JP6949607B2 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
JP6949607B2
JP6949607B2 JP2017148492A JP2017148492A JP6949607B2 JP 6949607 B2 JP6949607 B2 JP 6949607B2 JP 2017148492 A JP2017148492 A JP 2017148492A JP 2017148492 A JP2017148492 A JP 2017148492A JP 6949607 B2 JP6949607 B2 JP 6949607B2
Authority
JP
Japan
Prior art keywords
pair
resonator
comb
piezoelectric substrate
shaped electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148492A
Other languages
Japanese (ja)
Other versions
JP2019029866A (en
Inventor
基 山内
基 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017148492A priority Critical patent/JP6949607B2/en
Publication of JP2019029866A publication Critical patent/JP2019029866A/en
Application granted granted Critical
Publication of JP6949607B2 publication Critical patent/JP6949607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、弾性波デバイスに関し、例えば圧電基板を有する弾性波デバイスに関する。 The present invention relates to elastic wave devices, for example, elastic wave devices having a piezoelectric substrate.

弾性波共振器を用いた弾性波デバイスは、例えば移動多通信用のフィルタおよびマルチプレクサに用いられている。弾性表面共振器は、圧電基板上に弾性表面波を励振するIDT(Interdigital Transducer)が形成されている。(特許文献1)。 Elastic wave devices using elastic wave resonators are used, for example, in filters and multiplexers for mobile multi-communication. In the elastic surface resonator, an IDT (Interdigital Transducer) that excites a surface acoustic wave is formed on a piezoelectric substrate. (Patent Document 1).

特開2007−184690号公報JP-A-2007-184690

圧電基板は、線熱膨張係数が大きい。このため、温度が変化すると、弾性波デバイスにおける周波数が変化してしまう。 The piezoelectric substrate has a large coefficient of linear thermal expansion. Therefore, when the temperature changes, the frequency in the elastic wave device changes.

本発明は、上記課題に鑑みなされたものであり、弾性波デバイスにおける周波数の温度依存性を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress the temperature dependence of frequency in an elastic wave device.

本発明は、圧電基板と、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、入力端子と出力端子との間に直列に接続された複数の直列共振器と、前記圧電基板上に設けられ、前記入力端子と前記出力端子との間に並列に接続された1または複数の並列共振器と、を備えるラダー型フィルタと、前記複数の直列共振器のうち最も反共振周波数の高い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の直列共振器のうち前記第1共振器の反共振周波数より反共振周波数の低い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の金属層と、を具備する弾性波デバイスである。
上記構成において、前記1または複数の並列共振器は、複数の並列共振器であり、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、前記弾性波デバイスは、前記複数の並列共振器のうち最も共振周波数の低い第3共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の並列共振器のうち前記第3共振器の共振周波数より共振周波数の高い第4共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の別の金属層を具備する構成とすることができる。
The present invention includes a piezoelectric substrate and a pair of comb-shaped electrodes each provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected, and an input terminal and an output terminal. A plurality of series resonators connected in series between the two, and one or a plurality of parallel resonators provided on the piezoelectric substrate and connected in parallel between the input terminal and the output terminal. a ladder filter, the pair of comb-shaped electrodes in the highest antiresonant frequency first resonator of the plurality of electrode fingers provided therebetween in the extending direction of stretching of the plurality of serial resonators, the plurality The pair of comb-shaped electrodes in at least one resonator of the second resonator whose anti-resonance frequency is lower than the anti-resonance frequency of the first resonator among the series resonators of the above are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction. An elastic wave comprising at least a part of the piezoelectric substrate and a pair of metal layers having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers are arranged on the piezoelectric substrate. It is a device.
In the above configuration, the one or more parallel resonators are a plurality of parallel resonators, and a pair provided on the piezoelectric substrate and each having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected. The elastic wave device comprises the comb-shaped electrodes of the above, and the elastic wave device extends the pair of comb-shaped electrodes in the third resonator having the lowest resonance frequency among the plurality of parallel resonators in the stretching direction in which the plurality of electrode fingers extend. The pair of comb-shaped electrodes in at least one resonator of the fourth resonator, which is provided so as to be sandwiched and has a resonance frequency higher than the resonance frequency of the third resonator among the plurality of parallel resonators, is sandwiched in the stretching direction. A pair of other metals that are not provided in such a manner, are at least partially embedded in the piezoelectric substrate, and have a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers of the piezoelectric substrate are arranged. It can be configured to include layers.

本発明は、圧電基板と、前記圧電基板上に設けられ、入力端子と出力端子との間に直列に接続された1または複数の直列共振器と、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、前記入力端子と前記出力端子との間に並列に接続された複数の並列共振器と、を備えるラダー型フィルタと、前記複数の並列共振器のうち最も共振周波数の低い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の並列共振器のうち前記第1共振器の共振周波数より共振周波数の高い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の金属層と、を具備する弾性波デバイスである。The present invention includes a piezoelectric substrate, one or more series resonators provided on the piezoelectric substrate and connected in series between an input terminal and an output terminal, and a plurality of electrodes provided on the piezoelectric substrate. Each includes a pair of comb-shaped electrodes each having a finger and a bus bar to which the plurality of electrode fingers are connected, and a plurality of parallel resonators connected in parallel between the input terminal and the output terminal. The rudder type filter and the pair of comb-shaped electrodes in the first resonator having the lowest resonance frequency among the plurality of parallel resonators are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction in which the plurality of electrode fingers extend. The pair of comb-shaped electrodes in at least one resonator of the second resonator having a resonance frequency higher than the resonance frequency of the first resonator among the parallel resonators is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction. An elastic wave device comprising at least a part embedded in a piezoelectric substrate and a pair of metal layers having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers of the piezoelectric substrate are arranged. ..

上記構成において、前記第1共振器は、前記複数の電極指が配列する方向において前記一対の櫛型電極を挟むように設けられた一対の反射器を具備する構成とすることができる。 In the above configuration, the first resonator may include a pair of reflectors provided so as to sandwich the pair of comb-shaped electrodes in the direction in which the plurality of electrode fingers are arranged.

上記構成において、前記一対の金属層は前記一対の反射器を挟むように設けられている構成とすることができる。 In the above configuration, the pair of metal layers may be provided so as to sandwich the pair of reflectors.

上記構成において、前記複数の電極指の配列する方向において、前記金属層の長さは前記第1共振器における前記バスバーの長さより大きい構成とすることができる。 In the above configuration, the length of the metal layer may be larger than the length of the bus bar in the first resonator in the direction in which the plurality of electrode fingers are arranged.

上記構成において、前記圧電基板の前記一対の櫛型電極が設けられた面と反対の面に接合され、前記圧電基板の線熱膨張係数より小さい線熱膨張係数を有する支持基板を具備する構成とすることができる。 In the above configuration, a support substrate having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient of the piezoelectric substrate is provided by being joined to a surface of the piezoelectric substrate opposite to the surface on which the pair of comb-shaped electrodes are provided. can do.

上記構成において、前記一対の金属層の線熱膨張係数は前記支持基板の線熱膨張係数より小さい構成とすることができる。 In the above configuration, the linear thermal expansion coefficient of the pair of metal layers can be smaller than the linear thermal expansion coefficient of the support substrate.

上記構成において、前記第1共振器における前記一対の櫛型電極と前記一対の金属層の間には他の金属層は設けられていない構成とすることができる。 In the above configuration, no other metal layer may be provided between the pair of comb-shaped electrodes and the pair of metal layers in the first resonator.

上記構成において、前記一対の金属層のヤング率は前記圧電基板のヤング率より大きい構成とすることができる。 In the above configuration, the Young's modulus of the pair of metal layers can be larger than the Young's modulus of the piezoelectric substrate.

上記構成において、前記圧電基板上に設けられ、前記一対の櫛型電極にそれぞれ接続し、平面視において前記一対の金属層とそれぞれ交差し前記一対の金属層にそれぞれ電気的に接続される一対の配線を備える構成とすることができる。 In the above configuration, a pair of electrodes provided on the piezoelectric substrate, connected to the pair of comb-shaped electrodes, intersect with the pair of metal layers in a plan view, and electrically connected to the pair of metal layers, respectively. It can be configured to include wiring.

上記構成において、前記ラダー型フィルタを含むマルチプレクサを具備する構成とすることができる。 In the above configuration, the configuration may include a multiplexer including the ladder type filter.

