JP6958475B2 - Electrode plate manufacturing method - Google Patents

Electrode plate manufacturing method Download PDF

Info

Publication number
JP6958475B2
JP6958475B2 JP2018084677A JP2018084677A JP6958475B2 JP 6958475 B2 JP6958475 B2 JP 6958475B2 JP 2018084677 A JP2018084677 A JP 2018084677A JP 2018084677 A JP2018084677 A JP 2018084677A JP 6958475 B2 JP6958475 B2 JP 6958475B2
Authority
JP
Japan
Prior art keywords
electrode
cutting
plate
liquid
original plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084677A
Other languages
Japanese (ja)
Other versions
JP2019192508A (en
Inventor
貴宏 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018084677A priority Critical patent/JP6958475B2/en
Publication of JP2019192508A publication Critical patent/JP2019192508A/en
Application granted granted Critical
Publication of JP6958475B2 publication Critical patent/JP6958475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は,非水電解液と電極積層体とを用いる電池における電極板を製造する方法に関する。さらに詳細には,大判の電極原板から切り出して電極積層体中に積層するサイズのものとする電極板の製造方法に関するものである。 The present invention relates to a method for manufacturing an electrode plate in a battery using a non-aqueous electrolytic solution and an electrode laminate. More specifically, the present invention relates to a method for manufacturing an electrode plate having a size cut out from a large-sized electrode original plate and laminated in an electrode laminate.

従来から,電池の構成要素として,正負の電極板を積層してなる電極積層体が用いられている。電極積層体中に積層される電極板は一般的に,大判の電極原板として製造され,切断により,積層に適したサイズとされる。このための切断手法として,特許文献1に開示されているものを挙げることができる。同文献の手法では,電極原板(文献中では「帯状集電体」等と称している)における切断予定箇所に,バインダ樹脂を含む溶媒を塗布することとしている。そしてその塗布した箇所に紫外線を照射する。その後に切断を行うこととしている。切断予定箇所をあらかじめ軟化して切断しやすくすることで,切断刃の長寿命化を図っている。 Conventionally, an electrode laminate formed by laminating positive and negative electrode plates has been used as a component of a battery. The electrode plate laminated in the electrode laminate is generally manufactured as a large-sized electrode original plate, and is cut to a size suitable for lamination. As a cutting method for this purpose, the one disclosed in Patent Document 1 can be mentioned. In the method of the same document, a solvent containing a binder resin is applied to the planned cutting portion of the electrode original plate (referred to as "band-shaped current collector" in the document). Then, the applied portion is irradiated with ultraviolet rays. After that, cutting will be performed. By softening the planned cutting location in advance to make it easier to cut, the life of the cutting blade is extended.

特開2015-173081号公報JP-A-2015-173081

しかしながら前記した従来の技術には,次のような問題点があった。電極板の一部に溶媒が塗布される分,電池性能が低下してしまうのである。溶媒の塗布により必然的に,電極板の性状が変化してしまうからである。一応同文献では,そのような性能低下を最小限に抑えようとしている。そのため,塗布する溶媒中のバインダ樹脂を,電極板の活物質層の形成時に使用するものと同じものとしている。しかしそれでも,バインダ樹脂の量が本来の配合よりも過剰となってしまうことは否めない。また,塗布した溶媒中のバインダ樹脂以外の成分は除去しなければならない。このため同文献の技術では,切断後に真空乾燥工程を入れることを余儀なくされている。 However, the above-mentioned conventional technique has the following problems. As the solvent is applied to a part of the electrode plate, the battery performance deteriorates. This is because the properties of the electrode plate inevitably change due to the application of the solvent. For the time being, this document attempts to minimize such performance degradation. Therefore, the binder resin in the solvent to be applied is the same as that used when forming the active material layer of the electrode plate. However, even so, it is undeniable that the amount of binder resin will be excessive compared to the original composition. In addition, components other than the binder resin in the applied solvent must be removed. Therefore, in the technique of the same document, it is obliged to insert a vacuum drying process after cutting.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電池性能を阻害することなく,かつ,電極原板を簡素な工程で良好に切断して電極板を得ることができる,電極板の製造方法を提供することにある。 The present invention has been made to solve the problems of the above-mentioned conventional techniques. That is, the problem is to provide a method for manufacturing an electrode plate, which can obtain an electrode plate by satisfactorily cutting the electrode original plate in a simple process without impairing the battery performance.

