JP2019192508A - Electrode plate manufacturing method - Google Patents

Electrode plate manufacturing method Download PDF

Info

Publication number
JP2019192508A
JP2019192508A JP2018084677A JP2018084677A JP2019192508A JP 2019192508 A JP2019192508 A JP 2019192508A JP 2018084677 A JP2018084677 A JP 2018084677A JP 2018084677 A JP2018084677 A JP 2018084677A JP 2019192508 A JP2019192508 A JP 2019192508A
Authority
JP
Japan
Prior art keywords
electrode
electrode plate
plate
liquid
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018084677A
Other languages
Japanese (ja)
Other versions
JP6958475B2 (en
Inventor
貴宏 櫻井
Takahiro Sakurai
貴宏 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018084677A priority Critical patent/JP6958475B2/en
Publication of JP2019192508A publication Critical patent/JP2019192508A/en
Application granted granted Critical
Publication of JP6958475B2 publication Critical patent/JP6958475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an electrode plate manufacturing method capable of obtaining an electrode plate by cutting an electrode base plate well with a simple step without impairing the battery performance.SOLUTION: An electrode plate in a battery using a non-aqueous electrolyte and an electrode laminate is manufactured. First, a liquid supply step is performed for supplying a liquid to an electrode active material layer of an electrode raw plate 1 in which an electrode active material layer is coated on a current collector foil. Next, a cutting step is performed for forming an electrode plate 3 having a size to be laminated in the electrode laminate by cutting a portion where the liquid is supplied to the electrode active material layer in the electrode raw plate 1 after the liquid supply step. Here, as the liquid supplied in the liquid supply step, a liquid having the same component as a solvent of a nonaqueous electrolytic solution is used.SELECTED DRAWING: Figure 1

Description

本発明は,非水電解液と電極積層体とを用いる電池における電極板を製造する方法に関する。さらに詳細には,大判の電極原板から切り出して電極積層体中に積層するサイズのものとする電極板の製造方法に関するものである。   The present invention relates to a method for manufacturing an electrode plate in a battery using a non-aqueous electrolyte and an electrode laminate. More specifically, the present invention relates to a method of manufacturing an electrode plate that is cut out from a large-sized electrode original plate and has a size that is laminated in an electrode laminate.

従来から,電池の構成要素として,正負の電極板を積層してなる電極積層体が用いられている。電極積層体中に積層される電極板は一般的に,大判の電極原板として製造され,切断により,積層に適したサイズとされる。このための切断手法として,特許文献1に開示されているものを挙げることができる。同文献の手法では,電極原板(文献中では「帯状集電体」等と称している)における切断予定箇所に,バインダ樹脂を含む溶媒を塗布することとしている。そしてその塗布した箇所に紫外線を照射する。その後に切断を行うこととしている。切断予定箇所をあらかじめ軟化して切断しやすくすることで,切断刃の長寿命化を図っている。   Conventionally, an electrode laminate formed by laminating positive and negative electrode plates has been used as a battery component. In general, an electrode plate laminated in an electrode laminate is manufactured as a large-size electrode original plate and cut into a size suitable for lamination. As a cutting method for this purpose, one disclosed in Patent Document 1 can be cited. According to the method of this document, a solvent containing a binder resin is applied to a planned cutting position in an electrode original plate (referred to as a “band current collector” or the like in the document). And the ultraviolet rays are irradiated to the applied part. After that, cutting is to be performed. The cutting edge is softened in advance to make it easier to cut, thereby extending the life of the cutting blade.

特開2015-173081号公報JP2015-173081A

しかしながら前記した従来の技術には,次のような問題点があった。電極板の一部に溶媒が塗布される分,電池性能が低下してしまうのである。溶媒の塗布により必然的に,電極板の性状が変化してしまうからである。一応同文献では,そのような性能低下を最小限に抑えようとしている。そのため,塗布する溶媒中のバインダ樹脂を,電極板の活物質層の形成時に使用するものと同じものとしている。しかしそれでも,バインダ樹脂の量が本来の配合よりも過剰となってしまうことは否めない。また,塗布した溶媒中のバインダ樹脂以外の成分は除去しなければならない。このため同文献の技術では,切断後に真空乾燥工程を入れることを余儀なくされている。   However, the conventional techniques described above have the following problems. The battery performance deteriorates as much as the solvent is applied to a part of the electrode plate. This is because the properties of the electrode plate inevitably change due to the application of the solvent. The literature tries to minimize such performance degradation. Therefore, the binder resin in the solvent to be applied is the same as that used when forming the active material layer of the electrode plate. However, it cannot be denied that the amount of the binder resin is excessive as compared with the original composition. In addition, components other than the binder resin in the applied solvent must be removed. For this reason, in the technique of the literature, it is forced to insert a vacuum drying process after cutting.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電池性能を阻害することなく,かつ,電極原板を簡素な工程で良好に切断して電極板を得ることができる,電極板の製造方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, an object of the present invention is to provide an electrode plate manufacturing method capable of obtaining an electrode plate by cutting the electrode original plate satisfactorily by a simple process without impairing battery performance.

