JP6941830B2 - Anaerobic membrane separation activated sludge device - Google Patents

Anaerobic membrane separation activated sludge device Download PDF

Info

Publication number
JP6941830B2
JP6941830B2 JP2017042829A JP2017042829A JP6941830B2 JP 6941830 B2 JP6941830 B2 JP 6941830B2 JP 2017042829 A JP2017042829 A JP 2017042829A JP 2017042829 A JP2017042829 A JP 2017042829A JP 6941830 B2 JP6941830 B2 JP 6941830B2
Authority
JP
Japan
Prior art keywords
activated sludge
membrane
anaerobic
membrane separation
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042829A
Other languages
Japanese (ja)
Other versions
JP2017164739A (en
Inventor
拓人 後藤
拓人 後藤
尾形 敦
敦 尾形
知行 堀
知行 堀
由也 佐藤
由也 佐藤
知大 稲葉
知大 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JFE Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical JFE Steel Corp
Publication of JP2017164739A publication Critical patent/JP2017164739A/en
Application granted granted Critical
Publication of JP6941830B2 publication Critical patent/JP6941830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、嫌気性条件でMBR(Membrane Bioreactor、膜分離活性汚泥法)を用いる嫌気性膜分離活性汚泥装置に関する。 The present invention relates to an anaerobic membrane separation activated sludge apparatus using MBR (Membrane Bioreactor, membrane separation activated sludge method) under anaerobic conditions.

有機物を含む排水の処理方法では、MBR(膜分離活性汚泥法)が知られている。具体的には食品工業、し尿処理等の排水処理方法において、活性汚泥中にろ過膜を浸漬し、処理水を引き抜く方法であり、ろ過膜は空気のバブリングによって攪拌、洗浄される。 MBR (Membrane Separation Activated Sludge Method) is known as a method for treating wastewater containing organic substances. Specifically, in the food industry, wastewater treatment methods such as urine treatment, a method of immersing a filtration membrane in activated sludge and drawing out the treated water, and the filtration membrane is agitated and washed by bubbling air.

製鉄所のステンレス製造工程において、ステンレス鋼板表面を酸洗浄する工程がある。洗浄排水にはアンモニア態窒素および硝酸性窒素を含むため、所内の専用排水処理設備にて窒素を除去し、協定値以下の水質まで浄化したことを確認した後に公共海域へ処理水を放流している。窒素除去に関しては微生物の働きを利用した生物処理を用いる方式が一般的である。 In the stainless steel manufacturing process of a steel mill, there is a process of pickling the surface of a stainless steel sheet. Since the flush wastewater contains ammonia nitrogen and nitrate nitrogen, the nitrogen is removed by the dedicated wastewater treatment facility in the facility, and after confirming that the water quality is below the agreed value, the treated water is discharged to the public sea area. There is. For nitrogen removal, a method using biological treatment utilizing the action of microorganisms is common.

従来のステンレス洗浄廃水の処理方法は、図6に生物処理フロー図で示すように、原水槽、反応槽、調整槽、沈殿槽および原水槽を用いて前処理する。前処理ではpH調整剤、凝集剤等を用いて原水中の被沈殿物を沈殿させ、できるだけ除去し、得られた上澄みの原水を原水槽に得る。
前処理された原水は、原水槽から硝化槽、脱窒槽、再曝気槽をへて沈殿槽から上澄みを得て処理水として外部に排出される。前処理された原水は、硝化槽で硝化して硝酸窒素(NO N)または亜硝酸窒素(NO N)にして、脱窒槽でメタノール等の水素、有機物を添加して脱窒菌による生物処理を行ない、図2に化学式で示す脱窒工程を行ってN2ガスにする。脱窒工程の後には多すぎるメタノールを除去する再曝気槽、沈殿槽をへて処理水を得る。
このような従来の生物処理では以下の問題点があった。
1)清澄な水質が得られないリスクがある。
生物処理における活性汚泥を反応槽内に保持するため沈殿池(沈殿槽)で活性汚泥を沈降分離し、反応槽へ返送する。そのため汚泥の沈殿が不十分であった場合にはキャリーオーバー(汚泥の流出)が発生し、処理水質の懸濁物質量が増加する懸念がある。
2)広大な設置面積が必要となる。
上記した通り、生物処理では活性汚泥との沈降分離のため沈殿池(沈殿槽)を設置することが一般的である。そのため適切な沈降時間を稼ぐためには一定以上の設置面積が必要となる。
3)維持管理が困難。
設備数が多くなることから管理項目が多い。また単純な凝集沈降処理とは異なり、生物量および汚泥量の管理が必要となる。
In the conventional stainless steel washing wastewater treatment method, as shown in the biological treatment flow chart in FIG. 6, pretreatment is performed using a raw water tank, a reaction tank, a adjusting tank, a settling tank and a raw water tank. In the pretreatment, a pH adjuster, a coagulant, or the like is used to precipitate the precipitate in the raw water, and the precipitate is removed as much as possible, and the obtained raw supernatant raw water is obtained in the raw water tank.
The pretreated raw water passes through the nitrification tank, the denitrification tank, and the reaeration tank from the raw water tank, obtains the supernatant from the settling tank, and is discharged to the outside as treated water. The pretreated raw water is nitrified in a nitrification tank to obtain nitrogen nitrate (NO 3 - N) or nitrogen nitrite (NO 2 - N), and hydrogen such as methanol and organic substances are added in the denitrification tank to cause denitrification. Biological treatment is performed, and the denitrification step shown by the chemical formula in FIG. 2 is performed to obtain N 2 gas. After the denitrification step, the treated water is obtained through a re-aeration tank and a settling tank that remove too much methanol.
Such conventional biological treatment has the following problems.
1) There is a risk that clear water quality cannot be obtained.
In order to retain the activated sludge in the biological treatment in the reaction tank, the activated sludge is settled and separated in a settling basin (sedimentation tank) and returned to the reaction tank. Therefore, if the sludge is not sufficiently precipitated, carryover (sludge outflow) may occur and the amount of suspended solids in the treated water may increase.
2) A vast installation area is required.
As described above, in biological treatment, it is common to install a settling basin (sediment tank) for sedimentation separation from activated sludge. Therefore, a certain installation area or more is required to obtain an appropriate settling time.
3) Difficult to maintain.
Since the number of facilities is large, there are many management items. Also, unlike simple coagulation sedimentation treatment, it is necessary to control the amount of biomass and sludge.

特許文献1には、「リン酸カルシウムを含有する被処理水を活性汚泥により生物学的に処理する生物処理工程が実施され、活性汚泥を含有する水を膜分離する生物処理方法であって、水のpHを特定範囲に調整する方法(請求項1)」が記載されている。被処理物は無機物粒子や、有機化合物などが含有される水で、「所定のpH範囲に調整されることでリン酸カルシウム粒子などの無機物粒子を溶解させた状態で膜分離を実施できる(特許文献1[0038]参照)。」ことが記載されている。また、膜分離装置51の下方の散気装置52から酸素を含む気体(例えば空気)を供給することも記載されている(特許文献1[0022]参照)。 Patent Document 1 describes "a biological treatment method in which a biological treatment step of biologically treating water to be treated containing calcium phosphate with activated sludge is carried out, and water containing activated sludge is membrane-separated. A method for adjusting the pH to a specific range (claim 1) ”is described. The object to be treated is water containing inorganic particles, organic compounds, etc., and "By adjusting to a predetermined pH range, membrane separation can be performed in a state where inorganic particles such as calcium phosphate particles are dissolved (Patent Document 1). (See [0038]). " It is also described that a gas containing oxygen (for example, air) is supplied from the air diffuser 52 below the membrane separation device 51 (see Patent Document 1 [0022]).

特許文献2には、好気性処理と嫌気性処理とを交互にまたは間欠的に行う処理装置において、好気性気体において酸素を貧化して嫌気性気体として供給し循環利用する方法が記載され、嫌気性気体で分離膜を洗浄する方法が記載されている。この方法は好気性処理を行わずに嫌気性処理をする方法には適用できない。 Patent Document 2 describes a method of depleting oxygen in an aerobic gas, supplying it as an anaerobic gas, and circulating it in a processing apparatus in which aerobic treatment and anaerobic treatment are alternately or intermittently performed. A method of cleaning the separation membrane with a sex gas is described. This method cannot be applied to the method of performing anaerobic treatment without performing aerobic treatment.