本発明の一態様における電極板の製造方法は,非水電解液と電極積層体とを用いる電池における電極板を製造する方法であって,集電箔上に電極活物質層を被覆してなる電極原板の電極活物質層に液体を供給する液供給工程と,液供給工程後の電極原板のうち電極活物質層に液体が供給された箇所を切断して電極積層体中に積層するサイズの電極板とする切断工程とを有する。ここで,液供給工程を行う装置を,電極原板の流れ方向に対して切断工程を行う装置よりも上流に配置し,液供給工程での液体の供給を,間欠的に,電極原板における切断工程で切断される予定の箇所が液体供給箇所を通過するときに行う。液供給工程で供給する液体は,非水電解液の溶媒と共通する成分のものである。 The method for manufacturing an electrode plate according to one aspect of the present invention is a method for manufacturing an electrode plate in a battery using a non-aqueous electrolyte solution and an electrode laminate, and comprises coating an electrode active material layer on a current collecting foil. The size is such that the liquid supply step of supplying the liquid to the electrode active material layer of the electrode original plate and the portion of the electrode original plate after the liquid supply step where the liquid is supplied to the electrode active material layer are cut and laminated in the electrode laminate. It has a cutting step of making an electrode plate. Here, the device that performs the liquid supply process is arranged upstream from the device that performs the cutting process in the flow direction of the electrode original plate, and the liquid supply in the liquid supply process is intermittently performed in the cutting process on the electrode original plate. This is done when the part to be cut in is passed through the liquid supply part. The liquid supplied in the liquid supply process has the same components as the solvent of the non-aqueous electrolytic solution.

上記態様における電極板の製造方法では,電極原板の切断予定箇所における電極活物質層を,まず液供給工程で湿潤させ軟化させる。その状態で切断工程を行い電極原板を切断する。切断されるのは液供給工程で電極活物質層が軟化した箇所である。このため,切断時の圧力によっても電極活物質層の砕けが生じにくいので,切断は良好になされる。こうして良好な電極板が製造される。その後電極板が電極積層体とされ電池に内蔵された状態でも,電池の非水電解質の性状は,液供給工程で供給された液体によりあまり変化しない。当該液体は非水電解液の溶媒と共通する成分のものだからである。このため,液供給工程で供給された液体が切断工程後も除去されずに残留していたとしても差し支えない。 In the method for manufacturing the electrode plate in the above aspect, the electrode active material layer at the planned cutting portion of the electrode original plate is first moistened and softened in the liquid supply step. In that state, a cutting step is performed to cut the electrode original plate. The part to be cut is the part where the electrode active material layer is softened in the liquid supply process. Therefore, the electrode active material layer is less likely to be crushed by the pressure at the time of cutting, so that the cutting is performed well. In this way, a good electrode plate is manufactured. After that, even when the electrode plate is formed into an electrode laminate and built in the battery, the properties of the non-aqueous electrolyte of the battery do not change much depending on the liquid supplied in the liquid supply process. This is because the liquid has a component common to the solvent of the non-aqueous electrolytic solution. Therefore, it does not matter if the liquid supplied in the liquid supply step remains without being removed even after the cutting step.

本構成によれば,電池性能を阻害することなく,かつ,電極原板を簡素な工程で良好に切断して電極板を得ることができる,電極板の製造方法が提供されている。 According to this configuration, there is provided a method for manufacturing an electrode plate, which can satisfactorily cut an electrode original plate in a simple process to obtain an electrode plate without impairing battery performance.

本形態に係る電極板の製造方法を実施する装置の構成を示す側面図である。It is a side view which shows the structure of the apparatus which carries out the manufacturing method of the electrode plate which concerns on this embodiment. 切断前の電極原板および切断後の電極板の平面図である。It is a top view of the electrode original plate before cutting and the electrode plate after cutting. 電極積層体の構成を概念的に示す断面図である。It is sectional drawing which shows the structure of the electrode laminated body conceptually. 実施例における溶媒供給領域を示す平面図である。It is a top view which shows the solvent supply area in an Example. 実施例で測定した露出幅を説明する平面図である。It is a top view explaining the exposure width measured in an Example.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,図1に示す装置により実施される電極板の製造方法として本発明を具体化したものである。図1の装置は,電極原板1をカッター2で切断して電極板3を得る装置である。図1の装置にはカッター2の他,入り側ローラー4,スプレーノズル5,出側ローラー6が設けられている。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the accompanying drawings. This embodiment embodies the present invention as a method for manufacturing an electrode plate carried out by the apparatus shown in FIG. The device of FIG. 1 is a device for obtaining an electrode plate 3 by cutting an electrode original plate 1 with a cutter 2. In addition to the cutter 2, the device of FIG. 1 is provided with an entry-side roller 4, a spray nozzle 5, and an exit-side roller 6.

