JP2015226896A - Wastewater treatment system and wastewater treatment method - Google Patents

Wastewater treatment system and wastewater treatment method Download PDF

Info

Publication number
JP2015226896A
JP2015226896A JP2014126903A JP2014126903A JP2015226896A JP 2015226896 A JP2015226896 A JP 2015226896A JP 2014126903 A JP2014126903 A JP 2014126903A JP 2014126903 A JP2014126903 A JP 2014126903A JP 2015226896 A JP2015226896 A JP 2015226896A
Authority
JP
Japan
Prior art keywords
base sequence
activated sludge
wastewater treatment
microorganism
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014126903A
Other languages
Japanese (ja)
Inventor
由也 佐藤
Yoshiya Sato
由也 佐藤
知行 堀
Tomoyuki Hori
知行 堀
尾形 敦
Atsushi Ogata
敦 尾形
浩 羽部
Hiroshi Habe
浩 羽部
柳下 宏
Hiroshi Yagishita
宏 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014126903A priority Critical patent/JP2015226896A/en
Publication of JP2015226896A publication Critical patent/JP2015226896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system and method for wastewater treatment capable of supporting evaluation in effectivity of the wastewater treatment by detecting the existence of microbes contributing to decomposition and removal of ammonia nitrogen.SOLUTION: A wastewater treatment system includes an active sludge apparatus and a detection device. In the active sludge apparatus, an aerobic tank which introduces the wastewater including at least ammonia nitrogen and an active sludge and generates a nitrification material by nitrifying the ammonia nitrogen, and an anaerobic tank which decomposes the nitrification material to generate a nitrogen gas are arranged so as to enable circulation of the wastewater between both tanks. The detection device enables detection of a microbe in which the base sequence of 16S rRNA gene indicates the homologousness of 97% or more with the base sequence described in a sequence No. 1 from the wastewater at least in the active sludge apparatus.

Description

本発明は、活性汚泥により廃水中のアンモニア態窒素を分解する廃水処理システム及び廃水処理方法に関する。   The present invention relates to a wastewater treatment system and a wastewater treatment method for decomposing ammonia nitrogen in wastewater with activated sludge.

アンモニア態窒素を含む廃水処理方法として、活性汚泥法が広く用いられている。前記活性汚泥法においては、活性汚泥中に存在する微生物の働きにより、廃水に含まれるアンモニアを好気条件下で硝化(酸化)させるとともに、酸化された窒素化合物を嫌気条件下で還元して脱窒させることで、アンモニア態窒素を分解除去する。
更に、こうした活性汚泥法を基本として、前記微生物が活動する生物反応槽のpHを調整する方法(特許文献1参照)、前記生物反応槽の溶存酸素濃度を調整する方法(特許文献2参照)、前記生物反応槽での汚泥処理量(特許文献3参照)の調整などの様々な工夫が提案され、現在においても、効果的な廃水処理を目指した取組みが行われているところである。
The activated sludge method is widely used as a wastewater treatment method containing ammonia nitrogen. In the activated sludge method, ammonia contained in the wastewater is nitrified (oxidized) under aerobic conditions by the action of microorganisms present in the activated sludge, and oxidized nitrogen compounds are reduced and removed under anaerobic conditions. Nitrogen decomposes and removes ammonia nitrogen.
Furthermore, based on such an activated sludge method, a method for adjusting the pH of a biological reaction tank in which the microorganisms are active (see Patent Document 1), a method for adjusting the dissolved oxygen concentration in the biological reaction tank (see Patent Document 2), Various ideas such as adjustment of the amount of sludge treatment in the biological reaction tank (see Patent Document 3) have been proposed, and efforts for effective wastewater treatment are still underway.

しかしながら、こうした工夫によっても、前記硝化を行う微生物や前記脱窒を行う微生物の多くが判明しておらず、どのような微生物を優占的に増殖させるべきかも不明であるため、前記活性汚泥法での処理に供される前記廃水や前記活性汚泥によっては、目的とする微生物の生態環境が整わず、結果として廃水処理が期待通りとならない問題がある。
前記廃水は、し尿を含む場合に限らず、有機性廃水においても、有機物中のアミノ酸(タンパク質分解物)の分解によってアンモニア態窒素が生成されることから、放出先の生態系にとって有害であり、また、悪臭の原因ともなることから、放出前に確実に処理されるべきであり、こうした処理に向けて、アンモニア態窒素の分解除去に寄与する微生物を特定することで、前記廃水処理に関わる生態環境を明らかにすることが期待される。
However, even with such a device, many of the microorganisms that perform the nitrification and the microorganisms that perform the denitrification have not been clarified, and it is unclear what kind of microorganisms should be proliferated preferentially. Depending on the waste water and the activated sludge used in the treatment, there is a problem that the ecological environment of the target microorganism is not prepared, and as a result, the waste water treatment is not as expected.
The wastewater is not limited to containing human waste, and even in organic wastewater, ammonia nitrogen is generated by the decomposition of amino acids (protein degradation products) in organic matter, which is harmful to the destination ecosystem. In addition, since it may cause odors, it should be treated reliably before release. For this treatment, by identifying microorganisms that contribute to the decomposition and removal of ammonia nitrogen, the ecology involved in the treatment of wastewater can be identified. It is expected to clarify the environment.

特開昭53−070551号公報JP-A-53-070551 特開昭61−090796号公報JP-A-61-090796 特開平05−253597号公報Japanese Patent Laid-Open No. 05-253597

こうした状況に対し、本発明者らは、鋭意検討の結果、アンモニア態窒素の分解除去に寄与する微生物を特定することに成功した。こうした微生物を特定することができれば、前記廃水及び前記活性汚泥中に該当する微生物が存在するか否かを検出することで、廃水処理の有効性を前記廃水の放出前に評価することができ、確実な廃水処理を期待することができる。   As a result of intensive studies, the present inventors have succeeded in identifying microorganisms that contribute to the decomposition and removal of ammonia nitrogen. If such microorganisms can be identified, the effectiveness of wastewater treatment can be evaluated before the discharge of the wastewater by detecting whether the corresponding microorganisms are present in the wastewater and the activated sludge, A reliable wastewater treatment can be expected.

本発明は、従来技術における前記諸問題を解決し、アンモニア態窒素の分解除去に寄与する微生物の存在を検出することにより、廃水処理の有効性の評価を支援可能な廃水処理システム及び廃水処理方法を提供することを目的とする。   The present invention solves the above-mentioned problems in the prior art, and detects the presence of microorganisms that contribute to the decomposition and removal of ammonia nitrogen, thereby enabling the wastewater treatment system and wastewater treatment method to support the evaluation of the effectiveness of wastewater treatment. The purpose is to provide.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を分解させて窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配される活性汚泥装置と、少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる検出装置と、を含むことを特徴とする廃水処理システム。
<2> 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号2に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる前記<1>に記載の廃水処理システム。
<3> 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号3に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる前記<1>から<2>のいずれかに記載の廃水処理システム。
<4> 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号4に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる前記<1>から<3>のいずれかに記載の廃水処理システム。
<5> 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号5に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる前記<1>から<4>のいずれかに記載の廃水処理システム。
<6> 検出装置が、活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出可能とされる前記<1>から<5>のいずれかに記載の廃水処理システム。
<7> 少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を分解させて窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配される活性汚泥装置を用いて前記廃水を処理する廃水処理方法であって、少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出する検出工程を含むことを特徴とする廃水処理方法。
<8> 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号2に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である前記<7>に記載の廃水処理方法。
<9> 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号3に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である前記<7>から<8>のいずれかに記載の廃水処理方法。
<10> 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号4に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である前記<7>から<9>のいずれかに記載の廃水処理方法。
<11> 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号5に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である前記<7>から<10>のいずれかに記載の廃水処理方法。
<12> 検出工程が、活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出する工程を含む前記<7>から<11>のいずれかに記載の廃水処理方法。
Means for solving the problems are as follows. That is,
<1> Waste water containing at least ammonia nitrogen and activated sludge are introduced, and each of an anaerobic tank that nitrifies the ammonia nitrogen to generate nitrate and an anaerobic tank that decomposes the nitrate to generate nitrogen gas are provided. An activated sludge apparatus in which the waste water can be circulated between tanks, and at least the base sequence of 16S rRNA gene from the waste water in the activated sludge apparatus has a homology of 97% or more with the base sequence described in SEQ ID NO: 1 A wastewater treatment system comprising: a detection device capable of detecting a microorganism to be displayed.
<2> The wastewater treatment system according to <1>, wherein the detection device is capable of detecting a microorganism in which the base sequence of the 16S rRNA gene has 97% or more homology with the base sequence described in SEQ ID NO: 2.
<3> Any one of <1> to <2> above, wherein the detection device is capable of detecting a microorganism in which the base sequence of the 16S rRNA gene has 97% or more homology with the base sequence described in SEQ ID NO: 3 The wastewater treatment system described in 1.
<4> Any one of <1> to <3>, wherein the detection apparatus is capable of detecting a microorganism in which the base sequence of the 16S rRNA gene further shows 97% or more homology with the base sequence described in SEQ ID NO: 4 The wastewater treatment system described in 1.
<5> Any one of <1> to <4>, wherein the detection apparatus is capable of detecting a microorganism in which the base sequence of the 16S rRNA gene further shows 97% or more homology with the base sequence set forth in SEQ ID NO: 5 The wastewater treatment system described in 1.
<6> The detection value of the microbial abundance at a time point before or after the start of the operation of the activated sludge device, and the microorganism at the next time point when the activated sludge device is operated for a certain period from the temporary point. The detected value of the abundance is compared with any one of <1> to <5>, in which it is possible to detect that the abundance of the microorganism is increased at the next time point from the temporary point. Wastewater treatment system.
<7> Waste water containing at least ammonia nitrogen and activated sludge are introduced, and each of an anaerobic tank that nitrifies the ammonia nitrogen to generate nitrate and an anaerobic tank that decomposes the nitrate to generate nitrogen gas A wastewater treatment method for treating the wastewater by using an activated sludge apparatus that can circulate the wastewater between tanks, wherein at least the base sequence of the 16S rRNA gene from the wastewater in the activated sludge apparatus is SEQ ID NO: 1. A wastewater treatment method comprising a detection step of detecting a microorganism having a homology of 97% or more with the base sequence described in 1.
<8> The wastewater treatment method according to <7>, wherein the detection step is a step of detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence described in SEQ ID NO: 2.
<9> The method according to any one of <7> to <8>, wherein the detection step is a step of further detecting a microorganism in which the base sequence of the 16S rRNA gene has 97% or more homology with the base sequence described in SEQ ID NO: 3. The wastewater treatment method described in 1.
<10> The method according to any one of <7> to <9>, wherein the detection step is a step of detecting a microorganism in which the base sequence of the 16S rRNA gene further shows 97% or more homology with the base sequence described in SEQ ID NO: 4 The wastewater treatment method described in 1.
<11> The method according to any one of <7> to <10>, wherein the detection step is a step of detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence set forth in SEQ ID NO: 5 The wastewater treatment method described in 1.
<12> The detection step includes the detection value of the microbial abundance at one time point before starting the operation of the activated sludge apparatus or after the start of the operation, and the microorganism at the next time point when the activated sludge apparatus is operated for a certain period from the temporary point. The method according to any one of <7> to <11>, further including a step of detecting that the microbial abundance is increased at the next time point from the temporary point by comparing with a detection value of the abundance. Wastewater treatment method.

