JP6954624B2 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
JP6954624B2
JP6954624B2 JP2018017802A JP2018017802A JP6954624B2 JP 6954624 B2 JP6954624 B2 JP 6954624B2 JP 2018017802 A JP2018017802 A JP 2018017802A JP 2018017802 A JP2018017802 A JP 2018017802A JP 6954624 B2 JP6954624 B2 JP 6954624B2
Authority
JP
Japan
Prior art keywords
light
sensor device
reflected
reflecting surface
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017802A
Other languages
English (en)
Other versions
JP2019135449A (ja
Inventor
淳 内村
淳 内村
高橋 博
博 高橋
将人 渡邊
将人 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
NEC Corp
Original Assignee
NEC Platforms Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Platforms Ltd, NEC Corp filed Critical NEC Platforms Ltd
Priority to JP2018017802A priority Critical patent/JP6954624B2/ja
Priority to US16/963,691 priority patent/US11835742B2/en
Priority to PCT/JP2019/001954 priority patent/WO2019151058A1/ja
Publication of JP2019135449A publication Critical patent/JP2019135449A/ja
Application granted granted Critical
Publication of JP6954624B2 publication Critical patent/JP6954624B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

本発明は、センサ装置に関する。
レーザー光を用いた種々の光センサ装置が検討されている。特許文献1にはレーザー光を水平方向及び垂直方向に走査することにより物体検出を行うレーザーセンサが開示されている。特許文献1において、レーザー光の射出方向を変化させるための回転鏡には六面体の四側面が反射面となっているポリゴンミラーが用いられている。回転鏡の角度に応じて入射されたレーザー光の反射方向が変化するため、回転鏡を回転させることで、レーザー光の走査を行うことができる。
特開2012−251900号公報
特許文献1に記載されているような走査手法では、レーザー光の反射方向を変えることにより走査を行うため、レーザー光は、センサ装置の投光部から放射状に広がる。この場合、光線の間隔がセンサからの距離が離れるほど広がるので、分解能が低下し、遠距離の物体に対する検出精度が低下する。
本発明は、上述の課題に鑑みてなされたものであって、遠距離の物体に対しても良好な検出精度を得ることができるセンサ装置を提供することを目的とする。
本発明の一観点によれば、光を射出するとともに、対象物から反射された光を受けるセンサユニットと、側面に反射面を有する柱状の反射鏡であって、前記反射鏡の軸を回転軸として回転可能であり、前記回転軸に対して垂直な断面において、前記反射面の少なくとも一部が前記回転軸を中心とする対数螺旋をなしている反射鏡と、を備え、前記センサユニットから射出され、前記反射面で反射された光が前記反射鏡の回転に応じて平行移動することにより、前記反射面で反射された光が走査されることを特徴とするセンサ装置が提供される。
本発明によれば、遠距離の物体に対しても良好な検出精度を得ることができるセンサ装置を提供することができる。
第1実施形態に係る測距装置の機能ブロック図である。 第1実施形態に係る測距装置により行われる処理の概略を示すフローチャートである。 測距の原理を示すグラフである。 瞬間速度測定の原理を示すグラフである。 瞬間速度測定の原理を示すグラフである。 第1実施形態に係る反射鏡の構成を示す模式図である。 第1実施形態に係る反射鏡の断面図である。 対数螺旋をなす反射面における光の反射を説明する図である。 反射面の閉曲線の作図方法を示す図である。 反射面の閉曲線の作図方法を示す図である。 第1実施形態の反射鏡による光の平行走査について説明する図である。 第1実施形態の反射鏡による光の平行走査について説明する図である。 第1実施形態の反射鏡による光の平行走査について説明する図である。 第1実施形態の反射鏡による光の平行走査について説明する図である。 第1実施形態の反射鏡による光の走査範囲変化について説明する図である。 第1実施形態の反射鏡による光の走査範囲変化について説明する図である。 反射光の光路のパラメータについて説明する図である。 反射光の位置について説明するグラフである。 反射光の位置について説明するグラフである。 光の光路長について説明するグラフである。 反射鏡の反射面の形状を決めるパラメータについて説明する図である。 接線角による反射面の形状の違いを示す図である。 山谷の個数による反射面の形状の違いを示す図である。 第2実施形態の反射鏡ユニットに設けられた光学系の構成を示す模式図である。 第2実施形態の光学系の一部の構成を示す模式図である。 第2実施形態の光学系の変形例を示す模式図である。 第2実施形態の光学系の変形例を示す模式図である。 第3実施形態に係る画像処理装置の機能ブロック図である。
以下、図面を参照して、本発明の例示的な実施形態を説明する。図面において同様の要素又は対応する要素には同一の符号を付し、その説明を省略又は簡略化することがある。
[第1実施形態]
図1は、本実施形態に係る測距装置2の機能ブロック図である。図1には、測距装置2の構成の一例として、例えばFMCW(Frequency Modulated Continuous Wave)方式のLiDAR(Light Detection and Ranging)装置のブロック図が示されている。測距装置2は、赤外光、可視光、紫外光等のレーザー光を投射し、反射光を取得する動作を繰り返して所定範囲を走査することにより、所定の範囲における測距装置2からの距離、瞬間速度、反射光強度等の分布を取得することができる。測距装置2は、対象物1の検出、対象物1までの距離の取得等の用途に用いられ得る。測距装置2はより一般的にセンサ装置と呼ばれることもある。また、LiDARは、レーザーレーダーと呼ばれることもある。
