JP2004154700A - Denitrification treatment apparatus and denitrification treatment method - Google Patents

Denitrification treatment apparatus and denitrification treatment method Download PDF

Info

Publication number
JP2004154700A
JP2004154700A JP2002323533A JP2002323533A JP2004154700A JP 2004154700 A JP2004154700 A JP 2004154700A JP 2002323533 A JP2002323533 A JP 2002323533A JP 2002323533 A JP2002323533 A JP 2002323533A JP 2004154700 A JP2004154700 A JP 2004154700A
Authority
JP
Japan
Prior art keywords
reaction tank
liquid
membrane separation
raw water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002323533A
Other languages
Japanese (ja)
Inventor
Ryohei Ueda
良平 植田
Tomoaki Omura
友章 大村
Nobuyuki Ukai
展行 鵜飼
Yoichi Kawaguchi
洋一 川口
Tomomichi Ekusa
知通 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002323533A priority Critical patent/JP2004154700A/en
Publication of JP2004154700A publication Critical patent/JP2004154700A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a denitrification treatment apparatus by which nitrate nitrogen in raw water such as underground water can be efficiently subjected to removal treatment while stabilizing the nitrate nitrogen, and a denitrification treatment method. <P>SOLUTION: The denitrification treatment apparatus 1 performs denitrification treatment of nitrate nitrogen contained in the raw water by sulfur denitrifying bacteria and has a reaction tank 2, a raw water introducing device 6 for supplying the raw water into the reaction tank 2 and an elemental sulfur and calcium carbonate feeding device 4 for supplying elemental sulfur and calcium carbonate into the reaction tank 2. Further as a discharge device the denitrification treatment apparatus 1 has a gas discharging circulating device 8 for discharging nitrogen gas produced by denitrification treatment in the reaction tank 2 outside the reaction tank 2 and returning a part of nitrogen gas into the reaction tank 2, a membrane separation device 7 which performs membrane separation treatment of the liquid in the reaction tank 2 to separate treated liquid, a treated water discharging device 10 which discharges liquid subjected to membrane separation treatment by the membrane separation device 7 outside the reaction tank 2, and a liquid circulating device 12 which extracts a part of the liquid in the reaction tank 2, controls pH of the liquid within a prescribed range and returns the liquid into the reaction tank. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は脱窒処理装置及び脱窒処理方法に係り、特に、地下水等の上水用原水に含まれる硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理装置及び脱窒処理方法に関する。
【0002】
【従来の技術】
地下水等の原水には、例えば、家畜糞尿等の土壌還元によるアンモニアが酸化されて、硝酸性窒素となって水中にしみ込んでいる。これらの原水に含まれている硝酸性窒素の濃度は通常50ppm以下で比較的低濃度ではあるが、上水源として利用するには、人体への影響等も考慮して水道法施行規則によって水中に含まれる硝酸性窒素濃度を10ppm以下にするように定められており、これらの原水中に含まれる硝酸性窒素を除去する処理(以下「脱窒処理」と呼ぶ)が従来から要請されている。
この原水の脱窒処理としては、従来から、原水中の硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理装置が知られている(例えば、特許文献1参照。)。ここで「硫黄脱窒菌」とは、増殖のための主反応として硫黄化合物を何らかの形で代謝したり、細胞中に元素硫黄を蓄積し、且つ脱窒反応に関与する細菌をいう。硫黄脱窒菌は元々地下水等の原水中にも広く生息している。
この硫黄脱窒菌によって原水中の硝酸性窒素を脱窒処理する従来の脱窒処理装置を図5より具体的に説明する。
図5に示すように、従来の脱窒処理装置50は、上部が開放された反応槽52を備え、この反応槽52内には硫黄脱窒菌の担体として元素硫黄粉粒体54が収容されている。この反応槽52の上部には、反応槽52内の元素硫黄粉粒体54等の沈降性を高めるため、反応槽52内の液体の流速を抑えるための段部52aが設けられている。
一方、反応槽52の下部には、原水導入管56が接続され、硝酸性窒素を含む原水がこの原水導入管56から反応槽52内に導入されるようになっている。原水導入管56から反応槽52内に原水が導入されると、反応槽52内の元素硫黄粉粒体54が流動する。そして、元々原水中に含まれ、脱窒反応に関与する硫黄脱窒菌等がこの元素硫黄粉粒体54の表面に付着して増殖し、脱窒に良好なグラニュールが形成されて、脱窒処理が行われるようになっている。