一方、窒素除去を目的としたMBRの適用は困難であると考えられてきた。膜分離装置では一定時間または連続的に膜表面を洗浄し、膜の目詰まりを防止する処置が必須である。一般的には空気を膜表面に吹きかけるまたは下部から吹き込む等の手段が用いられる。しかし、嫌気性条件を維持するためには低酸素濃度状態である必要があるため、空気を吹き込む行為と相反するため、嫌気性を維持しつつ膜による固液分離を実施することは困難であった。嫌気条件で活性汚泥により生物処理する装置および・または嫌気条件で活性汚泥と処理水とを膜分離する装置は知られていない。 On the other hand, it has been considered difficult to apply the MBR for the purpose of removing nitrogen. In the membrane separation device, it is essential to take measures to prevent clogging of the membrane by cleaning the membrane surface for a certain period of time or continuously. Generally, a means such as blowing air on the surface of the film or blowing air from the lower part is used. However, since it is necessary to have a low oxygen concentration state in order to maintain the anaerobic condition, it is difficult to carry out solid-liquid separation by a membrane while maintaining the anaerobic condition because it contradicts the act of blowing air. rice field. There are no known devices for biological treatment with activated sludge under anaerobic conditions and / or membrane separation between activated sludge and treated water under anaerobic conditions.

特許第4612078号公報Japanese Patent No. 4612078 特開2000−117278号公報Japanese Unexamined Patent Publication No. 2000-117278

本発明の課題は、これまで、し尿や食品工場などの有機物含有排水を処理するのに一部嫌気条件を含む好気条件で使われてきたMBRを、嫌気条件で稼働し嫌気性細菌を用いる嫌気性膜分離活性汚泥装置を提供しようとする。 An object of the present invention is to operate MBR under anaerobic conditions, which has been used under aerobic conditions including some anaerobic conditions, for treating organic matter-containing wastewater such as urine and food factories, and to use anaerobic bacteria. An attempt is made to provide an anaerobic membrane separation activated sludge apparatus.

本発明の課題は、以下の装置および方法で解決できる。
(1)嫌気性微生物を含む活性汚泥によって生物処理を行う反応槽と、反応槽内部の活性汚泥を不活性ガスで攪拌する散気管と、生物処理後の処理水を膜分離して膜処理水を得る膜分離槽とを有する硝酸性窒素を含有する廃水の処理を行う嫌気性膜分離活性汚泥装置。
(2)さらに、前記膜表面を不活性ガスで洗浄する膜洗浄手段を有する(1)に記載の嫌気性膜分離活性汚泥装置。
(3)さらに、原水流入口と反応槽と膜分離槽と膜処理水流出口とを有し、不活性ガス供給手段から不活性ガスを散気管を経由して反応槽および膜分離槽とに供給し、装置内を嫌気性に維持して、供給された不活性ガスを排出する不活性ガス排出管を有する(1)または(2)に記載の嫌気性膜分離活性汚泥装置。
(4)前記不活性ガスを窒素とする(1)ないし(3)のいずれか1に記載の嫌気性膜分離活性汚泥装置。
(5)前記活性汚泥中に存在する嫌気性微生物が、Xanthomonadaceae(キサントモダセアエ)科のDokdonella(ドクドネラ)属に属する硝酸還元細菌、 Rhodocyclaceae(ロドサイクラセアエ)科のMethyloversatilis(メチロバーサチリス)属に属する硝酸還元細菌、 Methylophilaceae(メチロフィラセアエ)科のMethylophilus(メチロフィルス)属に属する硝酸還元細菌、 Burkholderiales(バークホルデリアレス)目のAzohydromonas(アゾヒドロモナス)属およびCaldimonas(カルディモナス)属に属する硝酸還元細菌、並びにFlavobacteriia(フラボバクテリイア)綱のFluviicola(フルヴィコラ)属に属する硝酸還元細菌からなる群から選択される少なくとも一つの硝酸還元細菌である、(1)ないし(4)のいずれか1に記載の嫌気性膜分離活性汚泥装置。
(6)前記活性汚泥中の嫌気性微生物の種類および量を微生物群菌叢解析で求めた場合、硝酸還元能が報告されているDokdonella immobilis(ドクドネラ イモビリス)、Methyloversatilis universalis(メチロバーサチリス ユニバーサリス)、Methylophilus sp. (メチロフィラス属細菌)、Azohydromonas lata(アゾヒドロモナス ラタ)、Fluviicola taffensis(フルヴィコラ タフェンシス)、Dyella sp. (ディエラ属細菌)、および、Caldimonas hydrothermale(カルディモナス ヒドロサーマレ)からなる群から選択される少なくとも一つの硝酸還元細菌が処理装置稼働期間中に有意に増加する(1)ないし(5)のいずれか1に記載の嫌気性膜分離活性汚泥装置。
The problems of the present invention can be solved by the following devices and methods.
(1) Membrane-treated water by separating a reaction tank that performs biological treatment with activated sludge containing anaerobic microorganisms, an air diffuser that stirs the activated sludge inside the reaction tank with an inert gas, and treated water after biological treatment. An anaerobic membrane separation activated sludge device that treats wastewater containing nitrate nitrogen with a membrane separation tank.
(2) The anaerobic membrane separation activated sludge apparatus according to (1), further comprising a membrane cleaning means for cleaning the membrane surface with an inert gas.
(3) Further, it has a raw water inlet, a reaction tank, a membrane separation tank, and a membrane-treated water outlet, and supplies the inert gas from the inert gas supply means to the reaction tank and the membrane separation tank via an air diffuser. The anaerobic membrane separation active sludge device according to (1) or (2), which has an inert gas discharge pipe for maintaining the inside of the device anaerobically and discharging the supplied inert gas.
(4) The anaerobic membrane separation activated sludge apparatus according to any one of (1) to (3), wherein the inert gas is nitrogen.
(5) The anaerobic microorganisms present in the active sludge are nitrate-reducing bacteria belonging to the genus Dokdonella of the family Xanthomonadaceae, and Methyloversatilis of the family Rhodocyclaceae. ) Nitrate-reducing bacteria belonging to the genus, Nitrate-reducing bacteria belonging to the genus Methylophilus of the family Methylophilaceae, the genus Azohydromonas and the genus Caldimonas of the order Burkholderiales. Any of (1) to (4), which is at least one nitrate-reducing bacterium selected from the group consisting of nitrate-reducing bacteria belonging to the genus Fluviicola belonging to the genus Fluviicola of the Flavobacteriia family. The anaerobic membrane separation active sludge apparatus according to 1.
(6) When the type and amount of anaerobic microorganisms in the activated sludge were determined by microbial community flora analysis, Dokdonella immobilis and Methyloversatilis universalis, which have been reported to have nitrate reducing ability, were reported. , Methylophilus sp., Azohydromonas lata, Fluviicola taffensis, Dyella sp., And Caldimonas hydrothermale, at least selected from the group. The anaerobic membrane-separating activated sludge apparatus according to any one of (1) to (5), wherein one nitrate-reducing bacterium significantly increases during the operating period of the treatment apparatus.

