JP6938394B2 - Steam turbine warm-up method and steam turbine - Google Patents

Steam turbine warm-up method and steam turbine Download PDF

Info

Publication number
JP6938394B2
JP6938394B2 JP2018010686A JP2018010686A JP6938394B2 JP 6938394 B2 JP6938394 B2 JP 6938394B2 JP 2018010686 A JP2018010686 A JP 2018010686A JP 2018010686 A JP2018010686 A JP 2018010686A JP 6938394 B2 JP6938394 B2 JP 6938394B2
Authority
JP
Japan
Prior art keywords
passenger compartment
steam
steam turbine
warm
warming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018010686A
Other languages
Japanese (ja)
Other versions
JP2019127906A (en
Inventor
実 冨田
実 冨田
裕 猿渡
裕 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2018010686A priority Critical patent/JP6938394B2/en
Publication of JP2019127906A publication Critical patent/JP2019127906A/en
Application granted granted Critical
Publication of JP6938394B2 publication Critical patent/JP6938394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、蒸気タービンの暖機方法および蒸気タービンに関する。 The present invention relates to a method for warming up a steam turbine and a steam turbine.

蒸気タービンの冷態起動時においては、蒸気タービン各部のメタル温度は室温付近まで低下している。この状態で蒸気タービンの車室内に主蒸気を導入して蒸気タービンを起動しようとした場合、高温の主蒸気と低温の蒸気タービン各部のメタルとの温度差によって過大な熱応力が発生して、車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品の損傷に繋がる虞がある。 At the time of cold start of the steam turbine, the metal temperature of each part of the steam turbine drops to around room temperature. When the main steam is introduced into the passenger compartment of the steam turbine in this state to start the steam turbine, excessive thermal stress is generated due to the temperature difference between the high temperature main steam and the metal of each part of the low temperature steam turbine. This may lead to damage to parts that make up the steam turbine, such as the passenger compartment, stationary blades, rotors, and moving blades installed in the rotors.

特許文献1においては、暖機用蒸気を蒸気タービン中間位置より導入して正流量と逆流量とのバランスを保ちながら暖機を行い、メタル温度の上昇を監視しながら暖機用蒸気の圧力を任意に上昇させる技術が開示されている。 In Patent Document 1, warm-up steam is introduced from the intermediate position of the steam turbine to warm up while maintaining a balance between the forward flow rate and the reverse flow rate, and the pressure of the warm-up steam is controlled while monitoring the rise in metal temperature. Techniques for voluntarily raising are disclosed.

特許文献2においては、蒸気タービンのメタル温度と車室内の蒸気温度の差が許容範囲内であるときを暖機完了条件のひとつとする技術が開示されている。 Patent Document 2 discloses a technique in which a warm-up completion condition is one when the difference between the metal temperature of the steam turbine and the steam temperature in the vehicle interior is within an allowable range.

特公昭62−324号公報Special Publication No. 62-324 特許第3559573号公報Japanese Patent No. 3559573

特許文献1及び特許文献2では、圧力の変化や暖機終了の判断基準がメタル温度になっている。しかし、巨大な蒸気タービン全体のメタル温度を把握することは難しく、温度を測定する場所によってメタル温度に差異が生じてしまう虞がある。これでは正確に車室内の暖機状態を把握できない可能性がある。 In Patent Document 1 and Patent Document 2, the metal temperature is used as a criterion for determining a change in pressure and the end of warm-up. However, it is difficult to grasp the metal temperature of the entire huge steam turbine, and there is a possibility that the metal temperature may differ depending on the place where the temperature is measured. With this, it may not be possible to accurately grasp the warm-up state in the vehicle interior.

本発明はこのような事情を鑑みてなされたものであって、蒸気タービンの車室全体の暖機状態を把握しながら適切な暖機を行うことができる蒸気タービンの暖機方法および蒸気タービンを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a steam turbine warm-up method and a steam turbine capable of performing appropriate warm-up while grasping the warm-up state of the entire passenger compartment of the steam turbine. The purpose is to provide.

上記課題を解決するために、蒸気タービンの暖機方法及び蒸気タービンは以下の手段を採用する。
即ち、本発明の一態様に係る蒸気タービンの暖機方法は、車室とロータとを備える蒸気タービンにおける前記車室に暖機用の蒸気を導入して暖機を行う暖機方法であって、前記車室の熱伸び量に応じて前記車室内の圧力を調整する。
In order to solve the above problems, the steam turbine warm-up method and the steam turbine adopt the following means.
That is, the method for warming up the steam turbine according to one aspect of the present invention is a warm-up method for warming up by introducing steam for warming up into the passenger compartment of a steam turbine including a passenger compartment and a rotor. , The pressure in the passenger compartment is adjusted according to the amount of heat expansion in the passenger compartment.

本体態様に係る蒸気タービンの暖機方法は、車室に蒸気を導入するにあたり、車室の熱伸び量に応じて車室内の圧力を調整することとする。これによれば、車室全体の温度が上昇したことで反映された車室の熱伸び量を、車室内の圧力調整の判断基準とすることができる。これにより、車室へ蒸気を導入する暖気による蒸気タービンの温度上昇を、局所的な温度の把握となる一部領域でのメタル温度を判断基準とした場合と比べて、より的確に車室全体の暖機による温度上昇状態を把握することができる。また、熱伸び量による車室全体の温度上昇から暖機状態を把握しながら車室内の圧力を段階的に調整(上昇)させて伝熱量を順次増加させることで、徐々に車室内の温度を上昇させることができ、局所的な隙間での接触や過大な熱応力の発生を抑制できる。したがって、車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品の変形損傷や狭い隙間で設置した部品の接触損傷を防ぐことができる。
また車室内温度を計測には車室内が高圧蒸気で満たされているので、温度センサを設置するには高圧蒸気をシールできる座を車室に追加する必要がある。更に、小容量の蒸気タービンなどで車室の寸法が小さい場合などでは、温度を計測する座を追加して温度センサを設置するスペースが限られる場合には、前述のように車室の熱伸び量を用いて車室内の圧力を上昇させる調整の判断基準とすれば、温度センサを追加設置する必要がないうえに、設備コストの削減にも繋がる。
The method for warming up the steam turbine according to the main body aspect is to adjust the pressure in the passenger compartment according to the amount of heat expansion in the passenger compartment when introducing steam into the passenger compartment. According to this, the amount of heat expansion in the passenger compartment, which is reflected by the rise in the temperature of the entire passenger compartment, can be used as a criterion for determining the pressure adjustment in the passenger compartment. As a result, the temperature rise of the steam turbine due to the warm air that introduces steam into the passenger compartment is more accurately compared to the case where the metal temperature in a part of the region where the local temperature is grasped is used as a criterion. It is possible to grasp the temperature rise state due to warming up. In addition, the temperature inside the vehicle interior is gradually increased by gradually increasing the amount of heat transfer by gradually adjusting (increasing) the pressure inside the vehicle interior while grasping the warm-up state from the temperature rise of the entire vehicle interior due to the amount of heat expansion. It can be raised, and contact in local gaps and generation of excessive thermal stress can be suppressed. Therefore, it is possible to prevent deformation damage of parts constituting the steam turbine such as the passenger compartment, stationary blades, rotor, and moving blades provided in the rotor, and contact damage of parts installed in a narrow gap.
In addition, since the passenger compartment is filled with high-pressure steam for measuring the temperature inside the passenger compartment, it is necessary to add a seat that can seal the high-pressure steam to the passenger compartment in order to install the temperature sensor. Furthermore, when the size of the passenger compartment is small due to a small-capacity steam turbine, etc., and when the space for installing the temperature sensor is limited by adding a seat for measuring the temperature, the heat expansion of the passenger compartment is as described above. If the amount is used as a criterion for adjusting the pressure inside the vehicle interior, it is not necessary to additionally install a temperature sensor, and the equipment cost can be reduced.

また、本発明の一態様に係る蒸気タービンの暖機方法は、前記車室の熱伸び量が所定値に到達した場合に暖機運転を終了する。 Further, in the steam turbine warm-up method according to one aspect of the present invention, the warm-up operation is terminated when the heat elongation amount of the passenger compartment reaches a predetermined value.

本体態様に係る蒸気タービンの暖機方法は、車室の熱伸び量が所定値に到達した場合に暖機を終了する。これによれば、車室全体の温度上昇から車室の暖機状態による熱伸び量が所定量に到達したときに、簡易な判断のもとで暖機運転を終了してもよい。暖気運転を終了するタイミングを、車室の熱伸び量の所定値とすることで、暖気終了のタイミングを簡易に設定できる。すなわち、車室の熱伸び量を監視することにより、簡易で確実に車室内が暖機された状態で暖機を終了することができる。したがって、暖機運転終了後に主蒸気を車室内に導入しても、主蒸気と車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品との温度差による熱応力の発生による損傷を抑制できる。 The steam turbine warm-up method according to the main body aspect ends warm-up when the heat elongation amount in the passenger compartment reaches a predetermined value. According to this, when the amount of heat expansion due to the warm-up state of the passenger compartment reaches a predetermined amount due to the temperature rise of the entire passenger compartment, the warm-up operation may be terminated based on a simple judgment. By setting the timing for ending the warm-up operation to a predetermined value of the amount of heat expansion in the passenger compartment, the timing for ending the warm-up can be easily set. That is, by monitoring the amount of heat expansion in the vehicle interior, the warm-up can be completed in a state where the vehicle interior is warmed up easily and surely. Therefore, even if the main steam is introduced into the passenger compartment after the warm-up operation is completed, the thermal stress due to the temperature difference between the main steam and the parts constituting the steam turbine such as the passenger compartment, the stationary blade, the rotor, and the moving blades provided in the rotor. Damage due to the occurrence of

また、本発明の一態様に係る蒸気タービンの暖機方法は、車室とロータとを備える蒸気タービンにおける前記車室に暖機用の蒸気を導入して暖機を行う暖機方法であって、前記車室の熱伸び量及び前記車室内の温度を取得し、これらのうち少なくとも一方に応じて前記車室内の圧力を調整する。 Further, the method for warming up a steam turbine according to one aspect of the present invention is a warm-up method for warming up by introducing steam for warming up into the passenger compartment of a steam turbine including a passenger compartment and a rotor. , The amount of heat elongation in the vehicle interior and the temperature in the vehicle interior are acquired, and the pressure in the vehicle interior is adjusted according to at least one of these.

