは、少なくとも1つの変位センサに作用可能に接続され、対合するコネクタにおいて回路基板アセンブリに解放可能に係合するように変位感知構成から延在する。
いくつかの実施形態では、コンプライアント要素の構成は、中心領域を第1の平面状要素の周辺領域に接続する、第1の平面状要素に形成される第1の撓曲構成と、中心領域と、第2の平面状要素の周辺領域とを接続する、第2の平面状要素に形成される第2の撓曲構成とを含み、第1および第2の平面状要素の中心領域は、移動要素に結合され、第1および第2の平面状要素の周辺領域は、コンプライアント要素搭載フレームの取付部に結合される。
いくつかの実施形態では、回路基板アセンブリの少なくとも第1、第2、および第3の構成要素搭載部は、3つの構成要素搭載基板から成り、軸方向延在部は、3つの面を画定し、3つの構成要素搭載基板はそれぞれ、3つの面のそれぞれの面の上に重なるようにサイズ決定される。堅性プローブ本体構造の軸方向延在部は、その中心軸に沿って位置するモノリシック要素であり得る。第1、第2、および第3の構成要素搭載部は、略三角形の横断面を有する構造を形成するように、可撓に接続され、かつ折り曲げ可能であり得る。
本発明は、例えば、以下を提供する。
(項目1)
プローブ本体軸の方向に沿って比較的により大きい長さ寸法と、前記プローブ本体軸を横断する方向に沿って比較的により小さい横断面寸法とを有する座標測定プローブ本体のための構成であって、前記座標測定プローブ本体は、
上側搭載部と、前記プローブ本体軸の方向に沿って延在する軸方向延在部と、コンプライアント要素搭載フレームとを備える堅性プローブ本体構造と、
スタイラス懸吊部であって、スタイラスに結合する移動要素と、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように配列されるコンプライアント要素の構成とを備えるスタイラス懸吊部と、
前記コンプライアント要素搭載フレームおよび前記堅性プローブ本体構造のうちの少なくとも1つに対する前記移動要素の変位を感知するように配列される変位感知構成であって、前記変位感知構成は、それぞれの変位信号を出力する少なくとも1つの変位センサを備える、変位感知構成と、
略平面状の部分であり、かつ前記プローブ本体軸の方向に沿って延在する、少なくとも第1、第2、および第3の構成要素搭載部を備える回路基板アセンブリと
を備え、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように配列される前記コンプライアント要素の構成は、前記回路基板アセンブリの遠位端に対して遠位に位置する、前記コンプライアント要素搭載フレームの取付部に取り付けられ、
前記回路基板アセンブリの前記少なくとも第1、第2、および第3の構成要素搭載部は、前記堅性プローブ本体構造の前記軸方向延在部の周囲に、かつ前記上側搭載部と前記コンプライアント要素搭載フレームの前記取付部との間に配列される、構成。
(項目2)
前記少なくとも第1、第2、および第3の構成要素搭載部は、少なくとも1つの可撓性コネクタ構成要素と電気的に相互接続され、これにより、前記第1、第2、および第3の構成要素搭載部ならびに前記少なくとも1つの可撓性コネクタ構成要素が、折曲可能な回路基板アセンブリを形成する、項目1に記載の構成。
(項目3)
前記第1、第2、および第3の構成要素搭載部のうちの1つは、その上に搭載されるフィールドプログラマブルゲートアレイをさらに備え、さらに、前記少なくとも1つの可撓性コネクタ構成要素の端部は、前記第1、第2、および第3の構成要素搭載部を越えて延在し、前記フィールドプログラマブルゲートアレイへのプログラム可能なアクセスを提供するように構成される接続要素を備える、項目2に記載の構成。
(項目4)
前記少なくとも第1、第2、および第3の構成要素搭載部は、多層回路基板の堅性層を備え、それらは、可撓性回路部材を含む共有可撓性層と電気的に相互接続される、項目1に記載の構成。
(項目5)
前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、および前記コンプライアント要素搭載フレームの前記取付部は、前記回路基板アセンブリの前記遠位端に対して遠位に位置する、項目1に記載の構成。
(項目6)
前記コンプライアント要素搭載フレームは、前記堅性プローブ本体構造の残部に堅性的にかつ解放可能に結合され、これにより、前記移動要素、前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、前記変位感知構成、および前記コンプライアント要素搭載フレームが、前記堅性プローブ本体構造の前記残部から分離可能である懸吊モジュールを形成する、項目5に記載の構成。
(項目7)
前記コンプライアント要素搭載フレームは、柱部を含み、前記堅性プローブ本体構造の前記軸方向延在部は、前記柱部を受け取るように構成されるボアを含む、項目5に記載の構成。
(項目8)
前記少なくとも1つの変位センサに作用可能に接続され、前記変位感知構成から延在し、前記第1、第2、および第3の構成要素搭載部のうちの1つの上の対合するコネクタにおいて前記回路基板アセンブリに解放可能に係合する可撓性回路コネクタをさらに備える、項目7に記載の構成。
(項目9)
前記コンプライアント要素搭載フレームは、柱部を含み、前記堅性プローブ本体構造の前記軸方向延在部は、前記柱部に螺着される、項目5に記載の構成。
(項目10)
前記コンプライアント要素の構成は、
第1の平面状要素に形成された第1の撓曲構成であって、前記第1の撓曲構成は、前記第1の平面状要素の中心領域を前記第1の平面状要素の周辺領域に接続する、第1の撓曲構成と、
第2の平面状要素に形成された第2の撓曲構成であって、前記第2の撓曲構成は、前記第2の平面状要素の中心領域と、前記第2の平面状要素の周辺領域とを接続する、第2の撓曲構成と
を含み、前記第1および第2の平面状要素の前記中心領域は、前記移動要素に結合され、前記第1および第2の平面状要素の前記周辺領域は、前記コンプライアント要素搭載フレームの前記取付部に結合される、項目1に記載の構成。
(項目11)
前記第1の構成要素搭載部は、アナログ信号を処理するアナログ構成要素を備え、前記第3の構成要素搭載部は、デジタル信号処理構成要素のみを備える、項目1に記載の構成。
(項目12)
前記回路基板アセンブリの前記少なくとも第1、第2、および第3の構成要素搭載部は、3つの構成要素搭載基板から成り、前記堅性プローブ本体構造の前記軸方向延在部は、3つの面を画定し、前記3つの構成要素搭載基板はそれぞれ、前記3つの面のうちのそれぞれの面の上に重なるようにサイズ決定される、項目1に記載の構成。
(項目13)
前記堅性プローブ本体構造の前記軸方向延在部は、前記座標測定プローブ本体軸に沿って位置するモノリシック要素である、項目1に記載の構成。
(項目14)
前記回路基板アセンブリは、前記回路基板アセンブリが、略三角形の横断面を有する構造を形成するように折曲可能であるように、前記可撓性コネクタ構成要素と相互接続された前記第1、第2、および第3の構成要素搭載部から成り、さらに、前記堅性プローブ本体構造の前記軸方向延在部は、略三角形の横断面を有する、項目2に記載の構成。
(項目15)
前記少なくとも第1、第2、および第3の構成要素搭載部は、第1、第2、第3、および第4の構成要素搭載部を備え、前記第1、第2、第3、および第4の構成要素搭載部は、略平面状の部分であり、かつ前記プローブ本体軸の方向に沿って比較的により長く、前記プローブ本体軸を横断する方向に沿って比較的により細い、項目1に記載の構成。
(項目16)
座標測定プローブ本体であって、