測距装置2は、反射鏡ユニット10、センサユニット20及び測距装置制御部30を有する。測距装置制御部30は、測距装置2の全体の駆動の制御を行うとともに、信号の生成、取得された信号の解析、補正等の演算を行う。センサユニット20は、光を投射する発光素子を備えるとともに、測距の対象物1から反射された光を受けて信号を生成する受光素子を備える。反射鏡ユニット10は、センサユニット20から投射される光の光路を変化させることにより、測距装置2から投射される光を走査させる機能を有する。
反射鏡ユニット10は、反射鏡100及びモータ150を有する。センサユニット20は、LD(Laser Diode)201及びPD(Photodiode)202、203を有する。測距装置制御部30は、フィルタ301、302、303、変調器304、復調器305、306、三角波発生器307、振幅・周期比較器308、309、モータ制御部310及び演算部311を有する。
三角波発生器307は、時間に対して電圧が増減を繰り返す三角波を生成する。三角波発生器307で生成された三角波は変調器304に出力される。また、当該三角波は振幅・周期等を参照するための参照信号として振幅・周期比較器308、309及び演算部311にも出力される。
変調器304は、VCO(Voltage-Controlled Oscillator)等を含み、三角波発生器307で生成された三角波状の電圧の入力に応じた周波数変調波を生成する。生成された周波数変調波は、フィルタ301に入力される。フィルタ301は、周波数変調波の周波数を通過帯域とする帯域通過フィルタである。フィルタ301を通過した周波数変調波は、LD201に入力される。LD201は、入力された周波数変調波に基づくレーザー光を生成する。なお、LD201は、例えば、近赤外領域の波長のレーザー光を射出する赤外線通信用の発光素子である。
LD201から射出されたレーザー光は、反射鏡ユニット10に入射される。反射鏡ユニット10内の反射鏡100は、入射されたレーザー光を反射し、レーザー光が投射される方向を変化させる。モータ150は、例えばエンコーダ付きのDC(Direct Current)モータであり、反射鏡100を回転させる。反射鏡100は、モータ150により回転駆動されることにより、レーザー光を所定範囲内で走査させることができる。レーザー光の一部は参照光としてPD202に入射され、他の一部は測距装置2の外部に投射される。
測距装置2の外部に投射されたレーザー光が対象物1で反射され測距装置2に再び入射すると、当該反射光は、PD203に入射される。なお、対象物1と測距装置2との間の距離をrとすると、反射光は参照光に対して光路が2rだけ長くなる。そのため、反射光がPD203に入射される時刻は、光速をcとすると、参照光がPD202に入射される時刻よりも2r/cだけ遅い時刻となる。
PD202、203は、例えば、LD201と同程度の波長の光を受光して電荷に変換する赤外線通信用の光電変換素子である。PD202、203に光が入射すると、生成された電荷に基づく電圧の変化が電気信号として後段のフィルタ302、303に伝達される。フィルタ302、303も、フィルタ301と同様に、三角波発生器307で生成された周波数変調波の周波数を通過帯域とする帯域通過フィルタである。フィルタ302を通過した周波数変調波は、復調器305に入力され、フィルタ303を通過した周波数変調波は、復調器306に入力される。
復調器305、306は、PLL(Phase-Locked Loop)等を含み、入力された周波数変調波を復調する。周波数変調波は三角波発生器307で生成された三角波に基づくものであるため、復調器305、306により復調された信号は三角波となる。復調器305における復調により得られた三角波は振幅・周期比較器309に入力され、復調器306における復調により得られた三角波は振幅・周期比較器308に入力される。
振幅・周期比較器308、309は、ビート信号を生成するミキサ等を含む。振幅・周期比較器309は、三角波発生器307から出力される三角波の振幅・周期と、復調器305から出力される三角波の振幅・周期とを比較する。振幅・周期比較器309での比較結果は、演算部311に出力される。振幅・周期比較器308は、三角波発生器307から出力される三角波の振幅・周期と、復調器306から出力される三角波の振幅・周期とを比較する。振幅・周期比較器308での比較結果は、演算部311に出力される。ここで、比較結果とは、2つの入力信号の振幅・周期の差又は比であり得る。
演算部311は、振幅・周期比較器308から出力された参照光に基づく信号と、三角波発生器307から出力される三角波とを用いて、振幅・周期比較器309から出力された反射光に基づく信号を補正する演算を行う。これにより演算部311は、反射光の強度、測距装置2と対象物1との距離及び対象物1の瞬間速度を算出する。測距装置2は、レーザー光を所定範囲内に走査させて反射光の強度、距離及び瞬間速度を測定することにより、これらを2次元状の反射光強度分布、距離分布及び瞬間速度分布として外部の画像処理装置に出力する。
振幅・周期比較器309から出力される参照光の情報はモータ制御部310にも出力される。モータ制御部310は、振幅・周期比較器309から取得した情報と、モータ150に設けられたエンコーダから取得した情報とに基づき、反射鏡100の現在の位置、回転速度等を算出する。モータ制御部310は、反射鏡100の現在の位置、回転速度等の情報に基づき、モータ150の回転速度を増加又は低下させる制御を行うことで、反射鏡100の回転速度を所定の値に安定化させる。
測距装置制御部30を構成するフィルタ301、302、303、変調器304、復調器305、306、三角波発生器307、振幅・周期比較器308、309、モータ制御部310及び演算部311の一部又は全部は、一体の回路として形成されていてもよい。ここで、一体の回路とは、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)であり得る。
図2乃至図5を参照して、測距装置2において行われる処理をより具体的に説明する。図2は、本実施形態に係る測距装置2により行われる処理の概略を示すフローチャートである。図3は、測距の原理を示すグラフである。図4及び図5は、瞬間速度測定の原理を示すグラフである。
図2のステップS101において、測距装置2は、近赤外光等の周波数帯域のレーザー光を投射する。ステップS102において、測距装置2は、対象物1から反射された反射光を受光する。
ステップS103において、測距装置2は、参照光、反射光等に基づく信号を用いて反射光強度、距離及び瞬間速度を算出する。ここで、FMCW方式による距離及び瞬間速度の算出方法について図3乃至図5を参照して説明する。