本発明によれば、従来技術における前記諸問題を解決することができ、アンモニア態窒素の分解除去に寄与する微生物の存在を検出することにより、廃水処理の有効性の評価を支援可能な廃水処理システム及び廃水処理方法を提供することができる。   According to the present invention, the above-mentioned problems in the prior art can be solved, and wastewater treatment capable of supporting the evaluation of the effectiveness of wastewater treatment by detecting the presence of microorganisms that contribute to the decomposition and removal of ammonia nitrogen. A system and a wastewater treatment method can be provided.

本発明に適用可能な活性汚泥装置の一例を示す図である。It is a figure which shows an example of the activated sludge apparatus applicable to this invention. 実施例に係る活性汚泥装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the activated sludge apparatus which concerns on an Example. 検証運転期間におけるアンモニア濃度の測定結果の推移を示す図である。It is a figure which shows transition of the measurement result of ammonia concentration in a verification driving | operation period. 増加倍率が上位1位〜10位であるOTU1〜10の相対存在率の経日変化を示す図である。It is a figure which shows the daily change of the relative abundance of OTU1-10 whose increase rate is the top 1 rank-the 10th rank. 増加倍率が上位11位〜20位であるOTU11〜20の相対存在率の経日変化を示す図である。It is a figure which shows the daily change of the relative presence rate of OTU11-20 whose increase rate is the 11th top 20th.

(廃水処理システム)
本発明の廃水処理システムは、活性汚泥装置と、検出装置とを含み、必要に応じて、任意の装置を含み得る。
(Waste water treatment system)
The wastewater treatment system of the present invention includes an activated sludge device and a detection device, and may include any device as necessary.

<活性汚泥装置>
前記活性汚泥装置は、少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を還元して窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配される構成とされる。
<Activated sludge device>
The activated sludge apparatus is equipped with an aerobic tank in which waste water containing at least ammonia nitrogen and activated sludge are introduced, nitrifying the ammonia nitrogen to generate nitrate, and anaerobic reducing the nitrate to generate nitrogen gas It is set as the structure by which a tank is distribute | arranged so that the said wastewater can be circulated between each tank.

前記廃水としては、前記アンモニア態窒素を含むものであれば、特に制限はなく、し尿を含む下水や有機物を含む各種排水等が挙げられる。   The waste water is not particularly limited as long as it contains the ammonia nitrogen, and examples thereof include sewage containing human waste and various waste water containing organic matter.

前記活性汚泥としては、特に制限はなく、公知の活性汚泥法に適用される任意の活性汚泥が含まれる。即ち、本発明に係る廃水処理システムは、槽内に導入される前記活性汚泥中に前記アンモニア態窒素の分解除去に寄与する微生物が含まれているか、更には、槽内の環境が前記微生物の生態にとって適しているかを後述の検出装置による前記微生物の検出を通じて確認し、前記アンモニア態窒素の分解除去に有効な活性汚泥装置であるかを評価するものである。なお、前記検出装置による前記微生物の検出を行った結果、前記アンモニア態窒素の分解除去に寄与する前記微生物が含まれていない場合には、こうした微生物を含む前記活性汚泥や微生物凝集剤を導入して前記活性汚泥装置の有効性を確保することができる。また、前記槽内の環境が前記微生物の生態に適していない場合には、槽内の曝気条件等を調整して前記槽内の環境を整えることができる。   There is no restriction | limiting in particular as said activated sludge, The arbitrary activated sludge applied to a well-known activated sludge method is contained. That is, in the wastewater treatment system according to the present invention, the activated sludge introduced into the tank contains microorganisms that contribute to the decomposition and removal of the ammonia nitrogen, and further, the environment in the tank contains the microorganisms. Whether it is suitable for ecology is confirmed through detection of the microorganisms by a detection device described later, and it is evaluated whether the activated sludge device is effective for decomposing and removing ammonia nitrogen. As a result of the detection of the microorganisms by the detection device, if the microorganisms that contribute to the decomposition and removal of the ammonia nitrogen are not included, the activated sludge and microorganism coagulant containing such microorganisms are introduced. Thus, the effectiveness of the activated sludge apparatus can be ensured. Moreover, when the environment in the tank is not suitable for the ecology of the microorganism, the environment in the tank can be adjusted by adjusting the aeration conditions in the tank.

前記好気槽としては、特に制限はなく、公知の活性汚泥法に適用される好気槽と同様の構成とすることができ、例えば、底側に曝気ブロアが配される反応槽等により構成することができる。   The aerobic tank is not particularly limited, and can be configured similarly to an aerobic tank applied to a known activated sludge method. For example, the aerobic tank includes a reaction tank in which an aeration blower is disposed on the bottom side. can do.

前記嫌気槽としては、特に制限はなく、公知の活性汚泥法に適用される嫌気槽と同様の構成とすることができる。ここで、本明細書において、前記嫌気槽とは、槽内に導入される廃水において、溶存酸素濃度が前記好気槽よりも低い領域を有する槽を示す。こうした前記嫌気槽としては、例えば、曝気ブロワを配さない構成の反応槽や、内部に前記廃水及び前記活性汚泥が流入可能である一方、気泡の流入が困難な多孔質性の筒状構造物が導入される反応槽等が挙げられる。   There is no restriction | limiting in particular as said anaerobic tank, It can be set as the structure similar to the anaerobic tank applied to the well-known activated sludge method. Here, in the present specification, the anaerobic tank indicates a tank having a region in which the dissolved oxygen concentration is lower than that of the aerobic tank in the wastewater introduced into the tank. Examples of the anaerobic tank include a reaction tank having a configuration in which an aeration blower is not disposed, and a porous cylindrical structure in which the waste water and the activated sludge can flow into the inside while the inflow of bubbles is difficult. And a reaction vessel into which is introduced.