搭載部と、プローブ本体軸に沿って延在する軸方向延在部と、コンプライアント要素搭載フレームとを備える堅性プローブ本体構造と、
スタイラスに結合する移動要素と、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように構成される複数のコンプライアント要素とを備えるスタイラス懸吊アセンブリと、
前記コンプライアント要素搭載フレームおよび前記堅性プローブ本体構造のうちの少なくとも1つに対する前記移動要素の変位を感知するように配列される変位感知アセンブリであって、前記変位感知構成は、それぞれの変位信号を出力する変位センサを備える、変位感知アセンブリと、
前記プローブ本体軸の方向に沿って延在する第1、第2、および第3の構成要素搭載部を備える回路基板アセンブリと
を備え、前記複数のコンプライアント要素は、前記回路基板アセンブリの遠位端に対して遠位に位置する前記コンプライアント要素搭載フレームの取付部に取り付けられ、
前記回路基板アセンブリの前記第1、第2、および第3の構成要素搭載部は、前記堅性プローブ本体構造の前記軸方向延在部の周囲に、かつ前記上側搭載部と前記コンプライアント要素搭載フレームの前記取付部との間に配列される、座標測定プローブ本体。
(項目17)
前記第1、第2、および第3の構成要素搭載部は、可撓性コネクタ構成要素と電気的に相互接続され、これにより、前記第1、第2、および第3の構成要素搭載部ならびに前記可撓性コネクタ構成要素が、折曲可能な回路基板アセンブリを形成する、項目16に記載の座標測定プローブ本体。
(項目18)
フィールドプログラマブルゲートアレイは、前記第1、第2、および第3の構成要素搭載部のうちの1つの上に搭載され、さらに、前記可撓性コネクタ構成要素の端部は、前記第1、第2、および第3の構成要素搭載部を越えて延在し、前記フィールドプログラマブルゲートアレイへのプログラム可能なアクセスを提供するように構成される接続要素を備える、請求17に記載の座標測定プローブ本体。
(項目19)
前記第1、第2、および第3の構成要素搭載部は、可撓性回路部材を含む共有可撓性層と電気的に相互接続される多層回路基板を備える、項目16に記載の座標測定プローブ本体。
(項目20)
前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、および前記コンプライアント要素搭載フレームの前記取付部は、前記回路基板アセンブリの前記遠位端に対して遠位に位置する、項目16に記載の座標測定プローブ本体。
本発明の前述の側面および不随する利点の多くのものは、添付図面と併せて参照されるとき、以下の詳細説明を参照することによって、それがより深く理解されるにつれて、より容易に理解される。
図1は、本発明の実施形態との併用に好適な、先行技術座標測定機を図示する。 図2は、想像線で示される筐体を伴う、本発明による、座標測定プローブ本体の実施形態の斜視図である。 図3は、図2に示される座標測定プローブ本体の部分的分解図である。 図4は、図2に示される座標測定プローブ本体の横断面図であり、概略的に図示されるスタイラスモジュールを想像線で示している。 図5は、図2、図3、および図4に示される移動要素アセンブリの分解図であり、堅性プローブ構造の一部であるコンプライアント要素搭載フレームと、その中に組み立てられる、関連付けられる要素とを含む。 図6は、図2、図3、および図4に示される座標測定プローブ本体の回路基板アセンブリ構成の斜視図である。 図7は、図6に示される回路基板アセンブリ構成内に含まれ得るような、電子的システムの1つの実装の種々の要素を示すブロック図である。
本発明の種々の側面のより深い理解を補助するために、例証的実施形が、説明される。本明細書に説明される方法および装置は、例示的実施形態として意図され、制限的に解釈されないことが意図される。同様の添字を伴う参照番号(例えば、1XXおよび3XX)は、文脈または説明によって別様に示されない限り、種々の図内の類似要素を識別し得る。
座標測定機(CMM)は、例えば、Usuiの米国特許出願公開第2011/0192044号(参照によって、全体が本明細書に援用される)において当該技術分野で公知である。公知のCMMの典型的配列が、図1に概略的に図示され、タッチプローブ200’を使用するCMM100’を含む測定システム100を示す。タッチプローブ200’は、本明細書に開示されるもの等の構成を有する新規のプローブ本体200を含み得る。測定システム100は、オペレーティングユニット10と、CMM100’の移動を制御する運動コントローラ15と、ホストコンピュータ20と、CMM100’とを含む。オペレーティングユニット10は、運動コントローラ15に結合され、CMM100’を手動で動作させるための1つまたは複数の操作レバー11を含み得る。ホストコンピュータ20は、運動コントローラ15に結合され、公知の方法に従って、CMM100’を動作させ、ワークピースWに関する測定データを処理する。ホストコンピュータ20は、例えば、測定条件を入力するための入力手段25(例えば、キーボード等)と、例えば、測定結果を出力するための出力手段30(例えば、ディスプレイ、プリンタ等)とを含む。
CMM100’は、表面板110の上に位置する駆動機構120と、タッチプローブ200’を駆動機構120に取り付けるための取付部124とを含む。駆動機構120は、タッチプローブ200’を3次元に移動させるための、X軸摺動機構122と、Y軸摺動機構121と、Z軸摺動機構123とを含む。タッチプローブ200’に取り付けられるスタイラス164は、接触部165を含む。下記により詳述されるように、スタイラスモジュール160は、スタイラス164をタッチプローブ本体200のスタイラス懸吊部に取り付け、その接触部165がワークピースWの表面に接触するときにスタイラス164が偏り、これにより、所望されるようなトリガ接触信号を産出することを可能にする。多くの商業的に利用可能なCMMの特性および動作は、概して、当該技術分野で公知であり、したがって、本明細書ではさらに詳細には説明されない。
タッチプローブ200’に関して、これは、スタイラス164の偏りに対する一般的な機械的剛度および信号感度等の特性を有する3次元触覚プローブシステムを提供し、この特性は、プローブシステムによって測定される実際の座標を適切に反映するために、信頼すべきものとして頼りにされ得る。そのような3次元触覚プローブシステムは、サブミクロンレベルの再現性を伴い、かつ低いプローブ力を使用して、3次元の高精度触覚測定を可能にし得る。経済的な高処理能力のために、概して、CMM100’の全ての動作(例えば、運動および感知)を高速で実施することが、望ましくあり得る。高速接触検出器の例示的実施形態が、Briegel et al.の米国特許出願公開第2015/0323300号(参照によって、全体が本明細書に援用される)に開示される。
例えば、時間あたり何千もの接触における表面の検出等の高速動作は、座標測定プローブ本体200とホストコンピュータシステム20との間の大量のデータの両方向伝送を要求し得ることが、理解される。いくつかの場合では、データ伝送要件は、そのような測定値が得られ得る速度を制限し得る。タッチプローブ200’によって生成されるデータの少なくとも一部が、プローブ本体200で処理され、コンピュータシステム20に伝送されなければならないデータの量を低減させる場合、有益である。しかしながら、高速動作の間、座標測定プローブ本体200は、非常に迅速に加速される。これらの高い加速は、信号処理電子機器の増加された質量と、増加される電子機器に適応するプローブ本体200内の材料除去と関連付けられる、低減される構造剛度との組み合わせで、他の望ましい特性(例えば、十分な機械的剛度、経済的な組立、および以前に概説された他の望ましい特性)を保持しながら、より包括的な信号処理システムをCMMの「統合された」プローブ本体200に統合する能力を以前は制限していた。これらの問題を克服する特徴の組み合わせを含み、特定の利点を提供する実施形態が、以下に説明される。