本体態様に係る蒸気タービンの暖機方法は、車室に蒸気を導入するにあたり、車室の熱伸び量及び車室内の温度を取得し、これらのうち少なくとも一方に応じて車室内の圧力を調整する。即ち、車室の熱伸び量及び車室内温度のうち少なくとも一方が所定の条件を満たせば、車室内の圧力を調整することとする。これによれば、車室全体の温度が反映された車室の熱伸び量及び車室温度のうち少なくとも一方を圧力調整の判断基準とすることができる。これにより、車室へ蒸気を導入する暖気による蒸気タービンの温度上昇を局所的な温度の把握となる一部領域でのメタル温度のみを判断基準とした場合と比べて、より的確により正確に車室全体の暖機による温度上昇状態を把握することができる。また、2つの判断基準を持つことで、予想しない影響で1つの判断基準の変化が遅延した場合でも、もう一方の判断基準により、タイミングを遅延することなく車室内の圧力調整の判断基準に適用することが出来る。さらに、局所的なメタル温度を把握しつつ車室全体の暖機状態を把握することができる。 In the method of warming up the steam turbine according to the main body aspect, when introducing steam into the passenger compartment, the amount of heat elongation in the passenger compartment and the temperature in the passenger compartment are acquired, and the pressure in the passenger compartment is adjusted according to at least one of these. do. That is, if at least one of the heat elongation amount of the vehicle interior and the vehicle interior temperature satisfies a predetermined condition, the pressure inside the vehicle interior is adjusted. According to this, at least one of the amount of heat expansion of the passenger compartment and the passenger compartment temperature, which reflects the temperature of the entire passenger compartment, can be used as a criterion for pressure adjustment. As a result, the temperature rise of the steam turbine due to the warm air that introduces steam into the passenger compartment is more accurately and accurately compared to the case where only the metal temperature in a part of the region where the local temperature is grasped is used as the criterion. It is possible to grasp the temperature rise state due to warming up of the entire room. In addition, by having two judgment criteria, even if the change of one judgment standard is delayed due to an unexpected effect, the other judgment standard can be applied to the judgment standard of pressure adjustment in the vehicle interior without delaying the timing. Can be done. Furthermore, it is possible to grasp the warm-up state of the entire vehicle interior while grasping the local metal temperature.

また、本発明の一態様に係る蒸気タービンの暖機方法は、取得した前記車室の熱伸び量及び前記車室内の温度のうち、少なくとも一方が所定値に到達した場合に暖機運転を終了する。 Further, the method for warming up the steam turbine according to one aspect of the present invention ends the warm-up operation when at least one of the acquired heat elongation amount of the passenger compartment and the temperature of the passenger compartment reaches a predetermined value. do.

本体態様に係る蒸気タービンの暖機方法は、取得した車室の熱伸び量及び車室内の温度のうち、少なくとも一方が所定値に到達した場合に暖機運転を終了する。即ち、車室の熱伸び量及び車室内温度のうち少なくとも一方が所定の条件を満たせば、暖機を終了することとする。これによれば、車室全体の温度が反映された車室の熱伸び量及び車室温度のうち少なくとも一方を暖機終了の判断基準とすることができる。これにより、車室へ蒸気を導入する暖気による蒸気タービンの温度上昇を局所的な温度の把握となる一部領域でのメタル温度のみを暖機終了の判断基準とした場合と比べて、より的確により正確に車室全体の暖機による温度上昇状態を把握することができる。また、2つの判断基準を持つことで、予想しない影響で1つの判断基準の変化が遅延した場合でも、もう一方の判断基準により、タイミングを遅延することなく車室内の圧力調整の判断基準に適用することが出来る。さらに、局所的なメタル温度を把握しつつ車室全体の暖機状態を把握することができる。 In the steam turbine warm-up method according to the main body aspect, the warm-up operation is terminated when at least one of the acquired heat elongation amount of the passenger compartment and the temperature of the passenger compartment reaches a predetermined value. That is, the warm-up is terminated when at least one of the heat elongation amount of the vehicle interior and the vehicle interior temperature satisfies the predetermined conditions. According to this, at least one of the heat expansion amount of the passenger compartment and the passenger compartment temperature reflecting the temperature of the entire passenger compartment can be used as the criterion for determining the end of warm-up. As a result, the temperature rise of the steam turbine due to the warm air that introduces steam into the passenger compartment is more accurate than the case where only the metal temperature in a part of the region where the local temperature is grasped is used as the criterion for the end of warm-up. Therefore, it is possible to accurately grasp the temperature rise state due to warming up of the entire passenger compartment. In addition, by having two judgment criteria, even if the change of one judgment standard is delayed due to an unexpected effect, the other judgment standard can be applied to the judgment standard of pressure adjustment in the vehicle interior without delaying the timing. Can be done. Furthermore, it is possible to grasp the warm-up state of the entire vehicle interior while grasping the local metal temperature.

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記車室内の圧力の調整は、段階的に圧力を上昇させる調整である。 Further, in the method for warming up the steam turbine according to one aspect of the present invention, the adjustment of the pressure in the vehicle interior is an adjustment in which the pressure is gradually increased.

本体態様に係る蒸気タービンの暖機方法において、車室内の圧力の調整は、段階的に圧力を上昇させる調整である。これによれば、車室の熱伸び量や車室内の温度等の基準に応じて、車室内の圧力を段階的に順次に上昇させることができる。例えば、暖機によって到達し得る最大熱伸び量を等分割して、分割数に応じて圧力を順次に段階的に上昇させて伝熱量を順次増加させることで、徐々に車室内温度を上昇させることができる。これにより、暖気時に、暖気蒸気と蒸気タービンを構成する部品との温度差を抑制でき、過大な熱応力の発生を抑制できる。したがって、車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品の損傷を防ぐことができる。例えば、最大熱伸び量をXmmとして、それを4分割した場合は、0.25Xmmだけ車室が熱伸びする毎に、車室内の圧力を暖気終了時の圧力上昇までの4分割分を上昇させる。 In the method of warming up the steam turbine according to the main body aspect, the adjustment of the pressure in the vehicle interior is an adjustment in which the pressure is gradually increased. According to this, the pressure in the vehicle interior can be gradually and sequentially increased according to the criteria such as the amount of heat expansion in the vehicle interior and the temperature in the vehicle interior. For example, the maximum heat elongation amount that can be reached by warming up is divided into equal parts, and the pressure is gradually increased according to the number of divisions to gradually increase the heat transfer amount, thereby gradually increasing the vehicle interior temperature. be able to. As a result, the temperature difference between the warm steam and the parts constituting the steam turbine can be suppressed during warming, and the generation of excessive thermal stress can be suppressed. Therefore, it is possible to prevent damage to parts constituting the steam turbine such as the passenger compartment, the stationary blade, the rotor, and the moving blade provided in the rotor. For example, when the maximum heat elongation amount is set to X mm and it is divided into four, each time the passenger compartment heats up by 0.25 X mm, the pressure inside the passenger compartment is increased by four divisions until the pressure rise at the end of warming up. ..

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記蒸気タービンは、前記ロータを支持するスライド軸受台を備え、前記車室の熱伸び量を前記スライド軸受台の移動量から取得する。 Further, in the method for warming up a steam turbine according to one aspect of the present invention, the steam turbine includes a slide bearing base that supports the rotor, and the amount of heat elongation in the vehicle interior is obtained from the amount of movement of the slide bearing base. do.

本体態様に係る蒸気タービンの暖機方法において、蒸気タービンは、ロータを支持するスライド軸受台を備え、車室の熱伸び量をスライド軸受台の移動量から取得する。これによれば、例えば、スライド軸受台に針を設け、その針の移動量を読み取ることができる目盛を用意しておけば、車室の熱伸び量をスライド軸受台によって容易に取得できる。 In the method for warming up the steam turbine according to the main body aspect, the steam turbine is provided with a slide bearing base that supports the rotor, and the amount of heat elongation in the vehicle interior is obtained from the amount of movement of the slide bearing base. According to this, for example, if a needle is provided on the slide bearing base and a scale capable of reading the movement amount of the needle is prepared, the heat elongation amount of the vehicle interior can be easily obtained by the slide bearing base.

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記蒸気タービンの前記ロータで仕事を終了した蒸気を前記車室から排出する排出口から導入する。 Further, in the method for warming up a steam turbine according to one aspect of the present invention, steam that has finished work in the rotor of the steam turbine is introduced from an outlet that discharges from the passenger compartment.

本体態様に係る蒸気タービンの暖機方法において、前記車室を暖機する蒸気は、蒸気タービンに設けられる排出口から導入することとする。これによれば、暖機用蒸気の供給口を新設せずとも、蒸気タービンの暖機が可能になる。特に、排出口に繋がる蒸気配管に低圧(正圧)の作業用蒸気が流通する背圧タービンに採用されて好適である。 In the method for warming up the steam turbine according to the main body aspect, the steam for warming up the passenger compartment is introduced from the discharge port provided in the steam turbine. According to this, it is possible to warm up the steam turbine without newly installing a steam supply port for warming up. In particular, it is suitable for use in a back pressure turbine in which low-pressure (positive pressure) working steam flows through a steam pipe connected to an outlet.

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記車室を暖機する蒸気は、前記蒸気タービンの前記ロータの途中位置の前記車室に設けられたドレン排出口から導入する。 Further, in the method for warming up the steam turbine according to one aspect of the present invention, the steam for warming up the passenger compartment is introduced from a drain outlet provided in the passenger compartment at an intermediate position of the rotor of the steam turbine. ..