【0003】
さらに、反応槽52の上部には、ガス抜管58及び処理水抜出管60がそれぞれ接続されている。反応槽52内の脱窒処理によって発生した窒素はガス抜管58から排出されるようになっている。また、反応槽52内の脱窒処理後の処理水は処理水抜出管60から抜出され、この処理水の一部は、処理水分岐管60aへ分岐され、残部は処理水分岐管60bから系外に排出されるようになっている。
処理水分岐管60aへ分岐された処理水は、pHコントローラ62に送られ、処理水にNaOH等のアルカリが供給され、脱窒に好適なpHの調整が行われる。pHコントローラ62によってpHが調整された水は再び原水導入管56に戻され、脱窒処理に利用されるようになっている。
【0004】
【特許文献1】
特開平6−182393号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の脱窒処理装置50においては、低濃度な硝酸性窒素を含む原水をより高速で脱窒処理しようとするほど、処理水抜出管60から送出される処理水と共に反応槽52内の元素硫黄粉粒体54や硫黄脱窒菌等の流出が激しくなる。このため、安定した脱窒処理が難しく、脱窒処理効率を高めるには限界があるという問題がある。
【0006】
そこで、本発明は、上述した従来技術の問題を解決するためになされたものであり、地下水等の原水中の硝酸性窒素を安定させながら効率よく除去処理することができる脱窒処理装置及び脱窒処理方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、原水に含まれる硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理装置であって、反応槽と、この反応槽内に原水を供給する原水供給手段と、反応槽内に元素硫黄及び炭酸カルシウムを供給する元素硫黄及び炭酸カルシウム供給手段と、反応槽内の脱窒処理によって発生した窒素ガスを反応槽外に排出すると共に窒素ガスの一部を反応槽内に戻すガス排出戻し手段と、反応槽内の液体を膜分離処理して処理液を分離する膜分離処理手段と、この膜分離処理手段で膜分離処理した処理液を反応槽外へ排出する処理液排出手段と、を有することを特徴としている。
【0008】
また、本発明は、好ましくは、さらに、原水供給手段から反応槽内に供給される原水にチオ硫酸塩を供給するチオ硫酸塩供給手段を有する。
また、本発明において、好ましくは、膜分離処理手段はマイクロフィルター、又は限外ろ過膜をろ材として有する。
また、本発明において、好ましくは、処理液排出手段は、さらに、膜分離処理手段で膜分離処理した処理液に塩素又は次亜塩素酸塩を供給して混和する塩素又は次亜塩素酸塩供給混和手段と、この塩素又は次亜塩素酸塩供給混和手段で混和した処理液中の塩素量を検出する塩素量検出手段と、を備えている。
また、本発明は、好ましくは、さらに、上記反応槽内の液体の一部を抜出し、この液体を所定のpH範囲に制御して、上記反応槽内に戻すpH制御戻し手段を備えていてもよい。
【0009】
また、本発明は、原水に含まれる硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理方法であって、反応槽内に原水を供給する原水供給工程と、反応槽内に元素硫黄及び炭酸カルシウムを供給する硫黄及び炭酸カルシウム供給工程と、反応槽内の脱窒処理によって発生した窒素ガスを反応槽外に排出すると共に窒素ガスの一部を反応槽内に戻すガス排出戻し工程と、反応槽内の液体を膜分離処理して処理液を分離する膜分離処理工程と、この膜分離処理工程で膜分離処理した処理液を反応槽外へ排出する処理液排出工程と、を有することを特徴としている。
また、本発明は、好ましくは、さらに、原水供給工程で反応槽内に供給される原水にチオ硫酸塩を供給するチオ硫酸塩供給工程と、膜分離工程で膜分離した処理液に塩素又は次亜塩素酸塩を供給して混和する塩素又は次亜塩素酸塩供給混和工程と、この塩素又は次亜塩素酸塩供給混和工程で混和した処理液中の塩素量を検出する塩素量検出工程と、を備えている。
さらに、本発明は、好ましくは、上記反応槽内の液体の一部を抜出し、所定のpH範囲に制御して、上記反応槽内に戻すpH制御戻し工程を備えていてもよい。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の脱窒処理装置及び脱窒処理方法の実施形態について説明する。
図1は、本発明の第1実施形態による脱窒処理装置の全体構成図である。この図1に示すように、本発明の第1実施形態による脱窒処理装置1は、反応槽2を備えている。この反応槽2は、従来の脱窒処理装置50の反応槽52に設けられている反応槽内の液体の流速を抑える段部52のような手段は備えず、反応槽2内の液体の流速を妨げない形状となっている。
また、反応槽2の下部には、原水導入装置6が接続され、硝酸性窒素(NO−N)等を含む原水がこの原水導入装置6から反応槽2内に導入されるようになっている。この反応槽2には、元素硫黄及び炭酸カルシウム供給装置4が設けられ、この供給装置4が反応槽2内に粉状の元素硫黄(S)及び炭酸カルシウム(CaCO)を供給するようになっている。
原水導入装置6から反応槽2内に原水が導入され、元素硫黄及び炭酸カルシウム供給装置4から反応槽2内に粉状の元素硫黄及び炭酸カルシウムが供給されると、反応槽2内の元素硫黄粒子5が流動し、槽内の液体が中和されながら、元々原水中に含まれていた硫黄脱窒菌が元素硫黄粒子5の表面に付着して増殖し、脱窒処理が行われるようになっている。
【0011】
さらに、反応槽2内には、膜分離装置7が設けられている。この膜分離装置7は、例えば、孔径が約1μmのマイクロフィルター、又は分子量約2万の領域で分画可能な限外ろ過膜等のろ材(図示せず)等で完全密閉された箱又は筒状の本体7aを含む。そして、このろ材等で完全密閉された本体7aは、元素硫黄粒子5、硫黄脱窒菌を含む脱窒微生物、その他大腸菌やクリストスポリジウム等の病原微生物を含む反応槽液中の懸濁物質をろ過し、清澄液のみを通過させて処理水として分離するようになっている。
また、反応槽2の上部には、ガス排出循環装置8と、処理水排出装置10と、液循環装置12とがそれぞれ設けられている。
ガス排出循環装置8は、反応槽2内の脱窒処理によって発生した窒素ガスの一部をガス循環路8aへ分岐させて反応槽2内の下部に循環させ、発生した窒素の残部をガス排出路8bから反応槽外へ排出するようになっている。
処理水排出装置10は、反応槽2内の懸濁液を膜分離装置7でろ過した処理水を系外に排出するようになっている。
液循環装置12は、反応槽2内の懸濁液をpH制御装置14に送り、NaOH等のアルカリを添加することによって、脱窒に好適なpH、好ましくはpH約6〜約8.5に調整するようになっている。このpH制御装置14によってpHが調整された液体は再び反応槽2内に戻され、脱窒処理に再利用されるようになっている。
【0012】
つぎに、上述した本発明の第1実施形態の脱窒処理装置1による脱窒処理方法(動作)を説明する。まず、硝酸性窒素(NO−N)等を含む原水が原水導入装置6から反応槽2内に導入され、粉状の元素硫黄(S)及び炭酸カルシウム(CaCO)が元素硫黄及び炭酸カルシウム供給装置4から反応槽2内に供給される。このとき、反応槽2内の液体は、元素硫黄粒子(S)5、原水中の硝酸イオン(NO )及び脱窒菌等が流動して懸濁した状態となっているが、時間の経過と共に、原水中に含まれていた硫黄脱窒菌が元素硫黄粒子5の表面に付着して増殖し、脱窒反応が進み、以下の反応式1(簡略式)のように、窒素ガス(N)が発生する。
なお、硫黄脱窒細菌は原水中に含まれるものを利用することが出来るが、予め活性汚泥や土壌などに元素硫黄やチオ硫酸塩などの硫黄化合物を添加しつつ曝気して好気的に増殖させたものを、反応槽2に植種すると、より速やかに脱窒性能を得ることが出来る。