図2、図3、および図4は、統合された座標測定プローブ本体200の実施形態を示す。図2は、統合された座標測定プローブ本体200の実施形態の斜視図であり、筐体301内に配置される回路基板アセンブリ構成400および移動要素アセンブリ300を明らかにするために筐体301が想像線で示される。図3は、図2に示された座標測定プローブ本体200の部分的分解図であり、図4は、図2に示された座標測定プローブ本体200の横断面図であり、また、概略的に図示されるスタイラスモジュール360を想像線で示す。
本実施形態内のプローブ本体200は、筐体301と、統合された座標測定プローブ本体200をCMM(ここでは図示していないため、例えば、図1に示されるCMMを参照)等の測定システムに接続するために構成される接続アセンブリ302と、堅性プローブ本体構造310と、回路基板アセンブリ構成400と、移動要素アセンブリ300(コンプライアント要素搭載フレーム320と、スタイラス懸吊部340と、コンプライアント要素搭載フレーム320内に搭載される変位感知構成350とを備える)とを含み、全ては、下記により詳細に説明される。
堅性プローブ本体構造310は、上側搭載部302’と軸方向に沿って延在するボア331を有する軸方向延在部330とを含む主部材310’を含む。コンプライアント要素搭載フレーム320は、堅性プローブ本体構造310に継合され、かつ堅性プローブ本体構造310の付加的部分を形成する。コンプライアント要素搭載フレーム320は、中心部320Aと、上側部320Bと、下側部320Cとを含み、本実施形態では、これらは、ねじ329によってともに挟着される。上側部320Bは、軸方向延在部330への堅性な取付のために、ボア331内の公知の手段によって挟着、螺着、または別様に除去可能に締結される柱部326を含む。以前に概説されたように、種々のコンプライアントおよび/または移動要素ならびに関連付けられる感知要素が、図4および図5を参照して下記にさらに詳細に説明されるように、コンプライアント要素搭載フレーム320の内側に組み立てられ、移動要素アセンブリ300を形成する。移動要素アセンブリ300は、容易に組み立てられ、ユニットとして試験され、プローブ本体200内で容易に取り替えられる。
本実施形態では、軸方向延在部330は、三角形の横断面を有する軸部材332を含み、三角形の横断面は、概して、軸方向延在部330の面の上に重なるように整合された構成要素搭載部402A、402B、402Cを伴う回路基板アセンブリ構成400(図6)を受け取るようにサイズ決定される。3つの構成要素搭載部402A、402B、402Cが、本実施形態に示されるが、回路基板アセンブリ構成は、代替として、より多くのまたはより少ない構成要素搭載部を備えてもよい。例えば、ある実施形態では、第4の構成要素搭載部が、含まれ、軸部材は、長方形または正方形の横断面を有してもよい。いくつかの実施形態では、プローブ本体200が、組み立てられるとき、回路基板アセンブリ構成400は、上側搭載部302’とコンプライアント要素搭載フレーム320の上側部分320Bとの間で筐体301内にしっかりと配置され、支持される。図5を参照して詳細に説明されるように、移動要素アセンブリ300は、コンプライアント要素搭載フレーム320のその周辺領域近傍の取付部(例えば、図示される移動要素アセンブリ300の主本体の円周のすぐ内側)に取り付けられる(例えば、挟着される)コンプライアント要素341を含む。種々の実施形態では、回路基板アセンブリ構成400は、堅性プローブ本体構造310の堅性な部分にのみ係合する。移動アセンブリ、第1および第2のコンプライアント要素341A、341B、ならびにそれらの対応する取付部分は全て、回路基板アセンブリ構成400から遠位に配置される。したがって、図示された実施形態は、要素の特に有利な組み合わせを教示し、ここで、プローブ本体200の構造要素が経済的でありかつ高い堅性を有しと、コンプライアント要素341A、341Bと、回路基板アセンブリ構成400とが、プローブ本体200内で容易に組み立てられかつアクセス可能である場所に配列される。
図示された実施形態は、例示的にすぎない。例えば、種々の代替実施形態では、軸部材332は、上側搭載部302’とは別個の要素として形成され、例えば、上側部分320Bと一体的に形成されてもよく、そのため、柱部326の必要性がなく、上側搭載部302’が、軸部材332の近位端に螺合または別様に固定されてもよい。図示された実施形態では、図3および図4に最も良く示されるように、接続アセンブリ302は、プローブ本体200およびその回路をCMM100’に堅性的に接続するために、インターロックカラー304と、概略的に図示された電気的接続部303とを含む。接続アセンブリ302は、環状筐体キャップ部305において筐体301に接続する。種々の実施形態では、上側搭載部302’は、公知の方法によって筐体キャップ部305に取り付けられてもよい、またはそれらは、融合されかつ/または区別不可能であってもよい。
図5は、図2、図3、および図4に示される移動要素アセンブリ300の一実施形態の分解図であり、本実施形態では、コンプライアント要素搭載フレーム部320A、320B、320Cと、スタイラス懸吊部340と、変位感知構成350とを含む。プローブ本体200は、図4内の断面図に組み立てられた状態で示される。
コンプライアント要素搭載フレーム320は、堅性プローブ本体構造310全体の一部を形成する、堅性なフレームである。図示された実施形態では、コンプライアント要素搭載フレーム320は、中心部320Aと、上側部320Bと、下側部320Cとを含み、本実施形態では、これらは、ねじ329によってともに挟着される。第1のコンプライアント要素341Aは、それによって、中心320Aと上側部320Bとの間に挟着され、中心320Aおよび上側部320Bは、第1のコンプライアント要素341Aの周辺領域341PRに対応する中心部320Aおよび上側部320の外部周囲において挟着が生じるように構成される表面レリーフRELを有する。同様に、第2のコンプライアント要素341Bは、中心部320Aと下側部320Cとの間に挟着され、中心部320Aおよび下側部320Cはまた、第2のコンプライアント要素341Bの周辺領域341PRに対応する中心部320Aおよび下側部320Cの外部周囲において挟着が生じるように構成される表面レリーフRELを有する。表面レリーフRELは、第1および第2のコンプライアント要素341A、341Bの中心領域341CRならびにそれらの撓曲部346A、346Bが、プローブ本体200の軸方向に沿って自由に偏ることができるように構成される。中心部320Aの下側面上の表面レリーフRELはまた、変位感知構成350および関連付けられる接続要素に対するクリアランスを提供する。