まず、図3を参照しつつ距離の算出方法を説明する。図3のグラフは、参照光に基づく三角波の一部、反射光に基づく三角波の一部及びこれらのビートの周波数の時間変化を示している。図3より、参照光に基づく三角波は、時刻tにおいて周波数fであり、時間の経過とともに線形に周波数が増加する。その後、時間Tが経過した時刻t+Tにおいて、周波数f+Fとなる。すなわち、参照光に基づく三角波の傾きはF/Tである。三角波の傾きF/Tの値は、三角波発生器307で生成される三角波により定まるため、既知である。反射光に基づく三角波は、上述のように、参照光よりも時間Δt(=2r/c)だけ遅れて入力されるため、図3に示されるように、参照光を横方向に時間Δtだけシフトした波形となる。なお、図3において、対象物1は動いておらず、ドップラー効果による波形のシフトはないものとしている。
時間Δtは極めて短い時間であるため、時間Δt自体を高精度に測定することは困難な場合があるが、周波数Δfはミキサ等によりビートを生成することで比較的高精度に測定することができる。そこで、参照光に基づく三角波と反射光に基づく三角波とを混合してビートを生成して、そのビートの周波数を測定することで、参照光の周波数と反射光の周波数の差Δfを取得する。ΔfとΔtの比は、図3から明らかなように、FとTの比と一致する。そのため、Δtは、ビートから得られたΔfと、既知の(F/T)の値を用いて、Δt=Δf/(F/T)と表すことができる。上述のΔt=2r/cの関係を考慮すると、測距装置2から対象物1までの距離は、以下の式(1)で表される。
Figure 0006954624
したがって、時間の経過とともに線形に周波数が増加するように周波数変調された光を投射し、反射光に基づく信号と参照光に基づく信号のビートの周波数を測定することにより測距を行うことができる。
次に、図4及び図5を参照しつつ瞬間速度の算出方法を説明する。図4及び図5は、三角波の1周期分を含むように、図4に示したグラフをより広い時間範囲で示したグラフである。図5は、対象物1の瞬間速度がゼロである場合の周波数の時間変化を示している。図4より理解できるように、ビート周波数は、三角波の頂点付近を除き、Δfで一定である。
図5は、対象物1が測距装置2に向かう方向に動いている場合の周波数の時間変化を示している。測距装置2から投射された光は、対象物1で反射する際にドップラー効果により周波数が高くなる。これにより、三角波の周波数上昇時と下降時とで、ビート周波数がΔfとΔfの2種類の値を繰り返す。ドップラー効果による周波数変動量をΔfとすると、Δf=(Δf−Δf)/2で表される。また、上述の式(1)におけるΔfは、Δf=(Δf+Δf)/2で表される。したがって、ビート周波数としてΔfとΔfを取得することにより、対象物1が動いている場合においても式(1)に基づいて距離rを算出することができる。更に、Δfを光のドップラー効果の公式に入力することにより対象物1の瞬間速度を算出することができる。このように、本実施形態の測距装置2は、FMCW方式を用いたLiDAR装置であるため、距離分布及び瞬間速度分布を取得することができる。また、反射光に基づく信号の強度に基づき、本実施形態の測距装置2は、反射光強度分布を取得することができる。
図2のステップS104において、測距装置2は、所定範囲内における反射光強度分布、距離分布及び瞬間速度分布の取得が完了しているか否かを判断する。これらの取得が完了していない場合(ステップS104においてNO)、処理はステップS101に移行し、光を照射する位置を変えて異なる測定点の反射光強度、距離及び瞬間速度の測定を行う。これらの取得が完了している場合(ステップS104においてYES)、処理はステップS105に移行する。このように、ステップS101からステップS104のループにおいては、反射光強度分布、距離分布及び瞬間速度分布の取得のための走査が行われる。
ステップS105において、測距装置2は、測距装置2の外部の画像処理装置に反射光強度分布、距離分布及び瞬間速度分布(分布情報)を送信する。なお、本ステップにおける分布情報の送信は必須ではなく、これに代えて、測距装置2は、測距装置2の内部又は外部に設けられた記憶媒体に分布情報を記憶させてもよい。
次に図6、図7、図8A、図8B及び図8Cを参照して反射鏡100の構造を説明する。図6は、本実施形態に係る反射鏡100の構成を示す模式図である。反射鏡100は柱状の形状をなしており、その側面に反射面101を有する。センサユニット20から射出された光は、反射面101により反射され、測距装置2の外部に投射される。この投射光は、測距の対象物1で反射され、投射時と同じ経路を経由してセンサユニット20に入射される。反射鏡100は、回転軸Zを中心としてモータ150により回転駆動される。このとき、反射鏡100の角度に応じて、反射面101で反射される光は平行移動する。これにより、測距装置2から投射される光の走査が行われる。
図7は、本実施形態に係る反射鏡100の、回転軸Zに垂直な面における断面図である。反射鏡100の側面である反射面101は、回転軸Zに垂直な断面において、8個の対数螺旋が連続的に連結された閉曲線をなしている。このように対数螺旋が連続的に連結された閉曲線とすることにより、センサユニット20から射出される光が入射し得る反射面101のすべてが、回転軸Zに対して垂直な断面において対数螺旋をなす構成が実現される。これにより、光が反射鏡100のどの面に入射された場合であっても反射光を走査に活用することができる。なお、対数螺旋は、等角螺旋又はベルヌーイの螺旋と呼ばれることもある。
図8Aは、対数螺旋をなす反射面における光の反射を説明する図である。対数螺旋Spは、極座標における動径をr、極座標における偏角をθ、θの値がゼロのときのrの値をa、対数螺旋の中心を通る直線と対数螺旋の接線とのなす角度をbとしたとき、以下の式(2)の極方程式で表される。
Figure 0006954624
ここで、対数螺旋Spの外側から式(2)の極方程式の原点Oに向かう入射光I11、I21と、その反射光I12、I22との関係について考える。入射光I11、I21が対数螺旋Spで反射する点における接線をt1、t2とし、その法線をS1、S2とする。入射光I11は、対数螺旋Spの動径r1の点において反射し、入射光I21は、対数螺旋Spの動径r2の点において反射するものとする(ただし、r1≠r2)。このとき、対数螺旋Spの性質により、入射光I11と接線t1とのなす角度及び入射光I21と接線t2とのなす角度はいずれもbとなる。したがって、入射光I11と法線S1のなす入射角φと、入射光I21と法線S2のなす入射角φは同一の角度となる。また、反射光I12と法線S1のなす反射角φと、反射光I22と法線S2のなす反射角φも同一の角度となる。φ及びbが弧度法で表現された角度である場合、φとbの関係は、以下の式(3)のようになる。
Figure 0006954624