本発明の一態様における電極板の製造方法は,非水電解液と電極積層体とを用いる電池における電極板を製造する方法であって,集電箔上に電極活物質層を被覆してなる電極原板の電極活物質層に液体を供給する液供給工程と,液供給工程後の電極原板のうち電極活物質層に液体が供給された箇所を切断して電極積層体中に積層するサイズの電極板とする切断工程とを有する。ここで,液供給工程で供給する液体は,非水電解液の溶媒と共通する成分のものである。   A method for producing an electrode plate according to an aspect of the present invention is a method for producing an electrode plate in a battery using a non-aqueous electrolyte and an electrode laminate, wherein an electrode active material layer is coated on a current collector foil. A liquid supply step for supplying a liquid to the electrode active material layer of the electrode original plate, and a portion of the electrode original plate after the liquid supply step where the liquid is supplied to the electrode active material layer by cutting and laminating it in the electrode laminate And a cutting step for forming an electrode plate. Here, the liquid supplied in the liquid supply process is of the same component as the solvent of the non-aqueous electrolyte.

上記態様における電極板の製造方法では,電極原板の切断予定箇所における電極活物質層を,まず液供給工程で湿潤させ軟化させる。その状態で切断工程を行い電極原板を切断する。切断されるのは液供給工程で電極活物質層が軟化した箇所である。このため,切断時の圧力によっても電極活物質層の砕けが生じにくいので,切断は良好になされる。こうして良好な電極板が製造される。その後電極板が電極積層体とされ電池に内蔵された状態でも,電池の非水電解質の性状は,液供給工程で供給された液体によりあまり変化しない。当該液体は非水電解液の溶媒と共通する成分のものだからである。このため,液供給工程で供給された液体が切断工程後も除去されずに残留していたとしても差し支えない。   In the electrode plate manufacturing method according to the above aspect, the electrode active material layer at the planned cutting position of the electrode original plate is first wetted and softened in the liquid supply step. In this state, a cutting process is performed to cut the electrode plate. What is cut is a portion where the electrode active material layer is softened in the liquid supply step. For this reason, the electrode active material layer is not easily crushed even by the pressure at the time of cutting, so that the cutting is performed well. Thus, a good electrode plate is manufactured. Thereafter, even when the electrode plate is formed as an electrode laminate and incorporated in the battery, the properties of the nonaqueous electrolyte of the battery are not significantly changed by the liquid supplied in the liquid supply process. This is because the liquid has the same component as the solvent of the nonaqueous electrolytic solution. For this reason, the liquid supplied in the liquid supply process may remain without being removed after the cutting process.

本構成によれば,電池性能を阻害することなく,かつ,電極原板を簡素な工程で良好に切断して電極板を得ることができる,電極板の製造方法が提供されている。   According to this configuration, there is provided an electrode plate manufacturing method capable of obtaining an electrode plate by satisfactorily cutting the electrode original plate by a simple process without impairing battery performance.

本形態に係る電極板の製造方法を実施する装置の構成を示す側面図である。It is a side view which shows the structure of the apparatus which enforces the manufacturing method of the electrode plate which concerns on this form. 切断前の電極原板および切断後の電極板の平面図である。It is a top view of the electrode original plate before a cutting | disconnection, and the electrode plate after a cutting | disconnection. 電極積層体の構成を概念的に示す断面図である。It is sectional drawing which shows notionally the structure of an electrode laminated body. 実施例における溶媒供給領域を示す平面図である。It is a top view which shows the solvent supply area | region in an Example. 実施例で測定した露出幅を説明する平面図である。It is a top view explaining the exposure width measured in the Example.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,図1に示す装置により実施される電極板の製造方法として本発明を具体化したものである。図1の装置は,電極原板1をカッター2で切断して電極板3を得る装置である。図1の装置にはカッター2の他,入り側ローラー4,スプレーノズル5,出側ローラー6が設けられている。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. This embodiment embodies the present invention as an electrode plate manufacturing method implemented by the apparatus shown in FIG. The apparatus of FIG. 1 is an apparatus for obtaining an electrode plate 3 by cutting the electrode plate 1 with a cutter 2. In addition to the cutter 2, the apparatus shown in FIG. 1 is provided with an entrance roller 4, a spray nozzle 5, and an exit roller 6.