前記活性汚泥装置としては、こうした好気槽及び嫌気槽を有する反応槽であれば、特に制限はないが、更に、槽内に前記廃水の浄化水と前記活性汚泥・前記微生物とを固液分離する分離膜が配されたものが好ましい。
前記活性汚泥法に適用される反応槽においては、前記活性汚泥を沈殿させるため、大きな施設面積を要し、また、槽内で前記微生物を高濃度に維持することが困難である。
一方、前記分離膜を配する、膜分離活性汚泥法(Membrane bioreactor;MBR法)によれば、槽内に配された前記分離膜を介して前記浄化水の引き抜きを行うことにより、装置を省スペース化することができ、また、前記分離膜で前記微生物をろ過するため、槽内で前記微生物を高濃度に維持することができる。
こうした膜分離活性汚泥法に準じる場合、前記活性汚泥装置としては、前記好気槽、前記嫌気槽のいずれかに前記分離膜を配した2槽式の反応槽で構成することができ、また、前記好気槽、前記嫌気槽に加えて、これらの槽と前記廃水、前記活性汚泥が循環可能に接続され、内部に前記分離膜が配された膜分離槽を有する構成とすることもできる。
なお、前記分離膜としては、特に制限はなく、公知の精密ろ過(MF)膜や限外ろ過(UF)膜を用いることができる。
The activated sludge apparatus is not particularly limited as long as it is a reaction tank having such an aerobic tank and an anaerobic tank, and further, the waste water purified water and the activated sludge / microorganisms are solid-liquid separated in the tank. What is provided with a separation membrane is preferable.
In the reaction tank applied to the activated sludge method, the activated sludge is precipitated, so that a large facility area is required, and it is difficult to maintain the microorganisms at a high concentration in the tank.
On the other hand, according to the membrane separation activated sludge method (MBR method) in which the separation membrane is disposed, the apparatus can be saved by drawing the purified water through the separation membrane disposed in a tank. Space can be made, and the microorganisms are filtered by the separation membrane, so that the microorganisms can be maintained at a high concentration in the tank.
When conforming to such a membrane separation activated sludge method, the activated sludge apparatus can be constituted by a two-tank reaction tank in which the separation membrane is arranged in either the aerobic tank or the anaerobic tank, In addition to the aerobic tank and the anaerobic tank, these tanks, the waste water, and the activated sludge are connected in a circulatory manner, and a membrane separation tank in which the separation membrane is arranged may be provided.
The separation membrane is not particularly limited, and a known microfiltration (MF) membrane or ultrafiltration (UF) membrane can be used.

図1を参照しつつ、前記活性汚泥装置の概略構成を説明する。なお、この活性汚泥装置は、前記MBR法に準じて構成される標準的な装置である。また、図1は、本発明に適用可能な前記活性汚泥装置の一例を示す説明図である。   The schematic configuration of the activated sludge apparatus will be described with reference to FIG. In addition, this activated sludge apparatus is a standard apparatus comprised according to the said MBR method. Moreover, FIG. 1 is explanatory drawing which shows an example of the said activated sludge apparatus applicable to this invention.

活性汚泥装置10は、嫌気槽11と好気槽13の2槽式反応槽で構成される。嫌気槽11内には、撹拌機12が配され、槽内に導入される前記廃水及び前記活性汚泥が撹拌可能とされる。また、好気槽13は、底側に曝気ブロワ14が接続され、槽内を好気的環境とすることが可能とされるとともに、膜分離ユニット15により、前記廃水の浄化水と前記活性汚泥・前記微生物とを固液分離可能とされ、前記浄化水は、系外に排出可能とされる。
嫌気槽11及び好気槽13は、通水可能に接続され、嫌気槽11に導入された前記廃水が好気槽13に通水されるとともに、好気槽13で溶存酸素を消費しつつ、前記微生物による前記アンモニア態窒素の硝化(酸化)が行われ、好気槽13から嫌気槽11に返送された硝化物(酸化物)を前記微生物が嫌気条件下で還元して窒素ガス化することが行われる。
The activated sludge apparatus 10 is composed of a two-tank reaction tank of an anaerobic tank 11 and an aerobic tank 13. A stirrer 12 is arranged in the anaerobic tank 11 so that the waste water and the activated sludge introduced into the tank can be stirred. The aerobic tank 13 is connected to the bottom side with an aeration blower 14 so that the inside of the tank can be made an aerobic environment, and the membrane separation unit 15 allows the purified water of the wastewater and the activated sludge. The solid can be separated from the microorganism, and the purified water can be discharged out of the system.
The anaerobic tank 11 and the aerobic tank 13 are connected to be able to pass water, and the waste water introduced into the anaerobic tank 11 is passed through the aerobic tank 13 while consuming dissolved oxygen in the aerobic tank 13. The nitrification (oxidation) of the ammonia nitrogen by the microorganism is performed, and the nitrification (oxide) returned from the aerobic tank 13 to the anaerobic tank 11 is reduced by the microorganism under anaerobic conditions to form nitrogen gas. Is done.

嫌気槽11から好気槽13に前記廃水とともに流入する前記活性汚泥のうち、余剰分については、ポンプ16により、系外に排出可能とされる。また、嫌気槽11から好気槽13に流入する前記活性汚泥は、ポンプ17により好気槽13から嫌気槽11に返送可能とされる。   Of the activated sludge that flows into the aerobic tank 13 from the anaerobic tank 11 together with the waste water, the surplus can be discharged out of the system by the pump 16. The activated sludge flowing from the anaerobic tank 11 into the aerobic tank 13 can be returned from the aerobic tank 13 to the anaerobic tank 11 by the pump 17.

膜分離ユニット15は、前記分離膜を有して構成され、前記固液分離を行う。また、膜分離ユニット15には、膜洗浄液槽18が接続され、前記分離膜に目詰まり等が生じたときは、前記固液分離を停止し、ポンプ19により引き込んだ膜洗浄液により前記分離膜を洗浄可能とされる。   The membrane separation unit 15 includes the separation membrane, and performs the solid-liquid separation. A membrane cleaning liquid tank 18 is connected to the membrane separation unit 15, and when the separation membrane is clogged, the solid-liquid separation is stopped, and the separation membrane is removed by the membrane cleaning liquid drawn by the pump 19. It can be washed.

嫌気槽11に導入される前記廃水は、活性汚泥装置10の処理性能に応じて、流量が事前に調整されることが好ましく、本例では、活性汚泥装置10に流量調整装置50が接続される。
流量調整装置50は、微細目スクリーン51と流量調整槽52とを有し、前記廃水中の固形物を微細目スクリーン51で除去した状態で前記廃水を流量調整槽52で貯留する。流量調整槽52では、撹拌機53による撹拌が可能とされ、ポンプ54により流量が調整された状態で前記廃水を活性汚泥装置10の嫌気槽11に送水可能とされる。
The flow rate of the waste water introduced into the anaerobic tank 11 is preferably adjusted in advance according to the treatment performance of the activated sludge apparatus 10. In this example, the flow rate adjusting apparatus 50 is connected to the activated sludge apparatus 10. .
The flow rate adjusting device 50 includes a fine screen 51 and a flow rate adjusting tank 52, and stores the waste water in the flow rate adjusting tank 52 in a state where solid matter in the waste water is removed by the fine screen 51. In the flow rate adjusting tank 52, stirring by the stirrer 53 is possible, and the waste water can be fed to the anaerobic tank 11 of the activated sludge apparatus 10 in a state where the flow rate is adjusted by the pump 54.

<検出装置>
次に、前記検出装置について説明する。
前記検出装置は、少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる。更に、前記検出装置としては、前記16S rRNA遺伝子の塩基配列が配列番号2〜20に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされることが好ましい。これら配列番号1〜20に記載の塩基配列に係る微生物は、後述の実施例において、槽内のアンモニア濃度の低下と対応して増加する微生物に係り、前記アンモニア態窒素の分解除去に寄与する。中でも、後述の実施例で考察されるように、配列番号が若い順で前記微生物が前記アンモニア態窒素の分解除去に強く関与することから、前記16S rRNA遺伝子の塩基配列が配列番号2〜10に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされることがより好ましく、前記16S rRNA遺伝子の塩基配列が配列番号2〜5に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされることが特に好ましい。
また、検出対象には、前記配列番号1〜20に記載の塩基配列に係る微生物に加え、前記16S rRNA遺伝子の塩基配列が前記微生物の塩基配列に対して97%以上の相同性を示す微生物を含む。
このような相同性を有する微生物は、下記参考文献1に記載されるように、同一の「種」であると考えられ、前記アンモニア態窒素の分解除去に寄与する。
参考文献1:P. Vandamme et al., Microbiological Reviews, 1996, p. 407-438
<Detection device>
Next, the detection device will be described.
The detection device can detect a microorganism in which the base sequence of the 16S rRNA gene has at least 97% homology with the base sequence shown in SEQ ID NO: 1 from the wastewater in the activated sludge device. Furthermore, it is preferable that the detection apparatus is capable of detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NOs: 2 to 20. The microorganisms related to the base sequences described in SEQ ID NOs: 1 to 20 relate to microorganisms that increase corresponding to a decrease in the ammonia concentration in the tank in the examples described later, and contribute to the decomposition and removal of the ammonia nitrogen. Among them, as discussed in Examples below, since the microorganisms are strongly involved in the decomposition and removal of the ammonia nitrogen in order of increasing sequence numbers, the base sequence of the 16S rRNA gene is changed to SEQ ID NOs: 2 to 10. More preferably, a microorganism having 97% or more homology with the base sequence described above can be detected, and the base sequence of the 16S rRNA gene is 97% or higher with the base sequence described in SEQ ID NOs: 2 to 5 It is particularly preferable that a microorganism exhibiting the above can be detected.
In addition, in addition to the microorganisms related to the base sequences described in SEQ ID NOs: 1 to 20, the detection target includes a microorganism in which the base sequence of the 16S rRNA gene exhibits 97% or more homology to the base sequence of the microorganism. Including.
The microorganisms having such homology are considered to be the same “species” as described in Reference Document 1 below, and contribute to the decomposition and removal of the ammonia nitrogen.
Reference 1: P. Vandamme et al., Microbiological Reviews, 1996, p. 407-438

前記検出装置としては、前記微生物を検出可能な装置であれば、特に制限はないが、「次世代シークエンサ」と呼ばれる、高機能シークエンサを用いることが好ましい。
前記次世代シークエンサでは、前記配列番号1〜20に記載の塩基配列を登録することで、前記微生物の同定及びその相同性検索を一度に大量に行うことができ、更に、短時間に行うことができる。
このような次世代シークエンサとしては、特に制限はないが、例えば、Illumina社製のMiSeq等を用いることができ、その検出としては、付属説明書に従って実施することができる。
The detection device is not particularly limited as long as it is a device that can detect the microorganism, but it is preferable to use a high-performance sequencer called a “next-generation sequencer”.
In the next-generation sequencer, by registering the base sequences described in SEQ ID NOs: 1 to 20, the microorganism identification and homology search can be performed in large quantities at a time, and further, in a short time. it can.
Such a next-generation sequencer is not particularly limited, but for example, MiSeq manufactured by Illumina can be used, and the detection can be performed according to the attached instructions.