本体態様に係る蒸気タービンの暖機方法において、車室を暖機する蒸気は、蒸気タービンに設けられるドレン排出口から導入することとする。これによれば、車室の熱伸び許容が大きくなるように設計されている高温側付近から蒸気を導入することになり、より無理なく円滑な暖機が可能になる。 In the method for warming up the steam turbine according to the main body aspect, the steam for warming up the passenger compartment is introduced from the drain outlet provided in the steam turbine. According to this, steam is introduced from the vicinity of the high temperature side, which is designed to increase the heat expansion tolerance of the passenger compartment, and smooth warm-up becomes possible more reasonably.

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記蒸気タービンは背圧タービンとされる。 Further, in the method for warming up a steam turbine according to one aspect of the present invention, the steam turbine is a back pressure turbine.

本体態様に係る蒸気タービンの暖機方法において、蒸気タービンは背圧タービンとされる。これによれば、暖機用蒸気として、排出口に繋がる蒸気配管に流通する低圧の作業用蒸気(工場内の作業用蒸気など)を使用することができる。つまり、暖機用蒸気を供給するラインを新設する必要がなく、設備コストを削減できる。 In the method for warming up the steam turbine according to the main body aspect, the steam turbine is a back pressure turbine. According to this, low-pressure work steam (work steam in a factory, etc.) circulated in a steam pipe connected to an outlet can be used as warm-up steam. That is, it is not necessary to newly install a line for supplying warm-up steam, and the equipment cost can be reduced.

また、本発明の一態様に係る蒸気タービンの暖機方法において、前記車室を暖機する蒸気によって前記車室が昇温され、前記車室の熱伸び量が飽和する所定温度は、前記蒸気タービが暖機終了後に、前記車室に供給される主蒸気の温度に対して、100℃から150℃低い温度に設定される。 Further, in the method for warming up the steam turbine according to one aspect of the present invention, the predetermined temperature at which the passenger compartment is heated by the steam for warming up the passenger compartment and the amount of heat elongation of the passenger compartment is saturated is the steam. After the turbine has warmed up, the temperature is set to be 100 ° C. to 150 ° C. lower than the temperature of the main steam supplied to the passenger compartment.

本体態様に係る蒸気タービンの暖機方法において、主蒸気の温度と車室の熱伸び量が飽和する所定温度との差(主蒸気の温度>所定温度)がこの温度差以内であれば、主蒸気と蒸気タービンを構成する部品との温度差によって部品に生じる熱伸び差や熱応力による課題が生じないとすることができる。 In the steam turbine warm-up method according to the main body aspect, if the difference between the temperature of the main steam and the predetermined temperature at which the heat elongation of the passenger compartment is saturated (main steam temperature> predetermined temperature) is within this temperature difference, the main It can be said that there is no problem due to the difference in thermal elongation and thermal stress caused in the parts due to the temperature difference between the steam and the parts constituting the steam turbine.

本発明の一態様に係る蒸気タービンは、車室とロータとを備える蒸気タービンであって、前記車室に暖機用の蒸気を導入する暖機の際に、前記車室の熱伸び量に応じて前記車室内の圧力を調整させる制御部を備える。 The steam turbine according to one aspect of the present invention is a steam turbine including a passenger compartment and a rotor, and when warming up by introducing steam for warming up into the passenger compartment, the amount of heat elongation in the passenger compartment is increased. A control unit for adjusting the pressure in the vehicle interior is provided accordingly.

本体態様に係る蒸気タービンは、車室に蒸気を導入する暖機の際に、車室の熱伸び量に応じて車室内の圧力を調整する制御部を備えることとする。これによれば、車室全体の温度が上昇したことで反映された車室の熱伸び量によって車室内の圧力の調整をすることができる。これにより、車室へ蒸気を導入する暖気による蒸気タービンの温度上昇を、局所的な温度の把握となる一部領域でのメタル温度によって圧力の調整をした場合と比べて、より的確に車室全体の暖機における温度上昇状態を把握しながら暖機することができる。また、熱伸び量による車室全体の温度上昇から暖機状態を把握しながら車室内の圧力を段階的に調整(上昇)させて伝熱量を順次増加させることで、徐々に車室内の温度を上昇させることができる。したがって、狭い隙間で設置した部品の接触損傷や過大な熱応力による損傷の発生を抑制できる。したがって、車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品の損傷を防ぐことができる。更に、蒸気タービンの寸法が小さく温度を計測する温度センサを設置できる座を追加設置するスペースが限られる場合、前述のように車室の熱伸び量を用いて車室内の圧力を上昇させる調整の判断基準とすれば、温度センサを追加設置する必要がないうえに、設備コストの削減にも繋がる。 The steam turbine according to the main body aspect is provided with a control unit that adjusts the pressure in the passenger compartment according to the amount of heat expansion in the passenger compartment during warm-up for introducing steam into the passenger compartment. According to this, the pressure in the passenger compartment can be adjusted by the amount of heat expansion in the passenger compartment reflected by the rise in the temperature of the entire passenger compartment. As a result, the temperature rise of the steam turbine due to the warm air that introduces steam into the passenger compartment is more accurately compared to the case where the pressure is adjusted by the metal temperature in a part of the region where the local temperature can be grasped. It is possible to warm up while grasping the temperature rise state in the entire warm-up. In addition, the temperature inside the vehicle interior is gradually increased by gradually increasing the amount of heat transfer by gradually adjusting (increasing) the pressure inside the vehicle interior while grasping the warm-up state from the temperature rise of the entire vehicle interior due to the amount of heat expansion. Can be raised. Therefore, it is possible to suppress the occurrence of contact damage of parts installed in a narrow gap and damage due to excessive thermal stress. Therefore, it is possible to prevent damage to parts constituting the steam turbine such as the passenger compartment, the stationary blade, the rotor, and the moving blade provided in the rotor. Furthermore, if the size of the steam turbine is small and the space for installing an additional seat that can install a temperature sensor that measures the temperature is limited, as described above, the amount of heat expansion in the passenger compartment can be used to increase the pressure in the passenger compartment. If it is used as a judgment standard, it is not necessary to additionally install a temperature sensor, and it also leads to a reduction in equipment cost.

本発明の一態様に係る蒸気タービンは、前記ロータを支持すスライド軸受台を備え、
前記制御部は、前記車室の熱伸び量を前記スライド軸受台の移動量から取得し、取得した前記車室の熱伸び量が所定値に到達した場合に暖機を終了させる。
The steam turbine according to one aspect of the present invention includes a slide bearing base that supports the rotor.
The control unit acquires the heat elongation amount of the vehicle interior from the movement amount of the slide bearing base, and ends the warm-up when the acquired heat expansion amount of the vehicle interior reaches a predetermined value.

本体態様に係る蒸気タービンは、ロータを支持すスライド軸受台を備え、制御部は、車室の熱伸び量をスライド軸受台の移動量から取得し、取得した車室の熱伸び量が所定値に到達した場合に暖機を終了させる。これによれば、車室全体の温度上昇から車室の暖機状態による熱伸びが、スライド軸受台の移動量として把握してスライド軸受台の移動が所定量に至ったときに簡易な判断のもとで暖機運転を終了してもよい。暖気運転を終了のタイミングを車室の熱伸び量の所定値とすることで、暖気終了タイミングを簡易に設定させることができる。すなわち、車室の熱伸び量を監視することにより、簡易で確実に車室内が暖機された状態で暖機を終了させることができる。したがって、暖機運転終了後に主蒸気を車室内に導入しても、主蒸気と車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品との温度差による熱応力の発生を抑制できる。 The steam turbine according to the main body aspect is provided with a slide bearing base that supports the rotor, and the control unit acquires the heat elongation amount of the vehicle interior from the movement amount of the slide bearing base, and the acquired heat elongation amount of the vehicle interior is a predetermined value. When it reaches, warm-up is terminated. According to this, the heat elongation due to the warm-up state of the passenger compartment from the temperature rise of the entire passenger compartment is grasped as the movement amount of the slide bearing base, and a simple judgment is made when the movement of the slide bearing base reaches a predetermined amount. The warm-up operation may be terminated. By setting the end timing of the warm-up operation to a predetermined value of the heat expansion amount of the vehicle interior, the warm-up end timing can be easily set. That is, by monitoring the amount of heat expansion in the vehicle interior, the warm-up can be completed in a state where the vehicle interior is warmed up easily and surely. Therefore, even if the main steam is introduced into the passenger compartment after the warm-up operation is completed, the thermal stress due to the temperature difference between the main steam and the parts constituting the steam turbine such as the passenger compartment, the stationary blade, the rotor, and the moving blades provided in the rotor. Can be suppressed.

本発明の一態様に係る蒸気タービンは、車室とロータとを備える蒸気タービンであって、前記車室に暖機用の蒸気を導入する暖機の際に、前記車室の熱伸び量及び車室内温度を取得し、これらのうち少なくとも一方に応じて、前記車室内の圧力を調整させる制御部を備える。 The steam turbine according to one aspect of the present invention is a steam turbine including a passenger compartment and a rotor, and when warming up by introducing steam for warming up into the passenger compartment, the amount of heat elongation of the passenger compartment and the amount of heat elongation in the passenger compartment It is provided with a control unit that acquires the vehicle interior temperature and adjusts the pressure inside the vehicle interior according to at least one of them.