本発明は、圧電基板と、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、共通端子と第1端子との間に直列に接続された複数の第1直列共振器と、前記圧電基板上に設けられ、前記共通端子と前記第1端子との間に並列に接続された1または複数の第1並列共振器と、を備える第1ラダー型フィルタと、前記圧電基板上に設けられ、前記共通端子と第2端子との間に直列に接続された1または複数の第2直列共振器と、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、前記共通端子と前記第2端子との間に並列に接続された複数の第2並列共振器と、を備え、前記第1ラダー型フィルタより高い通過帯域を有する第2ラダー型フィルタと、前記複数の第1直列共振器のうち最も反共振周波数の高い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の第1直列共振器のうち前記第1共振器の反共振周波数より反共振周波数の低い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の第1金属層と、前記複数の第2並列共振器のうち最も共振周波数の低い第3共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の第2並列共振器のうち前記第3共振器の共振周波数より共振周波数の高い第4共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の第2金属層と、を備えるマルチプレクサである The present invention includes a piezoelectric substrate and a pair of comb-shaped electrodes each provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected, and a common terminal and a first terminal. A plurality of first series resonators connected in series between the two, and one or a plurality of first parallel resonators provided on the piezoelectric substrate and connected in parallel between the common terminal and the first terminal. A first ladder type filter including a resonator, one or more second series resonators provided on the piezoelectric substrate and connected in series between the common terminal and the second terminal, and the piezoelectric Each of the pair of comb-shaped electrodes provided on the substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected is provided, and is connected in parallel between the common terminal and the second terminal. a plurality of second parallel resonator, was a second ladder-type filter which have a high pass band than the first ladder-type filter, the highest antiresonant frequency among the plurality of first series resonator first The pair of comb-shaped electrodes in one resonator are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction in which the plurality of electrode fingers extend, and anti-resonance is performed from the anti-resonance frequency of the first resonator among the plurality of first series resonators. The pair of comb-shaped electrodes in at least one resonator of the second resonator having a low frequency are not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction, and at least a part thereof is embedded in the piezoelectric substrate. The pair of first metal layers having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers are arranged, and the third resonator having the lowest resonance frequency among the plurality of second parallel resonators. A fourth resonator having a pair of comb-shaped electrodes sandwiched in a stretching direction in which the plurality of electrode fingers are stretched and having a resonance frequency higher than the resonance frequency of the third resonator among the plurality of second parallel resonators. The pair of comb-shaped electrodes in at least one resonator of the above are not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction, and at least a part thereof is embedded in the piezoelectric substrate, and the plurality of electrode fingers of the piezoelectric substrate are arranged. A multiplexer comprising a pair of second metal layers having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction .

本発明によれば、弾性波デバイスにおける周波数の温度依存性を抑制することができる。 According to the present invention, it is possible to suppress the temperature dependence of the frequency in the elastic wave device.

図1(a)は、実施例1に係る弾性波デバイスの平面図、図1(b)および図1(c)は、図1(a)のA−A断面およびB−B断面である。1 (a) is a plan view of the elastic wave device according to the first embodiment, and FIGS. 1 (b) and 1 (c) are a cross section taken along the line AA and a cross section taken along the line BB of FIG. 1 (a). 図2(a)および図2(b)は、実施例1の変形例1に係る弾性波デバイスの断面図である。2 (a) and 2 (b) are cross-sectional views of the elastic wave device according to the first modification of the first embodiment. 図3(a)は、各サンプルにおける厚さT10、T11およびT26並びに金属層の材料を示す図、図3(b)は、シミュレーションに用いた各材料のヤング率、ポアソン比および線熱膨張係数を示す図である。FIG. 3 (a) shows the thicknesses T10, T11 and T26 and the material of the metal layer in each sample, and FIG. 3 (b) shows Young's modulus, Poisson's ratio and linear thermal expansion coefficient of each material used in the simulation. It is a figure which shows. 図4は、シミュレーション結果を示す金属層の厚さT26に対する熱膨張係数を示す図である。FIG. 4 is a diagram showing the coefficient of thermal expansion with respect to the thickness T26 of the metal layer showing the simulation result. 図5は、実施例2に係る弾性波デバイスの平面図である。FIG. 5 is a plan view of the elastic wave device according to the second embodiment. 図6は、実施例2における各共振器の減衰特性を示す図である。FIG. 6 is a diagram showing the attenuation characteristics of each resonator in the second embodiment. 図7(a)から図7(c)は、実施例3およびその変形例1および2に係る弾性波デバイスの断面図である。7 (a) to 7 (c) are cross-sectional views of the elastic wave device according to the third embodiment and the first and second modifications thereof. 図8(a)は、実施例3およびその変形例における弾性波素子52の断面図、図8(b)は、実施例3の変形例3に係るデュプレクサの回路図である。FIG. 8A is a cross-sectional view of the elastic wave element 52 in Example 3 and its modified example, and FIG. 8B is a circuit diagram of a duplexer according to Modified Example 3 of Example 3.

以下、図面を参照し実施例について説明する。 Hereinafter, examples will be described with reference to the drawings.

周波数の温度係数(TCF:Temperature Coefficient of Frequency)は、線熱膨張係数(TEC:Thermal Expansion Coefficient)と位相速度の温度係数(TCV:Temperature Coefficient of Velocity)との和で定まる。そこで、実施例1では、線熱膨張係数に着目した。圧電基板に金属層を埋め込むことにより、周波数の温度係数を0に近づける(すなわち絶対値を小さくする)ことを検討した。 The temperature coefficient of frequency (TCF) is determined by the sum of the coefficient of linear thermal expansion (TEC: Thermal Expansion Coefficient) and the temperature coefficient of phase velocity (TCV: Temperature Coefficient of Velocity). Therefore, in Example 1, attention was paid to the coefficient of linear thermal expansion. By embedding a metal layer in the piezoelectric substrate, it was examined to bring the temperature coefficient of frequency close to 0 (that is, to reduce the absolute value).

図1(a)は、実施例1に係る弾性波デバイスの平面図、図1(b)および図1(c)は、図1(a)のA−A断面およびB−B断面である。図1(a)から図1(c)に示すように、1ポート共振器では、圧電基板10上にIDT20および反射器22が設けられている。圧電基板10は、例えばニオブ酸リチウム基板またはタンタル酸リチウム基板である。IDT20および反射器22は、圧電基板10に形成された金属膜12により形成される。金属膜12は例えばCu(銅)膜またはAl(アルミニウム)膜である。IDT20は、対向する一対の櫛型電極18を備える。 1 (a) is a plan view of the elastic wave device according to the first embodiment, and FIGS. 1 (b) and 1 (c) are a cross section taken along the line AA and a cross section taken along the line BB of FIG. 1 (a). As shown in FIGS. 1A to 1C, in the 1-port resonator, the IDT 20 and the reflector 22 are provided on the piezoelectric substrate 10. The piezoelectric substrate 10 is, for example, a lithium niobate substrate or a lithium tantalate substrate. The IDT 20 and the reflector 22 are formed of a metal film 12 formed on the piezoelectric substrate 10. The metal film 12 is, for example, a Cu (copper) film or an Al (aluminum) film. The IDT 20 includes a pair of opposing comb-shaped electrodes 18.

櫛型電極18は、複数の電極指14と、複数の電極指14が接続されたバスバー16とを備える。一対の櫛型電極18は、少なくとも一部において電極指14が互い違いとなるように、対向して設けられている。IDT20は主に電極指14の配列方向に伝搬する弾性波を励振する。弾性波は反射器22により反射される。同じ櫛型電極18における電極指14のピッチは弾性波の波長λにほぼ相当する。電極指14の配列方向(すなわち弾性波の伝搬方向)をX方向、電極指14の延伸方向をY方向、圧電基板10の法線方向をZ方向とする。 The comb-shaped electrode 18 includes a plurality of electrode fingers 14 and a bus bar 16 to which the plurality of electrode fingers 14 are connected. The pair of comb-shaped electrodes 18 are provided so as to face each other so that the electrode fingers 14 are staggered at least in part. The IDT 20 mainly excites elastic waves propagating in the arrangement direction of the electrode fingers 14. The elastic wave is reflected by the reflector 22. The pitch of the electrode fingers 14 in the same comb-shaped electrode 18 substantially corresponds to the wavelength λ of the elastic wave. The arrangement direction of the electrode fingers 14 (that is, the propagation direction of elastic waves) is the X direction, the stretching direction of the electrode fingers 14 is the Y direction, and the normal direction of the piezoelectric substrate 10 is the Z direction.

圧電基板10上に配線24が設けられている。一対の配線24は一対の櫛型電極18のバスバー16にそれぞれ接続されている。配線24は例えば金属膜12により形成されている。配線24は、金属膜12とは異なる材料からなる金属膜でもよい。Y方向において一対の櫛型電極18を挟むように金属層26が設けられている。金属層26は圧電基板10に埋め込まれている。金属層26は、圧電基板10のX方向の線熱膨張係数より小さな線熱膨張係数を有する。金属層26は例えばCu層またはW(タングステン)層である。 Wiring 24 is provided on the piezoelectric substrate 10. The pair of wires 24 are connected to the bus bars 16 of the pair of comb-shaped electrodes 18, respectively. The wiring 24 is formed of, for example, a metal film 12. The wiring 24 may be a metal film made of a material different from that of the metal film 12. A metal layer 26 is provided so as to sandwich the pair of comb-shaped electrodes 18 in the Y direction. The metal layer 26 is embedded in the piezoelectric substrate 10. The metal layer 26 has a coefficient of linear thermal expansion smaller than the coefficient of linear thermal expansion in the X direction of the piezoelectric substrate 10. The metal layer 26 is, for example, a Cu layer or a W (tungsten) layer.