図1の装置で切断される電極原板1および切断後の電極板3の平面図を図2に示す。電極原板1は,図2中における左右方向に長く延びた長尺帯状のものである。電極原板1は一般的に,コイル状に巻き取った姿で提供され,そこから引き出されて入り側ローラー4に供給される。電極板3は,電極原板1をその長手方向と交差する方向に切断してカード状としたものである。カード状の電極板3は,正のものと負のものとを交互に積み重ねて電極積層体7(図3参照)として使用される。電極積層体7は,非水電解液とともに電池に内蔵される。なお図3中では正負の電極板3が1枚ずつしか示されていないが,実際の電極積層体7ではむろん,もっと多数の正負の電極板3が積層されている。   FIG. 2 shows a plan view of the electrode plate 1 and the cut electrode plate 3 cut by the apparatus shown in FIG. The electrode plate 1 is in the form of a long band extending in the left-right direction in FIG. The electrode plate 1 is generally provided in a coiled form, drawn from there, and supplied to the entry side roller 4. The electrode plate 3 is obtained by cutting the original electrode plate 1 in a direction intersecting with the longitudinal direction thereof into a card shape. The card-like electrode plate 3 is used as an electrode laminate 7 (see FIG. 3) by alternately stacking positive and negative ones. The electrode laminate 7 is built in the battery together with the non-aqueous electrolyte. Although only one positive and negative electrode plate 3 is shown in FIG. 3, the actual electrode laminate 7 has, of course, a larger number of positive and negative electrode plates 3 stacked.

図3中の正の電極板3は,集電箔8の表裏両面を正極活物質層9で被覆したものである。負の電極板3は,集電箔10の表裏両面を負極活物質層11で被覆し,さらにその両面をセパレータ層12で覆ったものである。なお,負の電極板3をセパレータ一体型とする代わりに正の電極板3をセパレータ一体型とすることもできるし,正負いずれの電極板3もセパレータ一体型とせず,別にフィルムセパレータを用意して正負の電極板3間に挟み込んでセパレータ層とする形式でもよい。いずれの場合でもセパレータ層は,樹脂等の絶縁物による多孔質層である。   The positive electrode plate 3 in FIG. 3 is obtained by coating the front and back surfaces of the current collector foil 8 with the positive electrode active material layer 9. The negative electrode plate 3 is obtained by covering the front and back surfaces of the current collector foil 10 with a negative electrode active material layer 11 and further covering both surfaces with a separator layer 12. Instead of the negative electrode plate 3 being integrated with the separator, the positive electrode plate 3 can be integrated with the separator, and the positive and negative electrode plates 3 are not integrated with the separator, and a film separator is prepared separately. Alternatively, the separator layer may be sandwiched between the positive and negative electrode plates 3. In any case, the separator layer is a porous layer made of an insulating material such as resin.

図1の装置についてさらに説明する。カッター2は,電極原板1を切断する刃物である。スプレーノズル5は,電極原板1に対して液体を供給するものである。スプレーノズル5は,電極原板1の表裏両面に対して液体を供給するように構成されている。スプレーノズル5は,電極原板1の流れ方向に対して,カッター2よりも上流側に配置されている。本形態では,スプレーノズル5から電極原板1に供給される液体として,前述の非水電解液の溶媒として使用される成分のもの(以下,「電解液溶媒」という。)を用いることとしている。   The apparatus of FIG. 1 will be further described. The cutter 2 is a cutter that cuts the electrode plate 1. The spray nozzle 5 supplies liquid to the electrode original plate 1. The spray nozzle 5 is configured to supply liquid to both the front and back surfaces of the electrode original plate 1. The spray nozzle 5 is arranged upstream of the cutter 2 with respect to the flow direction of the electrode plate 1. In this embodiment, as the liquid supplied from the spray nozzle 5 to the electrode original plate 1, the component used as a solvent for the above-described nonaqueous electrolytic solution (hereinafter referred to as “electrolytic solution solvent”) is used.