図1の装置で切断される電極原板1および切断後の電極板3の平面図を図2に示す。電極原板1は,図2中における左右方向に長く延びた長尺帯状のものである。電極原板1は一般的に,コイル状に巻き取った姿で提供され,そこから引き出されて入り側ローラー4に供給される。電極板3は,電極原板1をその長手方向と交差する方向に切断してカード状としたものである。カード状の電極板3は,正のものと負のものとを交互に積み重ねて電極積層体7(図3参照)として使用される。電極積層体7は,非水電解液とともに電池に内蔵される。なお図3中では正負の電極板3が1枚ずつしか示されていないが,実際の電極積層体7ではむろん,もっと多数の正負の電極板3が積層されている。 FIG. 2 shows a plan view of the electrode original plate 1 cut by the apparatus of FIG. 1 and the electrode plate 3 after cutting. The electrode original plate 1 has a long strip shape extending in the left-right direction in FIG. The electrode original plate 1 is generally provided in the form of being wound into a coil, and is drawn out from the electrode original plate 1 and supplied to the entry side roller 4. The electrode plate 3 is formed by cutting the electrode original plate 1 in a direction intersecting the longitudinal direction thereof to form a card. The card-shaped electrode plate 3 is used as an electrode laminate 7 (see FIG. 3) by alternately stacking positive and negative electrodes. The electrode laminate 7 is built in the battery together with the non-aqueous electrolytic solution. Although only one positive and negative electrode plate 3 is shown in FIG. 3, of course, a larger number of positive and negative electrode plates 3 are laminated in the actual electrode laminated body 7.

図3中の正の電極板3は,集電箔8の表裏両面を正極活物質層9で被覆したものである。負の電極板3は,集電箔10の表裏両面を負極活物質層11で被覆し,さらにその両面をセパレータ層12で覆ったものである。なお,負の電極板3をセパレータ一体型とする代わりに正の電極板3をセパレータ一体型とすることもできるし,正負いずれの電極板3もセパレータ一体型とせず,別にフィルムセパレータを用意して正負の電極板3間に挟み込んでセパレータ層とする形式でもよい。いずれの場合でもセパレータ層は,樹脂等の絶縁物による多孔質層である。 The positive electrode plate 3 in FIG. 3 is formed by coating both the front and back surfaces of the current collector foil 8 with the positive electrode active material layer 9. In the negative electrode plate 3, both the front and back surfaces of the current collector foil 10 are covered with the negative electrode active material layer 11, and both sides thereof are covered with the separator layer 12. Instead of making the negative electrode plate 3 integrated with the separator, the positive electrode plate 3 can be made with the separator integrated, and neither the positive electrode plate 3 nor the positive or negative electrode plate 3 is made with the separator integrated type, and a separate film separator is prepared. It may be sandwiched between the positive and negative electrode plates 3 to form a separator layer. In either case, the separator layer is a porous layer made of an insulating material such as resin.

図1の装置についてさらに説明する。カッター2は,電極原板1を切断する刃物である。スプレーノズル5は,電極原板1に対して液体を供給するものである。スプレーノズル5は,電極原板1の表裏両面に対して液体を供給するように構成されている。スプレーノズル5は,電極原板1の流れ方向に対して,カッター2よりも上流側に配置されている。本形態では,スプレーノズル5から電極原板1に供給される液体として,前述の非水電解液の溶媒として使用される成分のもの(以下,「電解液溶媒」という。)を用いることとしている。 The device of FIG. 1 will be further described. The cutter 2 is a cutting tool for cutting the electrode original plate 1. The spray nozzle 5 supplies a liquid to the electrode original plate 1. The spray nozzle 5 is configured to supply liquid to both the front and back surfaces of the electrode original plate 1. The spray nozzle 5 is arranged on the upstream side of the cutter 2 with respect to the flow direction of the electrode original plate 1. In this embodiment, as the liquid supplied from the spray nozzle 5 to the electrode original plate 1, a liquid having a component used as a solvent for the above-mentioned non-aqueous electrolytic solution (hereinafter, referred to as “electrolyte solution solvent”) is used.