圧電基板10のX方向およびY方向の長さをLxおよびLyとする。金属層26のX方向の長さおよびY方向の幅をそれぞれL26およびW26とする。金属層26の間隔をW20とする。圧電基板10および金属層26の厚さをそれぞれT10およびT26とする。 Let Lx and Ly be the lengths of the piezoelectric substrate 10 in the X and Y directions. Let the length in the X direction and the width in the Y direction of the metal layer 26 be L26 and W26, respectively. The distance between the metal layers 26 is W20. Let the thicknesses of the piezoelectric substrate 10 and the metal layer 26 be T10 and T26, respectively.

[実施例1の変形例1]
図2(a)および図2(b)は、実施例1の変形例1に係る弾性波デバイスの断面図であり、図1(a)のA−A断面およびB−B断面に相当する。図2(a)および図2(b)に示すように、圧電基板10のIDT20が設けられた面と反対の面に支持基板11が接合されている。支持基板11は、圧電基板10のX方向の線熱膨張係数より小さな線熱膨張係数を有し、例えばサファイア基板、スピネル基板、シリコン基板または水晶基板である。圧電基板10は支持基板11に直接接合されていてもよいし、接着剤等を介し接合されていてもよい。支持基板11の厚さをT11とする。金属層26の厚さT26と圧電基板10の厚さT10はほぼ同じである。厚さT26とT10とは異なっていてもよい。
[Modification 1 of Example 1]
2 (a) and 2 (b) are cross-sectional views of the elastic wave device according to the first modification of the first embodiment, and correspond to the AA cross section and the BB cross section of FIG. 1A. As shown in FIGS. 2 (a) and 2 (b), the support substrate 11 is joined to the surface of the piezoelectric substrate 10 opposite to the surface provided with the IDT 20. The support substrate 11 has a coefficient of linear thermal expansion smaller than the coefficient of linear thermal expansion in the X direction of the piezoelectric substrate 10, and is, for example, a sapphire substrate, a spinel substrate, a silicon substrate, or a crystal substrate. The piezoelectric substrate 10 may be directly bonded to the support substrate 11 or may be bonded via an adhesive or the like. The thickness of the support substrate 11 is T11. The thickness T26 of the metal layer 26 and the thickness T10 of the piezoelectric substrate 10 are substantially the same. The thicknesses T26 and T10 may be different.

[シミュレーション]
実施例1およびその変形例1における熱膨張係数をシミュレーションした。シミュレーションでは、温度を変え、図1(a)における金属層26間のY方向の中心でありX方向において金属層26の端部に位置する箇所28間の距離の膨張をシミュレーションした。1℃当たりの箇所28間の距離の変化率を熱膨張係数(単位は/℃)とした。なお、材料の線熱膨張係数と区別するため、以下では熱膨張係数という。
[simulation]
The coefficient of thermal expansion in Example 1 and its modified example 1 was simulated. In the simulation, the temperature was changed, and the expansion of the distance between the portions 28 located at the center of the metal layers 26 in the Y direction and at the end of the metal layers 26 in the X direction in FIG. 1A was simulated. The rate of change in the distance between the locations 28 per 1 ° C. was defined as the coefficient of thermal expansion (unit: / ° C.). In order to distinguish it from the coefficient of linear thermal expansion of the material, it will be referred to as the coefficient of thermal expansion below.

シミュレーションの条件を以下に示す。
圧電基板10:42°回転YカットX伝搬タンタル酸リチウム基板
支持基板11:サファイア基板
金属層26:CuまたはW
チップの大きさ:Lx=0.71mm、Ly=0.84mm
金属層26の大きさ:L26=0.7mm、W26=0.05mm、W20=0.1mm
金属膜12および配線24は金属層26に比べ十分薄いため、金属膜12および配線24については考慮していない。
The simulation conditions are shown below.
Piezoelectric substrate 10: 42 ° rotation Y cut X propagation Lithium tantalate substrate Support substrate 11: Sapphire substrate Metal layer 26: Cu or W
Chip size: Lx = 0.71mm, Ly = 0.84mm
Size of metal layer 26: L26 = 0.7 mm, W26 = 0.05 mm, W20 = 0.1 mm
Since the metal film 12 and the wiring 24 are sufficiently thinner than the metal layer 26, the metal film 12 and the wiring 24 are not considered.

図3(a)は、各サンプルにおける厚さT10、T11およびT26並びに金属層の材料を示す図である。図3(a)に示すように、サンプルA1からA3は実施例1に相当する。圧電基板10の厚さT10は150μmであり、金属層26はWである。サンプルB1からB3およびC1からC3は実施例1の変形例1に相当する。サンプルB1からB3の金属層26はWであり、サンプルC1からC3の金属層26はCuである。金属層26の厚さT26と圧電基板10の厚さT10は同じである。圧電基板10の厚さT10と支持基板11の厚さT11との合計は150μmである。圧電基板10と支持基板11とは直接接合されている。サンプルD0は比較例1に相当し金属層26が設けられていない以外はサンプルA1からA3と同じである。サンプルD1からD3は比較例2に相当する。サンプルD1からD3は、金属層26が設けられていない以外は、それぞれサンプルB1およびC1、サンプルB2およびC2並びにサンプルB3およびC3と同じである。 FIG. 3A is a diagram showing the thicknesses T10, T11 and T26 and the material of the metal layer in each sample. As shown in FIG. 3A, samples A1 to A3 correspond to Example 1. The thickness T10 of the piezoelectric substrate 10 is 150 μm, and the metal layer 26 is W. Samples B1 to B3 and C1 to C3 correspond to Modification 1 of Example 1. The metal layer 26 of the samples B1 to B3 is W, and the metal layer 26 of the samples C1 to C3 is Cu. The thickness T26 of the metal layer 26 and the thickness T10 of the piezoelectric substrate 10 are the same. The total of the thickness T10 of the piezoelectric substrate 10 and the thickness T11 of the support substrate 11 is 150 μm. The piezoelectric substrate 10 and the support substrate 11 are directly joined. Sample D0 is the same as Samples A1 to A3 except that it corresponds to Comparative Example 1 and the metal layer 26 is not provided. Samples D1 to D3 correspond to Comparative Example 2. Samples D1 to D3 are the same as Samples B1 and C1, Samples B2 and C2, and Samples B3 and C3, respectively, except that the metal layer 26 is not provided.

図3(b)は、シミュレーションに用いた各材料のヤング率、ポアソン比および線熱膨張係数を示す図である。図3(b)に示すように、タンタル酸リチウム基板(LT)の線熱膨張係数は結晶方位により異なる。X、YおよびZは、それぞれ結晶方位がX軸方位、Y軸方位およびZ軸方位の線熱膨張係数である。X軸方位の線熱膨張係数が最も大きく、Y軸方位の線熱膨張係数が最も小さい。Wおよびサファイアの線熱膨張係数はタンタル酸リチウム基板のX軸の線熱膨張係数より小さい。Cuの線熱膨張係数はタンタル酸リチウム基板のX軸の線熱膨張係数より大きい。Wの線熱膨張係数はサファイアの線熱膨張係数より小さい。Wおよびサファイアのヤング率はタンタル酸リチウム基板のヤング率より大きい。Cuのヤング率はタンタル酸リチウム基板のヤング率より小さい。 FIG. 3B is a diagram showing Young's modulus, Poisson's ratio and coefficient of linear thermal expansion of each material used in the simulation. As shown in FIG. 3B, the coefficient of linear thermal expansion of the lithium tantalate substrate (LT) differs depending on the crystal orientation. X, Y, and Z are linear thermal expansion coefficients whose crystal orientations are the X-axis orientation, the Y-axis orientation, and the Z-axis orientation, respectively. The coefficient of linear thermal expansion in the X-axis direction is the largest, and the coefficient of linear thermal expansion in the Y-axis direction is the smallest. The coefficient of linear thermal expansion of W and sapphire is smaller than the coefficient of linear thermal expansion of the X-axis of the lithium tantalate substrate. The coefficient of linear thermal expansion of Cu is larger than the coefficient of linear thermal expansion of the X-axis of the lithium tantalate substrate. The coefficient of linear thermal expansion of W is smaller than the coefficient of linear thermal expansion of sapphire. The Young's modulus of W and sapphire is larger than the Young's modulus of the lithium tantalate substrate. The Young's modulus of Cu is smaller than the Young's modulus of the lithium tantalate substrate.