前記検出装置としては、特に制限はないが、前記活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出可能とされることが好ましい。このような検出を実行できると、前記アンモニア態窒素の分解除去に寄与する微生物の生態に適した環境が槽内で形成されていることの確認を行うことができ、より実効的な前記活性汚泥装置の廃水処理の有効性を評価することができる。
なお、このような経時的な前記微生物の増加は、前記次世代シークエンサを用いて検出することができる。ただし、より正確かつ詳細な系統学的情報の取得には、PC及び解析用ソフトウエアを用いることが好ましい。なお、前記解析用ソフトウエアとしては、例えば、実施例の欄で後述する各種ソフトウエアを用いることができる。
また、前記微生物存在量としては、前記活性汚泥中に含まれる前記微生物の絶対存在量(MLSS;mg/L)として検出してもよいし、前記活性汚泥中の全微生物における相対存在率(%)として検出してもよい。これらの場合、前記検出装置としては、検出する各存在量に合わせて構築することができ、前記相対存在率を検出する場合には、前記次世代シークエンサ、前記PC、前記解析用ソフトウエアで構築することができ、前記絶対存在量を検出する場合には、これらに加えて、廃水中のMLSSを測定する公知のMLSS測定器等で構築することができる。
The detection device is not particularly limited, but the activated sludge device is operated for a certain period from the detected value of the microbial abundance at a point in time before or after the start of the operation of the activated sludge device. It is preferable that it is possible to detect that the microbial abundance is increased at the next time point from the temporary point by comparing the detected value of the microbial abundance at the next time point. If such detection can be performed, it can be confirmed that an environment suitable for the ecology of microorganisms contributing to the decomposition and removal of the ammonia nitrogen is formed in the tank, and the activated sludge is more effective. The effectiveness of the wastewater treatment of the equipment can be evaluated.
Such an increase in the microorganisms over time can be detected using the next-generation sequencer. However, it is preferable to use a PC and analysis software for obtaining more accurate and detailed systematic information. In addition, as the analysis software, for example, various software described later in the column of Examples can be used.
The microbial abundance may be detected as the absolute abundance (MLSS; mg / L) of the microorganisms contained in the activated sludge, or the relative abundance (%) of all microorganisms in the activated sludge. ) May be detected. In these cases, the detection device can be constructed according to each abundance to be detected. When the relative abundance is detected, the detection device is constructed using the next-generation sequencer, the PC, and the analysis software. In addition, when detecting the absolute abundance, in addition to these, a known MLSS measuring instrument for measuring MLSS in wastewater can be used.

(廃水処理方法)
本発明の廃水処理方法は、活性汚泥装置を用いて廃水を処理する廃水処理方法であって、微生物を検出する検出工程を含む。
(Waste water treatment method)
The wastewater treatment method of the present invention is a wastewater treatment method for treating wastewater using an activated sludge apparatus, and includes a detection step for detecting microorganisms.

<活性汚泥装置>
前記活性汚泥装置は、少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を還元させて窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配されて構成される。
具体的な内容については、本発明の前記廃水処理システムにおける前記活性汚泥装置と同様であるため、説明を省略する。
<Activated sludge device>
The activated sludge apparatus includes an aerobic tank in which waste water containing at least ammonia nitrogen and activated sludge are introduced, and the ammonia nitrogen is nitrified to produce nitrate, and anaerobic that reduces the nitrate and generates nitrogen gas. A tank is arranged so that the waste water can be circulated between the tanks.
The specific contents are the same as those of the activated sludge apparatus in the wastewater treatment system of the present invention, and thus the description thereof is omitted.

<検出工程>
前記検出工程は、少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程であり、更に、前記16S rRNA遺伝子の塩基配列が配列番号2〜20に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程であることが好ましい。
<Detection process>
The detection step is a step of detecting a microorganism in which the base sequence of 16S rRNA gene shows 97% or more homology with the base sequence described in SEQ ID NO: 1 from at least the wastewater in the activated sludge apparatus, and The 16S rRNA gene is preferably a step of detecting a microorganism in which the nucleotide sequence of the 16S rRNA gene shows 97% or more homology with the nucleotide sequence of SEQ ID NOs: 2 to 20.

また、前記検出工程としては、特に制限はないが、前記活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出する工程を含むことが好ましい。
このような検出工程を実行すると、前記アンモニア態窒素の分解除去に寄与する微生物の生態に適した環境が槽内で形成されていることの確認を行うことができ、より実効的な前記活性汚泥装置の廃水処理の有効性を評価することができる。
In addition, the detection step is not particularly limited, but the detection value of the microbial abundance at a point in time before or after the start of the operation of the activated sludge device and the activated sludge device for a certain period from the temporary point. It is preferable to include a step of comparing the detected value of the microbial abundance at the next time point when the operation is performed and detecting that the microbial abundance is increasing at the next time point from the temporary point.
When such a detection step is executed, it can be confirmed that an environment suitable for the ecology of microorganisms contributing to the decomposition and removal of the ammonia nitrogen is formed in the tank, and the activated sludge is more effective. The effectiveness of the wastewater treatment of the equipment can be evaluated.

前記検出工程の実施方法としては、特に制限はなく、本発明の前記廃水処理システムにおける前記検出装置を用いて実施することができる。   There is no restriction | limiting in particular as the implementation method of the said detection process, It can implement using the said detection apparatus in the said wastewater treatment system of this invention.

実験用MBR装置として作製した実施例に係る活性汚泥装置を用いて廃水処理を行った。実施例に係る活性汚泥装置の概略構成を図2に示す。
該図2に示すように、活性汚泥装置100は、好気槽101、嫌気槽102及び膜分離槽103を有する3槽式のMBR装置であり、各槽は、それぞれ91L、80L、57Lの容量であり、ポリカーボネートで形成される。
Waste water treatment was performed using the activated sludge apparatus according to the example produced as an experimental MBR apparatus. FIG. 2 shows a schematic configuration of the activated sludge apparatus according to the embodiment.
As shown in FIG. 2, the activated sludge apparatus 100 is a three-tank MBR apparatus having an aerobic tank 101, an anaerobic tank 102, and a membrane separation tank 103. Each tank has a capacity of 91L, 80L, and 57L, respectively. And is formed of polycarbonate.

ここで、活性汚泥としては、茨城県県西流域下水道事務所のきぬアクアステーションから分譲された標準活性汚泥を用いた。
また、廃水としては、有機性の人工下水を用いた。この人工下水には、下水成分として、5.30g/LのCHCOONa、0.751g/LのNHCl、0.217g/LのKHPO、1.41g/LのPeptone、1.57mg/LのFeCl・6HO、3.13mg/LのCaCl、3.13mg/LのMgSO、3.13mg/LのKCl、及び3.13mg/LのNaClが含まれる。
Here, as the activated sludge, standard activated sludge distributed from Kinu Aqua Station of the West Basin Sewerage Office in Ibaraki Prefecture was used.
Moreover, organic wastewater was used as waste water. In this artificial sewage, as sewage components, 5.30 g / L CH 3 COONa, 0.751 g / L NH 4 Cl, 0.217 g / L KH 2 PO 4 , 1.41 g / L Peptone, 1 Contains .57 mg / L FeCl 3 .6H 2 O, 3.13 mg / L CaCl 2 , 3.13 mg / L MgSO 4 , 3.13 mg / L KCl, and 3.13 mg / L NaCl.