(7)硝酸性窒素を含有する被処理水を、嫌気性微生物を含む活性汚泥を不活性ガスで攪拌しながら、生物処理を行う工程と、生物処理後の処理水を膜分離して膜処理水を得る工程とを有する、嫌気性膜分離活性汚泥方法。
(8)前記不活性ガスが、さらに、膜表面を洗浄する(7)に記載の嫌気性膜分離活性汚泥方法。
(9)前記硝酸性窒素を含有する被処理水が、ステンレスの酸洗処理排水である(7)または(8)に記載の嫌気性膜分離活性汚泥方法。
(10)前記不活性ガスが鉄鋼製造工程で得られる酸素プラントの副産物である窒素ガスである(7)ないし(9)のいずれか1に記載の嫌気性膜分離活性汚泥方法。
(11)本発明の上記方法または装置は、好ましくは、略密閉装置であり、後に説明する高純度な窒素ガス{ガス中の酸素濃度は好ましくは10,000ppm(1vol%)未満、より好ましくは1,000ppm(0.1 vol%)未満}を、装置の外から導入して膜洗浄後は外部に放出するのが好ましい。生物処理水を膜分離して膜表面を洗浄する不活性ガスは、好ましくは上記の高純度窒素ガスを外部から導入するのが好ましい。
(7) A step of biologically treating water to be treated containing nitrate nitrogen while stirring activated sludge containing anaerobic microorganisms with an inert gas, and a membrane treatment by separating the treated water after biological treatment into a membrane. An anaerobic membrane separation activated sludge method comprising a step of obtaining water.
(8) The anaerobic membrane separation activated sludge method according to (7), wherein the inert gas further cleans the membrane surface.
(9) The anaerobic membrane separation activated sludge method according to (7) or (8), wherein the water to be treated containing nitrate nitrogen is stainless steel pickled wastewater.
(10) The anaerobic membrane separation activated sludge method according to any one of (7) to (9), wherein the inert gas is nitrogen gas which is a by-product of an oxygen plant obtained in the steel manufacturing process.
(11) The method or apparatus of the present invention is preferably a substantially sealed device, and is a high-purity nitrogen gas described later {the oxygen concentration in the gas is preferably less than 10,000 ppm (1 vol%), more preferably 1,000. It is preferable to introduce ppm (less than 0.1 vol%)} from the outside of the device and release it to the outside after cleaning the membrane. As the inert gas that separates the biotreated water into a membrane and cleans the membrane surface, it is preferable to introduce the above-mentioned high-purity nitrogen gas from the outside.

本発明の嫌気性膜分離活性汚泥装置は、窒素除去に膜分離活性汚泥法を用いることができるので、以下の少なくとも一つの効果を得ることができる。
1)処理水を完全な固液分離した状態で得られる。
膜分離を用いるので活性汚泥を処理水から完全に除去することが可能である。そのため汚濁物質の除去性能が従来の沈降処理方式よりも向上し、懸濁物が含まれない極めて清澄な処理水が得られる。または懸濁物質中に含まれる窒素およびリン、有機物などの汚濁物質の高度な除去が期待できる。
2)施設の設置面積を縮小できる。
従来の活性汚泥法に必要であった最終沈殿池などの処理工程を省略することができるため、設置スペースを大幅に削減できる。また建設コストの削減に寄与できる。
3)運転管理が容易
最終沈殿池がないためバルキング(汚泥が沈降しにくくなり、清澄な水が取得しにくくなる現象)や汚泥界面に注意を払う必要がなく汚泥管理の負担がなくなる。また、主要な運転管理項目は自動計測による透過水量や膜差圧であることから自動制御運転を取り入れやすく運転管理が容易である。
4)発生汚泥量の削減、高濃度処理、処理時間の短縮
最終沈殿池がないため、汚泥のキャリーオーバーが発生しない。そのため生物量を高く維持できることにより汚泥滞留時間が長いことから,汚泥の自己分解により発生する発生汚泥量の削減が期待できる。また生物量が高いことから高濃度廃液に対応することができる。
Since the anaerobic membrane separation activated sludge apparatus of the present invention can use the membrane separation activated sludge method for removing nitrogen, at least one of the following effects can be obtained.
1) The treated water is obtained in a completely solid-liquid separated state.
Since membrane separation is used, activated sludge can be completely removed from the treated water. Therefore, the removal performance of pollutants is improved as compared with the conventional sedimentation treatment method, and extremely clear treated water containing no suspension can be obtained. Alternatively, advanced removal of pollutants such as nitrogen, phosphorus and organic substances contained in suspended solids can be expected.
2) The installation area of the facility can be reduced.
Since the treatment process such as the final settling basin, which is required in the conventional activated sludge method, can be omitted, the installation space can be significantly reduced. It can also contribute to the reduction of construction costs.
3) Easy operation management Since there is no final sedimentation basin, there is no need to pay attention to bulking (a phenomenon in which sludge is difficult to settle and clear water is difficult to obtain) and the sludge interface, and the burden of sludge management is eliminated. In addition, since the main operation management items are the amount of permeated water and the membrane differential pressure by automatic measurement, it is easy to incorporate automatic control operation and operation management is easy.
4) Reduction of generated sludge amount, high concentration treatment, shortening of treatment time Since there is no final settling basin, sludge carryover does not occur. Therefore, since the amount of biomass can be maintained high and the sludge retention time is long, it is expected that the amount of sludge generated by the autolysis of sludge will be reduced. In addition, since the biomass is high, it is possible to deal with high-concentration waste liquid.

実施例に用いた本発明の嫌気性膜分離活性汚泥装置の実験装置を説明する模式図である。It is a schematic diagram explaining the experimental apparatus of the anaerobic membrane separation activated sludge apparatus of this invention used in an Example. 脱窒工程の概要を示す模式図である。It is a schematic diagram which shows the outline of the denitrification process. 実施例の実験期間中のTN(硝酸性全窒素)量と、全有機炭素量との推移を示すグラフである。It is a graph which shows the transition of the TN (nitrate total nitrogen) amount and the total organic carbon amount during the experiment period of an Example. 実施例の実験期間中の細菌優占種のうち増加した9種の内2種の推移(相対増加量)およびTN(硝酸性全窒素)量の推移の関係を示すグラフである。It is a graph which shows the relationship between the transition (relative increase amount) of 2 species out of 9 species which increased among the bacterial dominant species during the experimental period of the example, and the transition of the TN (nitrate total nitrogen) amount. 図5は、実施例で増加した9種の細菌のうち、denovo25716以下の7種について、相対存在量のスケールを拡大して図4に示すTN(硝酸性全窒素)量の推移と共に示すグラフである。TN(硝酸性全窒素)量のスケールは図4と同じである。FIG. 5 is a graph showing the transition of the TN (nitrate total nitrogen) amount shown in FIG. 4 by enlarging the scale of the relative abundance of 7 types of bacteria of de novo25716 or less among the 9 types of bacteria increased in the examples. be. The scale of the amount of TN (total nitrate nitrogen) is the same as in FIG. 従来の生物処理を示すフロー図である。It is a flow chart which shows the conventional biological treatment.

以下に図1を用いて本発明の装置を説明するが、図面は1例であり、本発明の装置は図面に記載された構造に限定されない。 The apparatus of the present invention will be described below with reference to FIG. 1, but the drawings are an example, and the apparatus of the present invention is not limited to the structure described in the drawings.