図4は、シミュレーション結果を示す金属層26の厚さT26に対する熱膨張係数を示す図である。図4に示すように、比較例1のサンプルD0では、熱膨張係数はタンタル酸リチウム基板のX軸の線熱膨張係数と同じ16.1ppm/℃である。実施例1のサンプルA1からA3では、熱膨張係数はそれぞれ13.9ppm/℃、14.5ppm/℃および15.2ppm/℃である。サンプルA1からA3はサンプルD0より熱膨張係数が小さくなる。金属層26の厚さT26が大きくなると熱膨張係数が小さくなる。 FIG. 4 is a diagram showing the coefficient of thermal expansion with respect to the thickness T26 of the metal layer 26 showing the simulation result. As shown in FIG. 4, in the sample D0 of Comparative Example 1, the coefficient of thermal expansion is 16.1 ppm / ° C., which is the same as the coefficient of linear thermal expansion of the X-axis of the lithium tantalate substrate. In Samples A1 to A3 of Example 1, the coefficients of thermal expansion are 13.9 ppm / ° C. and 14.5 ppm / ° C. and 15.2 ppm / ° C., respectively. Samples A1 to A3 have a smaller coefficient of thermal expansion than sample D0. As the thickness T26 of the metal layer 26 increases, the coefficient of thermal expansion decreases.

比較例2のサンプルD1からD3では、金属層26の厚さT26および圧電基板10の厚さT10が小さくなると熱膨張係数は小さくなる。実施例1の変形例1のサンプルB1からB3では、熱膨張係数はサンプルD1からD3より小さい。サンプルC1からC3では、熱膨張係数はサンプルD1からD3よりやや小さい。 In the samples D1 to D3 of Comparative Example 2, the coefficient of thermal expansion becomes smaller as the thickness T26 of the metal layer 26 and the thickness T10 of the piezoelectric substrate 10 become smaller. In the samples B1 to B3 of the modification 1 of the first embodiment, the coefficient of thermal expansion is smaller than the samples D1 to D3. In the samples C1 to C3, the coefficient of thermal expansion is slightly smaller than that of the samples D1 to D3.

実施例1およびその変形例1によれば、図1(a)から図2(b)のように、一対の金属層26は、圧電基板10に埋め込まれ、Y方向において一対の櫛型電極18を挟むように設けられている。これにより、図1(a)の箇所28の熱膨張係数を抑制できる。よって、弾性波デバイスの周波数の温度変化を抑制できる。 According to the first embodiment and the first modification thereof, as shown in FIGS. 1A to 2B, the pair of metal layers 26 are embedded in the piezoelectric substrate 10 and the pair of comb-shaped electrodes 18 in the Y direction. It is provided so as to sandwich. As a result, the coefficient of thermal expansion of the portion 28 in FIG. 1A can be suppressed. Therefore, it is possible to suppress the temperature change of the frequency of the elastic wave device.

金属層26は、少なくとも一部が圧電基板10に埋め込まれていればよい。これにより、圧電基板10のX方向の膨張または収縮による応力を金属層26が支えることができる。金属層26の全てまたは一部の側面は圧電基板10に接していることが好ましい。サンプルA1からA3およびB1からB3のように、金属層26の線熱膨張係数は圧電基板10のX方向における線熱膨張係数より小さい。これにより、図1(a)の箇所28の熱膨張係数をより抑制できる。よって、弾性波デバイスの周波数の温度変化をより抑制できる。金属層26の線熱膨張係数は圧電基板10の線熱膨張係数の2/3以下が好ましく、1/2以下がより好ましい。金属層26としてはCu層またはW層以外の金属層でもよい。 At least a part of the metal layer 26 may be embedded in the piezoelectric substrate 10. As a result, the metal layer 26 can support the stress due to the expansion or contraction of the piezoelectric substrate 10 in the X direction. It is preferable that all or a part of the side surface of the metal layer 26 is in contact with the piezoelectric substrate 10. Like the samples A1 to A3 and B1 to B3, the coefficient of linear thermal expansion of the metal layer 26 is smaller than the coefficient of linear thermal expansion of the piezoelectric substrate 10 in the X direction. As a result, the coefficient of thermal expansion of the portion 28 in FIG. 1A can be further suppressed. Therefore, the temperature change of the frequency of the elastic wave device can be further suppressed. The coefficient of linear thermal expansion of the metal layer 26 is preferably 2/3 or less, more preferably 1/2 or less of the coefficient of linear thermal expansion of the piezoelectric substrate 10. The metal layer 26 may be a metal layer other than the Cu layer or the W layer.

一対の金属層26は、Y方向からみたとき一対の櫛型電極18の一部と重なればよい。X方向において一対の櫛型電極18を挟むよう一対の反射器22が設けられているとき、一対の金属層26は一対の反射器22を挟むように設けられていることが好ましい。これにより、弾性波デバイスの周波数の温度変化をより抑制できる。 The pair of metal layers 26 may overlap a part of the pair of comb-shaped electrodes 18 when viewed from the Y direction. When the pair of reflectors 22 are provided so as to sandwich the pair of comb-shaped electrodes 18 in the X direction, it is preferable that the pair of metal layers 26 are provided so as to sandwich the pair of reflectors 22. As a result, the temperature change of the frequency of the elastic wave device can be further suppressed.

X方向において、一対の金属層26の長さは、バスバー16の長さより大きい。これにより、弾性波デバイスの周波数の温度変化をより抑制できる。 In the X direction, the length of the pair of metal layers 26 is greater than the length of the bus bar 16. As a result, the temperature change of the frequency of the elastic wave device can be further suppressed.

熱膨張係数を小さくするため、金属層26のY方向の幅は、一対の櫛型電極18のY方向の幅の0.1倍以上が好ましく、0.2倍以上がより好ましい。チップ面積を削減するため、金属層26のY方向の幅は、一対の櫛型電極18のY方向の幅の1倍以下が好ましく、0.7倍以下がより好ましい。熱膨張係数を小さくするため、金属層26と一対の櫛型電極18との間のギャップ幅は、一対の櫛型電極18のY方向の幅の0.5倍以下が好ましく、0.2倍以下がより好ましい。 In order to reduce the coefficient of thermal expansion, the width of the metal layer 26 in the Y direction is preferably 0.1 times or more, more preferably 0.2 times or more the width of the pair of comb-shaped electrodes 18 in the Y direction. In order to reduce the chip area, the width of the metal layer 26 in the Y direction is preferably 1 times or less, more preferably 0.7 times or less the width of the pair of comb-shaped electrodes 18 in the Y direction. In order to reduce the coefficient of thermal expansion, the gap width between the metal layer 26 and the pair of comb-shaped electrodes 18 is preferably 0.5 times or less, preferably 0.2 times or less the width of the pair of comb-shaped electrodes 18 in the Y direction. The following is more preferable.

熱膨張係数を小さくするため、一対の櫛型電極18と一対の金属層26との間には他の金属層は設けられていないことが好ましい。チップ面積を削減するため、一対の金属層26は、一対の櫛型電極18のX方向には設けられていないことが好ましい。 In order to reduce the coefficient of thermal expansion, it is preferable that no other metal layer is provided between the pair of comb-shaped electrodes 18 and the pair of metal layers 26. In order to reduce the chip area, it is preferable that the pair of metal layers 26 are not provided in the X direction of the pair of comb-shaped electrodes 18.

金属膜12および配線24の厚さは1μm以下である。熱膨張係数を小さくするため、金属層26の厚さT26は、金属膜12および配線24より厚いことが好ましい。金属層26の厚さT26は、金属膜12および配線24の厚さの2倍以上が好ましく5倍以上がより好ましく、10倍以上がさらに好ましい。製造工程簡略化の観点から、金属層26の厚さは、圧電基板10と支持基板11の合計の厚さの1/3以下が好ましく、1/5以下がより好ましい。金属層26が圧電基板10に埋め込まれた深さは、金属膜12および配線24の厚さの1倍以上が好ましく、5倍以上がより好ましく、10倍以上がさらに好ましい。製造工程簡略化の観点から、金属層26が圧電基板10に埋め込まれた深さは、圧電基板10と支持基板11の合計の厚さの1/3以下が好ましく、1/5以下がより好ましい。 The thickness of the metal film 12 and the wiring 24 is 1 μm or less. In order to reduce the coefficient of thermal expansion, the thickness T26 of the metal layer 26 is preferably thicker than that of the metal film 12 and the wiring 24. The thickness T26 of the metal layer 26 is preferably 2 times or more, more preferably 5 times or more, still more preferably 10 times or more the thickness of the metal film 12 and the wiring 24. From the viewpoint of simplifying the manufacturing process, the thickness of the metal layer 26 is preferably 1/3 or less, more preferably 1/5 or less of the total thickness of the piezoelectric substrate 10 and the support substrate 11. The depth at which the metal layer 26 is embedded in the piezoelectric substrate 10 is preferably 1 times or more, more preferably 5 times or more, still more preferably 10 times or more the thickness of the metal film 12 and the wiring 24. From the viewpoint of simplifying the manufacturing process, the depth at which the metal layer 26 is embedded in the piezoelectric substrate 10 is preferably 1/3 or less, more preferably 1/5 or less of the total thickness of the piezoelectric substrate 10 and the support substrate 11. ..

一対の金属層26はそれぞれ一対の配線24と電気的に接続されていてもよい。一対の金属層26は一対の配線24から電気的に分離されていてもよい。一対の金属層26と一対の配線24との間に絶縁膜が設けられていてもよい。 Each of the pair of metal layers 26 may be electrically connected to the pair of wires 24. The pair of metal layers 26 may be electrically separated from the pair of wires 24. An insulating film may be provided between the pair of metal layers 26 and the pair of wirings 24.