系外から好気槽101に前記人工下水及び前記標準活性汚泥が導入される。好気槽101には、曝気ブロワ(不図示)が接続され、槽内が好気的環境に調整される。
好気槽101に導入された前記人工下水は、接続部104を介して好気槽101内の前記標準活性汚泥の一部とともに嫌気槽102に導入される。嫌気槽102には、微生物担持体を収容させた円筒状の中空容器(不図示)が設置される。この中空容器の表面には、直径数mmの孔が全体に開けられており、内部に前記標準活性汚泥及び前記人工下水が流入可能とされる一方で、内部に気泡が流入しにくく、内部に嫌気的な環境が形成される。また、前記微生物担持体としては、微生物が定着する足場として軽石様の多孔質材を用いた。
The artificial sewage and the standard activated sludge are introduced into the aerobic tank 101 from outside the system. An aeration blower (not shown) is connected to the aerobic tank 101, and the inside of the tank is adjusted to an aerobic environment.
The artificial sewage introduced into the aerobic tank 101 is introduced into the anaerobic tank 102 together with a part of the standard activated sludge in the aerobic tank 101 via the connecting portion 104. The anaerobic tank 102 is provided with a cylindrical hollow container (not shown) containing a microorganism carrier. On the surface of this hollow container, a hole with a diameter of several millimeters is opened, and the standard activated sludge and the artificial sewage can flow into the inside. An anaerobic environment is formed. Further, as the microorganism carrier, a pumice-like porous material was used as a scaffold for colonization of microorganisms.

嫌気槽102に導入された前記人工下水は、接続部105を介して嫌気槽102内の前記標準活性汚泥の一部とともに膜分離槽103に導入される。膜分離槽103には、前記標準活性汚泥と前記人工下水とを分離する膜分離ユニット106が配される。膜分離ユニット106は、前記標準活性汚泥と前記人工下水とをろ別する分離膜を4枚有する。ここでは、前記分離膜として、150mm×300mmのPAN(ポリアクリロトニトリル)製の扁平で袋状の平膜(阿波製紙社製、孔径0.07μm)を用い、この分離膜は、袋外から袋内に水を引き入れることで前記ろ別を行い、ろ過液を浄化水として系外に排出可能とされる。また、前記ろ別された前記標準活性汚泥は、前記人工下水の一部とともに、膜分離槽103に接続されたポンプ(不図示)により、好気槽に返送される。   The artificial sewage introduced into the anaerobic tank 102 is introduced into the membrane separation tank 103 together with a part of the standard activated sludge in the anaerobic tank 102 via the connecting portion 105. In the membrane separation tank 103, a membrane separation unit 106 for separating the standard activated sludge and the artificial sewage is disposed. The membrane separation unit 106 has four separation membranes that separate the standard activated sludge from the artificial sewage. Here, as the separation membrane, a flat and bag-shaped flat membrane made of PAN (polyacrylonitrile) of 150 mm × 300 mm (Awa Paper Co., Ltd., pore size 0.07 μm) is used. The filtration is performed by drawing water into the bag, and the filtrate can be discharged out of the system as purified water. Further, the filtered standard activated sludge is returned to the aerobic tank by a pump (not shown) connected to the membrane separation tank 103 together with a part of the artificial sewage.

このように構成される活性汚泥装置100に対し、前記人工下水の系内への流入速度、前記浄化水の系外への流出速度、及び、膜分離槽103から好気槽101への前記標準活性汚泥を含む前記人工下水の返送速度を全て115L/dayに設定して活性汚泥装置100内における前記人工下水の水理学的滞留時間(HRT)を2日として運転させた。また、運転期間中、前記曝気ブロワにより前記標準活性汚泥を恒常的に曝気させることとした。   For the activated sludge apparatus 100 configured as described above, the inflow speed into the artificial sewage system, the outflow speed of the purified water out of the system, and the standard from the membrane separation tank 103 to the aerobic tank 101 The return rate of the artificial sewage containing activated sludge was set to 115 L / day, and the hydraulic sewage hydraulic residence time (HRT) in the activated sludge apparatus 100 was set to 2 days. During the operation period, the standard activated sludge was constantly aerated by the aeration blower.

また、本実施例では、前記条件で活性汚泥装置100の定常運転を続け、槽内のアンモニア濃度が上昇した時点で微生物凝集剤(CNT社製、BRcnt−5E)を嫌気槽102内に添加し、その後継続して7日間の検証運転を行うことで、アンモニア態窒素の分解除去を目的とした廃水処理を行った。
なお、前記微生物凝集剤は、前記アンモニア態窒素の分解除去を行う微生物の選定を行うために、自然環境下に存在する微生物種を幅広く凝集させたものに係る。
Further, in this embodiment, the activated sludge apparatus 100 is continuously operated under the above conditions, and when the ammonia concentration in the tank rises, a microbial flocculant (manufactured by CNT, BRcnt-5E) is added into the anaerobic tank 102. Then, the wastewater treatment was performed for the purpose of decomposing and removing ammonia nitrogen by continuously performing the verification operation for 7 days.
The microbial flocculant relates to a flocculated microbial species present in a natural environment in order to select a microorganism that decomposes and removes the ammonia nitrogen.

本実施例に関し、物理化学的パラメータとして、前記人工下水のMLSS(Mixed Liquor Suspended Solids)、温度及びpH、並びに、前記人工下水と前記浄化水の水質及びアンモニア濃度を測定し、活性汚泥装置100の運転状況に応じた前記物理化学的パラメータの変化を観察した。
ここで、前記MLSSの測定は、MLSS測定器(飯島電子工業社製、IM−50P)を用い、汚泥界面から30cm付近の前記人工下水に対して行った。
また、前記温度及び前記pHの各測定は、pH測定器(HORIBA社製、D−55)を用い、前記汚泥界面から30cm付近の前記人工下水に対して行った。
また、前記人工下水の水質の測定は、遠心分離機(TOMY社製、MX−307)により、前記標準活性汚泥から固液分離された上清部分に対し、過マンガン酸カリウム酸性法(COD−Mn)により、前記上清部分中のCOD(Chemical Oxygen Demand)を測定し、これを指標として行った。
また、前記浄化水の水質の測定は、前記過マンガン酸カリウム酸性法により、前記浄化水中の前記CODを測定し、これを指標として行った。
また、前記人工下水中のアンモニア濃度は、キャピラリー電気泳動装置(Agilent technologies社製、Agilent CE)を用い、前記上清部分に対して行った。
最後に、前記浄化水中のアンモニア濃度は、前記キャピラリー電気泳動装置(Agilent technologies社製、Agilent CE)を用いて行った。
これらの測定は、7日間の前記検証運転期間中、5時点で行った。
Regarding this example, MLSS (Mixed Liquid Suspended Solids), temperature and pH of the artificial sewage, the water quality and ammonia concentration of the artificial sewage and the purified water are measured as physicochemical parameters, and the activated sludge apparatus 100 The changes in the physicochemical parameters according to the operating conditions were observed.
Here, the measurement of the MLSS was performed on the artificial sewage near 30 cm from the sludge interface using an MLSS measuring device (Iijima Electronics Co., Ltd., IM-50P).
Moreover, each measurement of the said temperature and the said pH was performed with respect to the said artificial sewage of 30 cm vicinity from the said sludge interface using the pH measuring device (the product made by HORIBA, D-55).
The water quality of the artificial sewage is measured using a potassium permanganate acid method (COD-) on the supernatant portion solid-liquid separated from the standard activated sludge by a centrifuge (manufactured by TOMY, MX-307). Mn) was used to measure COD (Chemical Oxygen Demand) in the supernatant portion as an index.
The quality of the purified water was measured by measuring the COD in the purified water by the potassium permanganate acidic method and using this as an index.
The ammonia concentration in the artificial sewage was measured on the supernatant using a capillary electrophoresis apparatus (Agilent technologies, Agilent CE).
Finally, the ammonia concentration in the purified water was measured using the capillary electrophoresis apparatus (Agilent Technologies, Agilent CE).
These measurements were made at 5 time points during the verification operation period of 7 days.

前記5時点における前記標準活性汚泥を採取し、次世代シークエンサ(Illumina社製、MiSeq)を用いて前記標準活性汚泥に対する微生物菌叢解析を行った。
ここで、前記次世代シークエンサでの前記微生物菌叢解析は、以下の手順で行った。
先ず、遠心分離により得た前記標準活性汚泥の汚泥サンプル(遠心沈殿物)に対して、平均粒子径が0.1mmのジルコニアとシリカの混合ビーズ(Zirconia/Silica Beads)を加えた状態で、ビーズビータ(バイオメディカルサイエンス社製、Shake Master)に供し、前記汚泥サンプルに含まれる前記微生物の細胞を破砕する。
次いで、得られた細胞破砕液から、フェノール・クロロホルム抽出法により染色体DNAを抽出・精製する。
次いで、前記染色体DNAの16S rRNAをターゲットにしたユニバーサルプライマーを基に、Illumina社製のMiSeq用のバーコード配列等を付加した下記参考文献2に記載のプライマーを用いて、PCR(Polymerase Chain Reaction)法による前記16S rRNA遺伝子の増幅を行った。
参考文献2:J Gregory Caporaso et al., The ISME Journal (2012) 6, 1621-1624)
The standard activated sludge at the 5 time points was collected, and microbial flora analysis was performed on the standard activated sludge using a next-generation sequencer (MilSeq, manufactured by Illumina).
Here, the microbial flora analysis in the next-generation sequencer was performed according to the following procedure.
First, with respect to the sludge sample (centrifugal sediment) of the standard activated sludge obtained by centrifugation, mixed beads of zirconia and silica having an average particle diameter of 0.1 mm (Zirconia / Silica Beads) were added. The sample is subjected to a beater (Shake Master, manufactured by Biomedical Science), and the cells of the microorganisms contained in the sludge sample are crushed.
Next, chromosomal DNA is extracted and purified from the obtained cell lysate by a phenol / chloroform extraction method.
Next, based on the universal primer targeting 16S rRNA of the chromosomal DNA, PCR (Polymerase Chain Reaction) using the primer described in Reference 2 below to which a barcode sequence for MiSeq manufactured by Illumina was added. The 16S rRNA gene was amplified by the method.
(Reference 2: J Gregory Caporaso et al., The ISME Journal (2012) 6, 1621-1624)