本発明の装置は、嫌気性微生物を含む活性汚泥2によって生物処理を行う反応槽3と、反応槽3内部の活性汚泥2を不活性ガスでバブリング管5から攪拌する散気管6と、生物処理後の処理水を膜モジュール9で膜分離して膜処理水25を得る膜分離槽8とを有する、硝酸性窒素を含有する廃水の処理を行う嫌気性膜分離活性汚泥装置10である。活性汚泥2を攪拌する不活性ガスは装置内を嫌気状態に維持する。不活性ガスは、酸素を含まないガスで細菌に害を及ぼさないガスであれば特に限定されないが、窒素、アルゴン、ヘリウム等が例示でき、これらの混合物でもよい。不活性ガスの中でも高純度な窒素ガスが好ましく、その際の酸素濃度は10,000ppm(1vol%)未満、望ましくは1,000ppm(0.1 vol%)未満の高純度な窒素ガスを用いることが好ましい。このような高純度な窒素ガスは、空気から深冷分離法、PSA分離法、膜分離法等で得ることができる。特に、深冷分離法は100ppm(0.01 vol%)以下の高純度窒素を大量に発生させることができ好適である。また深冷分離法によるガス製造装置は、製鉄所のような精錬に酸素ガスを大量に必要とする工場では好適に使用されており、その際に副産物として大量の高純度窒素が発生するので好適である。
さらに、本発明の装置は、膜表面を不活性ガスで洗浄する膜洗浄手段7を有するのが好ましい。膜洗浄手段7は、膜表面を洗浄して膜表面を清澄に保ち、膜モジュール9および膜分離槽8内をより嫌気性に維持する。
本発明の装置はまた、さらに原水の流入口21と反応槽3と膜分離槽8と膜処理水25の流出口22とを有し、不活性ガス供給手段4から不活性ガスを散気管6を経由して反応槽3および膜分離槽8とに供給し、装置内を嫌気性に維持して、好ましくは供給された不活性ガスを排出する不活性ガス排出管14を有する嫌気性膜分離活性汚泥装置10である。
本発明の装置は全体が覆われていれば空気の混入が避けられ容易に嫌気条件で排水処理できるので好ましい。反応槽3は、さらに第2反応槽13を具えてもよく、さらに反応槽および膜分離槽を2以上具えてもよい。
流入口21は、メタノール(基質)の流入口を兼ねてもよく、別にメタノール流入口12を具えてもよい。
膜モジュール9で膜処理水25を引き抜かれた活性汚泥は返送汚泥として返送管15を経由して流入口21から反応槽3に戻される。返送管15中の返送汚泥の一部は好ましくは(図示しない)汚泥貯槽に送られて微生物が死滅している部分が廃棄されてもよいし、追加の活性汚泥が追加されてもよい。
複数の反応槽の間、反応槽と膜分離槽との間は、それぞれ必要な構造を持つ連通管17、17で連通されている。
The apparatus of the present invention includes a reaction tank 3 for biological treatment with activated sludge 2 containing anaerobic microorganisms, an air diffuser pipe 6 for stirring the activated sludge 2 inside the reaction tank 3 with an inert gas from a bubbling pipe 5, and biological treatment. An anaerobic membrane separation activated sludge device 10 for treating wastewater containing nitrate nitrogen, which has a membrane separation tank 8 for separating the treated water afterwards with a membrane module 9 to obtain a membrane treated water 25. The inert gas that agitates the activated sludge 2 keeps the inside of the apparatus in an anaerobic state. The inert gas is not particularly limited as long as it is a gas that does not contain oxygen and does not harm bacteria, but nitrogen, argon, helium and the like can be exemplified, and a mixture thereof may be used. Among the inert gases, high-purity nitrogen gas is preferable, and the oxygen concentration at that time is preferably less than 10,000 ppm (1 vol%), preferably less than 1,000 ppm (0.1 vol%). Such high-purity nitrogen gas can be obtained from air by a deep cold separation method, a PSA separation method, a membrane separation method, or the like. In particular, the deep cold separation method is suitable because it can generate a large amount of high-purity nitrogen of 100 ppm (0.01 vol%) or less. Further, the gas production device by the deep cold separation method is preferably used in a factory such as a steel mill that requires a large amount of oxygen gas for refining, and a large amount of high-purity nitrogen is generated as a by-product at that time, which is suitable. Is.
Further, the apparatus of the present invention preferably has the membrane cleaning means 7 for cleaning the membrane surface with an inert gas. The membrane cleaning means 7 cleans the membrane surface to keep the membrane surface clear, and keeps the inside of the membrane module 9 and the membrane separation tank 8 more anaerobic.
The apparatus of the present invention further has an inlet 21 for raw water, a reaction tank 3, a membrane separation tank 8, and an outlet 22 for the membrane-treated water 25, and the inert gas is diffused from the inert gas supply means 4 into the air diffuser 6. An anaerobic membrane separation having an inert gas discharge pipe 14 that supplies the device to the reaction tank 3 and the membrane separation tank 8 via the above, maintains the inside of the apparatus anaerobically, and preferably discharges the supplied inert gas. The active sludge device 10.
It is preferable that the apparatus of the present invention is entirely covered because air contamination can be avoided and wastewater can be easily treated under anaerobic conditions. The reaction tank 3 may further include a second reaction tank 13, and may further include two or more reaction tanks and membrane separation tanks.
The inflow port 21 may also serve as an inflow port for methanol (substrate), or may be separately provided with a methanol inflow port 12.
The activated sludge from which the membrane-treated water 25 has been drawn out by the membrane module 9 is returned to the reaction tank 3 from the inflow port 21 via the return pipe 15 as return sludge. A part of the returned sludge in the return pipe 15 may be preferably sent to a sludge storage tank (not shown) to discard the portion where the microorganisms are killed, or additional activated sludge may be added.
The reaction tanks and the membrane separation tanks are communicated with each other by communication pipes 17 and 17 having necessary structures, respectively.

本発明の嫌気性膜分離活性汚泥方法を、以下に説明する。本発明の方法は、上記の本発明の排水処理装置を用いてもよいがこれに限定されない。
本発明の方法は、硝酸性窒素を含有する被処理水を、活性汚泥を不活性ガスで攪拌しながら、嫌気性微生物を含む前記活性汚泥によって生物処理を行う工程と、生物処理後の処理水を膜分離して膜処理水を得る工程とを有する、嫌気性膜分離活性汚泥方法である。
本発明の被処理水は、窒素を除去する観点からは有機物を含んでいることが好ましい。
本発明の装置を用いればメタノール等の有機物を少量添加して、TOC(全有機炭素濃度)の含有量が少ない工業排水でも硝酸性窒素を含有する被処理水から窒素を窒素ガスにして除去することができる。
不活性ガスを用いる本発明の装置は、後に実施例で説明するように、TOC(全有機炭素濃度)の含有量が少ない工業排水でも脱窒菌を増やすことができる。例えば、TOC(全有機炭素濃度)の含有量が500mmg/L以下、さらに好ましくは100mmg/L以下、の被処理水を有効に処理できる。
本発明の方法に用いる不活性ガスが、さらに、膜表面を洗浄することが好ましい。
硝酸性窒素を含有する被処理水は、ステンレスの酸洗処理排水を用いてもよい。処理される原水が硝酸性窒素ではなくその他の窒素を有する場合は、公知の硝酸性窒素を有する処理水を得る前処理を本発明の嫌気性膜分離活性汚泥方法の前に行ってもよいし、硝化槽を用いて硝化を行ってもよい。
用いる不活性ガスは、窒素、アルゴン、ヘリウム等が例示でき、これらの混合物でもよい。鉄鋼製造工程で得られる酸素プラントの副産物である窒素ガスを用いれば、高純度窒素ガスを用いる必要がなく安価で嫌気条件に維持して排水処理することができる。不活性ガスの吹き込み量は、反応槽の容量10Lに対して例えば5〜10L/min.の比率で吹き込むことができる。
The anaerobic membrane separation activated sludge method of the present invention will be described below. The method of the present invention may use the above-mentioned wastewater treatment apparatus of the present invention, but is not limited thereto.
The method of the present invention comprises a step of biologically treating the water to be treated containing nitrate nitrogen with the activated sludge containing anaerobic microorganisms while stirring the activated sludge with an inert gas, and the treated water after the biological treatment. This is an anaerobic membrane separation activated sludge method, which comprises a step of membrane separation to obtain membrane treated water.
The water to be treated of the present invention preferably contains an organic substance from the viewpoint of removing nitrogen.
By using the apparatus of the present invention, a small amount of organic matter such as methanol is added to remove nitrogen as nitrogen gas from the water to be treated containing nitrate nitrogen even in industrial wastewater having a low TOC (total organic carbon concentration) content. be able to.
The apparatus of the present invention using an inert gas can increase denitrifying bacteria even in industrial wastewater having a low TOC (total organic carbon concentration) content, as will be described later in Examples. For example, water to be treated having a TOC (total organic carbon concentration) content of 500 mmg / L or less, more preferably 100 mmg / L or less can be effectively treated.
The inert gas used in the method of the present invention preferably further cleans the membrane surface.
As the water to be treated containing nitrate nitrogen, stainless steel pickled wastewater may be used. When the raw water to be treated has other nitrogen instead of nitrate nitrogen, the pretreatment for obtaining the treated water having known nitrate nitrogen may be performed before the anaerobic membrane separation activated sludge method of the present invention. , Nitrification may be performed using a nitrification tank.
Examples of the inert gas to be used include nitrogen, argon, helium and the like, and a mixture thereof may be used. If nitrogen gas, which is a by-product of the oxygen plant obtained in the steel manufacturing process, is used, it is not necessary to use high-purity nitrogen gas, and wastewater can be treated at low cost while maintaining anaerobic conditions. The amount of the inert gas blown is, for example, 5 to 10 L / min with respect to the capacity of the reaction vessel of 10 L. Can be blown at the ratio of.