NO +S+HO → N↑+SO 2−+H (反応式1)
このように、反応式1のような脱窒反応が進むにつれて、反応槽2内の液体は、酸性側に反応しようとするが、供給装置4によって供給される炭酸カルシウムによって中和される。この作用により、原水中の硝酸性窒素濃度が十分低い場合はpH変化が少ないため、pH制御装置14を省略したり、或いはアルカリ添加なしで処理出来ることもある。また、炭酸カルシウムは、pHの中和作用の他、硫黄脱窒菌の増殖に必要な栄養源となる無機炭素を供給するため、硫黄脱窒菌をより速やかに増殖させる作用も有している。
他の栄養源としてりん酸が必要であるが、リンとして原水中の硝酸性窒素の約150分の1程度の量でよく、原水中に不足していれば添加すればよい。その他に必要な微量金属塩は通常原水中に十分含まれている。
【0013】
また、反応槽2内で発生した窒素ガスは、一部がガス排出循環装置8によってガス循環路8aへ分岐され、反応槽2内の下部に循環され、残部は、ガス排出路8bによって系外8bに排出される。この反応槽2内の下部に循環された窒素ガスは、反応槽2内の懸濁液の攪拌や、膜分離装置7のろ材表面(図示せず)の洗浄に利用される。
つぎに、反応槽2内における元素硫黄粒子5、硫黄脱窒菌を含む脱窒微生物、その他大腸菌やクリストスポリジウム等の病原微生物を含む懸濁液が、反応槽2内の水圧によって、膜分離装置7のろ材によって限外ろ過等がなされ、ろ液のみが処理水として分離される。この処理水は処理水排出装置10によって系外に排出される。
【0014】
ここで、本実施形態では、膜分離装置7による反応槽2内の懸濁液の限外ろ過等については、一例として反応槽2内の水圧を利用することを述べたが、このことに限定されず、反応槽2内の懸濁液を膜分離装置7のろ材に積極的に引き込むように引圧をかける装置等を膜分離装置7に設けてもよい。
また、本実施形態では、一例として膜分離装置7が反応槽2内に設けられた例を述べたが、このことに限定されず、反応槽2と膜分離装置7を別々に配置し、両者を連通管等で連通させて、反応槽2内の脱窒処理と膜分離装置7の膜分離処理をそれぞれ個別に行ってもよい。
【0015】
一方、膜分離装置7のろ材を通過できずにろ材の外側に残された元素硫黄粒子5や硫黄脱窒菌等を含む反応槽2内の懸濁液は、液循環装置12によってpH制御装置14に送り込まれ、ここでNaOH等のアルカリが添加されて、液体のpHが脱窒に好適な所定のpHの範囲、好ましくはpH約6〜約8.5に調整される。pH制御装置14によってpHが調整された液体は、再び原水導入装置6に戻され、反応槽2内で脱窒処理に再利用される。
【0016】
上述したように、本発明の第1実施形態による脱窒処理装置1によれば、反応槽2内における脱窒処理中、反応槽2内で発生した窒素ガスが、ガス排出循環装置8によって反応槽2内の下部に循環し、この窒素ガスが反応槽2内の懸濁液の攪拌と膜分離装置7のろ材表面の洗浄を促進する。このため、膜分離装置7が安定した膜分離処理を行うことができ、また、反応槽2の形状についても反応槽2内の流速を妨げない形状であるため、従来の脱窒処理装置50に比べ、反応槽2内の脱窒反応の高速化が可能となり、反応槽2のコンパクト化も可能となる。
【0017】
また、元素硫黄粒子5の粒径は小さいほど脱窒反応を促進して高速化できるが、従来の脱窒処理装置50では、元素硫黄粒子5等の流出が多く、水槽内2に元素硫黄粒子5等を保持するには粒径が50μmが限度であった。しかしながら、本発明の第1実施形態による脱窒処理装置1によれば、膜分離装置7によって例えば粒径が5μmの元素硫黄粒子5でも流出を防止することができ、反応槽2内の元素硫黄粒子や硫黄脱窒菌等の固形物を高濃度に維持することができる。このため、従来の脱窒処理装置50に比べ、数倍の脱窒処理の高速化が可能となるばかりでなく、反応槽2のコンパクト化も可能となる。さらに、膜分離装置7が反応槽2内の元素硫黄粒子5や硫黄脱窒菌以外にも、大腸菌やクリストスポリジウム等の病原微生物を含む懸濁物質をろ過し、清澄なろ液のみが処理水として分離されるため、上水処理に特に有効である。
【0018】
さらに、本実施形態による脱窒処理装置1によれば、膜分離装置7のろ材を通過できずにろ材の外側に残された元素硫黄粒子5や硫黄脱窒菌等を含む反応槽2内の懸濁液が、液循環装置12及びpH制御装置14によって、脱窒に好適なpHの状態で原水に循環されて、反応槽2内の懸濁液の攪拌を促進する。このため、反応槽2内の脱窒反応の高速化が可能となり、反応槽2のコンパクト化も可能となる。
【0019】
つぎに、図2は、本発明の第1実施形態による脱窒処理装置1を使用した場合の処理水中の硝酸性窒素濃度(以下「NO−N濃度」と呼ぶ)の結果の一例を示すグラフである。図2に示すように、処理水中のNO−N濃度は、水道法施行規則で定められている10ppm以下という基準を常に大幅に下回っており、本発明の第1実施形態による脱窒処理装置1により良好で安定した脱窒処理を行うことができる。
【0020】
つぎに、図3及び図4を参照して本発明の脱窒処理装置及び脱窒処理方法の第2実施形態について説明する。
図3は、本発明の第2実施形態による脱窒処理装置の全体構成図である。ここで、図3において、上述したような図1に示す本発明の第1実施形態による脱窒処理装置1と同一部分には同一の符号を付し、それらの説明は省略する。
図3に示すように、本発明の第2実施形態による脱窒処理装置30は、チオ硫酸塩供給装置32を備え、このチオ硫酸塩供給装置32が、原水導入装置6から反応槽2内に導入される前のNO 等を含む原水にチオ硫酸ナトリウム(Na)等のチオ硫酸塩を追加供給するようになっている。
【0021】
さらに、本発明の第2実施形態による脱窒処理装置30は、処理水排出装置10において、塩素又は次亜塩素酸ナトリウム供給装置34と、塩素又は次亜塩素酸ナトリウム混和装置36と、残留塩素自動検出装置38が設けられている。
塩素又は次亜塩素酸ナトリウム供給装置34は、ポンプ34a等の装置を備え、膜分離装置7でろ過処理した処理水中に塩素(Cl)又は次亜塩素酸ナトリウム(NaClO)を供給するようになっている。
塩素又は次亜塩素酸ナトリウム混和装置36は、膜分離装置7でろ過処理した処理水を供給装置34から供給されるCl又はNaClOと混和させるようになっている。
残留塩素自動検出装置38は、混和装置36によって混和された液体に残留する塩素(Cl)の量等を連続的に自動検出し、検出したデータに基づいて、供給装置34のポンプ34aから混和装置36に供給されるCl又はNaClOの量を制御するようになっている。
【0022】
つぎに、上述した本発明の第2実施形態の脱窒処理装置30による脱窒処理方法(動作)を説明する。
まず、チオ硫酸塩供給装置32が、原水導入装置6から反応槽2内に導入される前の硝酸性窒素(NO )等を含む原水にNa等のチオ硫酸塩を追加供給し、S 2−を含む原水が反応槽2内に導入される。
反応槽2内では、原水中に含まれるNO 、S 2−等によって反応式2(簡略式)のような脱窒反応が進み、窒素ガス(N)が発生する。
【0023】
2NO +2S 2−+4HO→N↑+4SO 2−+8H(反応式2)
【0024】
ここで、参考のため、反応式2のより厳密な反応式を以下の反応式3に示す(例えば、文献(1)及び文献(2)参照)。
文献(1) Batchelor B et.al., Autotrophic denitrification using elemental sulfur, JWPCF (1978) p.1986−2001.
文献(2) Bisogni J.J.et.al. Denitrification using thiosulfate and sulfide, J.Env.Eng.Div.(1977−8).