以上のことから、対数螺旋Spの外側から原点Oに向かう入射光I11は、対数螺旋Spのどの点で反射した場合においても同じ反射角φで反射することがわかる。そのため、原点Oを中心として対数螺旋Spを回転させた場合、対数螺旋Spへの入射光I11が反射する点は変化するが、反射光I12が反射する方向は変化しないため、反射光I12は平行移動する。
本実施形態の反射鏡100は、この性質を利用するため、回転軸Zに垂直な断面において、反射面の少なくとも一部を回転軸Zが原点Oとなる対数螺旋としている。これにより、反射鏡100を回転軸Zで回転させることにより、反射面101で反射される光が平行移動するような走査が可能となる。
図8B及び図8Cは、反射鏡の反射面をなす対数螺旋の作図方法を示す図である。図8Cは、図8Aの対数螺旋Spからその一部を切り出し、対数螺旋Spbを得る方法を示している。図8Bは、図8Cに対して鏡面対称な対数螺旋から対数螺旋Spaを得る方法を示している。複数個の対数螺旋Spaと対数螺旋Spbとを原点Oが重なるように連続的に連結し、閉曲線とすることにより、図7に示されるような反射面101の外形の閉曲線を得ることができる。
図9A乃至図9Dは、反射鏡100による光の平行走査について説明する図であり、上面視における光路及び反射面を示している。図9A乃至図9Cは、反射鏡100を時計回りに回転させた際の光路の変化を示している。図9Dは、光路の変化をより詳細に示すため、図9Aから図9Cを重ねて表示したものを示している。各図では、センサユニット20から射出された光が、図中の上方向から反射鏡100に入射され、右上方向に反射されている様子が示されている。
図9Dから理解できるように、反射鏡100からの反射光の光路は、反射鏡100の回転に応じて平行方向に移動する。そのため、本実施形態の測距装置2は、投射光を平行に走査することができる。この走査方法では、測距装置2から離れた位置においても光線の間隔が広がらないため、投射光が放射状に広がる走査手法に比べて遠距離の物体に対する検出精度を向上させることができる。したがって、本実施形態によれば、遠距離の物体に対しても良好な検出精度を得ることができる測距装置2を提供することができる。
図9E及び図9Fは、反射鏡100による光の走査範囲変化について説明する図である。図9Eは、図9Cの状態から更に反射鏡100を時計回りに回転させた際の光路を示している。図9Fは、光路の変化をより詳細に示すため、図9Cと図9Eを重ねて表示したものを示している。図9Cでは図の右方向に光が反射されているが、図9Eでは、図の左方向に光が反射されている。このように、本実施形態の測距装置2では、反射鏡100の回転により光が反射される面が変わるときに反射方向が変化する。この性質を活用することにより、2つの異なる範囲を走査可能な測距装置2を提供することができる。
図10、図11A、図11B及び図11Cを参照して、反射鏡100の回転角度による反射光の光路の変化についてより詳細に説明する。図10は、反射光の光路のパラメータについて説明する図である。図10に示されているように、反射鏡100の回転角度をθ、センサユニット20から反射面101までの光路長をL1、反射面から所定座標(x,y)までの光路長をL2とする。回転角度θの値が変化すると、光路長L1、L2が変化する。また、xを一定値とすると、回転角度θの値の変化に応じてyの値も変化する。
図11A及び図11Bは、反射光の位置について説明するグラフである。横軸は回転角度θであり、縦軸は図10に示すyの値である。図11Aに示されるように、回転角度に応じて、yの値が所定範囲で増減を繰り返すため、反射光は所定範囲内で走査される。図11Bは、図11Aの0度から45度の範囲をより詳細に示したグラフである。図中に示された数式は、3次の多項式近似による近似曲線の方程式である。この近似式から明らかなように、回転角度θに対してyの値は線形ではない。そのため、一定速度で反射鏡を回転させた場合に光の走査速度は一定にはならず、このことが誤差要因となり得る。この誤差要因を低減させるため、モータ制御部310は、上述の方程式を用いてモータ150の回転速度を補正してもよい。あるいは、演算部311で上述の方程式を用いて計測タイミングの補正を行うことにより、この誤差要因を低減させてもよい。
図11Cは、光の光路長について説明するグラフである。横軸は回転角度θであり、光路長L1と光路長L2の和である。図11Aに示されるように、回転角度に応じて光路長が変化する。この光路長の差は、測距装置2による測定される距離に重畳されるため、距離に対する誤差要因となり得る。図中に示された数式は、3次の多項式近似による近似曲線の方程式である。この近似式から明らかなように、回転角度θに対するL1+L2の値も線形ではない。演算部311で上述の方程式を用いて計測値の補正を行うことにより、この誤差要因を低減させることができる。
反射鏡100の反射面101の形状の選定について図12、図13及び図14を参照して説明する。図12は、反射鏡の反射面の形状を決めるパラメータについて説明する図である。対数螺旋Spの形状を決めるパラメータは式(2)に示されるようにa及びbの2つである。図12に示されるように、aは反射鏡の谷部の半径に対応し、bは、谷部における接線と対数螺旋Spの中心を通る直線のなす角度である。以下、角度bを接線角と呼ぶこともある。図12において、度数法における接線角bの値は60度である。また、反射面101の山谷の個数nも反射面101の形状を決めるパラメータとなり得る。対数螺旋Spを連結する個数を変えることにより、反射面101の山谷の個数nを変える事ができる。反射面101の山谷の個数nは2以上の整数であれば適宜選択可能である。図12に示す例では山谷の個数nは4である。
図13は、接線角bによる反射面101の形状の違いを示す図である。図13には、接線角bを度数法において60度、70度、80度、90度とした場合の反射面101の形状が示されている。図13及び式(2)より明らかなようにbが90度の場合には反射面101は円であり、反射光を走査させるための反射鏡100に適用することができない。また、60度未満とした場合、反射面101のある山で反射した反射光が隣接する山に当たることになるため、反射光を効果的に利用することができない。したがって、本実施形態の反射鏡100に適用される接線角bの範囲は60度以上、かつ90度未満とすることが望ましい。
また、接線角bの範囲は、60度以上、かつ80度未満とすることがより望ましい。接線角bが80度から90度の範囲では、反射面101が円に近く、反射光の走査範囲が狭いためである。
また、接線角bの範囲は、60度以上、かつ70度未満とすることが更に望ましい。接線角bが60度以上、かつ70度未満の範囲にすることで、70度以上の場合に比べ、反射光の走査範囲を更に広くすることができるためである。
また、接線角bの範囲は、略60度であることが更に望ましい。反射光が隣接する山に当たらない範囲では、反射光の走査範囲は接線角bが60度のときに最大となるためである。