本発明の方法では、不活性ガスを散気管を通じて反応槽および膜分離槽に供給する本発明の活性汚泥装置を用いてもよい。不活性ガスには窒素を使用するのが好ましい。図1に例示する処理装置は反応槽3、第2反応槽13、固液分離をする膜分離槽の三槽から構成される。反応槽3には処理される廃水および水素供与体となるメタノールを供給し、反応槽3、第2反応槽13において活性汚泥による脱窒素処理を実施する。膜分離槽内に固液分離装置である膜モジュール9を浸漬させ、膜分離槽内で膜分離後の処理水と活性汚泥に分離する。 In the method of the present invention, the activated sludge apparatus of the present invention that supplies an inert gas to the reaction tank and the membrane separation tank through an air diffuser may be used. It is preferable to use nitrogen as the inert gas. The processing apparatus illustrated in FIG. 1 is composed of three tanks: a reaction tank 3, a second reaction tank 13, and a membrane separation tank for solid-liquid separation. Wastewater to be treated and methanol as a hydrogen donor are supplied to the reaction tank 3, and denitrification treatment with activated sludge is carried out in the reaction tank 3 and the second reaction tank 13. The membrane module 9 which is a solid-liquid separation device is immersed in the membrane separation tank, and the treated water after the membrane separation and the activated sludge are separated in the membrane separation tank.

反応槽内の活性汚泥の攪拌および好ましくは膜モジュールの膜洗浄を実施するために窒素ガスを散気管で供給する。反応槽3においては活性汚泥10Lに対して5〜10L/minの範囲で反応槽下部から曝気(バブリング)する散気管が好ましく用いられる。膜洗浄する不活性ガスは膜表面と平行に噴射されることが好ましく、有効膜面積0.012mに対して窒素ガスを10L/min以上で供給されることが好ましい。膜洗浄処理は間欠運転とし、例えば9min.処理水の引き抜きを実施し、その後1min.は処理水の引き抜きを停止し洗浄時間とする間欠処理が例示できる。 Nitrogen gas is supplied through an air diffuser to stir the activated sludge in the reaction vessel and preferably to perform membrane cleaning of the membrane module. In the reaction tank 3, an air diffuser that aerates (bubbling) from the lower part of the reaction tank in the range of 5 to 10 L / min with respect to 10 L of activated sludge is preferably used. The inert gas for cleaning the membrane is preferably injected parallel to the membrane surface, and nitrogen gas is preferably supplied at 10 L / min or more for an effective membrane area of 0.012 m 2. The membrane cleaning process is an intermittent operation, for example, 9 min. The treated water was withdrawn, and then 1 min. Can be exemplified by intermittent treatment in which the withdrawal of treated water is stopped and the washing time is set.

本発明の活性汚泥装置または本発明の活性汚泥方法を実施する適切なタイミングで、活性汚泥中の微生物を解析することで嫌気性微生物、特に硝酸還元細菌が十分作用し処理水の窒素除去のMBRが有効であることを確認することができる。微生物の解析には特に制限はないが、「次世代シークエンサ」と呼ばれる、高機能シークエンサを用いることが好ましい。次世代シークエンサでは、配列表の配列番号1〜9に記載の塩基配列を登録することで、微生物の同定およびその相同性検索を一度に大量に行うことができ、さらに、短時間に行うことができる。このような次世代シークエンサとしては特に制限はないが、例えば、Illumina社製のMiSeq等を用いることができ、その検出としては、付属説明書に従って実施することができる。ただし、より正確かつ詳細な系統学的情報の取得には、PCおよび解析ソフトウェアを用いることが好ましい。なお、前記解析ソフトウェアとしては、例えば、実施例にて後述する各種ソフトウェアを用いることができる。 By analyzing the microorganisms in the activated sludge at an appropriate time when the activated sludge apparatus of the present invention or the activated sludge method of the present invention is carried out, anaerobic microorganisms, particularly nitrate-reducing bacteria, sufficiently act to remove nitrogen from the treated water. Can be confirmed to be valid. The analysis of microorganisms is not particularly limited, but it is preferable to use a high-performance sequencer called a "next-generation sequencer". In the next-generation sequencer, by registering the nucleotide sequences shown in SEQ ID NOs: 1 to 9 in the sequence listing, it is possible to identify microorganisms and search for their homology in large quantities at one time, and further, it can be performed in a short time. can. Such a next-generation sequencer is not particularly limited, but for example, MiSeq manufactured by Illumina can be used, and its detection can be carried out according to the attached manual. However, it is preferable to use a PC and analysis software to acquire more accurate and detailed phylogenetic information. As the analysis software, for example, various software described later in the examples can be used.

以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

図1に示す本発明の嫌気性膜分離活性汚泥装置10を用いて、硝酸性窒素を含有する被処理水の窒素除去を目的に実験を実施した。被処理水は製鉄所のステンレス製造工程において、ステンレス鋼板表面を酸洗浄した洗浄排水を用いた。不活性ガスは窒素ガスを用いた。
活性汚泥量:28L
返送汚泥量:28L/日
被処理水供給量:1.25L/日
水理学的滞留時間:6日
曝気量は反応槽3で、5 L/min、反応槽13で、5L/min.、膜分離槽10L/min.で実施した。
運転パターンは、処理水引き抜き時間9min、処理水停止時間1min.の間欠運転とした。メタノール添加量は、:17μL/min.、34μL/min.とした。
Using the anaerobic membrane separation activated sludge device 10 of the present invention shown in FIG. 1, an experiment was carried out for the purpose of removing nitrogen from water to be treated containing nitrate nitrogen. As the water to be treated, cleaning wastewater obtained by acid-cleaning the surface of a stainless steel sheet was used in the stainless steel manufacturing process of a steel mill. Nitrogen gas was used as the inert gas.
Amount of activated sludge: 28L
Return sludge amount: 28 L / day Water supply amount to be treated: 1.25 L / day Hydraulic residence time: 6 days Aeration amount is 5 L / min in reaction tank 3 and 5 L / min in reaction tank 13. , Membrane separation tank 10 L / min. It was carried out in.
The operation pattern is as follows: treated water withdrawal time 9 min, treated water stop time 1 min. It was an intermittent operation. The amount of methanol added was: 17 μL / min. , 34 μL / min. And said.

実験は図4に示すように5月27日を0日目とし、28日に実験を開始し、6月23日(27日目まで)での細菌種の推移を評価した。メタノール添加は図3に示すように6日目から最初の量を連続して添加し、22日目に増量してそれぞれ連続して添加した。実験期間中の処理装置内のDO(溶存酸素量)は、反応槽3、第2反応槽13、および膜分離槽8全てにおいて0.5mg/L以下となり、窒素曝気による処理装置内の嫌気状態を維持できていた。活性汚泥の指標であるMLSS(活性汚泥浮遊物(Mixed Liquor Suspended Solids)量)は3000〜4500mg/L内で維持されていた。
反応槽内の曝気は活性汚泥を循環させる用途にも用いられ、本発明の窒素曝気においても活性汚泥は処理装置下部に沈降することなく、空気曝気と同様の撹拌性能を確認できた。また膜分離槽の膜表面においても空気曝気と同様の膜洗浄性能が確認できた。
As shown in FIG. 4, May 27 was set as the 0th day, the experiment was started on the 28th, and the transition of bacterial species on June 23 (until the 27th day) was evaluated. As shown in FIG. 3, the first amount of methanol was continuously added from the 6th day, and the amount was increased on the 22nd day and each was continuously added. The DO (dissolved oxygen amount) in the treatment device during the experiment period was 0.5 mg / L or less in all of the reaction tank 3, the second reaction tank 13, and the membrane separation tank 8, and the anaerobic state in the treatment device due to nitrogen aeration. Was able to be maintained. The MLSS (Mixed Liquor Suspended Solids amount), which is an index of activated sludge, was maintained within 3000 to 4500 mg / L.
The aeration in the reaction tank was also used to circulate the activated sludge, and even in the nitrogen aeration of the present invention, the activated sludge did not settle in the lower part of the treatment apparatus, and the same aeration performance as the air aeration could be confirmed. In addition, the same membrane cleaning performance as air aeration was confirmed on the membrane surface of the membrane separation tank.