本体態様に係る蒸気タービンは、暖機の際に、車室の熱伸び量及び車室内温度を取得し、これらのうち少なくとも一方に応じて、前記車室内の圧力を調整させる制御部を備える。これによれば、車室全体の温度が反映された車室の熱伸び量及び車室温度のうち少なくとも一方を圧力調整の判断基準として圧力の調整をすることができる。これにより、車室へ蒸気を導入する暖気による蒸気タービンの温度上昇を局所的な温度の把握となる一部領域でのメタル温度によって圧力の調整をする場合と比べて、より的確に車室全体の暖機状態を把握することができる。また、2つの基準を検知することで、予想しない影響で1つの判断基準の変化が遅延した場合でも、もう一方の判断基準により、タイミングを遅延することなく車室内の圧力調整の判断基準に適用することが出来る。さらに、局所的なメタル温度を把握しつつ車室全体の暖機状態を把握することができる。 The steam turbine according to the main body aspect includes a control unit that acquires the heat elongation amount and the vehicle interior temperature of the vehicle interior at the time of warming up and adjusts the pressure in the vehicle interior according to at least one of them. According to this, the pressure can be adjusted by using at least one of the heat elongation amount of the vehicle interior and the vehicle interior temperature, which reflects the temperature of the entire vehicle interior, as a criterion for pressure adjustment. As a result, the temperature rise of the steam turbine due to the warm air that introduces steam into the passenger compartment is more accurately adjusted for the entire passenger compartment than when the pressure is adjusted by the metal temperature in a part of the area where the local temperature is grasped. It is possible to grasp the warm-up state of. In addition, by detecting two criteria, even if the change of one criterion is delayed due to an unexpected effect, the other criterion is applied to the criteria for pressure adjustment in the vehicle interior without delaying the timing. Can be done. Furthermore, it is possible to grasp the warm-up state of the entire vehicle interior while grasping the local metal temperature.

本発明の一態様に係る蒸気タービンは、前記ロータを支持するスライド軸受台を備え、前記制御部は、前記車室の熱伸び量を前記スライド軸受台の移動量から取得し、取得した前記車室の熱伸び量及び前記車室内温度のうち、少なくとも一方が所定値に到達した場合に暖機を終了させる。 The steam turbine according to one aspect of the present invention includes a slide bearing base that supports the rotor, and the control unit acquires the heat elongation amount of the vehicle interior from the movement amount of the slide bearing base, and the acquired vehicle. The warm-up is terminated when at least one of the heat expansion amount of the chamber and the vehicle interior temperature reaches a predetermined value.

本体態様に係る蒸気タービンは、ロータを支持すスライド軸受台を備え、制御部は、車室の熱伸び量を前記スライド軸受台の移動量から取得し、取得した車室の熱伸び量及び車室内温度のうち、少なくとも一方が所定値に到達した場合に暖機を終了させる。これによれば、車室全体の暖機状態を把握した状態で、暖機運転を終了させることができる。これにより、確実に車室内が暖機された状態で暖機を終了させることができる。したがって、暖機運転終了後に主蒸気を車室内に導入しても、主蒸気と車室、静翼、ロータ、ロータに設けられる動翼などの蒸気タービンを構成する部品との狭い隙間で設置した部品の接触損傷や温度差による熱応力による破損の発生を抑制できる。また、2つの基準を検知することで、予想しない影響で1つの判断基準の変化が遅延した場合でも、もう一方の判断基準により、タイミングを遅延することなく車室内の暖機終了の判断基準に適用することが出来る。さらに、局所的なメタル温度を把握しつつ車室全体の暖機状態を把握することができる。 The steam turbine according to the main body aspect is provided with a slide bearing base that supports the rotor, and the control unit acquires the heat elongation amount of the vehicle interior from the movement amount of the slide bearing base, and obtains the heat elongation amount of the vehicle interior and the vehicle. Warm-up is terminated when at least one of the room temperatures reaches a predetermined value. According to this, the warm-up operation can be terminated while grasping the warm-up state of the entire vehicle interior. As a result, the warm-up can be completed with the interior of the vehicle being warmed up. Therefore, even if the main steam is introduced into the passenger compartment after the warm-up operation is completed, it is installed in a narrow gap between the main steam and the parts constituting the steam turbine such as the passenger compartment, the stationary blade, the rotor, and the moving blades provided in the rotor. It is possible to suppress the occurrence of contact damage of parts and damage due to thermal stress due to temperature difference. In addition, by detecting two criteria, even if the change of one criterion is delayed due to an unexpected effect, the other criterion can be used as a criterion for the end of warm-up in the vehicle interior without delaying the timing. It can be applied. Furthermore, it is possible to grasp the warm-up state of the entire vehicle interior while grasping the local metal temperature.

本発明によれば、蒸気タービンの車室全体の暖機状態を把握しながら適切な暖機を行うことができる。 According to the present invention, it is possible to perform appropriate warm-up while grasping the warm-up state of the entire vehicle interior of the steam turbine.

本発明の第1及び第2実施形態に係る蒸気タービンの概略縦断面図である。It is a schematic vertical sectional view of the steam turbine which concerns on 1st and 2nd Embodiment of this invention. 図1の蒸気タービンの平面図である。It is a top view of the steam turbine of FIG. 本発明の第1及び第2実施形態に係る蒸気タービンの暖機運転時の概略構成図である。It is a schematic block diagram at the time of warm-up operation of the steam turbine which concerns on 1st and 2nd Embodiment of this invention. 本発明の第1実施形態に係る蒸気タービンの(A)車室の圧力変化、(B)車室の熱伸び量、(C)車室内の温度を表した図である。It is a figure showing (A) pressure change of the vehicle interior, (B) the amount of heat elongation of the vehicle interior, and (C) the temperature of the vehicle interior of the steam turbine according to the first embodiment of the present invention. 本発明の第2実施形態に係る蒸気タービンの(A)車室の圧力変化、(B)車室の熱伸び量、(C)車室内の温度を表した図である。It is a figure showing (A) pressure change of the vehicle interior, (B) the amount of heat elongation of the vehicle interior, and (C) the temperature of the vehicle interior of the steam turbine according to the second embodiment of the present invention. 本発明の第1及び第2実施形態の変形例に係る蒸気タービンの他例の暖機運転時の概略構成図である。It is a schematic block diagram at the time of warm-up operation of another example of the steam turbine which concerns on the modification of 1st and 2nd Embodiment of this invention.

以下、本発明の一実施形態について図を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

〔第1実施形態〕
以下、本発明の第1実施形態について図1乃至4を用いて説明する。
まず、本実施形態の蒸気タービン10の構成について説明する。
図1に示すように、本実施形態の蒸気タービンは、例えば背圧タービン(蒸気タービン)10である。背圧タービン10は、車室12とロータ14とを備える。以下の実施形態の説明においては、背圧タービンを例に用いて説明するが、背圧タービンに限定するものではなく、復水器を持つ蒸気タービンにも適用可能である。
[First Embodiment]
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
First, the configuration of the steam turbine 10 of the present embodiment will be described.
As shown in FIG. 1, the steam turbine of the present embodiment is, for example, a back pressure turbine (steam turbine) 10. The back pressure turbine 10 includes a vehicle compartment 12 and a rotor 14. In the following description of the embodiment, a back pressure turbine will be described as an example, but the present invention is not limited to the back pressure turbine, and can be applied to a steam turbine having a condenser.

車室12は、ロータ14、静翼(図示せず)などの背圧タービン10を構成する部品を内蔵し、ボイラ(図示せず)から生成された例えば500〜550℃、10M〜15MPaの高温高圧の蒸気が流通する金属製の容器である。 The passenger compartment 12 incorporates parts constituting the back pressure turbine 10 such as a rotor 14 and a stationary blade (not shown), and is generated from a boiler (not shown) at a high temperature of, for example, 500 to 550 ° C. or 10 M to 15 MPa. It is a metal container through which high-pressure steam flows.

ロータ14は、その主要部が車室12に内蔵され、軸方向(水平方向)の両端側にロータ14の軸方向に延出するシャフト部14A,14Bを備えている。また、車室12に内蔵されているロータ14の主要部には、図示しない動翼が設けられている。ボイラ(図示せず)から生成された高温高圧の蒸気が図示しない動翼に作用して、ロータ14を回転駆動させる。ロータ14を通過して数MPaまで膨張した蒸気は、排出口P2(後述)から排気される。 The main portion of the rotor 14 is built in the passenger compartment 12, and shaft portions 14A and 14B extending in the axial direction of the rotor 14 are provided on both end sides in the axial direction (horizontal direction). Further, a moving blade (not shown) is provided in the main part of the rotor 14 built in the vehicle interior 12. High-temperature and high-pressure steam generated from a boiler (not shown) acts on moving blades (not shown) to drive the rotor 14 to rotate. The steam that has passed through the rotor 14 and expanded to several MPa is exhausted from the discharge port P2 (described later).

シャフト部14Aは、ジャーナル軸受16Aによって回転可能に支持されている。また、ジャーナル軸受16Aは、固定軸受台20に設けられている。シャフト部14Aには発電機(図示せず)が接続され、ロータ14の回転駆動が発電機に伝達されて発電が行なわれる。 The shaft portion 14A is rotatably supported by the journal bearing 16A. Further, the journal bearing 16A is provided on the fixed bearing base 20. A generator (not shown) is connected to the shaft portion 14A, and the rotational drive of the rotor 14 is transmitted to the generator to generate electricity.

シャフト部14Bは、ジャーナル軸受16B及びスラスト軸受18によって回転可能に支持されている。また、ジャーナル軸受16B及びスラスト軸受18は、スライド軸受台22に設けられている。 The shaft portion 14B is rotatably supported by a journal bearing 16B and a thrust bearing 18. Further, the journal bearing 16B and the thrust bearing 18 are provided on the slide bearing base 22.

スライド軸受台22は、基礎Bに対してロータ14の軸方向にスライド移動可能なスライド機構(図示せず)と、車室12の熱伸びを移動量として伝達される熱伸び伝達機構(図示せず)を備えており、車室12の熱伸び(後述)に合わせてロータ14の軸方向にスライドする。これに対して固定軸受台20は、基礎Bに対して固定されていて、その位置は常に固定されている。即ち、スライド軸受台22は、固定軸受台20に対して、ロータ14の軸方向に近接及び離間が可能な構成とされている。 The slide bearing base 22 has a slide mechanism (not shown) that can slide and move in the axial direction of the rotor 14 with respect to the foundation B, and a heat elongation transmission mechanism (not shown) that transmits heat elongation of the vehicle interior 12 as a movement amount. The rotor 14 slides in the axial direction in accordance with the heat expansion (described later) of the passenger compartment 12. On the other hand, the fixed bearing base 20 is fixed to the foundation B, and its position is always fixed. That is, the slide bearing base 22 is configured to be close to and separated from the fixed bearing base 20 in the axial direction of the rotor 14.