図14は、山谷の個数nによる反射面101の形状の違いを示す図である。図14にはn=2から6までの5種類の反射面101の形状の例が示されているが、nは7以上であってもよい。nの値が大きいほど反射面101の1つの対数螺旋の長さが短くなるため、反射光の走査範囲が狭くなるが、少ない回転角度で1回の走査を完了させることができるため、モータ150の回転速度をそれほど大きくしなくても高速に走査を行うことができる。これらの事項を考慮してnの値を適宜設定することができる。
[第2実施形態]
本発明の第2実施形態として、反射鏡ユニット10内に追加的に設けられ得る光学系について説明する。光学系以外の要素は第1実施形態と同様であるため説明を省略する。この光学系は、反射鏡100により反射された光が反射鏡100の回転に応じて走査される際の走査幅を拡大する機能を有する。
図15は、本実施形態の反射鏡ユニット10に設けられた光学系の構成を示す模式図である。反射鏡100から反射された光の光路に配された光学系は、平面鏡M1、M2、三角平面鏡M3、平面鏡群M4、放物面鏡M5、M6及び絞りD1を含む。なお、図15に図示されている反射鏡100は、山谷の個数nが8であるが、これに限られるものではない。
図9A乃至図9Fを参照して説明したように、センサユニット20から射出された光は反射鏡100の回転に応じて平行移動するように走査されるとともに、反射方向が左右2方向に不連続に変化する。光路Ls、Le、Rs、Reは、反射鏡100の回転に応じて変化する反射光の光路を示している。
図15に示されている状態から反射鏡100が右方向に回転すると、右方向に反射された光は、光路Rsから光路Reに向かって走査される。図15には、この走査が矢印Sc1で示されている。反射鏡100が更に回転して光が反射される面が変わると、光の反射方向は左方向に変化し、その光は、光路Lsから光路Leに向かって走査される。図15には、この走査が矢印Sc2で示されている。
左方向に反射された光(光路Ls、Le)は、平面鏡M1で反射され、三角平面鏡M3の左側の反射面に入射される。右方向に反射された光(光路Rs、Re)は、平面鏡M2で反射され、三角平面鏡M3の右側の反射面に入射される。三角平面鏡M3での反射光は、左側の反射面に入射された場合と、右側の反射面に入射された場合のいずれの場合も上方向となる。反射鏡100が右方向に回転した場合の走査方向が矢印Sc3で示されている。
三角平面鏡M3での反射光は、平面鏡群M4に入射される。平面鏡群M4は、光を反射させる複数の平面鏡で構成されており、光が通過する面を図15の奥行き方向にシフトする機能を有する。すなわち、平面鏡群M4を通過する前の光(あるいは反射鏡で反射された直後の光)が反射鏡100の回転に応じて平行移動する面と、平面鏡群M4を通過した後の光が反射鏡100の回転に応じて平行移動する面とは、図15の奥行き方向に異なる面である。光の通過面を変えることにより、平面鏡群M4を通過した後の光の光路は、反射鏡100等の光学部材を避けることができる。
平面鏡群M4を通過した光は、放物面鏡M5に入射される。放物面鏡M5で反射した光は放物面鏡M5の焦点を通過し、更に放物面鏡M6で反射される。ここで、放物面鏡M5と放物面鏡M6は、これらの凹面が互いに向かい合わされ、かつ、これらの焦点が一致するように配置されている。放物面鏡の性質により、放物面鏡M6での反射光は平行光となり、測距装置2から投射される。ここで、反射鏡100が右方向に回転した場合の走査方向が矢印Sc4で示されている。放物面鏡M5と放物面鏡M6の焦点の近傍には、絞りD1が配されている。絞りD1は、光が通過する範囲を制限する機能を有する。これにより、測距装置2の被写界深度が深くなり、測距装置2で得られる分布情報の精度が向上する。
曲率の異なる放物面鏡M5と放物面鏡M6の凹面が互いに向かい合わせることにより、矢印Sc4が矢印Sc1、Sc2、Sc3よりも長くなっている。これにより、本実施形態の光学系は、測距装置2から投射される光の走査幅を拡大させる機能を有する。したがって、本実施形態によれば、走査幅が拡大された測距装置2を提供することができる。
本実施形態の光学系は走査幅を一方向に広げることができる構成である。そのため、測距装置2の構造を薄型化することができ、棚天板、天井面等に配置する際の省スペース化に有利である。
図16A乃至図16Cは光学系の構成の変形例を示す図である。図16A乃至図16Cには、図15で示した構成のうち、センサユニット20から平面鏡群M4の間の光路のみを抜き出したものが示されている。図16Aは、図15と同一の構成を示す図である。図16Aの構成では、図の状態から反射鏡100が時計回りに回転すると、矢印Sc3のように光が走査される。
図16Bは、三角平面鏡M3の配置を図16Aの構成と異ならせた変形例を示す図である。図16Bでは、三角平面鏡M3に入射された光はいずれも図中の下方向に反射される。これにより、図16Bにおける光の走査の順序は、図16Aのそれと異なっている。図の状態から反射鏡100が時計回りに回転すると、光は反射面101aで反射され、矢印Sc3aのように走査される。その後、光が反射される面が反射面101bに変化し、光は、矢印Sc3bのように走査される。図16Aの構成では、光が反射面101の谷に入射する時点から次の谷に入射するまでが走査の一周期となるのに対し、図16Bの構成では、光が反射面101の山に入射する時点から次の山に入射するまでが走査の一周期となる。
図16Cは、図16Aの平面鏡M2及び三角平面鏡M3に代えてZ型平面鏡M7を設けた変形例を示す図である。Z型平面鏡M7に入射された光は、いずれも図中の左方向に反射される。これにより、図16Cにおける光の走査方向の変化は、図16Aのそれと異なっている。図の状態から反射鏡100が時計回りに回転すると、光は反射面101aで反射され、矢印Sc3aのように上方向に走査される。その後、光が反射される面が反射面101bに変化すると、光は、矢印Sc3bのように下方向に走査される。図16A及び図16Bの構成では反射光が一定の向きに連続的に平行移動するのに対し、図16Cの構成では反射光が平行移動する向きが不連続的に変化する。このように要求される光の走査方法に応じて光学系の構成は、適宜変形可能である。
光学系の構成は、上述のものに限定されない。例えば、平面鏡、放物面鏡等の光学部材が更に追加されていてもよい。また、放物面鏡の反射面は、同様な効果が得られる集光が可能であれば厳密な放物面でなくてもよく、精度が許容される場合には、例えば、球面鏡等も採用され得る。また、放物面鏡を用いた光学系の変形例として、カセグレン型、グレゴリアン型等を採用してもよい。
また、センサユニット20から射出された光が通過する光路上に更に偏光素子及び光学フィルタ素子の少なくとも1つが配されていてもよい。偏光素子を設けた場合には、測距装置2から投射される光と異なる偏光の光が受光されにくくすることができ、測距装置2とは別の光源から投射された光に起因するノイズを低減することができる。また、光学フィルタ素子を設けた場合には、測距装置2から投射される光と異なる波長の光が受光されにくくすることができ、この場合も測距装置2とは別の光源から投射された光に起因するノイズを低減することができる。