図1の装置により実施される電極板3の製造方法について述べる。図1の装置では,入り側ローラー4により,電極原板1がカッター2に向かって搬送される。電極原板1は,カッター2に到達する前に,スプレーノズル5の箇所を通過する。電極原板1における,カッター2で切断される予定の箇所がスプレーノズル5の箇所を通過するとき,スプレーノズル5により,電極原板1に電解液溶媒が供給される。つまり本形態では,スプレーノズル5による電解液溶媒の供給は,連続してではなく間欠的に行われる。スプレーノズル5が電解液溶媒を供給するタイミングは,電極原板1の搬送速度と,電極板3の幅方向寸法W(図2参照)とにより管理される。なお,電極板3の幅方向寸法Wと,電極原板1における電解液溶媒の供給を受ける箇所間の間隔Wとは,同じである。   A method for manufacturing the electrode plate 3 performed by the apparatus of FIG. 1 will be described. In the apparatus of FIG. 1, the electrode original plate 1 is conveyed toward the cutter 2 by the entrance side roller 4. The electrode plate 1 passes through the spray nozzle 5 before reaching the cutter 2. When the portion of the electrode plate 1 that is to be cut by the cutter 2 passes through the spray nozzle 5, the electrolyte solvent is supplied to the electrode plate 1 by the spray nozzle 5. That is, in this embodiment, the supply of the electrolyte solvent by the spray nozzle 5 is performed intermittently rather than continuously. The timing at which the spray nozzle 5 supplies the electrolytic solution solvent is controlled by the conveyance speed of the electrode plate 1 and the width dimension W (see FIG. 2) of the electrode plate 3. The width direction dimension W of the electrode plate 3 is the same as the interval W between the portions of the electrode original plate 1 that receive the supply of the electrolyte solvent.

電極原板1における電解液溶媒の供給を受けた箇所はやがて,カッター2による切断箇所に至る。そのとき,カッター2により電極原板1が切断される。これにより電極原板1から,電極板3が切り出される。切り出された電極板3は,出側ローラー6により搬出される。   The portion of the electrode base plate 1 that has received the supply of the electrolyte solvent eventually reaches the cutting portion by the cutter 2. At that time, the electrode plate 1 is cut by the cutter 2. Thereby, the electrode plate 3 is cut out from the electrode original plate 1. The cut-out electrode plate 3 is carried out by a delivery roller 6.

ここで,電極原板1における,カッター2による切断が行われる箇所は前述の通り,スプレーノズル5により電解液溶媒の供給を受けた箇所である。このことにより次のような利点がある。第1に,切断箇所付近における,電極活物質層(正極活物質層9,負極活物質層11)の集電箔8,10からの剥がれが,電解液溶媒の供給を行わなかった場合と比較して少量である。第2に,電池として組み立てた際における充放電性能に優れている。   Here, the location where the cutter 2 is cut in the electrode plate 1 is the location where the supply of the electrolyte solvent is received by the spray nozzle 5 as described above. This has the following advantages. First, the peeling of the electrode active material layer (positive electrode active material layer 9 and negative electrode active material layer 11) from the current collector foils 8 and 10 in the vicinity of the cut portion is compared with the case where the electrolyte solvent was not supplied. And a small amount. Second, it is excellent in charge / discharge performance when assembled as a battery.

第1の利点が得られる理由は,切断時に,電極活物質層が,電解液溶媒により湿潤して柔軟となっているからである。このため,電極活物質層が切断時にカッター2からの圧力で砕けてしまうことがない。よって,切断後の電極板3における正極活物質層9,負極活物質層11の残存度合いが高い。このことは,電極板3における有効な電池反応エリアが広く電池の蓄電容量が大きいことを意味する。   The reason why the first advantage can be obtained is that the electrode active material layer is wetted by the electrolytic solution solvent and becomes flexible at the time of cutting. For this reason, the electrode active material layer is not crushed by the pressure from the cutter 2 at the time of cutting. Therefore, the remaining degree of the positive electrode active material layer 9 and the negative electrode active material layer 11 in the electrode plate 3 after cutting is high. This means that the effective battery reaction area in the electrode plate 3 is wide and the storage capacity of the battery is large.