図1の装置により実施される電極板3の製造方法について述べる。図1の装置では,入り側ローラー4により,電極原板1がカッター2に向かって搬送される。電極原板1は,カッター2に到達する前に,スプレーノズル5の箇所を通過する。電極原板1における,カッター2で切断される予定の箇所がスプレーノズル5の箇所を通過するとき,スプレーノズル5により,電極原板1に電解液溶媒が供給される。つまり本形態では,スプレーノズル5による電解液溶媒の供給は,連続してではなく間欠的に行われる。スプレーノズル5が電解液溶媒を供給するタイミングは,電極原板1の搬送速度と,電極板3の幅方向寸法W(図2参照)とにより管理される。なお,電極板3の幅方向寸法Wと,電極原板1における電解液溶媒の供給を受ける箇所間の間隔Wとは,同じである。 The manufacturing method of the electrode plate 3 carried out by the apparatus of FIG. 1 will be described. In the device of FIG. 1, the electrode original plate 1 is conveyed toward the cutter 2 by the entry side roller 4. The electrode original plate 1 passes through the location of the spray nozzle 5 before reaching the cutter 2. When the portion of the electrode original plate 1 to be cut by the cutter 2 passes through the portion of the spray nozzle 5, the spray nozzle 5 supplies the electrolytic solution solvent to the electrode original plate 1. That is, in this embodiment, the supply of the electrolytic solution solvent by the spray nozzle 5 is performed intermittently rather than continuously. The timing at which the spray nozzle 5 supplies the electrolyte solvent is controlled by the transport speed of the electrode original plate 1 and the widthwise dimension W (see FIG. 2) of the electrode plate 3. The widthwise dimension W of the electrode plate 3 and the distance W between the locations of the electrode original plate 1 to which the electrolyte solvent is supplied are the same.

電極原板1における電解液溶媒の供給を受けた箇所はやがて,カッター2による切断箇所に至る。そのとき,カッター2により電極原板1が切断される。これにより電極原板1から,電極板3が切り出される。切り出された電極板3は,出側ローラー6により搬出される。 The portion of the electrode original plate 1 to which the electrolyte solvent is supplied eventually reaches the portion cut by the cutter 2. At that time, the electrode original plate 1 is cut by the cutter 2. As a result, the electrode plate 3 is cut out from the electrode original plate 1. The cut-out electrode plate 3 is carried out by the output side roller 6.

ここで,電極原板1における,カッター2による切断が行われる箇所は前述の通り,スプレーノズル5により電解液溶媒の供給を受けた箇所である。このことにより次のような利点がある。第1に,切断箇所付近における,電極活物質層(正極活物質層9,負極活物質層11)の集電箔8,10からの剥がれが,電解液溶媒の供給を行わなかった場合と比較して少量である。第2に,電池として組み立てた際における充放電性能に優れている。 Here, in the electrode original plate 1, the portion where the cutting is performed by the cutter 2 is the portion where the electrolytic solution solvent is supplied by the spray nozzle 5 as described above. This has the following advantages. First, the peeling of the electrode active material layer (positive electrode active material layer 9, negative electrode active material layer 11) from the current collector foils 8 and 10 in the vicinity of the cut portion is compared with the case where the electrolyte solvent is not supplied. And a small amount. Secondly, it has excellent charge / discharge performance when assembled as a battery.

第1の利点が得られる理由は,切断時に,電極活物質層が,電解液溶媒により湿潤して柔軟となっているからである。このため,電極活物質層が切断時にカッター2からの圧力で砕けてしまうことがない。よって,切断後の電極板3における正極活物質層9,負極活物質層11の残存度合いが高い。このことは,電極板3における有効な電池反応エリアが広く電池の蓄電容量が大きいことを意味する。 The first advantage is obtained because the electrode active material layer is moistened with the electrolyte solvent and becomes flexible at the time of cutting. Therefore, the electrode active material layer is not broken by the pressure from the cutter 2 at the time of cutting. Therefore, the degree of residual of the positive electrode active material layer 9 and the negative electrode active material layer 11 in the electrode plate 3 after cutting is high. This means that the effective battery reaction area of the electrode plate 3 is wide and the storage capacity of the battery is large.