図2に示すように、スライド軸受台22側には、熱伸び量測定部24が設けられており、車室12の熱伸び量を測定可能な構成とされている。図2の場合、スライド軸受台22に針が設けられ、基礎Bに目盛が設けられている。スライド軸受台22に設けられた針は、基礎Bに設けられた目盛に対して移動する。この構成によって、基礎Bに対するスライド軸受台22の移動量を測定することで車室12の熱伸び量を測定することができる。 As shown in FIG. 2, a heat elongation amount measuring unit 24 is provided on the slide bearing base 22 side so that the heat elongation amount of the vehicle interior 12 can be measured. In the case of FIG. 2, a needle is provided on the slide bearing base 22, and a scale is provided on the foundation B. The needle provided on the slide bearing base 22 moves with respect to the scale provided on the foundation B. With this configuration, the amount of heat elongation of the vehicle interior 12 can be measured by measuring the amount of movement of the slide bearing base 22 with respect to the foundation B.

背圧タービン10は、図3に示すように各蒸気配管に接続される。なお、図3における背圧タービン10は、復水器を持たず、背圧タービンにボイラ(図示せず)から供給され高温高圧の蒸気は、背圧タービン10で膨張して、ロータ14の回転駆動を得る。 The back pressure turbine 10 is connected to each steam pipe as shown in FIG. The back pressure turbine 10 in FIG. 3 does not have a condenser, and the high-temperature and high-pressure steam supplied to the back pressure turbine from a boiler (not shown) expands in the back pressure turbine 10 to rotate the rotor 14. Get drive.

また、背圧タービン10は、通常の運転において、排出される蒸気の圧力が大気圧以上のものであり、排出された大気圧以上の蒸気は、例えば工場内の作業用蒸気に利用される。 Further, in the back pressure turbine 10, the pressure of the discharged steam is equal to or higher than the atmospheric pressure in normal operation, and the discharged steam having the atmospheric pressure or higher is used, for example, as working steam in a factory.

図3において、背圧タービン10の車室12には、通常運転時にボイラ(図示せず)からの主蒸気を取り込む吸入口P1、通常運転時にロータ14で仕事を終了した蒸気を排出する排出口P2、通常運転時や起動停止時にドレンをロータ14の途中位置から排出可能なドレン排出口P3、暖機時に暖機用蒸気による暖気終了蒸気およびドレンを排出可能な暖機ドレン排出口P4を備えている。 In FIG. 3, the passenger compartment 12 of the back pressure turbine 10 has an intake port P1 that takes in main steam from a boiler (not shown) during normal operation, and an discharge port that discharges steam that has finished work in the rotor 14 during normal operation. Equipped with P2, a drain discharge port P3 that can discharge drain from the middle position of the rotor 14 during normal operation or start / stop, and a warm-up drain discharge port P4 that can discharge warm-up steam and drain from warm-up steam during warm-up. ing.

吸入口P1は、吸入口側配管S1を介してボイラ(図示せず)と接続されている。また、吸入口側配管S1には、蒸気バルブ31,32が設けられている。通常運転時、ボイラによって生成された高温高圧の蒸気は、吸入口側配管S1内を流通して吸入口P1から車室12内に導かれる。 The suction port P1 is connected to a boiler (not shown) via a suction port side pipe S1. Further, steam valves 31 and 32 are provided in the suction port side pipe S1. During normal operation, the high-temperature and high-pressure steam generated by the boiler circulates in the suction port side pipe S1 and is guided from the suction port P1 into the passenger compartment 12.

排出口P2は、排出口側配管S2を介して作業用蒸気配管S5と接続されている。また、排出口側配管S2には、蒸気バルブ33が設けられている。
通常運転時には、排出口P2から車室12の外部に排出された大気圧以上の蒸気は、排出口側配管S2内を流通して作業用蒸気配管S5に導かれる。また、作業用蒸気配管S5には、他系統の背圧タービンの排出口に接続された蒸気配管S6が接続されている。図3の場合、他系統からの蒸気配管S6は1本とされているが、これは1本に限定するものではなく、例えば、2本以上あっても良い。また、蒸気配管S6は、他系統の背圧タービンの排出口に接続された蒸気配管に限らず、図示しないボイラ(通常運転時に主蒸気を生成するボイラとは異なるボイラ)に接続された蒸気配管であっても良い。作業用蒸気配管S5を流通する大気圧以上の蒸気は、工場内の各作業場所に作業用蒸気として供給される。
一方、本実施形態における暖機時(後述)には、作業用蒸気配管S5を流通する大気圧以上の蒸気は、排出口側配管S2を介して排出口P2から暖機用蒸気として車室12内に導かれる。
The discharge port P2 is connected to the work steam pipe S5 via the discharge port side pipe S2. Further, a steam valve 33 is provided in the discharge port side pipe S2.
During normal operation, the steam above atmospheric pressure discharged from the discharge port P2 to the outside of the passenger compartment 12 circulates in the discharge port side pipe S2 and is guided to the work steam pipe S5. Further, a steam pipe S6 connected to a discharge port of a back pressure turbine of another system is connected to the work steam pipe S5. In the case of FIG. 3, the number of steam pipes S6 from other systems is one, but this is not limited to one, and for example, there may be two or more. Further, the steam pipe S6 is not limited to the steam pipe connected to the discharge port of the back pressure turbine of another system, but is also connected to a boiler (a boiler different from the boiler that generates main steam during normal operation) (not shown). It may be. The steam above atmospheric pressure flowing through the work steam pipe S5 is supplied as work steam to each work place in the factory.
On the other hand, during warm-up (described later) in the present embodiment, steam above atmospheric pressure flowing through the work steam pipe S5 is discharged from the discharge port P2 through the discharge port side pipe S2 as warm-up steam in the passenger compartment 12. Guided in.

ドレン排出口P3は、図示しないドレン排出系統に接続されている。通常運転時、ドレン排出口P3から、車室12内のドレンを車室12の外部へと排出する。 The drain discharge port P3 is connected to a drain discharge system (not shown). During normal operation, the drain in the passenger compartment 12 is discharged to the outside of the passenger compartment 12 from the drain discharge port P3.

暖機ドレン排出口P4には、暖機ドレン排出配管S4が接続されている。また、暖機ドレン排出配管S4には、蒸気バルブ36が設けられている。暖機時には、暖機ドレン排出口P4から、車室12内を流通し暖気の昇温用に熱を供与した暖気終了蒸気およびドレンを車室12の外部へと排出する。 A warm-up drain discharge pipe S4 is connected to the warm-up drain discharge port P4. Further, a steam valve 36 is provided in the warm-up drain discharge pipe S4. At the time of warming up, the warm-up end steam and the drain that circulate in the passenger compartment 12 and provide heat for raising the temperature of the warm air are discharged to the outside of the passenger compartment 12 from the warm-up drain discharge port P4.

次に、本実施形態の背圧タービン10の暖機について説明する。
本実施形態の暖機においては、暖機用蒸気として、作業用蒸気配管S5を流通する蒸気を利用する。作業用蒸気配管S5を流通する蒸気は、暖気を必要とする背圧タービン10の稼働状況とは別に、例えば工場内の作業用蒸気に利用できるよう流通している。
Next, warming up of the back pressure turbine 10 of the present embodiment will be described.
In the warm-up of the present embodiment, the steam flowing through the working steam pipe S5 is used as the warm-up steam. The steam flowing through the work steam pipe S5 is distributed so that it can be used for work steam in a factory, for example, separately from the operating status of the back pressure turbine 10 that requires warm air.

蒸気バルブ33を開けることで、排出口側配管S2を介して排出口P2から車室12内に取り込んだ暖機用蒸気は、背圧タービン10を構成する部品を加熱する。このとき、ロータ14は図示しない電動モータによって数rpmで回転(ターニング)され、ロータ14の温度上昇に伴うロータ14のたわみ変形を抑制するとともに、ロータ14の温度が出来るだけ均一になるようにする。これに対して暖機用蒸気は、背圧タービン10を構成する部品の昇温に熱を供与することによって冷却され、一部は復水し、ドレンとなって暖気終了蒸気とともに暖機ドレン排出口P4から排出される。なお、暖機時においては、吸入口側配管S1に設けられる蒸気バルブ31,32や、ドレン排出口P3に接続される蒸気バルブ(図示せず)は閉状態とされていて、蒸気やドレンなどの流通はない。 By opening the steam valve 33, the warm-up steam taken into the vehicle interior 12 from the discharge port P2 via the discharge port side pipe S2 heats the parts constituting the back pressure turbine 10. At this time, the rotor 14 is rotated (turned) at several rpm by an electric motor (not shown) to suppress the deflection deformation of the rotor 14 due to the temperature rise of the rotor 14 and to make the temperature of the rotor 14 as uniform as possible. .. On the other hand, the warm-up steam is cooled by supplying heat to raise the temperature of the parts constituting the back pressure turbine 10, and a part of the warm-up steam is condensed to become a drain, and the warm-up drain is discharged together with the warm-up end steam. It is discharged from the outlet P4. During warm-up, the steam valves 31 and 32 provided in the suction port side pipe S1 and the steam valves (not shown) connected to the drain discharge port P3 are closed, and steam, drain, etc. There is no distribution.