第2の利点が得られる理由は,電解液溶媒の成分の種類にある。電解液溶媒が非水電解液の溶媒と同じ成分のものであるということは,電解液溶媒が非水電解液に混入したとしても非水電解液の性状があまり変化しないということである。ということは,切断後に電解液溶媒がその場所に残存したままであったとしても,電極板3を電池に組み込んだ際に非水電解液の性状があまり変化しないということである。このため,切断のための電解液溶媒の残留により電池の充放電性能が阻害されてしまうことがないのである。   The reason why the second advantage is obtained lies in the type of components of the electrolyte solvent. The fact that the electrolyte solvent is the same component as the solvent of the non-aqueous electrolyte means that the properties of the non-aqueous electrolyte do not change much even if the electrolyte solvent is mixed into the non-aqueous electrolyte. This means that even if the electrolyte solvent remains in place after cutting, the properties of the non-aqueous electrolyte do not change much when the electrode plate 3 is incorporated into the battery. For this reason, the charge / discharge performance of the battery is not hindered by the residual electrolyte solvent for cutting.

もし,スプレーノズル5から供給する液体として上記と違うものを使用したとすると,当該液体が残留した場合に非水電解液の性状が変化してしまう場合がある。別の種類の液体としては例えば,電極活物質層の材料の混練時に用いた混練溶媒が考えられる。異種液体であっても,切断時における電極活物質層の砕けを防止する効果はある。しかしながら異種液体が非水電解液に混入すると,非水電解液が変性して電池の充放電性能が阻害されてしまうことがある。本形態ではこのようなことがない。   If a liquid different from the above is used as the liquid supplied from the spray nozzle 5, the property of the non-aqueous electrolyte may change when the liquid remains. As another type of liquid, for example, a kneading solvent used when kneading the material of the electrode active material layer can be considered. Even if it is a different kind of liquid, there is an effect of preventing the electrode active material layer from being broken at the time of cutting. However, when a different kind of liquid is mixed in the non-aqueous electrolyte, the non-aqueous electrolyte may be denatured and the charge / discharge performance of the battery may be hindered. This is not the case with this embodiment.

次の実施例に示す場合について,本発明の効果を確認する試験を行った。本実施例における各条件は,次の通りとした。   Tests for confirming the effects of the present invention were conducted for the cases shown in the following examples. Each condition in this example was as follows.

負極構成:
・集電箔10:銅箔(10μm厚)
・負極活物質層11:
・・活物質:天然黒鉛粒子(粒径は80μm程度)
・・バインダー:カルボキシメチルセルロース,スチレンブタジエンラバー
・セパレータ層12:多孔質ポリエチレンフィルム(20μm厚,両面にアクリルバイン ダー塗布)
・電極板3の電極面サイズ:112mm×72mm
Negative electrode configuration:
-Current collector foil 10: Copper foil (10 μm thick)
Negative electrode active material layer 11:
..Active material: Natural graphite particles (particle size is about 80 μm)
・ ・ Binder: Carboxymethyl cellulose, Styrene butadiene rubber ・ Separator layer 12: Porous polyethylene film (20 μm thick, acrylic binder coated on both sides)
-Electrode surface size of electrode plate 3: 112 mm x 72 mm

正極構成:
・集電箔8:アルミ箔(10μm厚)
・正極活物質層9:
・・活物質:ニッケル−マンガン−クロム3元系リチウム酸化物(粒径は70μm程度)・・バインダー:ポリフッ化ビニリデン
・電極板3の電極面サイズ:110mm×70mm
Positive electrode configuration:
-Current collector foil 8: Aluminum foil (10 μm thick)
-Positive electrode active material layer 9:
・ ・ Active material: Nickel-manganese-chromium ternary lithium oxide (particle size is about 70 μm) ・ ・ Binder: Polyvinylidene fluoride ・ Electrode surface size of electrode plate 3: 110 mm × 70 mm

つまりこれはリチウムイオン電池であり,非水電解液の溶媒としてはエチルメチルカーボネート(ジメチルカーボネートでも可)を溶媒として使用した。そして,スプレーノズル5から供給する液体としてもエチルメチルカーボネートを使用した。図4に示すように,供給領域13は,切断予定線14を中心として10mm幅とした。そして,図5に示すように,切断後の電極板3における切断片(図5中の上辺および下辺)に生じている露出部分15の最大幅を測定した。   In other words, this was a lithium ion battery, and ethyl methyl carbonate (or dimethyl carbonate) was used as the solvent for the non-aqueous electrolyte. Then, ethyl methyl carbonate was also used as the liquid supplied from the spray nozzle 5. As shown in FIG. 4, the supply region 13 has a width of 10 mm with the planned cutting line 14 as the center. Then, as shown in FIG. 5, the maximum width of the exposed portion 15 generated on the cut pieces (upper side and lower side in FIG. 5) of the electrode plate 3 after cutting was measured.