第2の利点が得られる理由は,電解液溶媒の成分の種類にある。電解液溶媒が非水電解液の溶媒と同じ成分のものであるということは,電解液溶媒が非水電解液に混入したとしても非水電解液の性状があまり変化しないということである。ということは,切断後に電解液溶媒がその場所に残存したままであったとしても,電極板3を電池に組み込んだ際に非水電解液の性状があまり変化しないということである。このため,切断のための電解液溶媒の残留により電池の充放電性能が阻害されてしまうことがないのである。 The reason for obtaining the second advantage is the type of components of the electrolyte solvent. The fact that the electrolytic solution solvent has the same composition as the solvent of the non-aqueous electrolytic solution means that the properties of the non-aqueous electrolytic solution do not change much even if the electrolytic solution solvent is mixed in the non-aqueous electrolytic solution. This means that even if the electrolyte solvent remains at that location after cutting, the properties of the non-aqueous electrolyte do not change much when the electrode plate 3 is incorporated into the battery. Therefore, the charge / discharge performance of the battery is not impaired by the residual electrolyte solvent for cutting.

もし,スプレーノズル5から供給する液体として上記と違うものを使用したとすると,当該液体が残留した場合に非水電解液の性状が変化してしまう場合がある。別の種類の液体としては例えば,電極活物質層の材料の混練時に用いた混練溶媒が考えられる。異種液体であっても,切断時における電極活物質層の砕けを防止する効果はある。しかしながら異種液体が非水電解液に混入すると,非水電解液が変性して電池の充放電性能が阻害されてしまうことがある。本形態ではこのようなことがない。 If a liquid different from the above is used as the liquid supplied from the spray nozzle 5, the properties of the non-aqueous electrolytic solution may change if the liquid remains. As another type of liquid, for example, the kneading solvent used when kneading the material of the electrode active material layer can be considered. Even if it is a different kind of liquid, it has the effect of preventing the electrode active material layer from breaking during cutting. However, if different liquids are mixed with the non-aqueous electrolyte solution, the non-aqueous electrolyte solution may be denatured and the charge / discharge performance of the battery may be impaired. This is not the case with this embodiment.

次の実施例に示す場合について,本発明の効果を確認する試験を行った。本実施例における各条件は,次の通りとした。 A test was conducted to confirm the effect of the present invention in the cases shown in the following examples. Each condition in this example is as follows.

負極構成:
・集電箔10:銅箔(10μm厚)
・負極活物質層11:
・・活物質:天然黒鉛粒子(粒径は80μm程度)
・・バインダー:カルボキシメチルセルロース,スチレンブタジエンラバー
・セパレータ層12:多孔質ポリエチレンフィルム(20μm厚,両面にアクリルバイン ダー塗布)
・電極板3の電極面サイズ:112mm×72mm
Negative electrode configuration:
-Current collector foil 10: Copper foil (10 μm thickness)
-Negative electrode active material layer 11:
・ ・ Active material: Natural graphite particles (particle size is about 80 μm)
Binder: Carboxymethyl cellulose, Styrene butadiene rubber Separator layer 12: Porous polyethylene film (20 μm thick, acrylic binder coated on both sides)
-Electrode surface size of the electrode plate 3: 112 mm x 72 mm

正極構成:
・集電箔8:アルミ箔(10μm厚)
・正極活物質層9:
・・活物質:ニッケル−マンガン−クロム3元系リチウム酸化物(粒径は70μm程度)・・バインダー:ポリフッ化ビニリデン
・電極板3の電極面サイズ:110mm×70mm
Positive electrode configuration:
-Current collector foil 8: Aluminum foil (10 μm thickness)
-Positive electrode active material layer 9:
・ ・ Active material: Nickel-manganese-chromium ternary lithium oxide (particle size is about 70 μm) ・ ・ Binder: Polyvinylidene fluoride ・ Electrode surface size of electrode plate 3: 110 mm × 70 mm

つまりこれはリチウムイオン電池であり,非水電解液の溶媒としてはエチルメチルカーボネート(ジメチルカーボネートでも可)を溶媒として使用した。そして,スプレーノズル5から供給する液体としてもエチルメチルカーボネートを使用した。図4に示すように,供給領域13は,切断予定線14を中心として10mm幅とした。そして,図5に示すように,切断後の電極板3における切断片(図5中の上辺および下辺)に生じている露出部分15の最大幅を測定した。 In other words, this is a lithium-ion battery, and ethyl methyl carbonate (dimethyl carbonate is also acceptable) was used as the solvent for the non-aqueous electrolyte solution. Then, ethyl methyl carbonate was also used as the liquid supplied from the spray nozzle 5. As shown in FIG. 4, the supply region 13 has a width of 10 mm centered on the planned cutting line 14. Then, as shown in FIG. 5, the maximum width of the exposed portion 15 formed on the cut pieces (upper side and lower side in FIG. 5) of the electrode plate 3 after cutting was measured.