暖機時の車室12内の圧力は、暖機ドレン排出配管S4に設けられている蒸気バルブ36の開度によって調整される。車室12内の圧力を上昇させることで車室12内の蒸気からの伝熱量が上昇して、結果として、背圧タービン10を構成する部品の加熱が促進される。これによって、背圧タービン10を構成する部品の温度と通常運転時に車室12内に導かれる高温の主蒸気との温度差が小さくなり、所定温度差以下(後述)まで暖気により上昇させておくことで、吸入口P1からの主蒸気導入による背圧タービン10を構成する部品の熱変形が抑制され、背圧タービン10を円滑に起動することができる。 The pressure in the passenger compartment 12 during warm-up is adjusted by the opening degree of the steam valve 36 provided in the warm-up drain discharge pipe S4. By increasing the pressure in the passenger compartment 12, the amount of heat transferred from the steam in the passenger compartment 12 increases, and as a result, the heating of the parts constituting the back pressure turbine 10 is promoted. As a result, the temperature difference between the temperature of the parts constituting the back pressure turbine 10 and the high-temperature main steam guided into the vehicle interior 12 during normal operation is reduced, and the temperature is raised to a predetermined temperature difference or less (described later) by warming up. As a result, thermal deformation of the parts constituting the back pressure turbine 10 due to the introduction of the main steam from the suction port P1 is suppressed, and the back pressure turbine 10 can be started smoothly.

次に、本実施形態の背圧タービン10の暖機について、その方法を詳細に説明する。
図4に示すように、本実施形態の背圧タービン10の暖機においては、車室12内の圧力を段階的に上昇させる(図4(A)参照)。車室12内の圧力を上昇させるタイミングは、熱伸び量測定部24から得られる車室12の熱伸び量に基づく(図4(B)参照)。
例えば、暖機による車室12の温度が飽和して、車室12の熱伸び量が飽和したとき、その熱伸び量は暖気終了時点での車室12の最大熱伸び量として事前確認されている。この最大熱伸び量をXmmとして、Xmmを複数に分割することで、車室12内の圧力を段階的に上昇させる判断基準とする。暖機による暖気終了時点での車室12内の圧力が設定されており、この暖気終了時点圧力を複数に分割することで、車室12内の圧力を段階的に上昇させる目標圧力とする。
Next, the method for warming up the back pressure turbine 10 of the present embodiment will be described in detail.
As shown in FIG. 4, in warming up the back pressure turbine 10 of the present embodiment, the pressure in the vehicle interior 12 is gradually increased (see FIG. 4A). The timing for increasing the pressure in the passenger compartment 12 is based on the heat elongation amount of the passenger compartment 12 obtained from the heat elongation amount measuring unit 24 (see FIG. 4B).
For example, when the temperature of the passenger compartment 12 due to warming up is saturated and the heat elongation amount of the passenger compartment 12 is saturated, the heat elongation amount is confirmed in advance as the maximum heat elongation amount of the passenger compartment 12 at the end of warming up. There is. This maximum heat elongation amount is set to X mm, and by dividing X mm into a plurality of parts, it is used as a criterion for gradually increasing the pressure in the vehicle interior 12. The pressure in the passenger compartment 12 at the end of warming up by warming up is set, and by dividing the pressure at the end of warming up into a plurality of parts, the pressure in the passenger compartment 12 is set as a target pressure for gradually increasing.

本実施形態では、図4(B)に示すように、例えば、最大熱伸び量Xを4等分に分割し、暖気終了時点圧力を4等分に分割した場合、車室12が約0.25Xmmだけ熱伸びする毎に、車室12内の目標圧力を暖気終了時点圧力の1/4ずつ段階的に上昇させる。暖気終了時点圧力は、例えば、通常運転時に排出口P2から排気される蒸気の圧力(例えば、数MPa)の60%〜90%を目安に圧力を設定する。この暖気終了時点の圧力は、暖気昇温速度から設定され、目標時間内に暖気により昇温可能になるように暖気終了時点圧力を高く設定するものの、一方では出来るだけ温度分布が発生しないよう暖気終了時点圧力を低くするよう設定して、両者の兼ね合いから適切な圧力へ設定される。 In the present embodiment, as shown in FIG. 4B, for example, when the maximum heat elongation amount X is divided into four equal parts and the pressure at the end of warming up is divided into four equal parts, the passenger compartment 12 is about 0. Every time the heat is expanded by 25 X mm, the target pressure in the passenger compartment 12 is gradually increased by 1/4 of the pressure at the end of warming up. The pressure at the end of warming up is set, for example, with 60% to 90% of the pressure of steam exhausted from the discharge port P2 (for example, several MPa) during normal operation as a guide. The pressure at the end of warming up is set from the rate of warming up, and the pressure at the end of warming up is set high so that the temperature can be raised by warming up within the target time, but on the other hand, warming up so that the temperature distribution does not occur as much as possible. The pressure at the end is set to be low, and the pressure is set to an appropriate level from the balance between the two.

段階的な圧力目標の上昇の例としては、図4(A)に示すステップ関数のような圧力の調整(階段状の圧力の調整)がある。車室12内の圧力を段階的に上昇させることで、車室12内の温度の推定値(車室内温度(推定値))が図4(C)に示すように段階的に上昇する。ここで、車室内温度(推定値)は、車室12の熱伸び量に基づいて算出されたものであり、後述する暖気終了の所定温度T1を暖気終了時点の熱伸び量Xで割った勾配の関係から算出される。 An example of a stepwise increase in the pressure target is pressure adjustment (stepped pressure adjustment) as shown in the step function shown in FIG. 4 (A). By gradually increasing the pressure in the passenger compartment 12, the estimated value of the temperature in the passenger compartment 12 (the vehicle interior temperature (estimated value)) is gradually increased as shown in FIG. 4 (C). Here, the vehicle interior temperature (estimated value) is calculated based on the heat elongation amount of the vehicle interior 12, and is a gradient obtained by dividing the predetermined temperature T1 at the end of warming up by the heat elongation amount X at the end of warming up, which will be described later. It is calculated from the relationship of.

車室12内の温度(推定値)が所定温度T1に到達した場合に、車室12の熱伸び量が暖気終了時点の最大熱伸び量のXmmになり、背圧タービン10の暖機は終了となる。ここで、所定温度T1は、暖機により車室12の熱伸び量が飽和したときの車室12内の温度(推定値)である。暖機終了後に車室12に供給される主蒸気の温度をT2としたときに、100℃≦T2−T1≦150℃を満たす温度とされるよう、暖気蒸気の温度と暖気終了時点の圧力を選定することが好ましい。例えば、T2が500℃であれば、T1は350℃≦T1≦400℃の範囲で選定されることが好ましい。この温度範囲は、T2−T1がこの温度差以内であれば、主蒸気と背圧タービン10を構成する部品との温度差によって部品に生じる熱伸び差や熱応力による課題が生じないとできる、という温度の範囲である。 When the temperature (estimated value) in the passenger compartment 12 reaches the predetermined temperature T1, the heat elongation amount of the passenger compartment 12 becomes X mm, which is the maximum heat elongation amount at the end of warming up, and the warming up of the back pressure turbine 10 is completed. It becomes. Here, the predetermined temperature T1 is the temperature (estimated value) in the passenger compartment 12 when the heat elongation amount of the passenger compartment 12 is saturated by warming up. When the temperature of the main steam supplied to the passenger compartment 12 after the end of warm-up is T2, the temperature of the warm-up steam and the pressure at the end of warm-up are adjusted so that the temperature satisfies 100 ° C. ≤ T2-T1 ≤ 150 ° C. It is preferable to select. For example, if T2 is 500 ° C., T1 is preferably selected in the range of 350 ° C. ≦ T1 ≦ 400 ° C. This temperature range can be set so that if T2-T1 is within this temperature difference, problems due to thermal elongation difference and thermal stress caused by the temperature difference between the main steam and the components constituting the back pressure turbine 10 do not occur. It is in the temperature range.

なお、最大熱伸び量Xを4等分(1/4)に分割するのではなく、例えば最初は2/4として、ある程度の温度上昇までは圧力雰囲気を低くしておき、その後は1/6ずつと圧力上昇幅を大きくすることで、暖気時の初期段階には各部品の熱容量差で温度上昇速度が異なり、温度分布が付きやすいが、暖気時の初期段階の雰囲気圧力を暖気時の後期段階の圧力より低く設定しておくことで、各部品の温度差が付きにくくしてもよい。 The maximum heat elongation amount X is not divided into four equal parts (1/4), but for example, it is set to 2/4 at first, and the pressure atmosphere is kept low until a certain temperature rise, and then 1/6. By increasing the pressure increase width little by little, the temperature increase rate differs due to the difference in heat capacity of each part in the initial stage during warming up, and the temperature distribution is likely to occur. By setting the pressure lower than the step pressure, it may be difficult to make a temperature difference between the parts.

なお、各蒸気バルブの開閉、開度調整、暖機終了の判断などは、作業者が行っても良いし、図示しない制御部によって実行されても良い。作業者が行う場合、作業者が熱伸び量測定部24を確認することで、各蒸気バルブの開閉、開度調整、暖機終了の判断などを行う。制御部によって実行される場合、熱伸び量を測定するセンサ(図示せず)が熱伸び量を制御部に送信することで、制御部が熱伸び量の取得を行う。また、各蒸気バルブは制御部と電気的に接続されており、制御部は、取得した熱伸び量によって各蒸気バルブの開閉、開度調整、暖機終了の判断、必要な値の算出などを行う。 The opening / closing of each steam valve, the adjustment of the opening degree, the determination of the end of warm-up, etc. may be performed by an operator or may be performed by a control unit (not shown). When the operator performs this, the operator confirms the heat elongation measuring unit 24 to open / close each steam valve, adjust the opening degree, determine the end of warm-up, and the like. When executed by the control unit, a sensor (not shown) that measures the heat elongation amount transmits the heat elongation amount to the control unit, so that the control unit acquires the heat elongation amount. In addition, each steam valve is electrically connected to the control unit, and the control unit uses the acquired heat elongation amount to open / close each steam valve, adjust the opening degree, determine the end of warm-up, calculate the required value, and so on. conduct.

制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。 The control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.