スタイラス懸吊部340は、コンプライアント要素搭載フレーム320から移動アセンブリ343を懸吊するように配列される撓曲部346A、346Bを含む、コンプライアント要素341A、341Bの構成を備える。移動アセンブリ343は、ピン343Pと、第1の挟着リング343A、第2の挟着リング343B、および第3の挟着リング343Cと、置換可能なスタイラスモジュール360に結合されるスタイラス捕捉要素343Dとを備える。ピン343Pは、略平面状かつ平行なコンプライアント要素341Aおよび341Bの偏り可能な中心領域341CRの中心開口342A、342Bを通って延在する。第1および第2の挟着リング343Aおよび343Bは、ピン343Pの上に圧接または別様に締結もしくは接合され、かつコンプライアント要素341Aの偏り可能な中心領域341CRに挟着または接合される。同様に、第2および第3の挟着リング343Bおよび343Cは、ピン343Pの上に圧接または別様に締結され、かつコンプライアント要素341Bの偏り可能な中心領域341CRに挟着または接合される。スタイラス捕捉要素343Dは、ピン343Pの遠位端上に圧接または別様に締結される。スタイラス捕捉要素343Dは、公知の技術を使用して、置換可能なスタイラスモジュール360(図4に想像線で示される)に係合するように構成される。例えば、図4に最も良く示されるように、スタイラス捕捉要素343Dは、磁石343Mと、運動学的搭載特徴とを含み、磁石343Mおよび運動学的搭載特徴は、置換可能なスタイラスモジュール360上の磁石366および対合する運動学的搭載配列368とに対合し、これにより、それが、磁力を克服することによって脱着かつ交換される。しかしながら、磁石および安定した対合する運動学的搭載配列の結果として、動作の間、移動アセンブリ343(および下記に説明される、関連付けられる変位感知構成350)は、反復可能かつ安定した様式で、置換可能なスタイラスモジュール360に固定され、スタイラス364の接触部365が測定されるべき表面に接触するとき、変位に反応し、接触信号を産出する。
図4および図5に示される変位感知構成350および関連付けられるコンプライアント要素341Bの本例示的実装において、撓曲部346Bはそれぞれ、それに接合される、対応する歪ゲージタイプ変位センサ352を有し、その歪みおよび/またはスタイラス364に呼応する変位またはその運動を検出し、対応する変位信号を産出する。変位センサ352が、可撓性導体コネクタ354(図5に最も良く示される)内に含まれる個々の伝導性トレース(図示せず)を通して回路基板アセンブリ構成400と信号通信することが、理解される。例えば、可撓性導体コネクタ354のリング形状センサコネクタ部353は、コンプライアント要素341Bの非移動部に接合されてもよく、コンプライアント要素341Bの偏り可能な中心領域341CRに対してクリアランスを提供してもよい。センサコネクタ部353上の個々の伝導性トレース(図示せず)と変位センサ352との間のワイヤ接合は、コンプライアント要素341Bの偏りを妨げないようにコンプライアントであってもよい。4つの変位センサ352が示されるが、より多くのまたはより少ない変位センサ352が、使用され得、特定の用途において利点を有し得る。
図6は、図2、図3、および図4に示されるような、複数の平面状の構成要素搭載部を含む回路基板アセンブリ構成400の1つの実施形態の斜視図である。本実施形態では、回路基板アセンブリ400は、例えば、第1の構成要素搭載部402Aと、第2の構成要素搭載部402Bと、第3の構成要素搭載部402Cとを含む。製造および組立を容易にするために、構成要素搭載部402A、402B、および402Cは、略平面状であってもよい。3つの構成要素搭載部が、示されるが、種々の実施形態では、より多くのまたはより少ない構成要素搭載部が含まれ得ることが、理解される。
構成要素搭載部402A、402B、および402Cは、可撓性回路部材403に物理的かつ電子的に接続される。したがって、回路基板アセンブリ400は、折曲可能であってもよい。構成要素搭載部402A、402B、および402Cは、可撓性回路部材403の一方また両方の側面上に搭載表面を有してもよい(両方の側面が示される)。例えば、いくつかの実施形態における構成要素搭載部402A、402B、および402Cは、構成要素を搭載するための外部堅性層と、共有可撓性中心層とを伴う、積層多層回路基板を備える。図6は、構成400の特定の特徴を示すために、折り曲げられていない回路基板アセンブリ構成400を図示する。特定の実施形態では、構成要素搭載部402Cの1つは、可撓性導体コネクタ354(図4)と接続するように構成されるコネクタ405を含み、変位感知構成350の変位センサ352からの信号を受信する。
いくつかの実施形態では、構成400の特徴は、潜在的に破壊的なデジタル信号から敏感なアナログ信号を分離するために有利である構成要素設置およびルーティングを可能にする。当業者は、回路基板アセンブリ構成400を主にアナログなドメインと主にデジタルなドメインとに分離することが、クロストークおよび干渉を最小限にさせ得ることを理解する。例えば、第3の構成要素搭載部402Cは、主に、変位感知構成350からアナログ信号を受信し、かつ/または、所望される場合、これらのアナログ信号および他のアナログ信号を生成し、かつ/または、増幅し、かつ/または、フィルタリングするように構成されてもよい。第2の構成要素搭載部402Bは、電力入力と、調整構成要素とを含んでもよく、また、可撓性回路部材403を通して第3の構成要素搭載部402Cからの処理済信号を受信してもよく、かつさらに、(例えば、デジタル信号の特定の所望されるセットを提供するための)信号を処理してもよい。デジタル信号は、次いで、付加的な処理および分析のために、可撓性回路部材403を通して、第2の構成要素搭載部402Bから第1の構成要素搭載部402Aに伝送されてもよい。しかしながら、種々の搭載部上の本構成要素レイアウトは、例示的にすぎず、制限するものではない。
本実施形態では、可撓性回路部材403の1つの端部は、回路基板アセンブリ構成400が、試験および/または再プログラミングシステム(図示せず)に接続されることを可能にするための複数の接触部または接続要素(図示せず)を含む、撓曲タブまたはコネクタ404を備える。例えば、これは、プローブ本体200内のコストまたは体積における実質的な量の不利益なく、取付に先行する回路基板アセンブリ構成400の試験を大幅に単純化し、加えて、試験のより包括的なセットまたは接続点がアクセスされることを可能にする。そのうえ、前述の説明から、座標測定プローブ本体200が、ある部分またはモジュールが取り替えまたは修理され得、かつ本実施形態では、回路基板アセンブリ構成400へのアクセスを提供するために容易に取り外され得ることが理解される。本側面は、座標測定プローブ本体200が、必要性または機会に従って容易に試験されアップグレードされることを可能にする。プローブ本体200は、回路基板アセンブリ構成400を取り替えることによって、または、いくつかの実施形態では、撓曲タブまたはコネクタ404を通して電子機器(例えば、フィールドプログラマブルゲートアレイを含んでもよい)への接続を介して回路基板アセンブリ構成400を再プログラミングすることによってアップデートされてもよい。
図7は、図6に示される回路基板アセンブリ構成400内に含まれ得るタッチプローブ回路800の1つの実装の種々の要素を示すブロック図である。発明者らは、この小型プローブ本体200の構成が、対応する構成要素が、(例えば、12〜15mmの小型の直径の)回路基板アセンブリ構成400に組み立てられ、例えば、経済的な非カスタム構成要素を使用して、以下の説明に対応する、先例のない範囲のプローブ内の信号処理動作を提供することを可能にすることを見出した。タッチプローブ回路800は、下記に比較的に簡単に説明される。付加的詳細は、本願の譲受人に譲渡された米国特許出願第62/271,082号(参照によって、全体が本明細書に援用される)に見出され得る。