Figure 0006958475
Figure 0006958475

結果を表1に示す。表1中の「液供給量」の欄は,図4中の供給領域13の面積当たりにおけるスプレーノズル5による電解液溶媒の供給量を示している。「時間差」の欄は,スプレーノズル5で電解液溶媒を供給してからカッター2で切断されるまでのタイムラグを示している。これは,図1中におけるスプレーノズル5とカッター2との間の距離により調整した。「露出幅」の欄が試験結果であり,図5に示した露出部分15の最大幅の測定値である。表1に載せているのは負の電極板3における値である。なお,負の電極板3は前述のようにセパレータ一体型であるが,セパレータ層12の上から電解液溶媒を供給しても負極活物質層11を湿潤させる作用は奏される。セパレータ層12は多孔質であるためである。 The results are shown in Table 1. The column of "Liquid supply amount" in Table 1 shows the supply amount of the electrolytic solution solvent by the spray nozzle 5 per the area of the supply area 13 in FIG. The column of "time difference" indicates the time lag from the supply of the electrolytic solution solvent by the spray nozzle 5 to the cutting by the cutter 2. This was adjusted by the distance between the spray nozzle 5 and the cutter 2 in FIG. The column of "exposure width" is the test result, and is the measured value of the maximum width of the exposed portion 15 shown in FIG. Table 1 shows the values for the negative electrode plate 3. Although the negative electrode plate 3 is a separator integrated type as described above, the action of wetting the negative electrode active material layer 11 is exhibited even if the electrolytic solution solvent is supplied from above the separator layer 12. This is because the separator layer 12 is porous.

表1における実施例1〜3は,時間差を一定としつつ液供給量を変更したものである。これらを見ると,最も液供給量の少ない実施例1でも,比較例(液供給なし)と比べて露出幅が約60%程度に低減されている。液供給量を増やした実施例2,3では,露出幅が比較例との対比で4分の1以下に低減されている。ただし,実施例2と実施例3との差は有意といえるほどではない。 In Examples 1 to 3 in Table 1, the liquid supply amount was changed while keeping the time difference constant. Looking at these, even in Example 1 in which the liquid supply amount is the smallest, the exposure width is reduced to about 60% as compared with the comparative example (without liquid supply). In Examples 2 and 3 in which the amount of liquid supplied was increased, the exposure width was reduced to one-fourth or less as compared with the comparative example. However, the difference between Example 2 and Example 3 is not significant.

表1における実施例4〜6は,液供給量を実施例3と同水準としつつ,時間差を変更したものである。実施例3より時間差を短くした実施例4でも実施例1とほぼ同程度の効果はあった。実施例3より時間差を長くした実施例5,6では,実施例3とほぼ同程度の効果であった。特に,時間差を1秒とした実施例5では,表1中で最高の結果が得られた。これより,負の電極板3では,液供給から切断までのタイムラグが0.05秒程度と短くてもある程度の効果はあるが,タイムラグを0.5秒以上取った方がより効果が大きい,ということが分かる。これは,スプレーノズル5から供給された電解液溶媒がセパレータ層12を通って負極活物質層11に浸透していくのにある程度の時間を要するためであると考えられる。セパレータ一体型でない場合には,このタイムラグを取る必要性は少ないと考えられる。 In Examples 4 to 6 in Table 1, the liquid supply amount was kept at the same level as in Example 3, but the time difference was changed. Even in Example 4 in which the time difference was shorter than that in Example 3, the effect was almost the same as that in Example 1. In Examples 5 and 6 in which the time difference was longer than that in Example 3, the effect was almost the same as that in Example 3. In particular, in Example 5 in which the time difference was 1 second, the best results were obtained in Table 1. From this, in the negative electrode plate 3, even if the time lag from liquid supply to cutting is as short as about 0.05 seconds, there is some effect, but it is more effective if the time lag is 0.5 seconds or more. You can see that. It is considered that this is because it takes a certain amount of time for the electrolytic solution solvent supplied from the spray nozzle 5 to permeate into the negative electrode active material layer 11 through the separator layer 12. If the separator is not integrated, it is considered that there is little need to take this time lag.