Figure 2019192508
Figure 2019192508

結果を表1に示す。表1中の「液供給量」の欄は,図4中の供給領域13の面積当たりにおけるスプレーノズル5による電解液溶媒の供給量を示している。「時間差」の欄は,スプレーノズル5で電解液溶媒を供給してからカッター2で切断されるまでのタイムラグを示している。これは,図1中におけるスプレーノズル5とカッター2との間の距離により調整した。「露出幅」の欄が試験結果であり,図5に示した露出部分15の最大幅の測定値である。表1に載せているのは負の電極板3における値である。なお,負の電極板3は前述のようにセパレータ一体型であるが,セパレータ層12の上から電解液溶媒を供給しても負極活物質層11を湿潤させる作用は奏される。セパレータ層12は多孔質であるためである。   The results are shown in Table 1. The column of “Liquid supply amount” in Table 1 indicates the supply amount of the electrolyte solvent by the spray nozzle 5 per area of the supply region 13 in FIG. 4. The column of “time difference” indicates a time lag from when the electrolyte solvent is supplied by the spray nozzle 5 until it is cut by the cutter 2. This was adjusted by the distance between the spray nozzle 5 and the cutter 2 in FIG. The column of “exposure width” is a test result, and is a measured value of the maximum width of the exposed portion 15 shown in FIG. Table 1 shows values for the negative electrode plate 3. Although the negative electrode plate 3 is a separator-integrated type as described above, the negative electrode active material layer 11 is wetted even if the electrolyte solvent is supplied from above the separator layer 12. This is because the separator layer 12 is porous.

表1における実施例1〜3は,時間差を一定としつつ液供給量を変更したものである。これらを見ると,最も液供給量の少ない実施例1でも,比較例(液供給なし)と比べて露出幅が約60%程度に低減されている。液供給量を増やした実施例2,3では,露出幅が比較例との対比で4分の1以下に低減されている。ただし,実施例2と実施例3との差は有意といえるほどではない。   In Examples 1 to 3 in Table 1, the liquid supply amount was changed while keeping the time difference constant. When these are seen, also in Example 1 with the smallest liquid supply amount, the exposure width is reduced to about 60% compared with the comparative example (no liquid supply). In Examples 2 and 3 in which the liquid supply amount was increased, the exposure width was reduced to a quarter or less in comparison with the comparative example. However, the difference between Example 2 and Example 3 is not significant.

表1における実施例4〜6は,液供給量を実施例3と同水準としつつ,時間差を変更したものである。実施例3より時間差を短くした実施例4でも実施例1とほぼ同程度の効果はあった。実施例3より時間差を長くした実施例5,6では,実施例3とほぼ同程度の効果であった。特に,時間差を1秒とした実施例5では,表1中で最高の結果が得られた。これより,負の電極板3では,液供給から切断までのタイムラグが0.05秒程度と短くてもある程度の効果はあるが,タイムラグを0.5秒以上取った方がより効果が大きい,ということが分かる。これは,スプレーノズル5から供給された電解液溶媒がセパレータ層12を通って負極活物質層11に浸透していくのにある程度の時間を要するためであると考えられる。セパレータ一体型でない場合には,このタイムラグを取る必要性は少ないと考えられる。   Examples 4 to 6 in Table 1 are obtained by changing the time difference while keeping the liquid supply amount at the same level as Example 3. In Example 4 in which the time difference was shorter than in Example 3, the effect was almost the same as in Example 1. In Examples 5 and 6 in which the time difference was made longer than in Example 3, the effect was almost the same as in Example 3. In particular, in Example 5 where the time difference was 1 second, the best result in Table 1 was obtained. From this, in the negative electrode plate 3, there is a certain effect even if the time lag from the supply of the liquid to the cutting is as short as about 0.05 seconds, but the effect is greater when the time lag is 0.5 seconds or more. I understand that. This is considered to be because a certain amount of time is required for the electrolyte solution supplied from the spray nozzle 5 to penetrate the negative electrode active material layer 11 through the separator layer 12. If the separator is not integrated, there is little need to take this time lag.