図7に示される実装では、タッチプローブ回路800は、複数の変位センサ852−1〜852−4を有するセンサアセンブリ852と、複数の個々のオフセット補償コントローラ部830−1〜830−4を備えるオフセット補償コントローラ830と、複数の差動増幅器DA1〜DA4とを備える。同様の「X」または「−X」の呼称(例えば、X=1等)を伴う種々の要素が、図に示される接続によって含意されるように協働することにより、個々のタッチプローブ回路「チャネル」を形成し、「チャネル」はそれぞれ、下記に「チャネルX=1」に関して説明されるものと同様の様式で動作し得ることが、理解される。
動作時、変位センサ852−1は、スタイラス(例えば、スタイラス364)の変位に応答するセンサ信号S1を出力するように構成される。オフセット補償コントローラ部830−1は、(例えば、いくつかの実施形態では、オフセット補償コントローラ830および/またはオフセット補償コントローラ部830−1の一部であると見なされるD/Aコンバータ835を通して)変動オフセット補償信号OC1を出力するように構成される。オフセット補償コントローラ部830−1からの変動オフセット補償信号OC1は、下記により詳細に説明されるように、変位センサ852−1によって出力された休止状態信号成分内の変動を補償するために使用される。差動増幅器DA1は、オフセット補償コントローラ部830−1および変位センサ信号S1からのオフセット補償信号OC1を入力するために接続され、入力信号間の差異を増幅させる。増幅された差異は、オフセット補償変位信号OCDS1として、(例えば、A/Dコンバータ845を通して)差動増幅器DA1から出力される。
オフセット補償変位信号OCDS1は、下記により詳細に説明されるように、A/Dコンバータ845を通してトリガ信号決定処理回路950に出力され、タッチプローブに対するタッチトリガ信号(例えば、信号975T)の決定に寄与し得る。オフセット補償変位信号OCDS1はまた、A/Dコンバータ845を通して出力され、オフセット補償コントローラ部830−1が出力するオフセット補償信号の調節において使用するために、オフセット補償コントローラ部830−1に入力される。特に、オフセット補償コントローラ部830−1は、オフセット補償変位信号OCDS1を入力し、入力に応答して、(例えば、D/Aコンバータ835を通して)ローパスフィルタリングオフセット補償信号OC1を生成するフィードバックループを提供するように構成され、ローパスフィルタリングオフセット補償信号OC1は、休止状態信号成分に起因する変位センサ信号S1内のオフセットを補償するための差動増幅器DA1への入力である。このタイプのフィードバックループを使用して差動増幅器DA1においてローパスフィルタリングオフセット補償信号OC1を生成および適用することは、変位センサ信号内のワークピース接触信号成分(単数または複数)のより迅速な変化を隔離するために、変位センサ信号内の休止状態信号ドリフト成分(単数または複数)のより低速な変化を補償する種々の公知の先行技術の方法と比較して、利点を有する。
タッチプローブ回路800は、概して、アナログ回路またはデジタル回路のいずれか一方、またはその組み合わせにおいて実装されてもよい。種々の部分的または完全アナログ回路の実装において、D/Aコンバータ835および/またはA/Dコンバータ845は、省略されてもよい。しかしながら、種々の実装では、オフセット補償コントローラ830および/またはオフセット補償コントローラ部830−1のデジタル回路実装は、利点を有し得る。そのような実装では、タッチプローブ回路800は、次いで、有利には、A/Dコンバータ845および/またはD/Aコンバータ835を備え得る。種々の実装では、A/Dコンバータ845および/またはD/Aコンバータ835は、並列コンバータチャネルを通して複数のチャネルを並行して変換してもよい、または他の実装では、関連付けられる処理時間が、特定の実装において許容可能である場合、それらは、連続変換のための種々のチャネルを多重化してもよい。
種々の実装では、A/Dコンバータ845は、公称でMビットの分解能で動作し得る。差動増幅器DA1は、オフセット補償変位信号OCDS1をA/Dコンバータ845に出力するように構成されるアナログ増幅器を備えてもよく、A/Dコンバータ845は、オフセット補償変位信号OCDS1を、トリガ信号決定処理回路950への出力であり、かつ、オフセット補償信号OC1の調節において使用するためのオフセット補償コントローラ部830−1への入力でもある対応するデジタルオフセット補償変位信号OCDS1に変換するように構成される。種々の実装では、オフセット補償コントローラ部830−1は、公称でNビットの分解能で動作するD/Aコンバータ835を備えてもよく、オフセット補償コントローラ部830−1は、デジタルオフセット補償変位信号OCDS1を入力しかつD/Aコンバータ835への入力であるローパスフィルタリングデジタルオフセット補償信号OC1の値を決定するように構成されるデジタル回路を備え、D/Aコンバータ835は、ローパスフィルタリングデジタルオフセット補償信号OC1を、アナログ差動増幅器DA1への入力である対応するローパスフィルタリングアナログオフセット補償信号OC1に変換するように構成される。種々の実装では、Nが、Mより少なくとも8ビット大きい場合、有利であり得る。これは、以前に示されたように、タッチプローブ内の種々のタイプの変位センサおよび/またはそれらの実装に対して、変位センサによって出力される休止状態信号成分内の変動(例えば、種々の種類のセンサ信号「ドリフト」)が、多くの場合、スタイラス偏りの許容量に起因する変位センサ信号内の変動を超過し得るため、有利であり得る。これは、ローパスフィルタリングアナログオフセット補償信号OC1が、大きい値であり得ることを意味する。対照的に、差動増幅器DA1によって提供される処理は、その出力からローパスフィルタリングアナログオフセット補償信号OC1の大きい値を除去し、比較的により小さい値の信号オフセット補償(アナログ)変位信号OCDS1(スタイラス偏りの許容量に起因する変位センサ信号)のみを出力する。結果として、D/Aコンバータ835およびA/Dコンバータ845からの信号出力内に比較可能な信号分解能を提供するために、NがMより少なくとも8ビット大きい場合、種々の実装において最も経済的かつ有利であり得る。
トリガ信号決定処理回路950は、タッチプローブ設計の当業者に公知である原理に従って実装されてもよい。したがって、それは、本明細書では1つの例示的実装において簡単に説明されるのみである。図7に示されるように、タッチトリガ信号切替閾値と比較される組み合わせ信号を提供するために、複数の変位センサ信号を組み合わせることが望ましくあり得る。したがって、図7に示されるように、トリガ信号決定処理回路950は、4つの個々のオフセット補償デジタル変位信号OCDS1〜OSDS4を入力し、トリガ閾値処理回路952に提供される組み合わせ変位信号を決定する信号組み合わせ処理部951を含む。トリガ閾値処理回路952は、組み合わせ変位信号と比較される切替閾値値を定義する。組み合わせ変位信号が、切替閾値値を超過するとき、トリガ閾値処理回路952は、スタイラスがワークピースに接触したことを示すタッチトリガ信号975Tを出力する。タッチトリガ信号975Tは、ホストシステムの現在の測定値が、スタイラスの現在の座標およびスタイラスが接触しているワークピース表面の測定座標を示すために記録されることができるように、例えば、I/O回路970を通してCMMホストシステムまたは同等物に通信する。種々の実施形態では、I/O回路970はまた、ホストシステムとトリガ信号決定処理回路950および/またはタッチプローブ回路800の種々の要素との間で他の制御信号および/またはパラメータ975を伝達してもよい。トリガ閾値処理回路952は、定義された切替閾値に関連するヒステリシスを実装する、公知のタイプのヒステリシス回路953を含み、スタイラスが、ワークピース表面にごく僅かに接触している/接触していないときに、タッチトリガ信号975Tがオンおよびオフにディザイングすることを防止してもよい。