なお,上記の正負極の構成では混練時の溶媒は水やN−メチル−2−ピロリドンであるが,それらの液体をスプレーノズル5から供給したのでは,前述のように,電極活物質層を軟化させる効果はあっても,非水電解液を変性させてしまうのでよくない。また,特にN−メチル−2−ピロリドンの場合には,セパレータ層12の表面のアクリルバインダー層を溶解させてしまうという点でもよくない。本実施例では,非水電解液の成分であるエチルメチルカーボネートを使用することで,それらの弊害を防止しているのである。 In the above-mentioned positive and negative electrode configurations, the solvent at the time of kneading is water or N-methyl-2-pyrrolidone, but if these liquids are supplied from the spray nozzle 5, the electrode active material layer is formed as described above. Although it has a softening effect, it is not good because it denatures the non-aqueous electrolyte solution. Further, particularly in the case of N-methyl-2-pyrrolidone, it is not good in that the acrylic binder layer on the surface of the separator layer 12 is dissolved. In this example, ethyl methyl carbonate, which is a component of the non-aqueous electrolyte solution, is used to prevent these harmful effects.

以上詳細に説明したように本実施の形態および実施例によれば,長尺状の電極原板1からカード状の電極板3を切り出すに当たり,まず切断予定箇所に電解液溶媒を供給し,その供給した箇所を切断することとしている。これにより,電池性能を阻害することなく切断を良好に行うことができる一方,切断後に特に厳格な乾燥工程を行う必要もない,電極板の製造方法が実現されている。 As described in detail above, according to the present embodiment and the embodiment, when cutting out the card-shaped electrode plate 3 from the long electrode original plate 1, the electrolytic solution solvent is first supplied to the planned cutting portion, and the supply thereof is performed. It is decided to cut the part that has been removed. As a result, a method for manufacturing an electrode plate has been realized, which enables good cutting without impairing battery performance, and does not require a particularly strict drying process after cutting.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば前記形態および実施例では,電極原板1をその長手方向と垂直な方向に切断することでカード状の電極板3を得る態様を説明した。そしてその電極板3からなる電極積層体7は平積み型のものであった。しかしこれに限らず,2条分の幅を持つ長尺状の電極原板を,その長手方向と平行に2つに切断して2本の長尺状の電極板を得る態様にも本発明の適用は可能である。この場合にはスプレーノズルからの電解液溶媒の供給は,局所的にかつ連続的に行われることとなる。この場合にはまた,得られた切断後の電極板は通常,捲回型の電極積層体とされる。 It should be noted that the present embodiment is merely an example and does not limit the present invention in any way. Therefore, as a matter of course, the present invention can be improved and modified in various ways without departing from the gist of the present invention. For example, in the above-described embodiment and the embodiment, a mode in which the card-shaped electrode plate 3 is obtained by cutting the electrode original plate 1 in the direction perpendicular to the longitudinal direction thereof has been described. The electrode laminate 7 made of the electrode plate 3 was a flat stack type. However, the present invention is not limited to this, and the present invention is also applicable to a mode in which a long electrode original plate having a width of two rows is cut in two in parallel with the longitudinal direction thereof to obtain two long electrode plates. Applicable. In this case, the electrolyte solvent is supplied locally and continuously from the spray nozzle. In this case, the obtained electrode plate after cutting is usually a wound electrode laminate.

また,対象とする電池の種類としては,リチウムイオン電池に限らずニッケル水素電池等,他の種類のものでもよい。また,非水電解液の溶媒と共通する成分の液体とは,非水電解液の溶媒と完全に一致することを要しない。例えば,非水電解液の溶媒として2種類以上の有機溶媒の混合液を利用する場合,スプレーノズルから供給する電解液溶媒は,配合比が違っているものであってもよいし,2種類以上の有機溶媒のうち一部の種類を欠いているものであってもよい。 The target battery type is not limited to the lithium ion battery, but may be another type such as a nickel hydrogen battery. Further, the liquid having a component common to the solvent of the non-aqueous electrolytic solution does not need to completely match the solvent of the non-aqueous electrolytic solution. For example, when a mixed solution of two or more kinds of organic solvents is used as the solvent of the non-aqueous electrolytic solution, the electrolytic solution solvent supplied from the spray nozzle may have a different compounding ratio, or two or more kinds. It may lack some kinds of organic solvents of.