本実施形態によれば、以下の効果を奏する。
車室12全体の温度が上昇したことで反映された車室12の熱伸び量を車室12内の圧力調整の判断基準及び暖機終了の判断基準とすることができる。車室12へ蒸気を導入する暖気による背圧タービン10の温度上昇を局所的な温度の把握となる一部領域でのメタル温度を判断基準とした場合と比べて、より的確に車室12全体の暖機状態を把握することができる。車室12の熱伸び量は、車室12全体の温度上昇から車室12の暖機状態による熱伸びがスライド軸受台22の移動量として把握され、スライド軸受台22の移動量から取得された熱伸び量が、所定値に到達した場合に簡易な判断のもとで暖機運転を終了してもよい。
また、車室12の熱伸び量による車室12全体の温度上昇から暖機状態を把握しながら車室12内の圧力を順次に段階的に調整(上昇)させて伝熱量を順次増加させることで、徐々に車室12内の温度を上昇させることができる。これにより、暖気時に、暖気蒸気と背圧タービン10を構成する部品との温度差によって部品に生じる局所的な隙間での接触や過大な熱応力の発生による損傷を抑制できる。したがって、車室12、静翼(図示せず)、ロータ14、ロータ14に設けられる動翼(図示せず)などの背圧タービン10を構成する部品の狭い隙間で設置した部品の接触や変形による損傷や熱応力発生による損傷を防ぐことができる。また車室12内の温度を計測には車室12内が高圧蒸気で満たされているので、温度センサを設置するには高圧蒸気をシールできる座を車室12に追加する必要がある。更に、小容量の背圧タービン10などで車室12の寸法が小さい場合などでは、温度を計測する座を追加して温度センサを設置するスペースが限られる場合には、前述のように車室12の熱伸び量を用いて車室12内の圧力を上昇させる調整の判断基準とすれば、温度センサを追加設置する必要がないうえに、設備コストの削減にも繋がる。
また、背圧タービン10の暖気時として暖機用蒸気を排出口P2から導入する場合は、暖機用蒸気として排出口P2に繋がる作業用蒸気配管S5を流通する低圧の作業用蒸気(工場内の作業用蒸気など)を使用することができる。つまり、暖機用蒸気を供給するラインを新設する必要がなく、設備コストを削減できる。
また、車室12の熱伸び量が所定値に到達した場合に暖機を終了する。これによれば、車室12全体の温度上昇から暖機状態を把握した状態で、暖機運転を終了してもよい。暖機運転を終了するタイミングを車室12の熱伸び量の所定値とすることで、暖気終了のタイミングを簡易に設定できる。すなわち、車室12の熱伸び量を監視することにより、簡易で確実に車室12内が暖機された状態で暖機を終了することができる。したがって、暖機運転終了後に主蒸気を車室12内に導入しても、主蒸気と車室12、静翼(図示せず)、ロータ14、ロータ14に設けられる動翼(図示せず)などの背圧タービン10を構成する部品との温度差による熱応力の発生を抑制できる。
また、背圧タービン10は、復水器のある蒸気タービンであっても、同様な効果を得ることが出来る。
According to this embodiment, the following effects are obtained.
The amount of heat expansion of the passenger compartment 12 reflected by the rise in the temperature of the entire passenger compartment 12 can be used as a criterion for determining the pressure adjustment in the passenger compartment 12 and a criterion for completing warm-up. Compared to the case where the temperature rise of the back pressure turbine 10 due to the warm air that introduces steam into the passenger compartment 12 is used as the criterion for determining the metal temperature in a part of the region where the local temperature is grasped, the entire passenger compartment 12 is more accurately performed. It is possible to grasp the warm-up state of. The heat elongation amount of the passenger compartment 12 was obtained from the movement amount of the slide bearing base 22 by grasping the heat elongation due to the warm-up state of the passenger compartment 12 as the movement amount of the slide bearing base 22 from the temperature rise of the entire passenger compartment 12. When the heat elongation amount reaches a predetermined value, the warm-up operation may be terminated based on a simple judgment.
Further, the pressure in the passenger compartment 12 is gradually adjusted (increased) stepwise while grasping the warm-up state from the temperature rise of the entire passenger compartment 12 due to the heat expansion amount of the passenger compartment 12, and the heat transfer amount is gradually increased. Therefore, the temperature inside the passenger compartment 12 can be gradually raised. As a result, it is possible to suppress damage due to contact in a local gap or generation of excessive thermal stress caused by the temperature difference between the warm air steam and the parts constituting the back pressure turbine 10 during warming. Therefore, contact and deformation of parts installed in a narrow gap of the parts constituting the back pressure turbine 10 such as the passenger compartment 12, the stationary blade (not shown), the rotor 14, and the moving blade (not shown) provided in the rotor 14. It is possible to prevent damage due to damage and damage due to thermal stress generation. Further, since the inside of the passenger compartment 12 is filled with high-pressure steam for measuring the temperature inside the passenger compartment 12, it is necessary to add a seat capable of sealing the high-pressure steam to the passenger compartment 12 in order to install the temperature sensor. Further, when the size of the passenger compartment 12 is small due to a small-capacity back pressure turbine 10 or the like, and when the space for installing the temperature sensor is limited by adding a seat for measuring the temperature, the passenger compartment is described above. If the adjustment criterion for increasing the pressure in the vehicle interior 12 is used by using the heat elongation amount of 12, it is not necessary to additionally install a temperature sensor and it leads to a reduction in equipment cost.
When the warm-up steam is introduced from the discharge port P2 when the back pressure turbine 10 is warmed up, the low-pressure work steam (inside the factory) that flows through the work steam pipe S5 connected to the discharge port P2 as the warm-up steam. Work steam etc.) can be used. That is, it is not necessary to newly install a line for supplying warm-up steam, and the equipment cost can be reduced.
Further, when the heat elongation amount of the passenger compartment 12 reaches a predetermined value, the warm-up is terminated. According to this, the warm-up operation may be terminated in a state where the warm-up state is grasped from the temperature rise of the entire vehicle interior 12. By setting the timing for ending the warm-up operation to a predetermined value of the amount of heat expansion in the passenger compartment 12, the timing for ending the warm-up can be easily set. That is, by monitoring the amount of heat expansion in the passenger compartment 12, the warm-up can be completed in a state where the inside of the passenger compartment 12 is warmed up easily and surely. Therefore, even if the main steam is introduced into the passenger compartment 12 after the warm-up operation is completed, the main steam and the rotor blades (not shown) provided in the passenger compartment 12, the stationary blades (not shown), the rotor 14, and the rotor 14 (not shown). It is possible to suppress the generation of thermal stress due to the temperature difference with the parts constituting the back pressure turbine 10 such as.
Further, the back pressure turbine 10 can obtain the same effect even if it is a steam turbine having a condenser.

〔第2実施形態〕
以下、本発明の第2実施形態について図5を用いて説明する。
本実施形態は、前述の第1実施形態に対して車室12内の圧力を上昇させるタイミングが異なり、その他の点については同様である。したがって、第1実施形態と異なる点についてのみ説明し、その他の点についてはその説明を省略する。
[Second Embodiment]
Hereinafter, the second embodiment of the present invention will be described with reference to FIG.
The present embodiment is different in the timing of increasing the pressure in the vehicle interior 12 from the first embodiment described above, and is the same in other respects. Therefore, only the points different from the first embodiment will be described, and the description of other points will be omitted.

図5に示すように、本実施形態の背圧タービン10の暖機においては、車室12内の圧力を段階的に上昇させる(図5(A)参照)。車室12内の圧力を上昇させるタイミングは、熱伸び量測定部24から得られる車室12の熱伸び量(図5(B)参照)及び車室12の温度(車室内温度、図5(C)参照)の両パラメータを取得し、これらのうち少なくとも一方に応じて調整される。車室内温度は、第1実施形態の車室12の熱伸び量に基づいて算出されたものとは異なり、車室内温度を車室12内の所定の位置から実測することで取得する温度である。所定位置は、車室12の温度上昇を代表できる箇所が好ましく、本実施形態での所定位置は、例えば、暖機ドレン排出口P4付近の車室12のロータ14側内面として、この温度を図示しない温度センサによって測定される。
例えば、第1実施形態と同様に、暖機による車室12の最大熱伸び量をXmmと把握しておき、Xmmを複数に等分割する。また、暖機前の車室内温度をT0としたとき、T1−T0をΔTとして、ΔTを熱伸び量の分割数及び分割比と同数に分割する。本実施形態において、図5(B)及び(C)に示すように、最大熱伸び量Xmm及びΔTを4分割に等分割した場合、0.25Xmmだけ車室12が熱伸びする毎に、または、ΔT/4だけ車室12が上昇する毎に、少なくともいずれか一方のタイミングで車室12内の圧力を段階的に上昇させる。
As shown in FIG. 5, in warming up the back pressure turbine 10 of the present embodiment, the pressure in the vehicle interior 12 is gradually increased (see FIG. 5 (A)). The timing for increasing the pressure in the passenger compartment 12 is the heat elongation amount of the passenger compartment 12 (see FIG. 5B) obtained from the heat elongation amount measuring unit 24 and the temperature of the passenger compartment 12 (vehicle interior temperature, FIG. 5 (FIG. 5). C) Both parameters (see) are acquired and adjusted according to at least one of them. The vehicle interior temperature is different from the one calculated based on the heat elongation amount of the vehicle interior 12 of the first embodiment, and is a temperature obtained by actually measuring the vehicle interior temperature from a predetermined position in the vehicle interior 12. .. The predetermined position is preferably a location that can represent the temperature rise of the vehicle interior 12, and the predetermined position in the present embodiment is shown, for example, as the inner surface of the vehicle compartment 12 near the warm-up drain discharge port P4 on the rotor 14 side. Not measured by a temperature sensor.
For example, as in the first embodiment, the maximum heat elongation amount of the vehicle interior 12 due to warm-up is grasped as X mm, and X mm is equally divided into a plurality of X mm. Further, when the vehicle interior temperature before warming up is T0, T1-T0 is set to ΔT, and ΔT is divided into the same number as the number of divisions and the division ratio of the heat elongation amount. In the present embodiment, as shown in FIGS. 5 (B) and 5 (C), when the maximum heat elongation amounts Xmm and ΔT are equally divided into four, each time the passenger compartment 12 thermally expands by 0.25 X mm, or Every time the passenger compartment 12 rises by ΔT / 4, the pressure in the passenger compartment 12 is gradually increased at at least one of the timings.