測距装置制御部30を構成する回路は、例えば、放物面鏡M6の裏側(凸面側)に配置することができる。これにより、放物面鏡M6の裏側の空き空間を有効活用することができ、大きな反射鏡100を搭載することができる。反射鏡100を大きくすることで、反射光の位置精度が向上するとともに、反射鏡100の慣性モーメントが大きくなることにより回転速度の安定化も図ることができる。
上述の実施形態において説明した装置は以下の第3実施形態のようにも構成することができる。
[第3実施形態]
図17は、第3実施形態に係るセンサ装置800の機能ブロック図である。センサ装置800は、センサユニット821及び反射鏡822を備える。センサユニット821は、光を射出するとともに、対象物から反射された光を受ける。反射鏡822は、側面に反射面を有する柱状の反射鏡であって、反射鏡の軸を回転軸として回転可能であり、回転軸に対して垂直な断面において、反射面の少なくとも一部が回転軸を中心とする対数螺旋をなしている。センサユニット821から射出され、反射面で反射された光が反射鏡822の回転に応じて平行移動することにより、反射面で反射された光が走査される。
本実施形態によれば、遠距離の物体に対しても良好な検出精度を得ることができるセンサ装置が提供される。
[変形実施形態]
本発明は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
上述の実施形態では、本発明が適用され得るセンサ装置として、主としてFMCW方式のLiDAR装置を例示したが、これに限定されるものでない。光を走査することにより物体を検出し得るセンサ装置であれば、本発明はこれ以外の装置にも適用され得る。
上述の実施形態の一部の機能を実現するように該実施形態の構成を動作させるプログラムを記憶媒体に記録させ、記憶媒体に記録されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も各実施形態の範疇に含まれる。すなわち、コンピュータ読取可能な記憶媒体も各実施形態の範囲に含まれる。また、上述のプログラムが記録された記憶媒体だけでなく、そのプログラム自体も各実施形態に含まれる。また、上述の実施形態に含まれる1又は2以上の構成要素は、各構成要素の機能を実現するように構成されたASIC、FPGA等の回路であってもよい。
該記憶媒体としては例えばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD(Compact Disk)−ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。また該記憶媒体に記録されたプログラム単体で処理を実行しているものに限らず、他のソフトウェア、拡張ボードの機能と共同して、OS上で動作して処理を実行するものも各実施形態の範疇に含まれる。
なお、上述の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
上述の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
光を射出するとともに、対象物から反射された光を受けるセンサユニットと、
側面に反射面を有する柱状の反射鏡であって、前記反射鏡の軸を回転軸として回転可能であり、前記回転軸に対して垂直な断面において、前記反射面の少なくとも一部が前記回転軸を中心とする対数螺旋をなしている反射鏡と、
を備え、
前記センサユニットから射出され、前記反射面で反射された光が前記反射鏡の回転に応じて平行移動することにより、前記反射面で反射された光が走査される
ことを特徴とするセンサ装置。
(付記2)
前記センサユニットから射出される光が入射し得る前記反射面のすべてが、前記回転軸に対して垂直な断面において前記対数螺旋をなしている
ことを特徴とする付記1に記載のセンサ装置。
(付記3)
前記反射面は、前記回転軸に対して垂直な断面において、複数の前記対数螺旋が連続的に連結された閉曲線をなしていることを特徴とする付記1又は2に記載のセンサ装置。
(付記4)
極座標における動径をr、極座標における偏角をθ、θの値がゼロのときのrの値をa、前記対数螺旋の中心を通る直線と前記対数螺旋の接線とのなす角度をbとし、
前記対数螺旋の曲線を示す極方程式を式(2)で表現したとき、
Figure 0006954624
度数法におけるbの値は、60度以上、かつ90度未満である
ことを特徴とする付記1乃至3のいずれか1項に記載のセンサ装置。
(付記5)
度数法におけるbの値は、60度以上、かつ80度未満である
ことを特徴とする付記4に記載のセンサ装置。
(付記6)
度数法におけるbの値は、60度以上、かつ70度未満である
ことを特徴とする付記4に記載のセンサ装置。
(付記7)
度数法におけるbの値は、略60度である
ことを特徴とする付記4に記載のセンサ装置。
(付記8)
前記反射面の回転に応じて、前記反射面で反射された光が一定の向きに連続的に平行移動することを特徴とする付記1乃至7のいずれか1項に記載のセンサ装置。
(付記9)
前記反射面の回転に応じて、前記反射面で反射された光が平行移動する向きが不連続的に変化することを特徴とする付記1乃至7のいずれか1項に記載のセンサ装置。
(付記10)
前記反射鏡により反射された光が前記反射鏡の回転に応じて走査される際の走査幅を拡大する光学系を更に備える
ことを特徴とする付記1乃至9のいずれか1項に記載のセンサ装置。
(付記11)
前記光学系は、凹面が互いに向かい合わされた2つの放物面鏡を含む
ことを特徴とする付記10に記載のセンサ装置。
(付記12)
前記2つの放物面鏡は、焦点が一致するように配置されている
ことを特徴とする付記11に記載のセンサ装置。
(付記13)
前記光学系は、前記焦点の近傍に設けられ、光路の幅を制限する絞りを更に含む
ことを特徴とする付記12に記載のセンサ装置。
(付記14)
前記反射鏡で反射された直後の光が前記反射鏡の回転に応じて平行移動する面と前記光学系を通過した後の光が平行移動する面とは、互いに異なる面である
ことを特徴とする付記10乃至13のいずれか1項に記載のセンサ装置。
(付記15)
前記センサユニットから射出された光が通過する光路上に配された偏光素子を更に備える
ことを特徴とする付記1乃至14のいずれか1項に記載のセンサ装置。
(付記16)
前記センサユニットから射出された光が通過する光路上に配された光学フィルタ素子を更に備える
ことを特徴とする付記1乃至15のいずれか1項に記載のセンサ装置。
(付記17)
FMCW(Frequency Modulated Continuous Wave)方式のLiDAR(Light Detection and Ranging)装置であることを特徴とする付記1乃至16のいずれか1項に記載のセンサ装置。
1 対象物
2 測距装置
10 反射鏡ユニット
20、821 センサユニット
100、822 反射鏡