【0025】
NO +0.844S 2−+0.347CO+0.0865HCO +0.0865NH +0.434HO=0.0865CNO+0.5N↑+1.689SO 2−+0.697H (反応式3)
【0026】
また、反応槽2内では、膜分離装置7が反応槽2の水中に含まれる元素硫黄粒子5や脱窒菌のほか、大腸菌やクリストスポリジウム等の病原微生物をろ過処理し、処理水を処理水排出装置10の塩素又は次亜塩素酸ナトリウム混和装置36に送る。
混和装置36に供給される処理水については、反応槽2の上流側でチオ硫酸塩供給装置32が原水に供給したS 2−が原水に含まれるNO に対し過剰になると、処理水中にS 2−が残存する。そこで、塩素又は次亜塩素酸ナトリウム供給装置34が、この残存したS 2−を含む処理水にCl又はNaClOを供給して混和させることにより、S 2−を塩素と反応させて除去する(反応式4参照)。
【0027】
4HClO+2Na+2S 2−+6OH
→2Na+2SO 2−+4Cl+5HO (反応式4)
【0028】
混和装置36においてS 2−を除去した処理水は塩素が残留しているが、残留塩素自動検出装置38がこの処理水中に含まれる残留塩素量等を連続的に自動検出し、検出データを供給装置34に転送し、供給装置34が混和装置36に供給するCl又はNaClOの量を制御する。
ここで、水道法施行規則では、上水中の遊離残留塩素の含有量は、0.1ppm以上と定められているので、残留塩素自動検出装置38が検出する残留塩素量が0.1ppm以上となるように、供給装置34は混和装置36に供給するCl又はNaClO量を制御する。
ここで、残留塩素自動検出装置38が残留塩素量を0.1ppm以上と検出した場合、処理水は上水として系外に排出される。
一方、残留塩素自動検出装置38が残留塩素量を0.1ppm未満と検出した場合、処理水の残留塩素量が0.1ppm以上となるまで、供給装置34が混和装置36に供給するCl又はNaClO量を再調整し、上水処理が完了した後に処理水が系外へ排出される。
【0029】
本発明の第2実施形態による脱窒処理装置30によれば、原水中のNO の変動が大きく従来の脱窒処理装置50では元素硫黄粒子や脱窒菌による脱窒反応が追随できないことがあっても、チオ硫酸塩供給装置32が原水に供給したS 2−が溶解性があり反応槽2内で脱窒反応を容易に促進するため、確実に脱窒処理を行うことができる。
また、チオ硫酸塩供給装置32が原水に供給するS 2−については、原水中のNO の変動を見込んで、適正なS 2−量を供給することによってより確実にNO を除去し、且つ残留するS 2−が少ない処理水を得ることができる。
【0030】
つぎに、図4は、本発明の第2実施形態による脱窒処理装置30を使用した場合の処理水中のNO−N濃度の結果の一例を示すグラフである。図4に示すように、処理水中のNO−N濃度は、水道法施行規則で定められている10ppm以下という基準を常に大幅に下回っており、原水中のNO の変動が大きい場合でも、本発明の第2実施形態による脱窒処理装置30によれば、良好で安定した脱窒処理を確実に行うことができる。
【0031】
【発明の効果】
以上説明したように本発明の脱窒処理装置及び脱窒処理方法によれば、地下水等の原水中の硝酸性窒素を安定させながら効率よく除去処理することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による脱窒処理装置を示す全体構成図である。
【図2】本発明の第1実施形態による脱窒処理装置を使用した場合の処理水中の硝酸性窒素濃度の結果の一例を示すグラフである。
【図3】本発明の第2実施形態による脱窒処理装置を示す全体構成図である。
【図4】本発明の第2実施形態による脱窒処理装置を使用した場合の処理水中の硝酸性窒素濃度の結果の一例を示すグラフである。
【図5】従来の脱窒処理装置を示す全体構成図である。
【符号の説明】
1,30 脱窒処理装置
2 反応槽
4 元素硫黄及び炭酸カルシウム供給装置
5 元素硫黄粒子
6 原水導入装置
7 膜分離装置
8 ガス排出循環装置
8a ガス循環路
8b ガス排出路
10 処理水排出装置
12 液循環装置
14 pH制御装置
32 チオ硫酸塩供給装置
34 塩素又は次亜塩素酸ナトリウム供給装置
36 塩素又は次亜塩素酸ナトリウム混和装置
38 残留塩素自動検出装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a denitrification treatment apparatus and a denitrification treatment method, and more particularly to a denitrification treatment apparatus and a denitrification treatment method for denitrifying nitrate nitrogen contained in raw water for drinking water such as groundwater with sulfur denitrification bacteria.
[0002]
[Prior art]
In raw water such as groundwater, for example, ammonia is oxidized by reduction of soil such as livestock excreta to become nitrate nitrogen and permeates into water. The concentration of nitrate nitrogen contained in these raw waters is usually relatively low, less than 50 ppm. However, in order to use it as a water source, it is necessary to take into account the effects on the human body, etc. The concentration of nitrate nitrogen contained is set to be 10 ppm or less, and a treatment for removing nitrate nitrogen contained in these raw waters (hereinafter referred to as “denitrification treatment”) has been conventionally required.
As the denitrification treatment of raw water, a denitrification treatment apparatus for denitrifying nitrate nitrogen in raw water with sulfur denitrifying bacteria has been conventionally known (for example, see Patent Document 1). As used herein, the term "sulfur denitrifying bacteria" refers to bacteria that metabolize sulfur compounds in some form as a main reaction for growth, accumulate elemental sulfur in cells, and participate in denitrification reactions. Sulfur denitrifying bacteria originally inhabit widely in raw water such as groundwater.
A conventional denitrification apparatus for denitrifying nitrate nitrogen in raw water with the sulfur denitrifying bacteria will be described in detail with reference to FIG.
As shown in FIG. 5, a conventional denitrification treatment apparatus 50 includes a reaction tank 52 having an open top, in which an elemental sulfur powder 54 as a carrier for sulfur denitrifying bacteria is accommodated. I have. Above the reaction tank 52, there is provided a step 52a for suppressing the flow rate of the liquid in the reaction tank 52 in order to enhance the sedimentation of the elemental sulfur powder 54 in the reaction tank 52.
On the other hand, a raw water introduction pipe 56 is connected to a lower part of the reaction tank 52, and raw water containing nitrate nitrogen is introduced into the reaction tank 52 from the raw water introduction pipe 56. When raw water is introduced into the reaction tank 52 from the raw water introduction pipe 56, the elemental sulfur particles 54 in the reaction tank 52 flow. Sulfur denitrifying bacteria and the like, which are originally contained in raw water and participate in the denitrification reaction, adhere to the surface of the elemental sulfur particles 54 and proliferate, forming favorable granules for denitrification. Processing is performed.
[0003]
Further, a gas exhaust pipe 58 and a treated water exhaust pipe 60 are connected to the upper part of the reaction tank 52, respectively. Nitrogen generated by the denitrification treatment in the reaction tank 52 is discharged from a gas vent tube 58. Further, the treated water after the denitrification treatment in the reaction tank 52 is withdrawn from the treated water discharge pipe 60, and a part of the treated water is branched to the treated water branch pipe 60a, and the rest is treated water from the treated water branch pipe 60b. It is designed to be discharged outside the system.
The treated water branched to the treated water branch pipe 60a is sent to the pH controller 62, where an alkali such as NaOH is supplied to the treated water, and a pH adjustment suitable for denitrification is performed. The water whose pH has been adjusted by the pH controller 62 is returned to the raw water introduction pipe 56 again, and is used for denitrification.
[0004]
[Patent Document 1]
JP-A-6-182393 [0005]
[Problems to be solved by the invention]
However, in the conventional denitrification treatment apparatus 50, the more the raw water containing low-concentration nitrate nitrogen is to be denitrified at a higher speed, the more the treated water discharged from the treated water discharge pipe 60 and the inside of the reaction tank 52 The outflow of the elemental sulfur particles 54, sulfur denitrifying bacteria and the like becomes severe. For this reason, there is a problem that stable denitrification treatment is difficult, and there is a limit in increasing denitrification treatment efficiency.
[0006]
In view of the above, the present invention has been made to solve the above-described problems of the related art, and a denitrification treatment apparatus and a denitrification treatment apparatus capable of efficiently removing nitrate nitrogen in raw water such as groundwater while stabilizing the same. It is intended to provide a nitriding treatment method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a denitrification treatment apparatus for denitrifying nitrate nitrogen contained in raw water with sulfur denitrifying bacteria, and supplies a reaction tank and raw water into the reaction tank. Raw water supply means, elemental sulfur and calcium carbonate supply means for supplying elemental sulfur and calcium carbonate into the reaction tank, nitrogen gas generated by the denitrification treatment in the reaction tank is discharged outside the reaction tank, and nitrogen gas is discharged. Means for returning the part to the inside of the reaction tank, membrane separation processing means for separating the processing liquid by membrane separation of the liquid in the reaction tank, and a reaction tank for separating the processing liquid subjected to membrane separation by the membrane separation processing means Discharging means for discharging the processing liquid to the outside.