なお,上記の正負極の構成では混練時の溶媒は水やN−メチル−2−ピロリドンであるが,それらの液体をスプレーノズル5から供給したのでは,前述のように,電極活物質層を軟化させる効果はあっても,非水電解液を変性させてしまうのでよくない。また,特にN−メチル−2−ピロリドンの場合には,セパレータ層12の表面のアクリルバインダー層を溶解させてしまうという点でもよくない。本実施例では,非水電解液の成分であるエチルメチルカーボネートを使用することで,それらの弊害を防止しているのである。   In the configuration of the positive and negative electrodes, the solvent at the time of kneading is water or N-methyl-2-pyrrolidone. However, when these liquids are supplied from the spray nozzle 5, the electrode active material layer is formed as described above. Although it has the effect of softening, it is not good because it denatures the non-aqueous electrolyte. In particular, in the case of N-methyl-2-pyrrolidone, the acrylic binder layer on the surface of the separator layer 12 may be dissolved. In this embodiment, the use of ethyl methyl carbonate, which is a component of the nonaqueous electrolytic solution, prevents these adverse effects.

以上詳細に説明したように本実施の形態および実施例によれば,長尺状の電極原板1からカード状の電極板3を切り出すに当たり,まず切断予定箇所に電解液溶媒を供給し,その供給した箇所を切断することとしている。これにより,電池性能を阻害することなく切断を良好に行うことができる一方,切断後に特に厳格な乾燥工程を行う必要もない,電極板の製造方法が実現されている。   As described in detail above, according to the present embodiment and the example, when the card-like electrode plate 3 is cut out from the long electrode original plate 1, first, the electrolyte solvent is supplied to the portion to be cut, and the supply I'm going to cut the part that I did. Thereby, while the cutting | disconnection can be performed favorably without inhibiting battery performance, the manufacturing method of the electrode plate which does not need to perform a strict drying process after cutting | disconnection is implement | achieved.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば前記形態および実施例では,電極原板1をその長手方向と垂直な方向に切断することでカード状の電極板3を得る態様を説明した。そしてその電極板3からなる電極積層体7は平積み型のものであった。しかしこれに限らず,2条分の幅を持つ長尺状の電極原板を,その長手方向と平行に2つに切断して2本の長尺状の電極板を得る態様にも本発明の適用は可能である。この場合にはスプレーノズルからの電解液溶媒の供給は,局所的にかつ連続的に行われることとなる。この場合にはまた,得られた切断後の電極板は通常,捲回型の電極積層体とされる。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, in the said form and Example, the aspect which obtains the card-shaped electrode plate 3 by cut | disconnecting the electrode original plate 1 in the direction perpendicular | vertical to the longitudinal direction was demonstrated. And the electrode laminated body 7 which consists of the electrode plate 3 was a flat type. However, the present invention is not limited to this, and the present invention is also applicable to an embodiment in which two long electrode plates are obtained by cutting a long electrode original plate having a width of two strips into two parallel to the longitudinal direction. Application is possible. In this case, the supply of the electrolyte solvent from the spray nozzle is performed locally and continuously. Also in this case, the obtained electrode plate after cutting is usually a wound electrode laminate.

また,対象とする電池の種類としては,リチウムイオン電池に限らずニッケル水素電池等,他の種類のものでもよい。また,非水電解液の溶媒と共通する成分の液体とは,非水電解液の溶媒と完全に一致することを要しない。例えば,非水電解液の溶媒として2種類以上の有機溶媒の混合液を利用する場合,スプレーノズルから供給する電解液溶媒は,配合比が違っているものであってもよいし,2種類以上の有機溶媒のうち一部の種類を欠いているものであってもよい。   In addition, the type of the target battery is not limited to the lithium ion battery, but may be another type such as a nickel metal hydride battery. Further, the liquid having the same component as the solvent of the non-aqueous electrolyte does not need to completely match the solvent of the non-aqueous electrolyte. For example, when a mixture of two or more organic solvents is used as the solvent for the non-aqueous electrolyte, the electrolyte solution supplied from the spray nozzle may have a different blending ratio or two or more. Some of these organic solvents may be lacking.