800 センサ装置

Claims (17)

  1. 光を射出するとともに、対象物から反射された光を受けるセンサユニットと、
    側面に反射面を有する柱状の反射鏡であって、前記反射鏡の軸を回転軸として回転可能であり、前記回転軸に対して垂直な断面において、前記反射面の少なくとも一部が前記回転軸を中心とする対数螺旋をなしている反射鏡と、
    を備え、
    前記センサユニットから射出され、前記反射面で反射された光が前記反射鏡の回転に応じて平行移動することにより、前記反射面で反射された光が走査される
    ことを特徴とするセンサ装置。
  2. 前記センサユニットから射出される光が入射し得る前記反射面のすべてが、前記回転軸に対して垂直な断面において前記対数螺旋をなしている
    ことを特徴とする請求項1に記載のセンサ装置。
  3. 前記反射面は、前記回転軸に対して垂直な断面において、複数の前記対数螺旋が連続的に連結された閉曲線をなしていることを特徴とする請求項1又は2に記載のセンサ装置。
  4. 極座標における動径をr、極座標における偏角をθ、θの値がゼロのときのrの値をa、前記対数螺旋の中心を通る直線と前記対数螺旋の接線とのなす角度をbとし、
    前記対数螺旋の曲線を示す極方程式を式(2)で表現したとき、
    Figure 0006954624
    度数法におけるbの値は、60度以上、かつ90度未満である
    ことを特徴とする請求項1乃至3のいずれか1項に記載のセンサ装置。
  5. 度数法におけるbの値は、60度以上、かつ80度未満である
    ことを特徴とする請求項4に記載のセンサ装置。
  6. 度数法におけるbの値は、60度以上、かつ70度未満である
    ことを特徴とする請求項4に記載のセンサ装置。
  7. 度数法におけるbの値は、略60度である
    ことを特徴とする請求項4に記載のセンサ装置。
  8. 前記反射面の回転に応じて、前記反射面で反射された光が一定の向きに連続的に平行移動することを特徴とする請求項1乃至7のいずれか1項に記載のセンサ装置。
  9. 前記反射面の回転に応じて、前記反射面で反射された光が平行移動する向きが不連続的に変化することを特徴とする請求項1乃至7のいずれか1項に記載のセンサ装置。
  10. 前記反射鏡により反射された光が前記反射鏡の回転に応じて走査される際の走査幅を拡大する光学系を更に備える
    ことを特徴とする請求項1乃至9のいずれか1項に記載のセンサ装置。
  11. 前記光学系は、凹面が互いに向かい合わされた2つの放物面鏡を含む
    ことを特徴とする請求項10に記載のセンサ装置。
  12. 前記2つの放物面鏡は、焦点が一致するように配置されている
    ことを特徴とする請求項11に記載のセンサ装置。
  13. 前記光学系は、前記焦点の近傍に設けられ、光路の幅を制限する絞りを更に含む
    ことを特徴とする請求項12に記載のセンサ装置。
  14. 前記反射鏡で反射された直後の光が前記反射鏡の回転に応じて平行移動する面と前記光学系を通過した後の光が平行移動する面とは、互いに異なる面である
    ことを特徴とする請求項10乃至13のいずれか1項に記載のセンサ装置。
  15. 前記センサユニットから射出された光が通過する光路上に配された偏光素子を更に備える
    ことを特徴とする請求項1乃至14のいずれか1項に記載のセンサ装置。
  16. 前記センサユニットから射出された光が通過する光路上に配された光学フィルタ素子を更に備える
    ことを特徴とする請求項1乃至15のいずれか1項に記載のセンサ装置。
  17. FMCW(Frequency Modulated Continuous Wave)方式のLiDAR(Light Detection and Ranging)装置であることを特徴とする請求項1乃至16のいずれか1項に記載のセンサ装置。
JP2018017802A 2018-02-05 2018-02-05 センサ装置 Active JP6954624B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018017802A JP6954624B2 (ja) 2018-02-05 2018-02-05 センサ装置
US16/963,691 US11835742B2 (en) 2018-02-05 2019-01-23 Sensor device
PCT/JP2019/001954 WO2019151058A1 (ja) 2018-02-05 2019-01-23 センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017802A JP6954624B2 (ja) 2018-02-05 2018-02-05 センサ装置

Publications (2)

Publication Number Publication Date
JP2019135449A JP2019135449A (ja) 2019-08-15
JP6954624B2 true JP6954624B2 (ja) 2021-10-27

Family

ID=67478053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017802A Active JP6954624B2 (ja) 2018-02-05 2018-02-05 センサ装置

Country Status (3)

Country Link
US (1) US11835742B2 (ja)
JP (1) JP6954624B2 (ja)
WO (1) WO2019151058A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020005A4 (en) * 2019-08-23 2022-08-10 Suteng Innovation Technology Co., Ltd LASER RADAR AND AUTOMATIC DRIVING EQUIPMENT
JP7044979B2 (ja) 2019-10-16 2022-03-31 日亜化学工業株式会社 照明装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193843A (ja) 1995-01-18 1996-07-30 Fujitsu Ten Ltd 回転角センサ
JP3414661B2 (ja) * 1999-01-08 2003-06-09 日本電信電話株式会社 可変光遅延器
AU2001280434A1 (en) * 2000-05-12 2001-11-20 University Of Southern California Reflector for laser interrogation of three-dimensional objects