図3に膜分離槽で固液分離された処理液中の硝酸性窒素(TN)と全有機炭素(TOC)濃度の推移を示す。実験開始6日目より廃水中の窒素除去を行うためメタノールの供給を開始した。メタノール投入直後は硝酸性窒素の変化は確認できず、メタノールが処理装置内に残留したためTOCが増加した。図4にメタノール添加後の硝酸性窒素(TN)の量を●で示す。メタノール添加後、6月15日にはTN値はピーク近くになった。その後TOCの減少に伴い硝酸性窒素は急激に低下した。その後、更なる硝酸性窒素除去を目指し、メタノール投入量を34μl/min.に増加した。メタノール投入量変更から4日後には、硝酸性窒素を完全に除去することができ、嫌気性MBRによる窒素除去は可能であることがわかった。図3に示すように全有機炭素はメタノール添加の1、2日後までほぼ0であり、メタノール添加により急上昇して15日目でほぼピークに達し、20日目から急激に減少したので22日目にメタノール添加量を増加した。硝酸性窒素の低下に伴いTOCが減少していることから、生物による消費が安定的に行われていることが考えられる。メタノールの添加は17μL/min.で前半連続して添加し、後半で34μL/minに増加されて実験期間中続けた。 FIG. 3 shows the transition of nitrate nitrogen (TN) and total organic carbon (TOC) concentrations in the treatment liquid solid-liquid separated in the membrane separation tank. From the 6th day after the start of the experiment, the supply of methanol was started to remove nitrogen from the wastewater. Immediately after the addition of methanol, no change in nitrate nitrogen could be confirmed, and the TOC increased because methanol remained in the treatment equipment. In FIG. 4, the amount of nitrate nitrogen (TN) after the addition of methanol is indicated by ●. After the addition of methanol, the TN value reached near the peak on June 15. After that, nitrate nitrogen decreased sharply as the TOC decreased. After that, aiming at further removal of nitrate nitrogen, the amount of methanol input was 34 μl / min. Increased to. It was found that nitrate nitrogen could be completely removed 4 days after the change in the amount of methanol input, and nitrogen removal by anaerobic MBR was possible. As shown in FIG. 3, total organic carbon was almost 0 until 1 or 2 days after the addition of methanol, and rapidly increased due to the addition of methanol, reached a peak on the 15th day, and decreased sharply from the 20th day, so that on the 22nd day. The amount of methanol added was increased. Since TOC decreases with the decrease of nitrate nitrogen, it is considered that the consumption by living organisms is stable. The addition of methanol was 17 μL / min. In the first half, the addition was continued, and in the second half, the amount was increased to 34 μL / min and continued during the experimental period.

原水の水質は、pH7、全硝酸性窒素量(TN )6300mg/L 、全有機炭素(TOC)23 mg/Lであった。 The quality of the raw water was pH 7, total nitrate nitrogen (TN) 6300 mg / L, and total organic carbon (TOC) 23 mg / L.

この結果から実験中の生物処理状態を考察するため、実験期間中の微生物群菌叢解析を行った。
〔微生物群解析〕
ここで前記次世代シークエンサでの前記微生物叢解析は、以下の手順で行った。
先ず、遠心分離により得た活性汚泥の汚泥サンプル(遠心沈殿物)に対して、平均粒子径が0.1mmのジルコニアとシリカの混合ビーズ(Zirconia/Silica Beads)を加えた状態で、ビーズビータ(バイオメディカルサイエンス社製、Shake Master)に供し、前記汚泥サンプルに含まれる前記微生物の細胞を破砕する。
次いで、得られた細胞破砕液から、フェノール・クロロホルム抽出法により染色体DNAを抽出・精製する。
次いで、前記染色体DNAの16S rRNAをターゲットにしたユニバーサルプライマーを基に、Illumina社製のMiSeq用バーコード配列を付加した下記参考文献1に記載のプライマーを用いて、PCR(Polymerase Chain Reaction)法による前記16S rRNA遺伝子の増幅を行った。
参考文献1:J Gregory Caporaso et al.、The ISME Journal(2012)6,(1621-1624)
From this result, in order to consider the state of biological treatment during the experiment, microbial community flora analysis was performed during the experiment period.
[Microbial group analysis]
Here, the microbiota analysis with the next-generation sequencer was performed according to the following procedure.
First, a bead beater (Zirconia / Silica Beads) having an average particle size of 0.1 mm was added to a sludge sample (centrifugal precipitate) of activated sludge obtained by centrifugation. It is subjected to Shake Master, manufactured by Biomedical Science Co., Ltd., and the cells of the microorganism contained in the sludge sample are crushed.
Next, chromosomal DNA is extracted and purified from the obtained cell disruption solution by a phenol-chloroform extraction method.
Then, based on the universal primer targeting 16S rRNA of the chromosomal DNA, the primer described in Reference 1 below to which the barcode sequence for MiSeq manufactured by Illumina was added was used by the PCR (Polymerase Chain Reaction) method. The 16S rRNA gene was amplified.
Reference 1: J Gregory Caporaso et al., The ISME Journal (2012) 6, (1621-1624)

得られたPCR増副産物をAMPure磁気ビーズ(Beackmann coulter社製、A63881)および精製用マグネットスタンド(Beackmann coulter社製、A32782)を用いて未反応のプライマーおよびプライマーダイマーを除去し、次いで、得られた精製産物をアガロースゲル電気泳動により分画し、スピンカラム(Promega社製、Wizard SV Gel and PCR Clean-up System)を用いて目的の断片長を有するPCR増副産物のみを精製した。
次いで、前記DNAサンプルにおけるDNA濃度をDNA染色用蛍光試薬キットQuant-iT PicoGreen dsDNA Assay Kit(Thermo scientific製、P11496)および微量用傾向スペクトロメータ(Thermo scientific製、NanoDrop 3300)を用いて定量し、必要量をMiSeq Reagent Kits v2(Illumina社製、MS-102-2001)に供し、前記次世代シークエンサによるDNA配列解析を行った。
その結果、前記DNAサンプルのそれぞれから50,000〜100,000 reads程度の配列データが取得された。
取得された前記配列データについて、ソフトウエアea-utils-1.1.2-301(インターネット上で入手可能なフリーソフト)を用いて遺伝子配列情報の連結を行い、さらに、ソフトウエアMothur version1.31.2を用いてキメラ配列を除去した後、ソフトウエアQIIME version1.6.0により遺伝子配列の系統学的解析を行い、各微生物種の相対存在率の増減と前記物理化学的パラメータとの関係性を考察した。なお、ソフトウエアMothur version1.31.2の詳細については、下記参考文献2を参照でき、ソフトウエアQIIME version1.6.0の詳細については、下記参考文献3を参照することができる。
参考文献2:Schloss P.D et al.,Appl.Environ.Microbiol(2009)75,7537-7541
参考文献3:Caporaso H.G et al.,Nat.methods(2012)7,335-336.
The obtained PCR augmentation by-product was removed using AM Pure magnetic beads (Beackmann coulter, A63881) and a purification magnet stand (Beackmann coulter, A32782) to remove unreacted primers and primer dimers, and then obtained. The purified product was fractionated by agarose gel electrophoresis, and only the PCR-enhancing by-product having the desired fragment length was purified using a spin column (Wizard SV Gel and PCR Clean-up System manufactured by Promega).
Next, the DNA concentration in the DNA sample was quantified using the Quant-iT PicoGreen dsDNA Assay Kit (manufactured by Thermo scientific, P11496) and the tendency spectrometer for trace amounts (manufactured by Thermo scientific, NanoDrop 3300), and required. The amount was subjected to MiSeq Reagent Kits v2 (manufactured by Illumina, MS-102-2001), and DNA sequence analysis was performed using the next-generation sequencer.
As a result, sequence data of about 50,000 to 100,000 reads were obtained from each of the DNA samples.
For the acquired sequence data, the gene sequence information is linked using the software ea-utils-1.1.2-301 (free software available on the Internet), and further, the software Mothur version 1.31.2 is used. After removing the chimeric sequence, the gene sequence was systematically analyzed by software QIIME version 1.6.0, and the relationship between the increase / decrease in the relative abundance of each microbial species and the physicochemical parameters was considered. For details of software Mothur version 1.31.2, refer to Reference 2 below, and for details of software QIIME version 1.6.0, refer to Reference 3 below.
Reference 2: Schloss PD et al., Appl.Environ.Microbiol (2009) 75,7537-7541
Reference 3: Caporaso HG et al., Nat.methods (2012) 7,335-336.