トリガ信号決定処理回路950は、オフセット補償コントローラ割込信号生成回路954をさらに含んでもよく、オフセット補償コントローラ割込信号生成回路954は、トリガ閾値処理回路952からのタッチトリガ信号975Tまたは関連する信号を受信し、かつ、その作用に割り込みまたは凍結させるためにオフセット補償コントローラ830に割込信号954Sを送信し得る。これは、オフセット補償コントローラ830が、変位センサ信号内の持続されるワークピース接触信号要素に起因する変位センサ信号変動(単数または複数)を補償するように動作しないことを確実にするが、その動作は、不適切な動作である。
トリガ信号決定処理回路950の例示的動作の前述の概説は、タッチプローブ設計の現在利用可能な種々の関連材料の調査および適用に基づいてさらに理解かつ実装され得る。例えば、信号組み合わせ処理ならびに切替閾値定義の方法を含む、1つの例示的トリガ信号決定処理回路および方法が、米国特許第7,792,654号(参照によって、全体が本明細書に援用される)に説明される。
例証的実施形態が、図示および説明されているが、種々の変更が、本発明の精神および範囲から逸脱することなく、なされ得ることが、理解される。
排他的所有権または特許権が請求される本発明の実施形態は、以下のように定義される。

Claims (20)

  1. プローブ本体軸の方向に沿って比較的により大きい長さ寸法と、前記プローブ本体軸を横断する方向に沿って比較的により小さい横断面寸法とを有する座標測定プローブ本体のための構成であって、前記座標測定プローブ本体は、
    上側搭載部と、前記プローブ本体軸の方向に沿って延在する軸方向延在部と、コンプライアント要素搭載フレームとを備える堅性プローブ本体構造と、
    スタイラス懸吊部であって、スタイラスに結合する移動要素と、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように配列されるコンプライアント要素の構成とを備えるスタイラス懸吊部と、
    前記コンプライアント要素搭載フレームおよび前記堅性プローブ本体構造のうちの少なくとも1つに対する前記移動要素の変位を感知するように配列される変位感知構成であって、前記変位感知構成は、それぞれの変位信号を出力する少なくとも1つの変位センサを備える、変位感知構成と、
    略平面状の部分であり、かつ前記プローブ本体軸の方向に沿って延在する、少なくとも第1、第2、および第3の構成要素搭載部を備える回路基板アセンブリと
    を備え、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように配列される前記コンプライアント要素の構成は、前記回路基板アセンブリの遠位端に対して遠位に位置する、前記コンプライアント要素搭載フレームの取付部に取り付けられ、
    前記回路基板アセンブリの前記少なくとも第1、第2、および第3の構成要素搭載部は、前記堅性プローブ本体構造の前記軸方向延在部の周囲に、かつ前記上側搭載部と前記コンプライアント要素搭載フレームの前記取付部との間に配列される、構成。
  2. 前記少なくとも第1、第2、および第3の構成要素搭載部は、少なくとも1つの可撓性コネクタ構成要素と電気的に相互接続され、これにより、前記少なくとも第1、第2、および第3の構成要素搭載部ならびに前記少なくとも1つの可撓性コネクタ構成要素が、折曲可能な回路基板アセンブリを形成する、請求項1に記載の構成。
  3. 前記少なくとも第1、第2、および第3の構成要素搭載部のうちの1つは、その上に搭載されるフィールドプログラマブルゲートアレイをさらに備え、さらに、前記少なくとも1つの可撓性コネクタ構成要素の端部は、前記少なくとも第1、第2、および第3の構成要素搭載部を越えて延在し、前記フィールドプログラマブルゲートアレイへのプログラム可能なアクセスを提供するように構成される接続要素を備える、請求項2に記載の構成。
  4. 前記少なくとも第1、第2、および第3の構成要素搭載部は、多層回路基板の堅性層を備え、それらは、可撓性回路部材を含む共有可撓性層と電気的に相互接続される、請求項1に記載の構成。
  5. 前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、および前記コンプライアント要素搭載フレームの前記取付部は、前記回路基板アセンブリの前記遠位端に対して遠位に位置する、請求項1に記載の構成。
  6. 前記コンプライアント要素搭載フレームは、前記堅性プローブ本体構造の残部に堅性的にかつ解放可能に結合され、これにより、前記移動要素、前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、前記変位感知構成、および前記コンプライアント要素搭載フレームが、前記堅性プローブ本体構造の前記残部から分離可能である懸吊モジュールを形成する、請求項5に記載の構成。
  7. 前記コンプライアント要素搭載フレームは、柱部を含み、前記堅性プローブ本体構造の前記軸方向延在部は、前記柱部を受け取るように構成されるボアを含む、請求項5に記載の構成。
  8. 前記少なくとも1つの変位センサに作用可能に接続され、前記変位感知構成から延在し、前記少なくとも第1、第2、および第3の構成要素搭載部のうちの1つの上の対合するコネクタにおいて前記回路基板アセンブリに解放可能に係合する可撓性回路コネクタをさらに備える、請求項7に記載の構成。
  9. 前記コンプライアント要素搭載フレームは、柱部を含み、前記堅性プローブ本体構造の前記軸方向延在部は、前記柱部に螺着される、請求項5に記載の構成。
  10. 前記コンプライアント要素の構成は、
    第1の平面状要素に形成された第1の撓曲構成であって、前記第1の撓曲構成は、前記第1の平面状要素の中心領域を前記第1の平面状要素の周辺領域に接続する、第1の撓曲構成と、
    第2の平面状要素に形成された第2の撓曲構成であって、前記第2の撓曲構成は、前記第2の平面状要素の中心領域と、前記第2の平面状要素の周辺領域とを接続する、第2の撓曲構成と
    を含み、前記第1および第2の平面状要素の前記中心領域は、前記移動要素に結合され、前記第1および第2の平面状要素の前記周辺領域は、前記コンプライアント要素搭載フレームの前記取付部に結合される、請求項1に記載の構成。
  11. 前記第1の構成要素搭載部は、アナログ信号を処理するアナログ構成要素を備え、前記第3の構成要素搭載部は、デジタル信号処理構成要素のみを備える、請求項1に記載の構成。
  12. 前記回路基板アセンブリの前記少なくとも第1、第2、および第3の構成要素搭載部は、3つの構成要素搭載基板から成り、前記堅性プローブ本体構造の前記軸方向延在部は、3つの面を画定し、前記3つの構成要素搭載基板はそれぞれ、前記3つの面のうちのそれぞれの面の上に重なるようにサイズ決定される、請求項1に記載の構成。
  13. 前記堅性プローブ本体構造の前記軸方向延在部は、前記座標測定プローブ本体軸に沿って位置するモノリシック要素である、請求項1に記載の構成。