DE10118392A1 (de) 2001-04-13 2002-11-07 Zeiss Carl System und Verfahren zum Bestimmen einer Position oder/und Orientierung zweier Objekte relativ zueinander sowie Strahlführungsanordnung, Interferometeranordnung und Vorrichtung zum Ändern einer optischen Weglänge zum Einsatz in einem solchen System und Verfahren
CN100346191C (zh) * 2006-01-18 2007-10-31 河北工业大学 激光扫描器用曲面转镜装置
JP2008096295A (ja) 2006-10-12 2008-04-24 Mitsutoyo Corp 三次元センサおよび接触プローブ
JP4910754B2 (ja) 2007-02-20 2012-04-04 パルステック工業株式会社 3次元形状測定装置
US7801272B2 (en) * 2007-09-28 2010-09-21 Rigaku Corporation X-ray diffraction apparatus and X-ray diffraction method
JP4971383B2 (ja) * 2009-03-25 2012-07-11 株式会社リガク X線回折方法及びx線回折装置
JP2012251900A (ja) 2011-06-03 2012-12-20 Ihi Corp 残置物検出方法及び装置
JP6341546B2 (ja) 2016-02-24 2018-06-13 Necプラットフォームズ株式会社 光エネルギー時分割分配装置、植物工場、建築物、光エネルギー時分割分配方法及び回転筒
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム
WO2018003852A1 (ja) * 2016-06-30 2018-01-04 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
US20210396874A1 (en) * 2018-10-29 2021-12-23 Nec Corporation Object detection system and article display shelf
WO2020090592A1 (ja) * 2018-10-29 2020-05-07 日本電気株式会社 センサ装置及び物品陳列棚
WO2020100955A1 (ja) * 2018-11-14 2020-05-22 日本電気株式会社 情報処理システム、情報処理方法及び記録媒体
CN113196005A (zh) * 2018-11-14 2021-07-30 日本电气株式会社 信息处理系统、信息处理方法和记录介质

Also Published As

Publication number Publication date
US11835742B2 (en) 2023-12-05
US20210080627A1 (en) 2021-03-18
JP2019135449A (ja) 2019-08-15
WO2019151058A1 (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
US11555893B2 (en) Laser scanning device, radar device and scanning method thereof
US11726180B2 (en) Light emitting module, light emitting unit, optical signal detection module, optical system and laser radar system
US7626400B2 (en) Electromagnetic scanning imager
JP6954624B2 (ja) センサ装置
US8593157B2 (en) Electromagnetic scanning imager
CN109815756A (zh) 用于检测监测区域中的对象的多边形扫描仪和方法
KR102377478B1 (ko) 광학 회전각 측정 시스템
JP6641031B2 (ja) 光ビーム位置検出のためのシステムおよび方法
US11520017B2 (en) Lidar device having an increased scanning frequency and method for scanning a region to be scanned
JP6460445B2 (ja) レーザレンジファインダ
JP2021517237A (ja) 可動部分を用いずに、動眼視野の周りに光学ビームを走査すること
CN111060891B (zh) 激光雷达
RU2467336C2 (ru) Устройство измерения перемещения и устройство измерения скорости
JPS6045805B2 (ja) 運動する物体の移動量および/または速度を測定する装置
US20200174102A1 (en) Large field of view measurement devices for lidar
CN115639565A (zh) 激光雷达系统
WO2019151059A1 (ja) 画像処理装置、測距装置、撮像装置、画像処理方法及び記憶媒体
US20220334236A1 (en) Dispersion compensation for a frequency-modulated continuous-wave (fmcw) lidar system
JP2006276133A (ja) 光走査装置及び光走査方法
ES2871054T3 (es) Método y aparato para reducir el ruido de moteado en un sistema óptico
US4178505A (en) Device for determining the direction towards a remote object
JP2021110698A (ja) 光学式三次元形状測定装置
WO2018008393A1 (ja) レーザーレーダー装置
JP2000018971A (ja) エンコーダ
RU2073203C1 (ru) Устройство для определения характеристик шероховатой отражающей поверхности

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6954624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150