得られたPCR増幅産物をAMPure磁気ビーズ(Beckmann coulter社製、A63881)及び精製用マグネットスタンド(Beckmann coulter社製、A32782)を用いて未反応のプライマー及びプライマーダイマーを除去し、次いで、得られた精製産物をアガロースゲル電気泳動により分画し、スピンカラム(Promega社製、Wizard SV Gel and PCR Clean−up System)を用いて目的の断片長を有するPCR増幅産物のみを精製した。
次いで、前記DNAサンプルにおけるDNA濃度をDNA染色用蛍光試薬キットQuant−iT PicoGreen dsDNA Assay Kit(Thermo scientific製、P11496)及び微量用蛍光スペクトロメータ(Thermo scientific製、NanoDrop 3300)を用いて定量し、必要量をMiSeq Reagent Kits v2 (Illumina社製、MS−102−2003)に供し、前記次世代シークエンサによるDNA配列解析を行った。
その結果、前記DNAサンプルから50,000〜100,000 reads程度の配列データが取得された。
取得された前記配列データについて、ソフトウエアea−utils−1.1.2−301(インターネット上で入手可能なフリーソフト)を用いて遺伝子配列情報の連結を行い、更に、ソフトウエアMothur version 1.31.2 を用いてキメラ配列を除去した後、ソフトウエアQIIME version 1.6.0により遺伝子配列の系統学的解析を行い、各微生物種の相対存在率の増減と前記物理化学的パラメータ(アンモニア濃度の低下)との関係性を考察した。なお、ソフトウエアMothur version 1.31.2の詳細については、下記参考文献3を参照でき、ソフトウエアQIIME version 1.6.0に詳細ついては、下記参考文献4を参照することができる。
参考文献3:Schloss P. D et al., Appl. Environ. Microbiol (2009) 75, 7537-7541.
参考文献4:Caporaso J. G et al., Nat. Methods (2010) 7, 335-336.
Unreacted primers and primer dimers were removed from the obtained PCR amplification product using AMPure magnetic beads (Beckmann coulter, A63881) and a purification magnet stand (Beckmann coulter, A32782). The purified product was fractionated by agarose gel electrophoresis, and only the PCR amplification product having the desired fragment length was purified using a spin column (Promega, Wizard SV Gel and PCR Clean-up System).
Next, the DNA concentration in the DNA sample was quantified using a fluorescent reagent kit for DNA staining Quant-iT PicoGreen dsDNA Assay Kit (manufactured by Thermo scientific, P11496) and a fluorescence spectrometer for trace amounts (manufactured by Thermo scientific, NanoDrop 3300). The amount was subjected to MiSeq Reagent Kits v2 (manufactured by Illumina, MS-102-2003), and DNA sequence analysis was performed using the next-generation sequencer.
As a result, sequence data of about 50,000 to 100,000 reads was obtained from the DNA sample.
The obtained sequence data is linked with gene sequence information using software ea-utils-1.1.2-301 (free software available on the Internet), and further software version 1. After removing the chimera sequence using 31.2, systematic analysis of the gene sequence was performed with software QIIME version 1.6.0, and the increase or decrease in relative abundance of each microbial species and the physicochemical parameters (ammonia The relationship with the decrease in concentration was considered. Note that the following reference 3 can be referred to for details of the software “Moture version 1.31.2”, and the following reference 4 can be referred to for details of the software QIIME version 1.6.0.
Reference 3: Schloss P. D et al., Appl. Environ. Microbiol (2009) 75, 7537-7541.
Reference 4: Caporaso J. G et al., Nat. Methods (2010) 7, 335-336.

<考察結果>
以下、考察結果について説明をする。
活性汚泥装置100の運転期間中、嫌気槽102における前記人工下水の温度は、26.0℃〜33.3℃の間を推移し、pHは、8.39〜8.75の間を推移し、MLSSは、6,750mg/L〜10,400mg/Lの間を推移した。また、前記浄化水のCOD−Mnは、55.0ppm以下を推移し、一般的なMBR装置の処理状況と変わらず、活性汚泥装置100による処理状況が良好であったことを確認した。
活性汚泥装置100の前記定常運転期間中、嫌気槽102におけるアンモニア濃度は、徐々に上昇して25.95mMにまで達し、この時点で、前述の微生物凝集剤を添加した。その後7日間の検証運転期間におけるアンモニア濃度の測定結果の推移を図3に示す。
該図3に示すように、アンモニア濃度は、前記微生物凝集剤を添加した後、徐々に低下し、7日目の時点で、13.64mMにまで減少した。
<Discussion results>
Hereinafter, discussion results will be described.
During the operation period of the activated sludge apparatus 100, the temperature of the artificial sewage in the anaerobic tank 102 changes between 26.0 ° C and 33.3 ° C, and the pH changes between 8.39 and 8.75. , MLSS transitioned between 6,750 mg / L and 10,400 mg / L. Moreover, COD-Mn of the said purified water changed below 55.0 ppm, and it confirmed that the process condition by the activated sludge apparatus 100 was favorable, without changing with the process condition of a general MBR apparatus.
During the steady operation period of the activated sludge apparatus 100, the ammonia concentration in the anaerobic tank 102 gradually increased to 25.95 mM, and at this point, the above-described microbial flocculant was added. The transition of the measurement result of ammonia concentration during the verification operation period for 7 days is shown in FIG.
As shown in FIG. 3, the ammonia concentration gradually decreased after the addition of the microbial flocculant, and decreased to 13.64 mM at the seventh day.

この7日間における微生物群集構造の変遷を観察するため、前述の通り、前記標準活性汚泥を前記次世代シークエンサによる解析に供し、前記微生物群集の系統分類を行った。
その結果、この期間中に幾つかの前記微生物種の相対存在率が急激に増加していることが分かった。
次に、この7日間の第1日目と第7日目の相対存在率を比較することで増加倍率を算出した。
解析の結果、前記増加倍率が上位20位に入った前記微生物種のOTU(Operational Taxonomic Unit)1〜20の相対存在率の推移を図4及び図5に示す。なお、図4及び図5に示すOTU1〜20は、前記増加倍率が高い順に番号が付けられ、また、これらの番号は、配列番号1〜20における番号と共通する。即ち、これらの番号は、共通番号として、例えば、OTU“1”の微生物種は、配列番号“1”に記載される、16S rRNA遺伝子の塩基配列を有する微生物種であり、OTU“2”の微生物種は、配列番号“2”に記載される、16S rRNA遺伝子の塩基配列を有する微生物種であることを示している。また、図4は、前記増加倍率が上位1位〜10位であるOTU1〜10の相対存在率の経日変化を示す図であり、図5は、前記増加倍率が上位11位〜20位であるOTU11〜20の相対存在率の経日変化を示す図であり、それぞれの図において、左側欄において点線で囲まれた領域を右側欄で拡大して示している。
また、これらOTU1〜20の近縁種情報、系統分類情報等を下記表1及び表2に示す。
In order to observe the transition of the microbial community structure during these 7 days, as described above, the standard activated sludge was subjected to analysis by the next-generation sequencer, and the microbial community was classified.
As a result, it was found that the relative abundance of some microbial species increased rapidly during this period.
Next, the increase rate was calculated by comparing the relative abundance between the first day and the seventh day of the seven days.
FIG. 4 and FIG. 5 show the transition of the relative abundance of OTUs (Operational Taxonomic Units) 1 to 20 of the microbial species whose increase rate was in the top 20 as a result of analysis. 4 and 5 are numbered in descending order of the increase rate, and these numbers are the same as the numbers in SEQ ID NOS: 1-20. That is, these numbers are common numbers. For example, the microbial species of OTU “1” is the microbial species having the base sequence of 16S rRNA gene described in SEQ ID NO: “1”, and the OTU “2” The microbial species indicates a microbial species having the base sequence of 16S rRNA gene described in SEQ ID NO: “2”. Moreover, FIG. 4 is a figure which shows the daily change of the relative abundance rate of OTU1-10 whose said increase rate is a top 1 rank-10th, and FIG. It is a figure which shows the daily change of the relative abundance rate of a certain OTU11-20, and in each figure, the area | region enclosed with the dotted line in the left side column is expanded and shown in the right side column.
The related species information, system classification information, etc. of these OTU1 to 20 are shown in Table 1 and Table 2 below.