結果を全窒素量と共に図4および図5に示す。活性汚泥中に常在の嫌気微生物として硝酸還元細菌が存在することが分かった。さらに、実験終了時(6月23日)に最も優占化した微生物20種のうち、硝酸が減少する実験開始から19日目から27日目の時期に、それらの近縁種で硝酸還元能が報告されているDokdonella immobilis(ドクドネラ イモビリス)に近縁な2種、Methyloversatilis universalis(メチロバーサチリス ユニバーサリス)1種およびそれに近縁な1種、Methylophilus sp.(メチロフィラス属細菌)に近縁な1種、Azohydromonas lata(アゾヒドロモナス ラタ)に近縁な1種、Fluviicola taffensis(フルヴィコラ タフェンシス)に近縁な1種、Dyella sp. (ディエラ属細菌)に近縁な1種、および、Caldimonas hydrothermale(カルディモナス ヒドロサーマレ)に近縁な1種の微生物量が有意に増加していることが分かった(増加率:1.7倍〜48.3倍)。これらの9種の特定に使用した塩基配列を配列表の配列番号1〜9に示す。各配列はデータベースによる。すなわち、これらの硝酸還元細菌が蓄積していたメタノールの酸化分解とそれに共役する硝酸の還元分解に関与しており、活性汚泥中からの硝酸性窒素の除去に寄与していることを示唆していた。
6月23日での優占細菌種の相対存在量(relative abundance(%))とその増加量(hold change)を以下の表1に示す。
The results are shown in FIGS. 4 and 5 together with the total nitrogen content. It was found that nitrate-reducing bacteria exist as resident anaerobic microorganisms in activated sludge. Furthermore, among the 20 most dominant microorganisms at the end of the experiment (June 23), the nitrate reducing ability of those closely related species during the period from the 19th to the 27th day from the start of the experiment in which nitrate decreases. Two species closely related to Dokdonella immobilis, one species closely related to Methyloversatilis universalis and one closely related to it, one closely related to Methylophilus sp. Species, one closely related to Azohydromonas lata, one closely related to Fluviicola taffensis, one closely related to Dyella sp., And Caldimonas hydrothermale. It was found that the amount of one type of microorganism closely related to (hydrothermale) was significantly increased (increase rate: 1.7 to 48.3 times). The nucleotide sequences used to identify these nine types are shown in SEQ ID NOs: 1 to 9 in the sequence listing. Each array depends on the database. That is, it is suggested that these nitrate-reducing bacteria are involved in the oxidative decomposition of methanol accumulated and the reduced decomposition of nitrate coupled to it, and contribute to the removal of nitrate nitrogen from the activated sludge. rice field.
Table 1 below shows the relative abundance (%) of the dominant bacterial species and its hold change as of June 23.

Figure 0006941830
Figure 0006941830

表1は優占種20の種の内、全硝酸性窒素(TN)の減少に伴い(6月15日の量に比較して6月23日に)相対存在量が有意(P<0.05)に増加した細菌種9種の測定結果を示している。図4に実施例の実験期間中の細菌優占種のうち増加した9種の内2種の推移を示す。図5にはそのうち7種の相対存在量のスケールを拡大したグラフを示す。表1は9種について6月15日の存在量に対する6月23日の存在量を増加率の欄に示し、増加率が1.7倍〜48.3倍であったことを示す。 Table 1 shows that among the 20 dominant species, the relative abundance was significant (P <0.05) as the total nitrate nitrogen (TN) decreased (on June 23 compared to the amount on June 15). The measurement results of 9 bacterial species increased in. FIG. 4 shows the transition of 2 out of 9 species that increased among the bacterial dominant species during the experimental period of the example. FIG. 5 shows an enlarged graph of the relative abundance of seven of them. Table 1 shows the abundance on June 23 with respect to the abundance on June 15 for 9 species in the column of increase rate, and shows that the increase rate was 1.7 times to 48.3 times.

従来、窒素除去を目的としたMBRの適用は困難であるとされてきた。その理由は、嫌気性条件を維持するためには低酸素濃度状態である必要があるため、活性汚泥の攪拌や膜洗浄のために空気を吹き込む行為と相反するため、嫌気性を維持しつつ膜による固液分離を実施することは困難であった。
本発明では初めてこの問題を解決し、嫌気性条件を維持しつつ排水処理においてMBRへの適用を可能とした嫌気性膜分離活性汚泥装置が提供でき、今後の産業上の発展が期待でき有用性が高い。本発明の嫌気性膜分離活性汚泥方法は、嫌気条件で膜分離法を用いて排水処理ができるので広大な沈殿槽の設備が不要となり、工場排水の脱窒処理がMBRで有効にできるので産業上の有用性が高い。
Conventionally, it has been considered difficult to apply the MBR for the purpose of removing nitrogen. The reason is that it is necessary to have a low oxygen concentration state in order to maintain anaerobic conditions, which contradicts the act of blowing air to stir activated sludge and clean the membrane, so the membrane is maintained anaerobic. It was difficult to carry out solid-liquid separation by.
The present invention solves this problem for the first time, and can provide an anaerobic membrane separation activated sludge device that can be applied to MBR in wastewater treatment while maintaining anaerobic conditions, and is expected to be useful in future industrial development. Is high. The anaerobic membrane separation activated sludge method of the present invention can treat wastewater using the membrane separation method under anaerobic conditions, so that a vast settling tank facility is not required, and denitrification treatment of factory wastewater can be effectively performed by MBR. Highly useful above.

2・・活性汚泥、3・・反応槽、4・・不活性ガス供給手段、5・・バブリング管
6・・散気管、 7・・膜洗浄手段、 8・・膜分離槽、9・・膜モジュール、
10・・嫌気性膜分離活性汚泥装置 11・・原水、 12・・メタノール
13・・第2反応槽、14・・不活性ガス排出管、 15・・返送管、
17・・連通管、 21・・流入口、22・・流出口、25・・処理水
2 ... Activated sludge, 3 ... Reaction tank, 4 ... Inert gas supply means, 5 ... Bubbling pipe 6 ... Air diffuser pipe, 7 ... Membrane cleaning means, 8 ... Membrane separation tank, 9 ... Membrane module,
10 ... Anaerobic membrane separation activated sludge device 11 ... Raw water, 12 ... Methanol 13 ... Second reaction tank, 14 ... Inert gas discharge pipe, 15 ... Return pipe,
17 ... communication pipe, 21 ... inlet, 22 ... outlet, 25 ... treated water

Claims (5)