圧電基板10が回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板のとき、圧電基板10のX方向の線熱膨張係数が大きくなる。よって、金属層26を設けることが好ましい。 When the piezoelectric substrate 10 is a rotating Y-cut X propagating lithium tantalate substrate or a rotating Y-cut X propagating lithium niobate substrate, the coefficient of linear thermal expansion of the piezoelectric substrate 10 in the X direction becomes large. Therefore, it is preferable to provide the metal layer 26.

実施例1の変形例1のように、支持基板11が圧電基板10の下面に接合されている。支持基板11の線熱膨張係数は圧電基板10の線熱膨張係数より小さい。これにより、弾性波デバイスの周波数の温度変化をより抑制できる。 As in the first modification of the first embodiment, the support substrate 11 is joined to the lower surface of the piezoelectric substrate 10. The coefficient of linear thermal expansion of the support substrate 11 is smaller than the coefficient of linear thermal expansion of the piezoelectric substrate 10. As a result, the temperature change of the frequency of the elastic wave device can be further suppressed.

サンプルB1からB3のように、一対の金属層26の線熱膨張係数は支持基板11の線熱膨張係数より小さいことが好ましい。これにより、熱膨張係数をより小さくできる。 Like the samples B1 to B3, the coefficient of linear thermal expansion of the pair of metal layers 26 is preferably smaller than the coefficient of linear thermal expansion of the support substrate 11. As a result, the coefficient of thermal expansion can be made smaller.

支持基板11が設けられているとき、金属層26は圧電基板10をZ方向に貫通していることが好ましい。これにより、熱膨張係数を小さくできる。金属層26は圧電基板10をZ方向に貫通していなくてもよい。 When the support substrate 11 is provided, the metal layer 26 preferably penetrates the piezoelectric substrate 10 in the Z direction. As a result, the coefficient of thermal expansion can be reduced. The metal layer 26 does not have to penetrate the piezoelectric substrate 10 in the Z direction.

図5は、実施例2に係る弾性波デバイスの平面図である。図5に示すように、圧電基板10上に1または複数の直列共振器S1からS4、1または複数の並列共振器P1からP3、配線24およびバンプ25が設けられている。各共振器は、IDT20とIDT20のX方向の両側に設けられた反射器22を備えている。バンプ25は、入力バンプT1、出力バンプT2およびグランドバンプTgを含む。配線24は、各共振器間、および各共振器とバンプ25間を電気的に接続する。バンプ25は、例えばスタッドAuバンプ、めっき法により形成されたCuピラー、またはAuSn、SnAgCuもしくはSnAg等のはんだボールである。 FIG. 5 is a plan view of the elastic wave device according to the second embodiment. As shown in FIG. 5, one or a plurality of series resonators S1 to S4, one or a plurality of parallel resonators P1 to P3, a wiring 24, and a bump 25 are provided on the piezoelectric substrate 10. Each resonator includes a reflector 22 provided on both sides of the IDT 20 and the IDT 20 in the X direction. The bump 25 includes an input bump T1, an output bump T2 and a ground bump Tg. The wiring 24 electrically connects between the resonators and between each resonator and the bump 25. The bump 25 is, for example, a stud Au bump, a Cu pillar formed by a plating method, or a solder ball such as AuSn, SnAgCu or SnAg.

直列共振器S1からS4は、入力バンプT1(すなわち入力端子)と出力バンプT2(すなわち出力端子)との間に、配線24を介し直列に接続されている。並列共振器P1からP3は、入力バンプT1と出力バンプT2との間に配線24を介し並列に接続されている。このように、直列共振器S1からS4および並列共振器P1からP3はラダー型フィルタとして機能する。直列共振器S3および並列共振器P2のY方向の両側に金属層26が設けられている。 The series resonators S1 to S4 are connected in series between the input bump T1 (that is, the input terminal) and the output bump T2 (that is, the output terminal) via the wiring 24. The parallel resonators P1 to P3 are connected in parallel between the input bump T1 and the output bump T2 via the wiring 24. In this way, the series resonators S1 to S4 and the parallel resonators P1 to P3 function as ladder type filters. Metal layers 26 are provided on both sides of the series resonator S3 and the parallel resonator P2 in the Y direction.

図6は、実施例2における各共振器の減衰特性を示す図である。図6に示すように、ラダー型フィルタの通過帯域の高周波側の減衰極は、直列共振器S1からS4の反共振点により形成される。通過帯域の低周波側の減衰極は、並列共振器P1からP3の共振点により形成される。通過帯域の高周波側のスカート特性に最も影響するのは直列共振器のうち反共振周波数の最も高い直列共振器S3(反共振周波数がfsa3)である。通過帯域の低周波側のスカート特性に最も影響するのは並列共振器のうち共振周波数の最も低い並列共振器P2(共振周波数がfpr2)である。通過帯域の温度依存性を抑制するためには、直列共振器S3および並列共振器P2の温度依存性を小さくすることが有効である。 FIG. 6 is a diagram showing the attenuation characteristics of each resonator in the second embodiment. As shown in FIG. 6, the attenuation pole on the high frequency side of the pass band of the ladder type filter is formed by the antiresonance points of the series resonators S1 to S4. The attenuation pole on the low frequency side of the pass band is formed by the resonance points of the parallel resonators P1 to P3. Among the series resonators, the series resonator S3 (antiresonance frequency is fsa3) having the highest antiresonance frequency has the greatest influence on the skirt characteristics on the high frequency side of the pass band. Among the parallel resonators, the parallel resonator P2 (resonant frequency is fpr2) having the lowest resonance frequency has the greatest influence on the skirt characteristics on the low frequency side of the pass band. In order to suppress the temperature dependence of the pass band, it is effective to reduce the temperature dependence of the series resonator S3 and the parallel resonator P2.

そこで、図5のように、直列共振器S3および並列共振器P2のそれぞれのY方向の両側に金属層26を設ける。これにより、直列共振器S3および並列共振器P2における線熱膨張係数が小さくなる。直列共振器S3および並列共振器P2の周波数温度係数が抑制される。よって、通過特性のスカート特性の温度依存が小さくなり、通過地域の温度依存が小さくなる。 Therefore, as shown in FIG. 5, metal layers 26 are provided on both sides of the series resonator S3 and the parallel resonator P2 in the Y direction. As a result, the coefficient of linear thermal expansion in the series resonator S3 and the parallel resonator P2 becomes smaller. The frequency temperature coefficient of the series resonator S3 and the parallel resonator P2 is suppressed. Therefore, the temperature dependence of the skirt characteristic of the passing characteristic becomes small, and the temperature dependence of the passing area becomes small.

反共振周波数と共振周波数との間隔は共振器によって変わらない。よって、直列共振器S3は直列共振器S1からS4のうち共振周波数の最も高い直列共振器ともいえる。また、並列共振器P2は並列共振器P1からP3のうち反共振周波数の最も低い並列共振器ともいえる。 The interval between the antiresonant frequency and the resonance frequency does not change depending on the resonator. Therefore, the series resonator S3 can be said to be the series resonator having the highest resonance frequency among the series resonators S1 to S4. Further, the parallel resonator P2 can be said to be the parallel resonator having the lowest antiresonance frequency among the parallel resonators P1 to P3.

実施例2によれば、1または複数の直列共振器S1からS4のうち最も反共振周波数の高い直列共振器S3と、1または複数の並列共振器P1からP3のうち最も共振周波数の低い並列共振器P2のY方向の両側に金属層26が設けられている。これにより、通過帯域の温度特性を抑制できる。金属層26は、直列共振器S3および並列共振器P2の少なくとも一方に設けられていればよい。 According to the second embodiment, the series resonator S3 having the highest antiresonance frequency among one or more series resonators S1 to S4 and the parallel resonance having the lowest resonance frequency among one or more parallel resonators P1 to P3. Metal layers 26 are provided on both sides of the vessel P2 in the Y direction. As a result, the temperature characteristics of the pass band can be suppressed. The metal layer 26 may be provided on at least one of the series resonator S3 and the parallel resonator P2.

直列共振器S1からS4の反共振周波数は全て同じでもよい。この場合、金属層26は直列共振器S1からS4の少なくとも1つのY方向に設けられていればよい。また、並列共振器P1からP3の共振周波数は全て同じでもよい。この場合、金属層26は並列共振器P1からP3の少なくとも1つのY方向に設けられていればよい。 The anti-resonant frequencies of the series resonators S1 to S4 may all be the same. In this case, the metal layer 26 may be provided in at least one Y direction of the series resonators S1 to S4. Further, the resonance frequencies of the parallel resonators P1 to P3 may all be the same. In this case, the metal layer 26 may be provided in at least one Y direction of the parallel resonators P1 to P3.