1 電極原板
2 カッター
3 電極板
5 スプレーノズル
7 電極積層体
8 集電箔
9 正極活物質層
10 集電箔
11 負極活物質層
14 切断予定線
1 Electrode original plate 2 Cutter 3 Electrode plate 5 Spray nozzle 7 Electrode laminate 8 Current collecting foil 9 Positive active material layer 10 Current collecting foil 11 Negative negative active material layer 14 Scheduled cutting line

Claims (1)

非水電解液と電極積層体とを用いる電池における電極板の製造方法であって,
集電箔上に電極活物質層を被覆してなる電極原板の前記電極活物質層に液体を供給する液供給工程と,
前記液供給工程後の前記電極原板のうち前記電極活物質層に前記液体が供給された箇所を切断して前記電極積層体中に積層するサイズの電極板とする切断工程とを有し,
前記液供給工程を行う装置を,前記電極原板の流れ方向に対して前記切断工程を行う装置よりも上流に配置し,
前記液供給工程での前記液体の供給を,間欠的に,前記電極原板における前記切断工程で切断される予定の箇所が液体供給箇所を通過するときに行い,
前記液供給工程で供給する前記液体が,前記非水電解液の溶媒と共通する成分のものであることを特徴とする電極板の製造方法。
A method for manufacturing an electrode plate in a battery using a non-aqueous electrolyte solution and an electrode laminate.
A liquid supply step of supplying a liquid to the electrode active material layer of the electrode original plate formed by coating the electrode active material layer on the current collector foil, and
It has a cutting step of cutting a portion of the electrode original plate after the liquid supply step in which the liquid is supplied to the electrode active material layer to obtain an electrode plate having a size to be laminated in the electrode laminate.
The device for performing the liquid supply step is arranged upstream of the device for performing the cutting step with respect to the flow direction of the electrode original plate.
The liquid is supplied intermittently in the liquid supply step when the portion of the electrode original plate to be cut in the cutting step passes through the liquid supply portion.
A method for producing an electrode plate, wherein the liquid supplied in the liquid supply step has a component common to the solvent of the non-aqueous electrolytic solution.
JP2018084677A 2018-04-26 2018-04-26 Electrode plate manufacturing method Active JP6958475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084677A JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084677A JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2019192508A JP2019192508A (en) 2019-10-31
JP6958475B2 true JP6958475B2 (en) 2021-11-02

Family

ID=68389945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084677A Active JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP6958475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210741A1 (en) * 2021-03-29 2022-10-06 Apb株式会社 Method for manufacturing lithium ion battery

Also Published As

Publication number Publication date
JP2019192508A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US11233274B2 (en) Battery and battery manufacturing method
JP5395391B2 (en) Coating apparatus, coating method and electrode plate
JP2023041827A (en) battery
US20140227583A1 (en) Method of preparing electrode assembly and electrode assembly prepared using the method
JP2009043718A (en) Secondary battery and its manufacturing method
KR20100061317A (en) Secondary battery manufacturing method and secondary batter thereby
KR20110037781A (en) Electrode assembly for battery and manufacturing thereof
JP6609564B2 (en) Method and apparatus for manufacturing secondary battery electrode
JPWO2015019514A1 (en) Secondary battery and manufacturing method thereof
US20190237796A1 (en) Battery including adhesion layer adhering positive electrode collector of first power generating element to negative electrode collector of second power generating element, battery manufacturing method, and battery manufacturing apparatus
JP2007012421A (en) Negative electrode for lithium ion battery and lithium ion battery using it
US20210305630A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
JP2020047506A (en) Method for manufacturing electrode
WO2022242429A1 (en) Negative electrode plate and application thereof
US20200280104A1 (en) Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
JP6958475B2 (en) Electrode plate manufacturing method
JP5678270B2 (en) Power generation element and secondary battery
JP4603857B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR20170100377A (en) Method for Preparing Electrode for Secondary Battery and Device for Manufacturing the Same
KR20150029228A (en) Stack-typed electrode assembly and electrochemical cell containing the same
JP7067839B2 (en) Electric resistance welding equipment and battery manufacturing method using it
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
KR20130129837A (en) Method for treating surface of electrode by laser irradiation
JP2019102196A (en) Manufacturing method of battery
JP2017142889A (en) Single-sided composite sheet, double-sided composite sheet, unit cell sheet, laminate battery sheet, method for producing single-sided composite sheet, method for producing double-sided composite sheet, method for producing unit cell sheet, and method for producing laminate battery sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151