[0008]
Further, the present invention preferably further includes a thiosulfate supply means for supplying thiosulfate to raw water supplied into the reaction tank from the raw water supply means.
In the present invention, preferably, the membrane separation processing means has a microfilter or an ultrafiltration membrane as a filter medium.
Further, in the present invention, preferably, the treatment liquid discharging means further supplies chlorine or hypochlorite to supply and mix chlorine or hypochlorite to the treatment liquid subjected to the membrane separation treatment by the membrane separation treatment means. A mixing means, and a chlorine amount detecting means for detecting the chlorine amount in the processing liquid mixed by the chlorine or hypochlorite supply mixing means.
Further, the present invention preferably further comprises a pH control return means for extracting a part of the liquid in the reaction tank, controlling the liquid within a predetermined pH range, and returning the liquid to the reaction tank. Good.
[0009]
Further, the present invention is a denitrification treatment method for denitrifying nitrate nitrogen contained in raw water with sulfur denitrifying bacteria, comprising a raw water supply step of supplying raw water into a reaction tank, and elemental sulfur and sulfur in the reaction tank. A sulfur and calcium carbonate supply step of supplying calcium carbonate, a gas discharge return step of discharging nitrogen gas generated by the denitrification treatment in the reaction tank to the outside and returning a part of the nitrogen gas to the reaction tank, A membrane separation treatment step of separating the treatment liquid by membrane separation of the liquid in the reaction tank, and a treatment liquid discharge step of discharging the treatment liquid subjected to the membrane separation treatment in the membrane separation treatment step to the outside of the reaction tank It is characterized by.
Preferably, the present invention further comprises a thiosulfate supply step of supplying thiosulfate to raw water supplied to the reaction tank in the raw water supply step, and chlorine or A chlorine or hypochlorite supply mixing step of supplying and mixing chlorite, and a chlorine amount detection step of detecting the chlorine amount in the processing liquid mixed in the chlorine or hypochlorite supply mixing step. , Is provided.
Further, the present invention may preferably include a pH control return step of extracting a part of the liquid in the reaction tank, controlling the liquid in a predetermined pH range, and returning the liquid to the reaction tank.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a denitrification treatment apparatus and a denitrification treatment method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram of a denitrification treatment apparatus according to a first embodiment of the present invention. As shown in FIG. 1, a denitrification treatment apparatus 1 according to a first embodiment of the present invention includes a reaction tank 2. This reaction tank 2 does not include means such as a step 52 for suppressing the flow rate of the liquid in the reaction tank provided in the reaction tank 52 of the conventional denitrification treatment apparatus 50. It does not hinder the shape.
A raw water introduction device 6 is connected to a lower portion of the reaction tank 2, and raw water containing nitrate nitrogen (NO 3 −N) or the like is introduced into the reaction tank 2 from the raw water introduction device 6. I have. The reaction tank 2 is provided with a device 4 for supplying elemental sulfur and calcium carbonate, and the supply device 4 supplies powdered elemental sulfur (S) and calcium carbonate (CaCO 3 ) into the reaction tank 2. ing.
When raw water is introduced into the reaction vessel 2 from the raw water introduction device 6 and powdered elemental sulfur and calcium carbonate are supplied into the reaction vessel 2 from the elemental sulfur and calcium carbonate supply device 4, elemental sulfur in the reaction vessel 2 While the particles 5 flow and the liquid in the tank is neutralized, the sulfur denitrifying bacteria originally contained in the raw water adhere to the surface of the elemental sulfur particles 5 and multiply, so that the denitrification treatment is performed. ing.
[0011]
Further, a membrane separation device 7 is provided in the reaction tank 2. The membrane separation device 7 is, for example, a box or tube completely sealed with a microfilter having a pore size of about 1 μm, or a filter medium (not shown) such as an ultrafiltration membrane capable of fractionating in a region having a molecular weight of about 20,000. Including a main body 7a. The main body 7a, which is completely sealed with the filter medium or the like, filters suspended substances in a reaction tank liquid containing elemental sulfur particles 5, denitrifying microorganisms including sulfur denitrifying bacteria, and other pathogenic microorganisms such as Escherichia coli and Christosporium. Then, only the clarified liquid is passed through and separated as treated water.
In addition, a gas discharge circulation device 8, a treated water discharge device 10, and a liquid circulation device 12 are provided above the reaction tank 2.
The gas discharge circulating device 8 branches a part of the nitrogen gas generated by the denitrification process in the reaction tank 2 to the gas circulation path 8a and circulates it to the lower part in the reaction tank 2, and discharges the remainder of the generated nitrogen gas. The water is discharged from the passage 8b to the outside of the reaction tank.
The treated water discharge device 10 discharges treated water obtained by filtering the suspension in the reaction tank 2 with the membrane separation device 7 to the outside of the system.
The liquid circulation device 12 sends the suspension in the reaction tank 2 to the pH control device 14 and adds an alkali such as NaOH to a pH suitable for denitrification, preferably a pH of about 6 to about 8.5. Adjustments are made. The liquid whose pH has been adjusted by the pH controller 14 is returned to the reaction tank 2 again, and is reused in the denitrification treatment.
[0012]
Next, a denitrification treatment method (operation) by the above-described denitrification treatment device 1 of the first embodiment of the present invention will be described. First, is introduced into the reaction vessel 2 raw water containing nitrate nitrogen (NO 3 -N) and the like from the raw water introduction device 6, powdery elemental sulfur (S) and calcium carbonate (CaCO 3) is elemental sulfur and calcium carbonate It is supplied from the supply device 4 into the reaction tank 2. At this time, the liquid in the reaction tank 2 is in a state in which elemental sulfur particles (S) 5, nitrate ions (NO 3 ) in raw water, denitrifying bacteria, and the like are flowing and suspended. At the same time, the sulfur denitrifying bacteria contained in the raw water adhere to the surface of the elemental sulfur particles 5 and proliferate, and the denitrification reaction proceeds, and as shown in the following reaction formula 1 (simplified formula), nitrogen gas (N 2 ) Occurs.
Sulfur denitrifying bacteria contained in raw water can be used, but they are aerobically grown by adding a sulfur compound such as elemental sulfur or thiosulfate to activated sludge or soil in advance. When seeded in the reaction tank 2, the denitrification performance can be obtained more quickly.
NO 3 + S + H 2 O → N 2 ↑ + SO 4 2− + H + (Reaction formula 1)
As described above, as the denitrification reaction as in the reaction formula 1 proceeds, the liquid in the reaction tank 2 tends to react on the acidic side, but is neutralized by the calcium carbonate supplied by the supply device 4. Due to this effect, when the concentration of nitrate nitrogen in the raw water is sufficiently low, the pH change is small, so that the treatment may be performed without the pH control device 14 or without adding alkali. Calcium carbonate also has an action of neutralizing pH and supplying inorganic carbon, which is a nutrient necessary for the growth of sulfur denitrifying bacteria, and thus has an action of rapidly growing sulfur denitrifying bacteria.
Phosphoric acid is required as another nutrient source, but the amount of phosphorus may be about 1/150 of the nitrate nitrogen in raw water, and may be added if insufficient in raw water. Other necessary trace metal salts are usually sufficiently contained in raw water.
[0013]
In addition, a part of the nitrogen gas generated in the reaction tank 2 is branched to a gas circulation path 8a by the gas discharge circulation device 8 and circulated to the lower part in the reaction tank 2, and the rest is out of the system by the gas discharge path 8b. 8b. The nitrogen gas circulated in the lower part of the reaction tank 2 is used for stirring the suspension in the reaction tank 2 and for cleaning the surface of a filter medium (not shown) of the membrane separation device 7.