直列共振器S1からS4のうち少なくとも1つは他の直列共振器と反共振周波数が異なっていてもよい。この場合、金属層26は最も反共振周波数の高い直列共振器S3のY方向に設けられていればよい。並列共振器P1からP3のうち少なくとも1つは他の並列共振器と共振周波数が異なっていてもよい。この場合、金属層26は最も共振周波数の低い並列共振器P2のY方向に設けられていればよい。 At least one of the series resonators S1 to S4 may have a different antiresonance frequency from the other series resonators. In this case, the metal layer 26 may be provided in the Y direction of the series resonator S3 having the highest antiresonance frequency. At least one of the parallel resonators P1 to P3 may have a different resonance frequency from the other parallel resonators. In this case, the metal layer 26 may be provided in the Y direction of the parallel resonator P2 having the lowest resonance frequency.

直列共振器S1からS4および並列共振器P1からP3のうち直列共振器S3および並列共振器P2以外の共振器の少なくとも一つの共振器はY方向に金属層26が設けられていなくてもよい。すなわち、直列共振器S1からS4のうち一部の直列共振器S1、S2またはS4のY方向には金属層26は設けなくてもよい。並列共振器P1からP3のうち一部の並列共振器P1およびP2のY方向には金属層26は設けなくてもよい。これらにより、金属層26の数を減らすことができる。よって、チップ面積を小さくできる。 Of the series resonators S1 to S4 and the parallel resonators P1 to P3, at least one resonator other than the series resonator S3 and the parallel resonator P2 does not have to be provided with the metal layer 26 in the Y direction. That is, the metal layer 26 may not be provided in the Y direction of some of the series resonators S1, S2 or S4 among the series resonators S1 to S4. The metal layer 26 may not be provided in the Y direction of some of the parallel resonators P1 and P2 among the parallel resonators P1 to P3. As a result, the number of metal layers 26 can be reduced. Therefore, the chip area can be reduced.

金属層26は、直列共振器S3のY方向に隣接する直列共振器S2およびS4より直列共振器S3に近いことが好ましい。金属層26は、並列共振器P2のY方向に隣接する並列共振器P1およびP3より並列共振器P2に近いことが好ましい。これにより、直列共振器S3および並列共振器P2の周波数温度特性をより抑制することができる。 The metal layer 26 is preferably closer to the series resonator S3 than the series resonators S2 and S4 adjacent to the series resonator S3 in the Y direction. The metal layer 26 is preferably closer to the parallel resonator P2 than the parallel resonators P1 and P3 adjacent to the parallel resonator P2 in the Y direction. As a result, the frequency-temperature characteristics of the series resonator S3 and the parallel resonator P2 can be further suppressed.

図7(a)は、実施例3に係る弾性波デバイスの断面図である。図7(a)に示すように、圧電基板10の上面に弾性波素子21および配線24が設けられている。配線24は弾性波素子21と電気的に接続されている。圧電基板10の下面に端子40が設けられている。端子40は、弾性波素子21を配線24を介し外部と接続するためのフットパッドである。圧電基板10を貫通するビア配線42が設けられている。ビア配線42は配線24と端子40とを電気的に接続する。配線24、ビア配線42および端子40は例えば銅層、アルミニウム層または金層等の金属層である。圧電基板10の上面に金属層26および環状金属層44が埋め込まれている。環状金属層44は圧電基板10の外縁に弾性波素子21を囲むように設けられている。環状金属層44は銅層またはタングステン層である。 FIG. 7A is a cross-sectional view of the elastic wave device according to the third embodiment. As shown in FIG. 7A, an elastic wave element 21 and a wiring 24 are provided on the upper surface of the piezoelectric substrate 10. The wiring 24 is electrically connected to the elastic wave element 21. The terminal 40 is provided on the lower surface of the piezoelectric substrate 10. The terminal 40 is a foot pad for connecting the elastic wave element 21 to the outside via the wiring 24. A via wiring 42 penetrating the piezoelectric substrate 10 is provided. The via wiring 42 electrically connects the wiring 24 and the terminal 40. The wiring 24, the via wiring 42, and the terminal 40 are metal layers such as a copper layer, an aluminum layer, or a gold layer. A metal layer 26 and an annular metal layer 44 are embedded in the upper surface of the piezoelectric substrate 10. The annular metal layer 44 is provided on the outer edge of the piezoelectric substrate 10 so as to surround the elastic wave element 21. The cyclic metal layer 44 is a copper layer or a tungsten layer.

基板50の下面に弾性波素子52および配線54が設けられている。基板50、例えばシリコン基板、サファイア基板、スピネル基板またはアルミナ基板である。配線54は例えば銅層、アルミニウム層または金層等の金属層である。基板50はバンプ25を介し圧電基板10にフリップチップ実装(フェースダウン実装)されている。バンプ25は配線24と54とを接合する。 An elastic wave element 52 and a wiring 54 are provided on the lower surface of the substrate 50. The substrate 50 is, for example, a silicon substrate, a sapphire substrate, a spinel substrate, or an alumina substrate. The wiring 54 is a metal layer such as a copper layer, an aluminum layer, or a gold layer. The substrate 50 is flip-chip mounted (face-down mounted) on the piezoelectric substrate 10 via bumps 25. The bump 25 joins the wires 24 and 54.

圧電基板10上に基板50を囲むように封止部58が設けられている。封止部58は、エポキシ樹脂等の樹脂層である。弾性波素子21および52は空隙56を挟み対向している。バンプ25は空隙56に囲まれている。 A sealing portion 58 is provided on the piezoelectric substrate 10 so as to surround the substrate 50. The sealing portion 58 is a resin layer such as an epoxy resin. The elastic wave elements 21 and 52 face each other with the gap 56 interposed therebetween. The bump 25 is surrounded by the void 56.

[実施例3の変形例1]
図7(b)は、実施例3の変形例1に係る弾性波デバイスの断面図である。図7(b)に示すように、支持基板11の上面に圧電基板10が接合されている。その他の構成は実施例3と同じであり説明を省略する。
[Modification 1 of Example 3]
FIG. 7B is a cross-sectional view of the elastic wave device according to the first modification of the third embodiment. As shown in FIG. 7B, the piezoelectric substrate 10 is bonded to the upper surface of the support substrate 11. Other configurations are the same as those in the third embodiment, and the description thereof will be omitted.

[実施例3の変形例2]
図7(c)は、実施例3の変形例2に係る弾性波デバイスの断面図である。図7(c)に示すように、封止部58および基板50の上面にリッド55が設けられている。基板50の上面とリッド55との間に封止部58が設けられていてもよい。リッド55、封止部58を覆うように保護膜57が設けられている。封止部58は、例えばSnAg半田等の金属層である。リッド55は、コバール板等の金属板または絶縁体板である。保護膜57は、ニッケル膜等の金属膜または絶縁体膜である。その他の構成は実施例3の変形例1と同じであり説明を省略する。
[Modification 2 of Example 3]
FIG. 7C is a cross-sectional view of the elastic wave device according to the second modification of the third embodiment. As shown in FIG. 7C, a lid 55 is provided on the upper surface of the sealing portion 58 and the substrate 50. A sealing portion 58 may be provided between the upper surface of the substrate 50 and the lid 55. A protective film 57 is provided so as to cover the lid 55 and the sealing portion 58. The sealing portion 58 is a metal layer such as SnAg solder or the like. The lid 55 is a metal plate such as a Kovar plate or an insulator plate. The protective film 57 is a metal film such as a nickel film or an insulator film. Other configurations are the same as those of the first modification of the third embodiment, and the description thereof will be omitted.

実施例3およびその変形例における弾性波素子21は、図1(a)から図2(b)に示した弾性表面波共振器である。図8(a)は、実施例3およびその変形例における弾性波素子52の断面図である。図8(a)に示すように、弾性波素子52は圧電薄膜共振器である。基板50上に圧電膜66が設けられている。圧電膜66を挟むように下部電極64および上部電極68が設けられている。下部電極64と基板50との間に空隙65が形成されている。下部電極64および上部電極68は圧電膜66内に、厚み縦振動モードの弾性波を励振する。下部電極64および上部電極68は例えばルテニウム膜等の金属膜である。圧電膜66は例えば窒化アルミニウム膜である。 The elastic wave element 21 in the third embodiment and its modified example is the elastic surface wave resonator shown in FIGS. 1 (a) to 2 (b). FIG. 8A is a cross-sectional view of the elastic wave element 52 in Example 3 and its modified example. As shown in FIG. 8A, the elastic wave element 52 is a piezoelectric thin film resonator. A piezoelectric film 66 is provided on the substrate 50. The lower electrode 64 and the upper electrode 68 are provided so as to sandwich the piezoelectric film 66. A gap 65 is formed between the lower electrode 64 and the substrate 50. The lower electrode 64 and the upper electrode 68 excite elastic waves in the thickness longitudinal vibration mode in the piezoelectric film 66. The lower electrode 64 and the upper electrode 68 are metal films such as a ruthenium film. The piezoelectric film 66 is, for example, an aluminum nitride film.