  14. 前記回路基板アセンブリは、前記回路基板アセンブリが、略三角形の横断面を有する構造を形成するように折曲可能であるように、前記少なくとも1つの可撓性コネクタ構成要素と相互接続された前記少なくとも第1、第2、および第3の構成要素搭載部から成り、さらに、前記堅性プローブ本体構造の前記軸方向延在部は、略三角形の横断面を有する、請求項2に記載の構成。
  15. 前記少なくとも第1、第2、および第3の構成要素搭載部は、第1、第2、第3、および第4の構成要素搭載部を備え、前記第1、第2、第3、および第4の構成要素搭載部は、略平面状の部分であり、かつ前記プローブ本体軸の方向に沿って比較的により長く、前記プローブ本体軸を横断する方向に沿って比較的により細い、請求項1に記載の構成。
  16. 座標測定プローブ本体であって、
    上側搭載部と、プローブ本体軸に沿って延在する軸方向延在部と、コンプライアント要素搭載フレームとを備える堅性プローブ本体構造と、
    スタイラスに結合する移動要素と、前記コンプライアント要素搭載フレームから前記移動要素を懸吊するように構成される複数のコンプライアント要素とを備えるスタイラス懸吊アセンブリと、
    前記コンプライアント要素搭載フレームおよび前記堅性プローブ本体構造のうちの少なくとも1つに対する前記移動要素の変位を感知するように配列される変位感知構成であって、前記変位感知構成は、それぞれの変位信号を出力する変位センサを備える、変位感知構成と、
    前記プローブ本体軸の方向に沿って延在する第1、第2、および第3の構成要素搭載部を備える回路基板アセンブリと
    を備え、前記複数のコンプライアント要素は、前記回路基板アセンブリの遠位端に対して遠位に位置する前記コンプライアント要素搭載フレームの取付部に取り付けられ、
    前記回路基板アセンブリの前記第1、第2、および第3の構成要素搭載部は、前記堅性プローブ本体構造の前記軸方向延在部の周囲に、かつ前記上側搭載部と前記コンプライアント要素搭載フレームの前記取付部との間に配列される、座標測定プローブ本体。
  17. 前記第1、第2、および第3の構成要素搭載部は、可撓性コネクタ構成要素と電気的に相互接続され、これにより、前記第1、第2、および第3の構成要素搭載部ならびに前記可撓性コネクタ構成要素が、折曲可能な回路基板アセンブリを形成する、請求項16に記載の座標測定プローブ本体。
  18. フィールドプログラマブルゲートアレイは、前記第1、第2、および第3の構成要素搭載部のうちの1つの上に搭載され、さらに、前記可撓性コネクタ構成要素の端部は、前記第1、第2、および第3の構成要素搭載部を越えて延在し、前記フィールドプログラマブルゲートアレイへのプログラム可能なアクセスを提供するように構成される接続要素を備える、請求17に記載の座標測定プローブ本体。
  19. 前記第1、第2、および第3の構成要素搭載部は、可撓性回路部材を含む共有可撓性層と電気的に相互接続される多層回路基板を備える、請求項16に記載の座標測定プローブ本体。
  20. 前記コンプライアント要素搭載フレームから前記移動要素を懸吊する前記コンプライアント要素の全て、および前記コンプライアント要素搭載フレームの前記取付部は、前記回路基板アセンブリの前記遠位端に対して遠位に位置する、請求項16に記載の座標測定プローブ本体。

JP2018554696A 2016-04-21 2017-04-18 座標測定プローブ本体 Active JP6966471B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662325763P 2016-04-21 2016-04-21
US62/325,763 2016-04-21
PCT/IB2017/000533 WO2017182875A1 (en) 2016-04-21 2017-04-18 Coordinate measurement probe body

Publications (2)

Publication Number Publication Date
JP2019515260A JP2019515260A (ja) 2019-06-06
JP6966471B2 true JP6966471B2 (ja) 2021-11-17

Family

ID=59031264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554696A Active JP6966471B2 (ja) 2016-04-21 2017-04-18 座標測定プローブ本体

Country Status (5)

Country Link
US (1) US10852119B2 (ja)
EP (1) EP3446064B1 (ja)
JP (1) JP6966471B2 (ja)
CN (1) CN109313004B (ja)
WO (1) WO2017182875A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016103403U1 (de) * 2016-06-28 2017-09-29 Stabilo International Gmbh Federnder Batteriekontakt mit Sensorschutz
US10866080B2 (en) 2018-11-01 2020-12-15 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
CN111051808B (zh) 2017-09-29 2021-08-31 株式会社三丰 用于集成复杂电路的紧凑测量装置结构
US11644298B2 (en) 2018-11-01 2023-05-09 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
US11740064B2 (en) 2018-11-01 2023-08-29 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
US11543899B2 (en) 2018-11-01 2023-01-03 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position and including coil misalignment compensation
US10914570B2 (en) 2018-11-01 2021-02-09 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
US11644299B2 (en) 2020-12-31 2023-05-09 Mitutoyo Corporation Inductive position sensor signal gain control for coordinate measuring machine probe
CN114396904A (zh) * 2021-11-29 2022-04-26 北京银河方圆科技有限公司 定位装置及定位系统
US11733021B2 (en) 2021-12-22 2023-08-22 Mitutoyo Corporation Modular configuration for coordinate measuring machine probe
US11713956B2 (en) 2021-12-22 2023-08-01 Mitutoyo Corporation Shielding for sensor configuration and alignment of coordinate measuring machine probe