Next, a suspension containing elemental sulfur particles 5, denitrifying microorganisms including sulfur denitrifying bacteria, and other pathogenic microorganisms such as Escherichia coli and Christosporium in the reaction tank 2 is subjected to membrane separation by the water pressure in the reaction tank 2. Ultrafiltration or the like is performed by the filter medium of No. 7, and only the filtrate is separated as treated water. This treated water is discharged out of the system by the treated water discharge device 10.
[0014]
Here, in the present embodiment, for the ultrafiltration of the suspension in the reaction tank 2 by the membrane separation device 7, the use of the water pressure in the reaction tank 2 has been described as an example. Instead, the membrane separation device 7 may be provided with a device or the like that applies a pressure so as to actively draw the suspension in the reaction tank 2 into the filter medium of the membrane separation device 7.
Further, in the present embodiment, an example in which the membrane separation device 7 is provided in the reaction tank 2 has been described as an example. However, the present invention is not limited thereto. May be communicated by a communication pipe or the like, and the denitrification treatment in the reaction tank 2 and the membrane separation treatment of the membrane separation device 7 may be individually performed.
[0015]
On the other hand, the suspension in the reaction tank 2 containing the elemental sulfur particles 5 and sulfur denitrifying bacteria, etc., which cannot be passed through the filter medium of the membrane separation device 7 and is left outside the filter medium, is subjected to the pH control device 14 by the liquid circulation device 12. Where an alkali such as NaOH is added to adjust the pH of the liquid to a predetermined pH range suitable for denitrification, preferably to a pH of about 6 to about 8.5. The liquid whose pH has been adjusted by the pH control device 14 is returned to the raw water introduction device 6 again, and is reused in the reaction tank 2 for denitrification.
[0016]
As described above, according to the denitrification treatment apparatus 1 according to the first embodiment of the present invention, during the denitrification treatment in the reaction tank 2, the nitrogen gas generated in the reaction tank 2 is reacted by the gas discharge circulation device 8. The nitrogen gas circulates in the lower part of the tank 2, and this nitrogen gas promotes stirring of the suspension in the reaction tank 2 and cleaning of the surface of the filter medium of the membrane separation device 7. For this reason, the membrane separation device 7 can perform a stable membrane separation process, and since the shape of the reaction tank 2 does not hinder the flow rate in the reaction tank 2, the conventional denitrification treatment device 50 can be used. In comparison, the speed of the denitrification reaction in the reaction tank 2 can be increased, and the reaction tank 2 can be made compact.
[0017]
In addition, the smaller the particle size of the elemental sulfur particles 5 is, the more the denitrification reaction can be promoted and the speed can be increased. However, in the conventional denitrification treatment device 50, the outflow of the elemental sulfur particles 5 and the like is large, In order to maintain 5 or the like, the particle size was limited to 50 μm. However, according to the denitrification treatment apparatus 1 according to the first embodiment of the present invention, even the elemental sulfur particles 5 having a particle diameter of, for example, 5 μm can be prevented from flowing out by the membrane separation apparatus 7, and the elemental sulfur in the reaction tank 2 can be prevented. Solids such as particles and sulfur denitrifying bacteria can be maintained at a high concentration. For this reason, the denitrification treatment can be performed several times faster than the conventional denitrification treatment device 50, and the reaction tank 2 can be made more compact. Further, the membrane separation device 7 filters suspended substances containing pathogenic microorganisms such as Escherichia coli and Christosporium in addition to the elemental sulfur particles 5 and sulfur denitrifying bacteria in the reaction tank 2, and only the clear filtrate is treated water. Because it is separated, it is particularly effective for water treatment.
[0018]
Furthermore, according to the denitrification treatment apparatus 1 according to the present embodiment, the suspension in the reaction tank 2 containing the elemental sulfur particles 5 and sulfur denitrifying bacteria, etc., which cannot pass through the filter medium of the membrane separation device 7 and remain outside the filter medium. The suspension is circulated to the raw water at a pH suitable for denitrification by the liquid circulation device 12 and the pH control device 14 to promote stirring of the suspension in the reaction tank 2. Therefore, the speed of the denitrification reaction in the reaction tank 2 can be increased, and the reaction tank 2 can be downsized.
[0019]
Next, FIG. 2 shows an example of the result of the nitrate nitrogen concentration (hereinafter referred to as “NO 3 −N concentration”) in the treated water when the denitrification treatment device 1 according to the first embodiment of the present invention is used. It is a graph. As shown in FIG. 2, the concentration of NO 3 -N in the treated water is always significantly lower than the standard of 10 ppm or less specified in the enforcement regulations of the Water Supply Law, and the denitrification treatment apparatus according to the first embodiment of the present invention. By means of 1, good and stable denitrification treatment can be performed.
[0020]
Next, a second embodiment of the denitrification treatment apparatus and the denitrification treatment method of the present invention will be described with reference to FIGS.
FIG. 3 is an overall configuration diagram of a denitrification processing apparatus according to a second embodiment of the present invention. Here, in FIG. 3, the same parts as those of the denitrification processing apparatus 1 according to the first embodiment of the present invention shown in FIG. 1 described above are denoted by the same reference numerals, and the description thereof will be omitted.
As shown in FIG. 3, the denitrification treatment device 30 according to the second embodiment of the present invention includes a thiosulfate supply device 32, and the thiosulfate supply device 32 is inserted into the reaction tank 2 from the raw water introduction device 6. A thiosulfate such as sodium thiosulfate (Na 2 S 2 O 3 ) is additionally supplied to raw water containing NO 3 − and the like before being introduced.
[0021]
Further, the denitrification treatment apparatus 30 according to the second embodiment of the present invention is configured such that, in the treated water discharge apparatus 10, a chlorine or sodium hypochlorite supply apparatus 34, a chlorine or sodium hypochlorite mixing apparatus 36, and a residual chlorine An automatic detection device 38 is provided.
The chlorine or sodium hypochlorite supply device 34 includes a device such as a pump 34a, and supplies chlorine (Cl 2 ) or sodium hypochlorite (NaClO) into the treated water filtered by the membrane separation device 7. Has become.
The chlorine or sodium hypochlorite mixing device 36 mixes the treated water filtered by the membrane separation device 7 with Cl 2 or NaClO supplied from the supply device 34.
The residual chlorine automatic detection device 38 continuously and automatically detects the amount of chlorine (Cl 2 ) remaining in the liquid mixed by the mixing device 36, and mixes the amount from the pump 34a of the supply device 34 based on the detected data. The amount of Cl 2 or NaClO supplied to the device 36 is controlled.
[0022]
Next, a denitrification treatment method (operation) by the above-described denitrification treatment device 30 of the second embodiment of the present invention will be described.
First, the thiosulfate supply device 32 adds thiosulfate such as Na 2 S 2 O 3 to raw water containing nitrate nitrogen (NO 3 ) or the like before being introduced into the reaction tank 2 from the raw water introduction device 6. Raw water that is additionally supplied and contains S 2 O 3 2- is introduced into the reaction tank 2.
In the reaction tank 2, a denitrification reaction as shown in a reaction formula 2 (simplified formula) proceeds by NO 3 , S 2 O 3 2− and the like contained in the raw water, and nitrogen gas (N 2 ) is generated.