図4、図5に示すOTU1〜20の各微生物の相対存在率の増加倍率は、最も増加倍率の高いOTU1の微生物で1,486.7倍であり、最も増加倍率の低いOTU20の微生物でも9.6倍である。各OTUの具体的な増加倍率は、次の通りである。OTU1:1,486.7倍、OTU2:91.0倍、OTU3:89.8倍、OTU4:58.9倍、OTU5:38.7倍、OTU6:37.0倍、OTU7:23.0倍、OTU8:21.9倍、OTU9:20.2倍、OTU10:20.2倍、OTU11:19.3倍、OTU12:18.5倍、OTU13:14.7倍、OTU14:14.1倍、OTU15:13.5倍、OTU16:13.1倍、OTU17:11.8倍、OTU18:10.1倍、OTU19:10.1倍、OTU20:9.6倍。   The increase rate of the relative abundance of each microorganism of OTU1 to 20 shown in FIG. 4 and FIG. 5 is 1,486.7 times for the OTU1 microorganism having the highest increase rate, and 9 for the OTU20 microorganism having the lowest increase rate. .6 times. The specific increase rate of each OTU is as follows. OTU1: 1,486.7 times, OTU2: 91.0 times, OTU3: 89.8 times, OTU4: 58.9 times, OTU5: 38.7 times, OTU6: 37.0 times, OTU7: 23.0 times OTU8: 21.9 times, OTU9: 20.2 times, OTU10: 20.2 times, OTU11: 19.3 times, OTU12: 18.5 times, OTU13: 14.7 times, OTU14: 14.1 times, OTU15: 13.5 times, OTU16: 13.1 times, OTU17: 11.8 times, OTU18: 10.1 times, OTU19: 10.1 times, OTU20: 9.6 times.

以上のように、OTU1〜20の各微生物は、前記検証運転の開始前では、いずれも相対存在率が低いが、前記検証運転開始後、アンモニア濃度の低下(図3参照)と対応して急激に増加する傾向が確認される(図4,5参照)。
この点、OTU1〜20の全ての微生物について、アンモニアが含まれる前記人工下水に対して、どのように作用するかは定かではないが、OTU8、9、12、14の各微生物は、脱窒能(硝酸などの酸化型窒素化合物を窒素ガスにまで還元する嫌気呼吸様式)を有する種と極めて高い相同性を示し、前記脱窒能を有するものと考えられ、これらの微生物が増加傾向にあることは、これら以外の微生物中に、アンモニアから前記酸化型窒素化合物を生成する微生物が存在することを間接的に示している。
したがって、活性汚泥装置100中の槽中にOTU8、9、12、14の各微生物が存在することを確認できれば、活性汚泥装置100の脱窒性能を肯定的に評価することができ、その増加により、アンモニアを同化する、或いは、前記酸化型窒素化合物に酸化させる微生物の存在を肯定的に評価することができる。
As described above, each of the OTU1 to 20 microorganisms has a low relative abundance before the start of the verification operation, but suddenly corresponds to a decrease in ammonia concentration (see FIG. 3) after the start of the verification operation. (See FIGS. 4 and 5).
In this respect, it is not certain how all the microorganisms of OTU1 to 20 act on the artificial sewage containing ammonia, but each microorganism of OTU8, 9, 12, and 14 has a denitrification ability. (Anaerobic breathing mode that reduces oxidized nitrogen compounds such as nitric acid to nitrogen gas) It shows extremely high homology and is considered to have the above-mentioned denitrification ability, and these microorganisms tend to increase Indirectly indicates that microorganisms other than these that produce the oxidized nitrogen compound from ammonia exist.
Therefore, if it can confirm that each microorganism of OTU8, 9, 12, 14 exists in the tank in the activated sludge apparatus 100, the denitrification performance of the activated sludge apparatus 100 can be positively evaluated, and the increase The presence of microorganisms that assimilate ammonia or oxidize the oxidized nitrogen compound can be positively evaluated.

一方、OTU1〜20におけるOTU8、9、12、14以外の各微生物は、アンモニアを前記酸化型窒素化合物に酸化させる微生物であるか、前記脱窒能を有する微生物であるか、或いは、これら微生物と共生して、これらの働きを補助する微生物であり、いずれの微生物であっても、アンモニアの分解除去に寄与する微生物であると考えられる。
即ち、アンモニアを前記酸化型窒素化合物に酸化させる微生物であれば、活性汚泥装置100のアンモニア処理性能を肯定的に評価することができ、その増加は、前記アンモニア処理性能が向上するものと評価することができる。また、前記脱窒能を有する微生物であれば、前述の通り、活性汚泥装置100の前記脱窒性能を肯定的に評価することができ、その増加により、アンモニアを前記酸化型窒素化合物に酸化させる微生物の存在を肯定的に評価できることに加え、前記脱窒性能が向上するものと評価できる。また、これら微生物の働きを補助する微生物であれば、前記アンモニア処理性能、前記脱窒性能を肯定的に評価することができ、その増加は、前記アンモニア処理性能、前記脱窒性能が向上するものと評価することができる。
したがって、いずれの微生物であっても、廃水中のアンモニア態窒素の分解除去性能を肯定的に評価することができる。
On the other hand, each microorganism other than OTU8, 9, 12, and 14 in OTU1 to 20 is a microorganism that oxidizes ammonia to the oxidized nitrogen compound, a microorganism that has the denitrification ability, or these microorganisms and These microorganisms are symbiotic and assist these functions, and any microorganism is considered to contribute to the decomposition and removal of ammonia.
That is, if the microorganism oxidizes ammonia to the oxidized nitrogen compound, the ammonia treatment performance of the activated sludge apparatus 100 can be positively evaluated, and the increase is evaluated as improving the ammonia treatment performance. be able to. In addition, as described above, the microorganisms having the denitrification ability can positively evaluate the denitrification performance of the activated sludge apparatus 100, and the increase oxidizes ammonia to the oxidized nitrogen compound. In addition to positively evaluating the presence of microorganisms, it can be evaluated that the denitrification performance is improved. In addition, if the microorganisms assist the action of these microorganisms, the ammonia treatment performance and the denitrification performance can be positively evaluated, and the increase is an improvement in the ammonia treatment performance and the denitrification performance. Can be evaluated.
Therefore, any microorganism can be positively evaluated for its ability to decompose and remove ammonia nitrogen in wastewater.

本実施例では、図4、図5、表1及び表2に示されるように、前記増加倍率が高い微生物として、Bacteroidetes門に含まれる微生物が優占的に確認された(OTU1〜6、11、13、15、16)。
OTU1〜20の各微生物のうち、少なくともOTU1〜6、11、13、15、16の各微生物は、アンモニア酸化能を持つことが報告されていないため、アンモニアを同化した結果として、アンモニアを前記酸化型窒素化合物に酸化させる微生物であると推察可能である。
したがって、本実施例に係る実験系では、必ずしも定かではないが、OTU1〜6、11、13、15、16を含む微生物により、前記人工下水中の前記アンモニアから前記酸化型窒素化合物が生成され、OTU8、9、12、14を含む微生物により、前記酸化型窒素化合物から窒素ガスが生成されたものと考えられ、これら微生物が、活性汚泥装置100の槽内で優占的に発生することにより、前記人工下水中のアンモニア態窒素が減少し、その分解物である窒素ガスが系外に排出されたものと考えることができる。
In this example, as shown in FIGS. 4, 5, 1, and 2, microorganisms contained in the Bacteroidetes gate were preferentially confirmed as microorganisms with a high increase rate (OTU 1 to 6, 11). 13, 15, 16).
Among the microorganisms of OTU1 to 20, at least each microorganism of OTU1 to 6, 11, 13, 15, and 16 has not been reported to have ammonia oxidizing ability, and as a result of assimilating ammonia, ammonia is oxidized as described above. It can be inferred that it is a microorganism that is oxidized to a nitrogen-type nitrogen compound.
Therefore, in the experimental system according to the present embodiment, although not necessarily known, the oxidized nitrogen compound is generated from the ammonia in the artificial sewage by microorganisms containing OTU1-6, 11, 13, 15, 16 and It is considered that nitrogen gas was generated from the oxidized nitrogen compound by microorganisms including OTU8, 9, 12, and 14, and these microorganisms are preferentially generated in the tank of the activated sludge apparatus 100. It can be considered that ammonia nitrogen in the artificial sewage is reduced and nitrogen gas which is a decomposition product thereof is discharged out of the system.

以上のように、OTU1〜20の各微生物(配列番号1〜20に記載の各微生物)は、廃水中のアンモニア態窒素の分解除去に関与する微生物であることから、これら微生物の塩基配列が検出装置で検出されるよう設定(登録等)して、検出作業を行えば、その時点における活性汚泥装置100のアンモニア態窒素の分解除去性能を評価することができる。また、前記検出作業を一定期間行うことで、経時的な活性汚泥装置100のアンモニア態窒素の分解除去性能を評価することができる。   As described above, since each microorganism of OTU1-20 (each microorganism described in SEQ ID NOs: 1-20) is a microorganism involved in the decomposition and removal of ammonia nitrogen in wastewater, the base sequences of these microorganisms are detected. If setting (registration etc.) is performed so as to be detected by the apparatus, and detection work is performed, it is possible to evaluate the decomposition and removal performance of ammonia nitrogen of the activated sludge apparatus 100 at that time. Further, by performing the detection operation for a certain period, it is possible to evaluate the decomposition and removal performance of ammonia nitrogen of the activated sludge apparatus 100 over time.