US20240077296A1 (en) 2022-09-07 2024-03-07 Mitutoyo Corporation Adjustable update rate for measuring probe
US20240175668A1 (en) 2022-11-29 2024-05-30 Mitutoyo Corporation Motion mechanism for measuring probe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1589297A (en) * 1976-12-24 1981-05-13 Rolls Royce Probe for use in measuring apparatus
US4553001A (en) * 1983-12-05 1985-11-12 Gte Valeron Corporation Touch probe having nonconductive contact carriers
US5209131A (en) * 1989-11-03 1993-05-11 Rank Taylor Hobson Metrology
US5247751A (en) * 1990-09-29 1993-09-28 Nikon Corporation Touch probe
DE4330873A1 (de) 1993-09-13 1995-03-16 Zeiss Carl Fa Koordinatenmeßgerät mit einem Tastkopf und einer Elektronik zur Verarbeitung des Tastsignals
GB9423176D0 (en) 1994-11-17 1995-01-04 Renishaw Plc Touch probe
GB0005166D0 (en) * 2000-03-04 2000-04-26 Renishaw Plc Probe signal transmission system
DE60213956T2 (de) 2001-02-02 2006-12-21 Renishaw Plc, Wotton-Under-Edge Messsonde für werkzeugmaschine
EP1589317B1 (de) * 2004-04-23 2007-11-14 Klingelnberg GmbH Vorrichtung mit abnehmbarem Messtaster und Messgerät mit einer solchen Vorrichtung
GB0509394D0 (en) 2005-05-10 2005-06-15 Renishaw Plc Dimensional measurement probe
JP5666762B2 (ja) * 2007-01-31 2015-02-12 株式会社ミツトヨ 測定機
JP5410317B2 (ja) 2010-02-05 2014-02-05 株式会社ミツトヨ 三次元測定機
EP2665987B1 (en) * 2011-01-19 2015-04-15 Renishaw PLC Analogue measurement probe for a machine tool apparatus and method of operation
CN103234440B (zh) * 2013-04-18 2015-08-19 赵飚 三维测量头
ITBO20130426A1 (it) * 2013-08-01 2015-02-02 Marposs Spa Sonda di tastaggio e relativi circuiti e metodi di elaborazione dei segnali
US9250055B2 (en) 2014-05-09 2016-02-02 Mitutoyo Corporation High speed contact detector for measurement sensors
JP6049785B2 (ja) * 2015-03-05 2016-12-21 株式会社ミツトヨ 測定プローブ
JP6212148B2 (ja) * 2016-02-26 2017-10-11 株式会社ミツトヨ 測定プローブ
US10145666B2 (en) * 2016-12-19 2018-12-04 Mitutoyo Corporation Touch probe for CMM including digital signal communication

Also Published As

Publication number Publication date
WO2017182875A1 (en) 2017-10-26
EP3446064A1 (en) 2019-02-27
JP2019515260A (ja) 2019-06-06
EP3446064B1 (en) 2020-11-25
US20190120606A1 (en) 2019-04-25
CN109313004B (zh) 2021-10-08
CN109313004A (zh) 2019-02-05
US10852119B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP6966471B2 (ja) 座標測定プローブ本体
CN108291801B (zh) 用于cmm接触探针的传感器信号偏移补偿系统
CN107131853B (zh) 测定探头
US7288762B2 (en) Fine-adjustment mechanism for scanning probe microscopy
JP6216400B2 (ja) 測定プローブ
JP6898966B2 (ja) 不具合判定ユニット
JP6975031B2 (ja) 軸受検査装置
JP2008039646A (ja) 力覚センサ用チップ
JP2007163405A (ja) 多軸力ロードセル
Subasi et al. A novel triaxial optoelectronic based dynamometer for machining processes
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
JP2011227015A (ja) 物理量センサ
US11099243B2 (en) Differential magnetic load cells for compact low-hysteresis force and torque measurements
JP2010112864A (ja) 力センサー
JP4901533B2 (ja) 力センサ、荷重検出装置及び形状測定装置
CN105182002A (zh) 微机械加速度传感器
JP2011080945A (ja) 力覚センサ
CN116940818A (zh) 用于对多个轴中的变形、应力、力和/或扭矩进行测量的装置
JP3136188U (ja) 力検出装置
JP2006300908A (ja) 力変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R150 Certificate of patent or registration of utility model

Ref document number: 6966471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150