[0023]
2NO 3 + 2S 2 O 3 2− + 4H 2 O → N 2 ↑ + 4SO 4 2− + 8H + (Reaction formula 2)
[0024]
Here, for reference, a more strict reaction formula of Reaction Formula 2 is shown in the following Reaction Formula 3 (for example, see References (1) and (2)).
Reference (1) Batchelor B et. al. , Autotropic denitrification using elemental sulfur, JWPCF (1978) p. 1986-2001.
Reference (2) Bisogni J .; J. et. al. Denitrification using thiosulfate and sulfide, J. Am. Env. Eng. Div. (1977-8).
[0025]
NO 3 - + 0.844S 2 O 3 2- + 0.347CO 2 + 0.0865HCO 3 - + 0.0865NH 4 + + 0.434H 2 O = 0.0865C 5 H 7 NO 2 + 0.5N 2 ↑ + 1.689SO 4 2- + 0.697H + (Reaction formula 3)
[0026]
Further, in the reaction tank 2, the membrane separation device 7 filters the elemental sulfur particles 5 and the denitrifying bacteria contained in the water in the reaction tank 2, as well as pathogenic microorganisms such as Escherichia coli and Christosporium, and filters the treated water. It is sent to the chlorine or sodium hypochlorite mixing device 36 of the discharge device 10.
Regarding the treated water supplied to the mixing device 36, when the S 2 O 3 2- supplied to the raw water by the thiosulfate supply device 32 on the upstream side of the reaction tank 2 becomes excessive with respect to NO 3 contained in the raw water, S 2 O 3 2- remains in the treated water. Therefore, the chlorine or sodium hypochlorite supply device 34 supplies Cl 2 or NaClO to the remaining treated water containing S 2 O 3 2- and mixes the same, thereby converting S 2 O 3 2- with chlorine. It is removed by reaction (see reaction formula 4).
[0027]
4HClO + 2Na + + 2S 2 O 3 2- + 6OH -
→ 2Na + + 2SO 4 2− + 4Cl + 5H 2 O (Reaction formula 4)
[0028]
In the treated water from which the S 2 O 3 2- has been removed in the mixing device 36, chlorine remains, but the residual chlorine automatic detecting device 38 continuously and automatically detects the residual chlorine amount and the like contained in the treated water, and detects it. The data is transferred to the supply device 34, and the supply device 34 controls the amount of Cl 2 or NaClO supplied to the mixing device 36.
Here, since the content of free residual chlorine in the tap water is specified by the Water Supply Law enforcement regulations to be 0.1 ppm or more, the residual chlorine amount detected by the residual chlorine automatic detection device 38 is 0.1 ppm or more. Thus, the supply device 34 controls the amount of Cl 2 or NaClO supplied to the mixing device 36.
Here, when the residual chlorine automatic detection device 38 detects the residual chlorine amount as 0.1 ppm or more, the treated water is discharged out of the system as clean water.
On the other hand, when the residual chlorine automatic detection device 38 detects the residual chlorine amount as less than 0.1 ppm, the supply device 34 supplies the mixing device 36 with Cl 2 or Cl 2 until the residual chlorine amount of the treated water becomes 0.1 ppm or more. The NaClO amount is readjusted, and the treated water is discharged out of the system after the water treatment is completed.
[0029]
According to the denitrification apparatus 30 according to the second embodiment of the present invention, NO 3 − in the raw water fluctuates greatly, and the denitrification reaction caused by elemental sulfur particles or denitrifying bacteria cannot follow the conventional denitrification apparatus 50. Even so, the S 2 O 3 2- supplied to the raw water by the thiosulfate supply device 32 has solubility and facilitates the denitrification reaction in the reaction tank 2, so that the denitrification treatment can be surely performed. it can.
In addition, regarding S 2 O 3 2− supplied to the raw water by the thiosulfate supply device 32, more appropriate supply of the S 2 O 3 2- amount is expected in view of the fluctuation of NO 3 − in the raw water. NO 3 can be removed, and treated water with less residual S 2 O 3 2− can be obtained.
[0030]
Next, FIG. 4 is a graph showing exemplary results of NO 3 -N concentration in the treated water in the case of using the denitrification device 30 according to the second embodiment of the present invention. As shown in FIG. 4, NO 3 -N concentration in the treated water, a criterion of 10ppm or less which is determined with tap Law Enforcement Regulations is always significantly lower than, NO 3 in the raw water - even when large variations in the According to the denitrification treatment apparatus 30 according to the second embodiment of the present invention, good and stable denitrification treatment can be reliably performed.
[0031]
【The invention's effect】
As described above, according to the denitrification treatment apparatus and the denitrification treatment method of the present invention, it is possible to efficiently remove nitrate nitrogen in raw water such as groundwater while stabilizing it.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a denitrification treatment apparatus according to a first embodiment of the present invention.
FIG. 2 is a graph showing an example of a result of a nitrate nitrogen concentration in treated water when the denitrification treatment device according to the first embodiment of the present invention is used.
FIG. 3 is an overall configuration diagram illustrating a denitrification processing apparatus according to a second embodiment of the present invention.
FIG. 4 is a graph showing an example of a result of a nitrate nitrogen concentration in treated water when a denitrification treatment device according to a second embodiment of the present invention is used.
FIG. 5 is an overall configuration diagram showing a conventional denitrification treatment apparatus.