10,100 活性汚泥装置
11,102 嫌気槽
12,53 撹拌機
13,101 好気槽
14 曝気ブロワ
15,106 膜分離ユニット
16,17,19,54 ポンプ
18 膜洗浄液槽
50 流量調整装置
51 微細目スクリーン
52 流量調整槽
103 膜分離槽
104,105 接続部
DESCRIPTION OF SYMBOLS 10,100 Activated sludge apparatus 11,102 Anaerobic tank 12,53 Stirrer 13,101 Aerobic tank 14 Aeration blower 15,106 Membrane separation unit 16,17,19,54 Pump 18 Membrane cleaning liquid tank 50 Flow rate adjustment apparatus 51 Fine Screen 52 Flow adjustment tank 103 Membrane separation tank 104, 105 Connection

Claims (12)

少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を分解させて窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配される活性汚泥装置と、
少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる検出装置と、
を含むことを特徴とする廃水処理システム。
Waste water containing at least ammonia nitrogen and activated sludge are introduced, and an anaerobic tank that nitrifies the ammonia nitrogen to generate nitrified substances and an anaerobic tank that decomposes the nitrites to generate nitrogen gas between the tanks. An activated sludge apparatus arranged to circulate the waste water, and
A detection device capable of detecting a microorganism in which the base sequence of 16S rRNA gene has at least 97% homology with the base sequence described in SEQ ID NO: 1 from at least the wastewater in the activated sludge device;
A wastewater treatment system characterized by comprising:
検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号2に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる請求項1に記載の廃水処理システム。   The wastewater treatment system according to claim 1, wherein the detection device can further detect a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NO: 2. 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号3に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる請求項1から2のいずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 1 to 2, wherein the detection device can further detect a microorganism in which the base sequence of the 16S rRNA gene has a homology of 97% or more with the base sequence of SEQ ID NO: 3. . 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号4に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる請求項1から3のいずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 1 to 3, wherein the detection device can further detect a microorganism in which the base sequence of the 16S rRNA gene has 97% or more homology with the base sequence of SEQ ID NO: 4. . 検出装置が、更に16S rRNA遺伝子の塩基配列が配列番号5に記載の塩基配列と97%以上の相同性を示す微生物を検出可能とされる請求項1から4のいずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 1 to 4, wherein the detection device can further detect a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NO: 5. . 検出装置が、活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出可能とされる請求項1から5のいずれかに記載の廃水処理システム。   The detected value of the microbial abundance at a time point before or after the start of the operation of the activated sludge apparatus, and the microbial abundance at the next time point when the activated sludge apparatus is operated for a certain period from the temporary point. The wastewater treatment system according to any one of claims 1 to 5, wherein it is possible to detect that the microbial abundance is increased at the next time point from the temporary point by comparing with a detection value. 少なくともアンモニア態窒素を含む廃水及び活性汚泥が導入され、前記アンモニア態窒素を硝化させて硝化物を生成させる好気槽及び前記硝化物を分解させて窒素ガスを発生させる嫌気槽が各槽間で前記廃水を循環可能に配される活性汚泥装置を用いて前記廃水を処理する廃水処理方法であって、
少なくとも前記活性汚泥装置中の前記廃水から16S rRNA遺伝子の塩基配列が配列番号1に記載の塩基配列と97%以上の相同性を示す微生物を検出する検出工程を含むことを特徴とする廃水処理方法。
Waste water containing at least ammonia nitrogen and activated sludge are introduced, and an anaerobic tank that nitrifies the ammonia nitrogen to generate nitrified substances and an anaerobic tank that decomposes the nitrites to generate nitrogen gas between the tanks. A wastewater treatment method for treating the wastewater using an activated sludge device that is arranged to circulate the wastewater,
A wastewater treatment method comprising a detection step of detecting a microorganism having a base sequence of 16S rRNA gene having 97% or more homology with the base sequence described in SEQ ID NO: 1 from at least the wastewater in the activated sludge apparatus .
検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号2に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である請求項7に記載の廃水処理方法。   The wastewater treatment method according to claim 7, wherein the detection step is a step of further detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NO: 2. 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号3に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である請求項7から8のいずれかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 7 to 8, wherein the detection step is a step of detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NO: 3. . 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号4に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である請求項7から9のいずれかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 7 to 9, wherein the detection step is a step of further detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence set forth in SEQ ID NO: 4. . 検出工程が、更に16S rRNA遺伝子の塩基配列が配列番号5に記載の塩基配列と97%以上の相同性を示す微生物を検出する工程である請求項7から10のいずれかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 7 to 10, wherein the detection step is a step of further detecting a microorganism in which the base sequence of the 16S rRNA gene shows 97% or more homology with the base sequence shown in SEQ ID NO: 5. . 検出工程が、活性汚泥装置の運転開始前又は運転開始後の一時点における微生物存在量の検出値と、前記一時点から一定期間、前記活性汚泥装置を運転させた次時点における前記微生物存在量の検出値とを比較して、前記微生物存在量が前記一時点よりも前記次時点で増加していることを検出する工程を含む請求項7から11のいずれかに記載の廃水処理方法。   The detection step is the detection value of the microbial abundance at one time point before the start of operation of the activated sludge apparatus or after the start of the operation, and the microbial abundance at the next time point when the activated sludge apparatus is operated for a certain period from the temporary point. The wastewater treatment method according to any one of claims 7 to 11, further comprising a step of detecting that the microbial abundance is increased at the next time point from the temporary point by comparing with a detection value.
JP2014126903A 2014-05-02 2014-06-20 Wastewater treatment system and wastewater treatment method Pending JP2015226896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126903A JP2015226896A (en) 2014-05-02 2014-06-20 Wastewater treatment system and wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014095342 2014-05-02
JP2014095342 2014-05-02
JP2014126903A JP2015226896A (en) 2014-05-02 2014-06-20 Wastewater treatment system and wastewater treatment method

Publications (1)

Publication Number Publication Date
JP2015226896A true JP2015226896A (en) 2015-12-17

Family

ID=54884751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126903A Pending JP2015226896A (en) 2014-05-02 2014-06-20 Wastewater treatment system and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2015226896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036579A (en) * 2018-06-07 2020-03-12 日本製鉄株式会社 Microbial population identification method
WO2020086405A1 (en) * 2018-10-22 2020-04-30 Locus Ip Company, Llc Customizable approaches to waste water treatment
WO2022138981A1 (en) * 2020-12-25 2022-06-30 株式会社クボタ Method for treating organic wastewater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036579A (en) * 2018-06-07 2020-03-12 日本製鉄株式会社 Microbial population identification method
JP7299485B2 (en) 2018-06-07 2023-06-28 日本製鉄株式会社 Method for identifying microbial communities
WO2020086405A1 (en) * 2018-10-22 2020-04-30 Locus Ip Company, Llc Customizable approaches to waste water treatment
WO2022138981A1 (en) * 2020-12-25 2022-06-30 株式会社クボタ Method for treating organic wastewater
JP2022102884A (en) * 2020-12-25 2022-07-07 株式会社クボタ Method of treating organic wastewater
JP7305610B2 (en) 2020-12-25 2023-07-10 株式会社クボタ Organic wastewater treatment method

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment
Ma et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing
Miura et al. Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance
Chu et al. Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing
Choi et al. Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor
Fu et al. Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time
Cheng et al. Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater
JP6941830B2 (en) Anaerobic membrane separation activated sludge device
Liang et al. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater
Molina-Muñoz et al. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions
El-Fadel et al. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate
Zheng et al. Advanced nitrogen removal from municipal wastewater treatment plant secondary effluent using a deep bed denitrification filter
Choi et al. Comparison of sludge characteristics and PCR–DGGE based microbial diversity of nanofiltration and microfiltration membrane bioreactors
Roy et al. Identifying the link between MBRs’ key operating parameters and bacterial community: A step towards optimized leachate treatment
Salcedo Moyano et al. Simultaneous nitrification-denitrification (SND) using a thermoplastic gel as support: pollutants removal and microbial community in a pilot-scale biofilm membrane bioreactor
Leyva-Díaz et al. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor: kinetic study
JP2015226896A (en) Wastewater treatment system and wastewater treatment method
Bernadet et al. Biological Oxygen-dosed Activated Carbon (BODAC) filters–A bioprocess for ultrapure water production removing organics, nutrients and micropollutants
JP2014121692A (en) Method for treating organic effluent by using activated sludge
Paździor et al. Treatment of industrial textile wastewater in biological aerated filters–Microbial diversity analysis
JP2011072938A (en) Treatment method and treating agent of organic substance-containing liquid
KR100769036B1 (en) Biological advanced treatment apparatus of domestic sewage or waste water
Ziembinska et al. Molecular analysis of temporal changes of a bacterial community structure in activated sludge using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH)
JP4575814B2 (en) Nitrogen-containing wastewater treatment method
Han et al. Effective combination of permanganate composite chemicals (PPC) and biological aerated filter (BAF) to pre-treat polluted drinking water source