嫌気性微生物を含む活性汚泥によって生物処理を行う反応槽と、反応槽内部の活性汚泥を不活性ガスで攪拌する散気管と、生物処理後の処理水を膜分離して膜処理水を得る膜分離槽とを有し、生物処理後の処理水に空気を吹き込む行為を実施しない、硝酸性窒素を含有する廃水の処理を行う嫌気性膜分離活性汚泥装置であって、
さらに、原水流入口と反応槽と膜分離槽と膜処理水流出口とを有し、不活性ガス供給手段から不活性ガスを散気管を経由して反応槽および膜分離槽に供給し、装置内を嫌気性に維持して、供給された不活性ガスを排出する不活性ガス排出管を有し、
前記原水流入口が1つの前記反応槽のみに設けられ、
前記反応槽が覆われている、嫌気性膜分離活性汚泥装置
A reaction tank that performs biological treatment with activated sludge containing anaerobic microorganisms, an air diffuser that stirs the activated sludge inside the reaction tank with an inert gas, and a membrane that separates the treated water after biological treatment into a membrane to obtain membrane-treated water. An anaerobic membrane separation activated sludge device that has a separation tank and does not blow air into the treated water after biological treatment, and treats waste water containing nitrate nitrogen .
Further, it has a raw water inlet, a reaction tank, a membrane separation tank, and a membrane-treated water outlet, and the inert gas is supplied from the inert gas supply means to the reaction tank and the membrane separation tank via the diffuser pipe, and inside the apparatus. Has an inert gas discharge pipe that maintains the anaerobic condition and discharges the supplied inert gas.
The raw water inlet is provided in only one reaction vessel.
An anaerobic membrane separation activated sludge device in which the reaction vessel is covered .
さらに、前記膜分離槽中の膜表面を不活性ガスで洗浄する膜洗浄手段を有する請求項1に記載の嫌気性膜分離活性汚泥装置。 The anaerobic membrane separation activated sludge apparatus according to claim 1, further comprising a membrane cleaning means for cleaning the membrane surface in the membrane separation tank with an inert gas. 前記不活性ガスを窒素とする請求項1または2に記載の嫌気性膜分離活性汚泥装置。 The anaerobic membrane separation activated sludge apparatus according to claim 1 or 2 , wherein the inert gas is nitrogen. 前記活性汚泥中に存在する嫌気性微生物が、Xanthomonadaceae(キサントモダセアエ)科のDokdonella(ドクドネラ)属に属する硝酸還元細菌、Rhodocyclaceae(ロドサイクラセアエ)科のMethyloversatilis(メチロバーサチリス)属に属する硝酸還元細菌、Methylophilaceae(メチロフィラセアエ)科Methylophilus(メチロフィルス)属に属する硝酸還元細菌、Burkholderiales(バークホルデリアレス)目のAzohydromonas(アゾヒドロモナス)属およびCaldimonas(カルディモナス)属に属する硝酸還元細菌、並びにFlavobacteriia(フラボバクテリイア)綱のFluviicola(フルヴィコラ)属に属する硝酸還元細菌からなる群から選択される少なくとも一つの硝酸還元細菌である、請求項1〜3のいずれか1項に記載の嫌気性膜分離活性汚泥装置。 The anaerobic microorganisms present in the active sludge belong to the genus Methyloversatilis of the family Rhodocyclaceae, a nitrate-reducing bacterium belonging to the genus Dokdonella of the family Xanthomonadaceae. Nitrate-reducing bacteria belonging to, Nitrate-reducing bacteria belonging to the genus Methylophilus of the family Methylophilaceae, Nitrate reduction belonging to the genus Azohydromonas and the genus Caldimonas of the order Burkholderiales. The method according to any one of claims 1 to 3 , wherein the bacterium is at least one nitrate-reducing bacterium selected from the group consisting of a bacterium and a nitrate-reducing bacterium belonging to the Fluviicola genus of the Flavobacteriia family. Anaerobic membrane separation active sludge device. 前記活性汚泥中の嫌気性微生物の種類および量を微生物群菌叢解析で求めた場合に、硝酸還元能が報告されているDokdonella immobilis(ドクドネラ イモビリス)、Methyloversatilis universalis(メチロバーサチリス ユニバーサリス)、Methylophilus sp. (メチロフィラス属細菌)、Azohydromonas lata(アゾヒドロモナス ラタ)、Fluviicola taffensis(フルヴィコラ タフェンシス)、Dyella sp. (ディエラ属細菌)、および、Caldimonas hydrothermale(カルディモナス ヒドロサーマレ)からなる群から選択される少なくとも一つの細菌微生物が処理装置稼働期間中に1.7倍以上の増加率で増加する請求項1〜4のいずれか1項に記載の嫌気性膜分離活性汚泥装置。 Dokdonella immobilis, Methyloversatilis universalis, and Methylophilus, whose nitrate reducing ability has been reported when the type and amount of anaerobic microorganisms in the activated sludge were determined by microbial community flora analysis. At least one selected from the group consisting of sp. (Methylophilus sp.), Azohydromonas lata, Fluviicola taffensis, Dyella sp. (Dyella sp.), And Caldimonas hydrothermale. The anaerobic membrane-separating activated sludge apparatus according to any one of claims 1 to 4 , wherein bacterial microorganisms increase at an increase rate of 1.7 times or more during the operating period of the treatment apparatus.
JP2017042829A 2016-03-10 2017-03-07 Anaerobic membrane separation activated sludge device Active JP6941830B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047372 2016-03-10
JP2016047372 2016-03-10

Publications (2)

Publication Number Publication Date
JP2017164739A JP2017164739A (en) 2017-09-21
JP6941830B2 true JP6941830B2 (en) 2021-09-29

Family

ID=59912307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042829A Active JP6941830B2 (en) 2016-03-10 2017-03-07 Anaerobic membrane separation activated sludge device

Country Status (1)

Country Link
JP (1) JP6941830B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292355B (en) 2018-06-22 2023-04-07 奥加诺株式会社 Water treatment method and water treatment apparatus
JP6535125B1 (en) * 2018-06-22 2019-06-26 オルガノ株式会社 Water treatment method
CN108911134B (en) 2018-07-17 2021-06-11 厦门理工学院 Domestic sewage treatment method
CN108911136B (en) 2018-07-17 2021-05-14 厦门理工学院 Heavy metal wastewater treatment method
CN108911137B (en) 2018-07-17 2021-04-16 厦门理工学院 Treatment method of dye wastewater
JP7398692B2 (en) * 2019-05-24 2023-12-15 Jfeスチール株式会社 Wastewater treatment method and wastewater treatment equipment
CN111547862B (en) * 2019-11-29 2022-09-02 武汉市鄂正农科技发展有限公司 Water body remediation microbial inoculum and preparation method thereof
CN111960866B (en) * 2020-10-20 2021-01-05 山东恒基农牧机械有限公司 Harmless treatment production equipment for livestock and poultry manure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8323358D0 (en) * 1983-08-31 1983-10-05 Ici Plc Microbial transformations
JPH0665371B2 (en) * 1990-09-20 1994-08-24 荏原インフイルコ株式会社 Organic wastewater biological treatment equipment
JP2000117278A (en) * 1998-10-15 2000-04-25 Daicel Chem Ind Ltd Membrane biological treatment and membrane biological treating device
JP4882181B2 (en) * 2001-08-06 2012-02-22 日新製鋼株式会社 Denitrification method and apparatus
JP2004154700A (en) * 2002-11-07 2004-06-03 Mitsubishi Heavy Ind Ltd Denitrification treatment apparatus and denitrification treatment method
DE102008038886A1 (en) * 2008-08-15 2010-03-04 Georg Fritzmeier Gmbh & Co. Kg Disclosed is a process for selectively recovering phosphorous from heavy metal and phosphate-containing solids by treating the heavy metal and phosphorus-containing solids under acidic aerobic conditions with microorganisms comprising leaching-active and polyphosphate-storing microorganisms. In the process, heavy metals and phosphate are released from the solid and the liberated phosphate is taken up by the polyphosphate-storing microorganisms. The phosphorus-enriched biomass is separated.

Also Published As

Publication number Publication date
JP2017164739A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6941830B2 (en) Anaerobic membrane separation activated sludge device
Leyva-Díaz et al. Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment
US4810386A (en) Two-stage wastewater treatment
JP5629448B2 (en) Wastewater treatment method
Molina-Muñoz et al. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions
Cimbritz et al. PAC dosing to an MBBR–Effects on adsorption of micropollutants, nitrification and microbial community
Larsen et al. Quantification of biofilms in a sub-surface flow wetland and their role in nutrient removal
Hasar Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor
Rodríguez et al. Comparative study of the use of pure oxygen and air in the nitrification of a MBR system used for wastewater treatment
JP2014121692A (en) Method for treating organic effluent by using activated sludge
JP2000218290A (en) Sewage treatment and sewage treating device
JP2015226896A (en) Wastewater treatment system and wastewater treatment method
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
JP4575814B2 (en) Nitrogen-containing wastewater treatment method
Zajac et al. Changes in the activity and abundance of canonical nitrifiers and Comammox bacteria during stream switching: Shifting from a mainstream hybrid reactor for C, N, and P removal to a sidestream biofilm nitrification reactor
JP7398692B2 (en) Wastewater treatment method and wastewater treatment equipment
KR100273856B1 (en) Sequencing batch reactor containing zeolite
JP2000325988A (en) Waste water treatment system having sludge concentrating means
Seca et al. Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater
Ziembinska et al. Molecular analysis of temporal changes of a bacterial community structure in activated sludge using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH)
JP4023715B2 (en) Wastewater treatment system
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
Zhang et al. Application of low-intensity ultrasound to enhance simultaneous nitrification/iron-based autotrophic denitrification
Liu et al. Treatment of printing and dyeing wastewater using Fenton combined with ceramic microfiltration membrane bioreactor
KR100504150B1 (en) Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210625

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6941830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150