基板50の下面に弾性波素子52が設けられている例を説明したが、基板50の下面には弾性波素子52が設けられていなくてもよい。例えば、基板50の下面に、アンプおよび/またはスイッチのような能動素子が設けられていてもよい。また、基板50の下面にインダクタおよび/またはキャパシタ等の受動素子が設けられていてもよい。基板50の下面にMEMS(Micro Electro Mechanical Systems)素子が設けられていてもよい。 Although the example in which the elastic wave element 52 is provided on the lower surface of the substrate 50 has been described, the elastic wave element 52 may not be provided on the lower surface of the substrate 50. For example, an active element such as an amplifier and / or a switch may be provided on the lower surface of the substrate 50. Further, a passive element such as an inductor and / or a capacitor may be provided on the lower surface of the substrate 50. A MEMS (Micro Electro Mechanical Systems) element may be provided on the lower surface of the substrate 50.

圧電基板10は、樹脂基板またはセラミック基板等の絶縁基板上に実装させていてもよい。 The piezoelectric substrate 10 may be mounted on an insulating substrate such as a resin substrate or a ceramic substrate.

[実施例3の変形例3]
図8(b)は、実施例3の変形例3に係るデュプレクサの回路図である。図8(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ60(第1ラダー型フィルタ)が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ62(第2ラダー型フィルタ)が接続されている。送信フィルタ60は、送信端子Txから入力された信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ62は、共通端子Antから入力された信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ60および受信フィルタ62の少なくとも一方を実施例2のフィルタとすることができる。
[Modification 3 of Example 3]
FIG. 8B is a circuit diagram of the duplexer according to the third modification of the third embodiment. As shown in FIG. 8B, a transmission filter 60 (first ladder type filter) is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 62 (second ladder type filter) is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 60 passes a signal in the transmission band among the signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 62 passes a signal in the reception band among the signals input from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies. At least one of the transmission filter 60 and the reception filter 62 can be the filter of the second embodiment.

例えば、受信フィルタ62(第2ラダー型フィルタ)の通過帯域は送信フィルタ60(第1ラダー型フィルタ)の通過帯域より周波数が高い。受信フィルタ62の通過帯域と送信フィルタ60の通過帯域との間はガードバンドである。通過帯域のうちガードバンド側のスカート特性の温度変化は小さいことが好ましい。そこで、送信フィルタ60が1または複数の直列共振器(第1直列共振器)と1または複数の並列共振器(第1並列共振器)とを有するとき、直列共振器の少なくとも1つの共振器のY方向に金属層26を設ける。これにより、送信フィルタ60のガードバンド側のスカート特性の温度変化を小さくできる。 For example, the pass band of the reception filter 62 (second ladder type filter) has a higher frequency than the pass band of the transmission filter 60 (first ladder type filter). There is a guard band between the pass band of the reception filter 62 and the pass band of the transmission filter 60. It is preferable that the temperature change of the skirt characteristic on the guard band side of the pass band is small. Therefore, when the transmission filter 60 has one or more series resonators (first series resonator) and one or more parallel resonators (first parallel resonator), of at least one resonator of the series resonator. The metal layer 26 is provided in the Y direction. As a result, the temperature change of the skirt characteristic on the guard band side of the transmission filter 60 can be reduced.

また、受信フィルタ62が1または複数の直列共振器(第2直列共振器)と1または複数の並列共振器(第2並列共振器)とを有するとき、並列共振器の少なくとも1つの共振器のY方向に金属層26を設ける。これにより、受信フィルタ62のガードバンド側のスカート特性の温度変化を小さくできる。 Further, when the receiving filter 62 has one or more series resonators (second series resonator) and one or more parallel resonators (second parallel resonator), the receiver filter 62 of at least one resonator of the parallel resonator. The metal layer 26 is provided in the Y direction. As a result, the temperature change of the skirt characteristic on the guard band side of the reception filter 62 can be reduced.

さらに、送信フィルタ60において、最も反共振周波数の高い直列共振器のY方向に金属層26を設けることが好ましい。受信フィルタ62において、最も共振周波数の低い並列共振器のY方向に金属層26を設けることが好ましい。これにより、ガードバンド側のスカート特性の温度変化をより小さくできる。 Further, in the transmission filter 60, it is preferable to provide the metal layer 26 in the Y direction of the series resonator having the highest antiresonance frequency. In the receiving filter 62, it is preferable to provide the metal layer 26 in the Y direction of the parallel resonator having the lowest resonance frequency. As a result, the temperature change of the skirt characteristic on the guard band side can be made smaller.

送信フィルタ60と受信フィルタ62を例に説明したが、図8(b)の2つのフィルタはいずれも送信フィルタでもよいし、いずれも受信フィルタでもよい。マルチプレクサとしてデュプレクサを例に説明したが、トリプレクサまたはクワッドプレクサでもよい。 Although the transmission filter 60 and the reception filter 62 have been described as an example, the two filters shown in FIG. 8B may both be transmission filters or reception filters. Although the duplexer has been described as an example as the multiplexer, a triplexer or a quadplexer may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 圧電基板
11 支持基板
12 金属膜
14 電極指
16 バスバー
18 櫛型電極
20 IDT
22 反射器
24 配線
26 金属層
60 送信フィルタ
62 受信フィルタ
10 Piezoelectric board 11 Support board 12 Metal film 14 Electrode finger 16 Busbar 18 Comb type electrode 20 IDT
22 Reflector 24 Wiring 26 Metal layer 60 Transmit filter 62 Receive filter

Claims (13)