[Explanation of symbols]
1, 30 denitrification treatment device 2 reaction tank 4 elemental sulfur and calcium carbonate supply device 5 elemental sulfur particles 6 raw water introduction device 7 membrane separation device 8 gas discharge circulation device 8a gas circulation passage 8b gas discharge passage 10 treated water discharge device 12 liquid Circulation device 14 pH control device 32 Thiosulfate supply device 34 Chlorine or sodium hypochlorite supply device 36 Chlorine or sodium hypochlorite mixing device 38 Automatic residual chlorine detection device

Claims (8)

原水に含まれる硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理装置であって、
反応槽と、
この反応槽内に原水を供給する原水供給手段と、
上記反応槽内に元素硫黄及び炭酸カルシウムを供給する元素硫黄及び炭酸カルシウム供給手段と、
上記反応槽内の脱窒処理によって発生した窒素ガスを上記反応槽外に排出すると共に上記窒素ガスの一部を上記反応槽内に戻すガス排出戻し手段と、
上記反応槽内の液体を膜分離処理して処理液を分離する膜分離処理手段と、
この膜分離処理手段で膜分離処理した処理液を上記反応槽外へ排出する処理液排出手段と、
を有することを特徴とする脱窒処理装置。
A denitrification treatment apparatus for denitrifying nitrate nitrogen contained in raw water with sulfur denitrifying bacteria,
A reaction tank,
Raw water supply means for supplying raw water into the reaction tank,
Element sulfur and calcium carbonate supply means for supplying elemental sulfur and calcium carbonate into the reaction vessel,
Gas discharge and return means for discharging nitrogen gas generated by the denitrification treatment in the reaction tank to the outside of the reaction tank and returning a part of the nitrogen gas to the reaction tank;
Membrane separation treatment means for separating the treatment liquid by membrane separation treatment of the liquid in the reaction tank,
A processing liquid discharging means for discharging the processing liquid subjected to the membrane separation processing by the membrane separation processing means to the outside of the reaction tank,
A denitrification treatment device comprising:
さらに、上記原水供給手段から上記反応槽内に供給される原水にチオ硫酸塩を供給するチオ硫酸塩供給手段を有する請求項1記載の脱窒処理装置。2. The denitrification treatment apparatus according to claim 1, further comprising thiosulfate supply means for supplying thiosulfate to the raw water supplied into the reaction tank from the raw water supply means. 上記膜分離処理手段はマイクロフィルター、又は限外ろ過膜をろ材として有する請求項1又は請求項2に記載の脱窒処理装置。The denitrification treatment apparatus according to claim 1 or 2, wherein the membrane separation means has a microfilter or an ultrafiltration membrane as a filter medium. 上記処理液排出手段は、さらに、上記膜分離処理手段で膜分離処理した処理液に塩素又は次亜塩素酸塩を供給して混和する塩素又は次亜塩素酸塩供給混和手段と、この塩素又は次亜塩素酸塩供給混和手段で混和した処理液中の塩素量を検出する塩素量検出手段と、を備えている請求項1乃至請求項3の何れか1項に記載の脱窒処理装置。The treatment liquid discharging means further comprises a chlorine or hypochlorite supply mixing means for supplying and mixing chlorine or hypochlorite to the treatment liquid subjected to membrane separation treatment by the membrane separation treatment means, The denitrification treatment apparatus according to any one of claims 1 to 3, further comprising chlorine amount detection means for detecting the chlorine amount in the treatment liquid mixed by the hypochlorite supply mixing means. さらに、上記反応槽内の液体の一部を抜出し、この液体を所定のpH範囲に制御して、上記反応槽内に戻すpH制御戻し手段を備えている請求項1乃至請求項4の何れか1項に記載の脱窒処理装置。5. A pH control return means for extracting a part of the liquid in the reaction tank, controlling the liquid within a predetermined pH range, and returning the liquid to the reaction tank. Item 2. The denitrification treatment device according to item 1. 原水に含まれる硝酸性窒素を硫黄脱窒菌によって脱窒処理する脱窒処理方法であって、
反応槽内に原水を供給する原水供給工程と、
上記反応槽内に元素硫黄及びアルカリを供給する硫黄及びアルカリ供給工程と、
上記反応槽内の脱窒処理によって発生した窒素ガスを上記反応槽外に排出すると共に上記窒素ガスの一部を上記反応槽内に戻すガス排出戻し工程と、
上記反応槽内の液体を膜分離処理して処理液を分離する膜分離処理工程と、
この膜分離処理工程で膜分離処理した処理液を上記反応槽外へ排出する処理液排出工程と、
を有することを特徴とする脱窒処理方法。
A denitrification treatment method of denitrifying nitrate nitrogen contained in raw water with sulfur denitrifying bacteria,
A raw water supply step of supplying raw water into the reaction tank,
A sulfur and alkali supply step of supplying elemental sulfur and alkali into the reaction vessel,
A gas discharge return step of discharging nitrogen gas generated by the denitrification treatment inside the reaction tank to the outside of the reaction tank and returning a part of the nitrogen gas to the inside of the reaction tank;
A membrane separation treatment step of separating the treatment liquid by membrane separation treatment of the liquid in the reaction tank,
A treatment liquid discharging step of discharging the processing liquid subjected to the membrane separation processing in the membrane separation processing step to the outside of the reaction tank,
A denitrification treatment method comprising:
さらに、上記原水供給工程で上記反応槽内に供給される原水にチオ硫酸塩を供給するチオ硫酸塩供給工程と、上記膜分離工程で膜分離した処理液に塩素又は次亜塩素酸塩を供給して混和する塩素又は次亜塩素酸塩供給混和工程と、この塩素又は次亜塩素酸塩供給混和工程で混和した処理液中の塩素量を検出する塩素量検出工程と、を備えている請求項6記載の脱窒処理方法。Further, a thiosulfate supply step of supplying thiosulfate to the raw water supplied into the reaction tank in the raw water supply step, and a chlorine or hypochlorite supply to the treatment liquid subjected to membrane separation in the membrane separation step And a chlorine or hypochlorite supply mixing step, and a chlorine amount detection step of detecting the chlorine amount in the treatment liquid mixed in the chlorine or hypochlorite supply mixing step. Item 7. The denitrification treatment method according to Item 6. さらに、上記反応槽内の液体の一部を抜出し、所定のpH範囲に制御して、上記反応槽内に戻すpH制御戻し工程を備えている請求項6又は請求項7に記載の脱窒処理方法。The denitrification treatment according to claim 6 or 7, further comprising a pH control return step of extracting a part of the liquid in the reaction tank, controlling the pH within a predetermined range, and returning the liquid to the inside of the reaction tank. Method.
JP2002323533A 2002-11-07 2002-11-07 Denitrification treatment apparatus and denitrification treatment method Withdrawn JP2004154700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323533A JP2004154700A (en) 2002-11-07 2002-11-07 Denitrification treatment apparatus and denitrification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323533A JP2004154700A (en) 2002-11-07 2002-11-07 Denitrification treatment apparatus and denitrification treatment method

Publications (1)

Publication Number Publication Date
JP2004154700A true JP2004154700A (en) 2004-06-03

Family

ID=32803375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323533A Withdrawn JP2004154700A (en) 2002-11-07 2002-11-07 Denitrification treatment apparatus and denitrification treatment method

Country Status (1)

Country Link
JP (1) JP2004154700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
KR101323711B1 (en) 2011-09-05 2013-10-30 한국원자력연구원 Method for enhancing wastewater denitrification efficiency by using alkaline water for pH control and wastewater processing apparatus using the same
JP2013226512A (en) * 2012-04-25 2013-11-07 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus, and anaerobic treatment method
JP2017164739A (en) * 2016-03-10 2017-09-21 Jfeスチール株式会社 Anaerobic membrane bioreactor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
KR101323711B1 (en) 2011-09-05 2013-10-30 한국원자력연구원 Method for enhancing wastewater denitrification efficiency by using alkaline water for pH control and wastewater processing apparatus using the same
JP2013226512A (en) * 2012-04-25 2013-11-07 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus, and anaerobic treatment method
JP2017164739A (en) * 2016-03-10 2017-09-21 Jfeスチール株式会社 Anaerobic membrane bioreactor device

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
KR101352247B1 (en) Apparatus for treating waste water
JP5142660B2 (en) Wastewater recovery device
US20080053913A1 (en) Nutrient recovery process
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4660247B2 (en) Water treatment method and apparatus
WO2008030234A1 (en) Nutrient recovery process
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP2004154700A (en) Denitrification treatment apparatus and denitrification treatment method
KR100722655B1 (en) Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JPH1157773A (en) Biological dephosphorizing device
JP4396965B2 (en) Heavy metal removal method and apparatus
KR101899909B1 (en) Phosphorus crystallization-filtration removal and recovery system, and method
JP4166881B2 (en) Wastewater treatment method and apparatus
JP4525380B2 (en) Treatment method of wastewater containing rare earth
JP4337303B2 (en) How to remove sulfate ions
JPH1199389A (en) Treatment of water containing organic component and manganese
JP2003266096A (en) Wastewater treatment apparatus
JP3614251B2 (en) Method for suppressing hydrogen sulfide in sewage treatment
KR200295835Y1 (en) Nature flowing and dipping type membrane separation system
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2006305555A (en) Apparatus and method for treating waste water
KR20030076549A (en) Nutrient removal of wastewater using Struvite crystalization
JP3921695B2 (en) Treatment method for wastewater containing manganese

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110