1 電極原板
2 カッター
3 電極板
5 スプレーノズル
7 電極積層体
8 集電箔
9 正極活物質層
10 集電箔
11 負極活物質層
14 切断予定線
DESCRIPTION OF SYMBOLS 1 Electrode base plate 2 Cutter 3 Electrode plate 5 Spray nozzle 7 Electrode laminated body 8 Current collector foil 9 Positive electrode active material layer 10 Current collector foil 11 Negative electrode active material layer 14 Planned cutting line

Claims (1)

非水電解液と電極積層体とを用いる電池における電極板の製造方法であって,
集電箔上に電極活物質層を被覆してなる電極原板の前記電極活物質層に液体を供給する液供給工程と,
前記液供給工程後の前記電極原板のうち前記電極活物質層に前記液体が供給された箇所を切断して前記電極積層体中に積層するサイズの電極板とする切断工程とを有し,
前記液供給工程で供給する前記液体が,前記非水電解液の溶媒と共通する成分のものであることを特徴とする電極板の製造方法。
A method for producing an electrode plate in a battery using a non-aqueous electrolyte and an electrode laminate,
A liquid supply step of supplying a liquid to the electrode active material layer of an electrode original plate obtained by coating an electrode active material layer on a current collector foil;
Cutting the electrode plate after the liquid supply step, cutting the portion where the liquid was supplied to the electrode active material layer, and making the electrode plate of a size to be stacked in the electrode laminate,
The method for producing an electrode plate, wherein the liquid supplied in the liquid supply step is of the same component as the solvent of the non-aqueous electrolyte.
JP2018084677A 2018-04-26 2018-04-26 Electrode plate manufacturing method Active JP6958475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084677A JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084677A JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2019192508A true JP2019192508A (en) 2019-10-31
JP6958475B2 JP6958475B2 (en) 2021-11-02

Family

ID=68389945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084677A Active JP6958475B2 (en) 2018-04-26 2018-04-26 Electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP6958475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210741A1 (en) * 2021-03-29 2022-10-06 Apb株式会社 Method for manufacturing lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210741A1 (en) * 2021-03-29 2022-10-06 Apb株式会社 Method for manufacturing lithium ion battery

Also Published As

Publication number Publication date
JP6958475B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US10424815B2 (en) Battery and battery manufacturing method
KR101405012B1 (en) A Stepwise Electrode Assembly Having Corner of Various Shape and a Battery Cell, Battery Pack and Device Comprising the Same
KR101590217B1 (en) Method for manufacturing electorde assembly and electrode assembly manufactured thereby
JP5383502B2 (en) Method for manufacturing battery electrode
CN1874032B (en) Cathode for secondary battery, secondary battery, and method of manufacturing cathode for secondary battery
JP2023041827A (en) battery
KR101145973B1 (en) Method for manufacturing electrode for battery
KR102168229B1 (en) An electrode for an electrochemical device and a method for manufacturing the same
JP2009043718A (en) Secondary battery and its manufacturing method
CN110739435A (en) Thin film battery structure with inclined battery side wall
WO2019131503A1 (en) All-solid-state battery, method for manufacturing same, and processing device
US20140186697A1 (en) Structures for interdigitated finger co-extrusion
KR20180039561A (en) Unit cell for the secondary battery having improved wettability and Method for manufacturing the same
JP2023036922A (en) Electrode and method for manufacturing the same, electrode element, power storage element, and liquid material
JP2019192508A (en) Electrode plate manufacturing method
KR20170100377A (en) Method for Preparing Electrode for Secondary Battery and Device for Manufacturing the Same
JP7067839B2 (en) Electric resistance welding equipment and battery manufacturing method using it
JP6598933B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101090684B1 (en) Electrode assembly for battery and manufacturing thereof
JP2011034903A (en) Thin battery manufacturing method, and thin battery
JP2021530849A (en) Energy storage device
KR102399073B1 (en) A method of preparing an electrode by 2-layerd masking of active-material-non-coated-part
EP4053954A1 (en) Secondary battery and manufacturing method of secondary battery
KR102653991B1 (en) Device of manufacturing a secondary battery
EP4207470A1 (en) Unit cell for secondary battery comprising separator in which insulating coating layer is formed, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151