圧電基板と、
前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、入力端子と出力端子との間に直列に接続された複数の直列共振器と、
前記圧電基板上に設けられ、前記入力端子と前記出力端子との間に並列に接続された1または複数の並列共振器と、
を備えるラダー型フィルタと、
前記複数の直列共振器のうち最も反共振周波数の高い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の直列共振器のうち前記第1共振器の反共振周波数より反共振周波数の低い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の金属層と、
を具備する弾性波デバイス。
Piezoelectric board and
Each of the pair of comb-shaped electrodes provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected is provided, and is connected in series between the input terminal and the output terminal. With multiple series resonators,
One or more parallel resonators provided on the piezoelectric substrate and connected in parallel between the input terminal and the output terminal.
Ladder type filter with
The pair of comb-shaped electrodes in the first resonator having the highest anti-resonance frequency among the plurality of series resonators are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction in which the plurality of electrode fingers extend , and the plurality of series resonators. Of these, the pair of comb-shaped electrodes in at least one resonator of the second resonator whose anti-resonance frequency is lower than the anti-resonance frequency of the first resonator is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction, and the piezoelectric substrate. A pair of metal layers having at least a part embedded in the piezoelectric substrate and having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers are arranged on the piezoelectric substrate.
An elastic wave device equipped with.
圧電基板と、Piezoelectric board and
前記圧電基板上に設けられ、入力端子と出力端子との間に直列に接続された1または複数の直列共振器と、 One or more series resonators provided on the piezoelectric substrate and connected in series between the input terminal and the output terminal.
前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、前記入力端子と前記出力端子との間に並列に接続された複数の並列共振器と、を備えるラダー型フィルタと、 Each of the pair of comb-shaped electrodes provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected is provided, and is connected in parallel between the input terminal and the output terminal. A ladder type filter with a plurality of parallel resonators, and
前記複数の並列共振器のうち最も共振周波数の低い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の並列共振器のうち前記第1共振器の共振周波数より共振周波数の高い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の金属層と、 The pair of comb-shaped electrodes in the first resonator having the lowest resonance frequency among the plurality of parallel resonators is provided so as to be sandwiched in the stretching direction in which the plurality of electrode fingers extend, and among the plurality of parallel resonators. The pair of comb-shaped electrodes in at least one resonator of the second resonator having a resonance frequency higher than the resonance frequency of the first resonator is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction, and at least one is provided on the piezoelectric substrate. A pair of metal layers in which the portions are embedded and have a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers are arranged on the piezoelectric substrate.
を具備する弾性波デバイス。An elastic wave device equipped with.
前記1または複数の並列共振器は、複数の並列共振器であり、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、The one or a plurality of parallel resonators is a plurality of parallel resonators, and is a pair of comb-shaped electrodes provided on the piezoelectric substrate and each having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected. With each
前記弾性波デバイスは、前記複数の並列共振器のうち最も共振周波数の低い第3共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の並列共振器のうち前記第3共振器の共振周波数より共振周波数の高い第4共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の別の金属層を具備する請求項1に記載の弾性波デバイス。 The elastic wave device is provided so as to sandwich the pair of comb-shaped electrodes in the third resonator having the lowest resonance frequency among the plurality of parallel resonators in the stretching direction in which the plurality of electrode fingers extend. The pair of comb-shaped electrodes in at least one resonator of the fourth resonator having a resonance frequency higher than the resonance frequency of the third resonator is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction. The first aspect of the present invention includes a pair of other metal layers having at least a part embedded in the piezoelectric substrate and having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers of the piezoelectric substrate are arranged. The described elastic wave device.
前記第1共振器は、前記複数の電極指が配列する方向において前記一対の櫛型電極を挟むように設けられた一対の反射器を具備する請求項1から3のいずれか一項記載の弾性波デバイス。 The elasticity according to any one of claims 1 to 3, wherein the first resonator includes a pair of reflectors provided so as to sandwich the pair of comb-shaped electrodes in a direction in which the plurality of electrode fingers are arranged. Wave device. 前記一対の金属層は前記一対の反射器を挟むように設けられている請求項記載の弾性波デバイス。 The elastic wave device according to claim 4, wherein the pair of metal layers are provided so as to sandwich the pair of reflectors. 前記複数の電極指の配列する方向において、前記金属層の長さは前記第1共振器における前記バスバーの長さより大きい請求項1からのいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 5 , wherein the length of the metal layer is larger than the length of the bus bar in the first resonator in the direction in which the plurality of electrode fingers are arranged. 前記圧電基板の前記一対の櫛型電極が設けられた面と反対の面に接合され、前記圧電基板の線熱膨張係数より小さい線熱膨張係数を有する支持基板を具備する請求項1からのいずれか一項記載の弾性波デバイス。 The piezoelectric substrate of the pair comb electrodes is bonded to a surface opposite to the surface provided, of claims 1 to 6 having a supporting substrate having a linear thermal expansion coefficient smaller linear thermal expansion coefficient of said piezoelectric substrate The elastic wave device according to any one of the above. 前記一対の金属層の線熱膨張係数は前記支持基板の線熱膨張係数より小さい請求項記載の弾性波デバイス。 The elastic wave device according to claim 7, wherein the coefficient of linear thermal expansion of the pair of metal layers is smaller than the coefficient of linear thermal expansion of the support substrate. 前記第1共振器における前記一対の櫛型電極と前記一対の金属層の間には他の金属層は設けられていない請求項1からのいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 8 , wherein no other metal layer is provided between the pair of comb-shaped electrodes and the pair of metal layers in the first resonator. 前記一対の金属層のヤング率は前記圧電基板のヤング率より大きい請求項1から9のいずれか一項記載の弾性波デバイス。The elastic wave device according to any one of claims 1 to 9, wherein the Young's modulus of the pair of metal layers is larger than the Young's modulus of the piezoelectric substrate. 前記圧電基板上に設けられ、前記一対の櫛型電極にそれぞれ接続し、平面視において前記一対の金属層とそれぞれ交差し前記一対の金属層にそれぞれ電気的に接続される一対の配線を備える請求項1から10のいずれか一項に記載の弾性波デバイス。A claim comprising a pair of wires provided on the piezoelectric substrate, connected to the pair of comb-shaped electrodes, intersecting the pair of metal layers in a plan view, and electrically connected to the pair of metal layers. Item 2. The elastic wave device according to any one of Items 1 to 10. 前記ラダー型フィルタを含むマルチプレクサを具備する請求項1から11のいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 11, further comprising a multiplexer including the ladder type filter. 圧電基板と、
前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、共通端子と第1端子との間に直列に接続された複数の第1直列共振器と
前記圧電基板上に設けられ、前記共通端子と前記第1端子との間に並列に接続された1または複数の第1並列共振器と
を備える第1ラダー型フィルタと、
前記圧電基板上に設けられ、前記共通端子と第2端子との間に直列に接続された1または複数の第2直列共振器と、
前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを各々有する一対の櫛型電極を各々備え、前記共通端子と前記第2端子との間に並列に接続された複数の第2並列共振器と、を備え、前記第1ラダー型フィルタより高い通過帯域を有する第2ラダー型フィルタと、
前記複数の第1直列共振器のうち最も反共振周波数の高い第1共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の第1直列共振器のうち前記第1共振器の反共振周波数より反共振周波数の低い第2共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の第1金属層と、
前記複数の第2並列共振器のうち最も共振周波数の低い第3共振器における前記一対の櫛型電極を前記複数の電極指が延伸する延伸方向において挟むように設けられ、前記複数の第2並列共振器のうち前記第3共振器の共振周波数より共振周波数の高い第4共振器の少なくとも1つの共振器における前記一対の櫛型電極を前記延伸方向において挟むように設けられておらず、前記圧電基板に少なくとも一部が埋め込まれ、前記圧電基板の前記複数の電極指の配列する方向における線熱膨張係数より小さな線熱膨張係数を有する一対の第2金属層と、
を備えるマルチプレクサ。
Piezoelectric board and
Each of the pair of comb-shaped electrodes provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected is provided, and is connected in series between the common terminal and the first terminal. a plurality of first series resonator,
One or more first parallel resonators provided on the piezoelectric substrate and connected in parallel between the common terminal and the first terminal .
1st ladder type filter equipped with
A second series resonator provided on the piezoelectric substrate and connected in series between the common terminal and the second terminal, and a plurality of second series resonators.
Each of the pair of comb-shaped electrodes provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected is provided in parallel between the common terminal and the second terminal. and a plurality of second parallel resonator connected, a second ladder-type filter which have a high pass band than the first ladder-type filter,
The pair of comb-shaped electrodes in the first resonator having the highest anti-resonance frequency among the plurality of first series resonators are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction in which the plurality of electrode fingers extend. Of the series resonators, the pair of comb-shaped electrodes in at least one resonator of the second resonator whose anti-resonance frequency is lower than the anti-resonance frequency of the first resonator is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction. A pair of first metal layers having at least a part embedded in the piezoelectric substrate and having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers of the piezoelectric substrate are arranged.
The pair of comb-shaped electrodes in the third resonator having the lowest resonance frequency among the plurality of second parallel resonators are provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction in which the plurality of electrode fingers extend, and the plurality of second parallel resonators are provided. Of the resonators, the pair of comb-shaped electrodes in at least one resonator of the fourth resonator having a resonance frequency higher than the resonance frequency of the third resonator is not provided so as to sandwich the pair of comb-shaped electrodes in the stretching direction, and the piezoelectric is provided. A pair of second metal layers, at least partially embedded in the substrate, having a linear thermal expansion coefficient smaller than the linear thermal expansion coefficient in the direction in which the plurality of electrode fingers of the piezoelectric substrate are arranged.
A multiplexer equipped with.
JP2017148492A 2017-07-31 2017-07-31 Elastic wave device Active JP6949607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148492A JP6949607B2 (en) 2017-07-31 2017-07-31 Elastic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148492A JP6949607B2 (en) 2017-07-31 2017-07-31 Elastic wave device

Publications (2)

Publication Number Publication Date
JP2019029866A JP2019029866A (en) 2019-02-21
JP6949607B2 true JP6949607B2 (en) 2021-10-13

Family

ID=65478915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148492A Active JP6949607B2 (en) 2017-07-31 2017-07-31 Elastic wave device

Country Status (1)

Country Link
JP (1) JP6949607B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476445B2 (en) * 2001-06-29 2003-12-10 富士通株式会社 Surface acoustic wave device
WO2005076473A1 (en) * 2004-02-06 2005-08-18 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and antenna common unit employing it
US7327205B2 (en) * 2004-03-12 2008-02-05 Murata Manufacturing Co., Ltd. Demultiplexer and surface acoustic wave filter
JP5381188B2 (en) * 2009-03-16 2014-01-08 株式会社村田製作所 Surface acoustic wave device
JP5356194B2 (en) * 2009-11-30 2013-12-04 太陽誘電株式会社 Filter, duplexer, communication module
JP5679558B2 (en) * 2011-01-19 2015-03-04 太陽誘電株式会社 Duplexer
WO2012176455A1 (en) * 2011-06-23 2012-12-27 パナソニック株式会社 Ladder-type elastic wave filter and antenna duplexer using same

Also Published As

Publication number Publication date
JP2019029866A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP7169083B2 (en) Acoustic wave devices and multiplexers
US10367468B2 (en) Multiplexer, high-frequency front end circuit, and communication apparatus
JP6556663B2 (en) Elastic wave device
JP6534366B2 (en) Elastic wave device
US10396757B2 (en) Acoustic wave device
JP6651643B2 (en) Elastic wave filter, duplexer and communication device
JP7084744B2 (en) Elastic wave devices, modules and multiplexers
JP6430977B2 (en) Elastic wave device
US20200328822A1 (en) Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device
JP7370146B2 (en) Acoustic wave devices, filters and multiplexers
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
WO2020009121A1 (en) Elastic wave device
JP6949607B2 (en) Elastic wave device
JP2010252254A (en) Surface acoustic wave filter and duplexer
JP2023004705A (en) Elastic wave device, filter and multiplexer
JP6368332B2 (en) Filters and duplexers
JP7373301B2 (en) Acoustic wave devices, filters and multiplexers
JP7370546B1 (en) elastic wave device
JP2020191535A (en) Elastic wave device, filter, and multiplexer
JP7421541B2 (en) Filters and multifilters
JP7347956B2 (en) High frequency devices and multiplexers
JP7406341B2 (en) Electronic components, filters and multiplexers
WO2020196219A1 (en) Electronic component
JP2023053471A (en) Elastic wave device chip, elastic wave device, and module with elastic wave device chip or elastic wave device
JP6653647B2 (en) Elastic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6949607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150