なお、最大熱伸び量Xmmを4等分(1/4)に分割するのではなく、例えば最初は2/4としてある程度の温度上昇までは圧力雰囲気を低くしておき、その後は1/6ずつと圧力上昇幅を大きくすることで、暖気時の初期段階には各部品の熱容量差で温度上昇速度が異なり、温度分布が付きやすいが、暖気時の初期段階の雰囲気圧力を暖気時の後期段階の圧力より低く設定しておくことで、各部品の温度差が付きにくくしてもよい。このときの車室内温度は、最初はΔT/2、その後はΔT/6だけ車室内温度が上昇する毎に車室12内の圧力を段階的に上昇させる。 The maximum heat elongation amount X mm is not divided into four equal parts (1/4). For example, the pressure atmosphere is kept low until a certain temperature rise by setting it to 2/4 at first, and then 1/6 each. By increasing the pressure increase width, the temperature increase rate differs due to the difference in heat capacity of each part in the initial stage during warming, and the temperature distribution is likely to occur, but the atmospheric pressure in the initial stage during warming is changed to the later stage during warming. By setting the pressure lower than the pressure of, the temperature difference between the parts may be less likely to occur. At this time, the vehicle interior temperature is initially ΔT / 2, and then the pressure inside the vehicle interior 12 is gradually increased each time the vehicle interior temperature rises by ΔT / 6.

車室12内の圧力を段階的に上昇させることで、車室内温度が図5(C)に示すように段階的に上昇する。車室12の熱伸び量が最大熱伸び量をXmmに到達した場合、または、図示しない温度センサによって測定した車室内温度が所定温度T1に到達した場合、背圧タービン10の暖機は終了となる。 By gradually increasing the pressure in the vehicle interior 12, the vehicle interior temperature gradually increases as shown in FIG. 5 (C). When the heat elongation amount of the passenger compartment 12 reaches the maximum heat elongation amount of X mm, or when the passenger compartment temperature measured by a temperature sensor (not shown) reaches a predetermined temperature T1, the warm-up of the back pressure turbine 10 is completed. Become.

ここで、所定温度T1および最大熱伸び量Xmmは、次のように設定されてもよい。
所定温度T1は、暖気蒸気を導入して、車室12内の圧力を暖気終了の圧力まで上昇して、車室12の熱伸び量が飽和するときの温度である。暖機終了後に車室12に供給される主蒸気の温度をT2としたときに、本実施形態では、100℃≦T2−T1≦150℃を満たす所定温度差とされる。例えば、T2が500℃であれば、T1は350℃≦T1≦400℃の範囲で設定される。この所定温度差の範囲は、T2−T1がこの温度差以内であれば、主蒸気と背圧タービン10を構成する部品との温度差によって部品に生じる熱伸び差や熱応力による課題が生じないとできる、という温度の範囲である。
また、最大熱伸び量をXmmは、暖機により車室内温度が所定温度T1になることで、暖気が終了した時点での車室12の熱伸び量として事前確認されたものである。
Here, the predetermined temperature T1 and the maximum heat elongation amount Xmm may be set as follows.
The predetermined temperature T1 is a temperature at which the warm air steam is introduced to raise the pressure in the passenger compartment 12 to the pressure at the end of warming up, and the amount of heat elongation in the passenger compartment 12 is saturated. When the temperature of the main steam supplied to the passenger compartment 12 after the warm-up is completed is T2, in the present embodiment, the temperature difference is set to satisfy 100 ° C.≤T2-T1≤150 ° C. For example, if T2 is 500 ° C., T1 is set in the range of 350 ° C. ≦ T1 ≦ 400 ° C. Within this predetermined temperature difference range, if T2-T1 is within this temperature difference, problems due to thermal elongation difference and thermal stress caused by the temperature difference between the main steam and the components constituting the back pressure turbine 10 do not occur. It is a temperature range that can be achieved.
Further, the maximum heat elongation amount of X mm is determined in advance as the heat elongation amount of the passenger compartment 12 at the time when the warming up is completed by the temperature inside the passenger compartment becoming a predetermined temperature T1 by warming up.

なお、第1実施形態と同様、各蒸気バルブの開閉、開度調整、暖機終了の判断などは、作業者が行っても良いし、図示しない制御部によって実行されても良い。作業者が行う場合、作業者が熱伸び量測定部24、および車室内温度を測定する温度センサ(図示せず)を確認して、これらの少なくとも一方のタイミングに応じて、各蒸気バルブの開閉、開度調整、暖機終了の判断などを行う。制御部によって実行される場合、熱伸び量を測定するセンサ(図示せず)が熱伸び量を制御部に送信することで、制御部が熱伸び量の取得を行う。また、車室内温度を測定する温度センサ(図示せず)が車室内温度を制御部に送信することで、制御部が車室内温度の取得を行う。更に、各蒸気バルブは制御部と電気的に接続されており、制御部は、取得した熱伸び量及び車室内温度によって各蒸気バルブの開閉、開度調整、暖機終了の判断、必要な値の算出などを行う。 As in the first embodiment, the opening / closing of each steam valve, the opening / closing adjustment, the determination of the end of warm-up, etc. may be performed by the operator or may be performed by a control unit (not shown). When the operator performs this, the operator checks the heat elongation measuring unit 24 and the temperature sensor (not shown) for measuring the temperature inside the vehicle, and opens and closes each steam valve according to the timing of at least one of these. , Adjust the opening, judge the end of warm-up, etc. When executed by the control unit, a sensor (not shown) that measures the heat elongation amount transmits the heat elongation amount to the control unit, so that the control unit acquires the heat elongation amount. Further, a temperature sensor (not shown) that measures the vehicle interior temperature transmits the vehicle interior temperature to the control unit, so that the control unit acquires the vehicle interior temperature. Further, each steam valve is electrically connected to the control unit, and the control unit determines the opening / closing of each steam valve, the opening degree adjustment, the judgment of the end of warm-up, and the necessary values according to the acquired heat elongation amount and the vehicle interior temperature. Is calculated.

本実施形態によれば、以下の効果を奏する。
車室12全体の温度が上昇したことで反映された車室12の熱伸び量及び車室内温度の少なくとも一方に応じて、車室12内の圧力調整の判断基準及び暖機終了の判断基準とすることができる。これにより、車室12へ蒸気を導入する暖気による背圧タービン10の温度上昇を、局所的な温度の把握となる一部領域でのメタル温度のみを判断基準とした場合と比べて、より的確に車室12全体の暖機による温度上昇状態を把握することができる。また、2つの判断基準を持つことで、予想しない影響で1つの判断基準の変化が遅延した場合でも、もう一方の判断基準により、タイミングを遅延することなく車室12内の圧力調整の判断基準に適用することが出来る。さらに、局所的なメタル温度を把握しつつ車室12全体の暖機状態を把握することができる。これにより、暖機状態をより的確に把握しながら車室12内の圧力を段階的に調整(上昇)させて伝熱量を順次増加させることで、徐々に車室12内の温度を上昇させることができ、局所的な隙間での接触や背圧タービン10を構成する部品に生じる過大な熱応力の発生を抑制できる。したがって、暖機運転終了後に主蒸気を車室12内に導入しても車室12、静翼、ロータ14、ロータ14に設けられる動翼などの背圧タービン10を構成する部品の熱応力発生による損傷や狭い隙間で設置した部品の接触や変形による損傷を防ぐことができる。また背圧タービン10は、復水器のある蒸気タービンであっても、同様な効果を得ることが出来る。
According to this embodiment, the following effects are obtained.
According to at least one of the heat elongation amount of the passenger compartment 12 and the temperature of the passenger compartment 12 reflected by the rise in the temperature of the entire passenger compartment 12, the judgment criteria for the pressure adjustment in the passenger compartment 12 and the judgment criteria for the end of warm-up can do. As a result, the temperature rise of the back pressure turbine 10 due to the warm air that introduces steam into the passenger compartment 12 is more accurate than the case where only the metal temperature in a part of the region where the local temperature can be grasped is used as a criterion. It is possible to grasp the temperature rise state of the entire vehicle interior 12 due to warming up. In addition, by having two judgment criteria, even if the change of one judgment standard is delayed due to an unexpected influence, the judgment standard for pressure adjustment in the passenger compartment 12 is determined by the other judgment standard without delaying the timing. Can be applied to. Further, it is possible to grasp the warm-up state of the entire vehicle interior 12 while grasping the local metal temperature. As a result, the temperature inside the passenger compartment 12 is gradually increased by gradually increasing the amount of heat transfer by gradually adjusting (increasing) the pressure inside the passenger compartment 12 while grasping the warm-up state more accurately. It is possible to suppress contact in a local gap and generation of excessive thermal stress generated in the parts constituting the back pressure turbine 10. Therefore, even if the main steam is introduced into the passenger compartment 12 after the warm-up operation is completed, thermal stress is generated in the parts constituting the back pressure turbine 10 such as the passenger compartment 12, the stationary blades, the rotor 14, and the moving blades provided in the rotor 14. It is possible to prevent damage due to damage and damage due to contact or deformation of parts installed in a narrow gap. Further, the back pressure turbine 10 can obtain the same effect even if it is a steam turbine having a condenser.

なお、第1及び第2実施形態の変形例として、図6に示すように、暖機用蒸気はドレン排出口P3から供給しても良い。この場合、ドレン排出口P3は、ロータ14の途中位置にあり、ドレン排出口側配管S3を介して作業用蒸気配管S5と接続されている。また、ドレン排出口側配管S3には、蒸気バルブ34,35が設けられており、暖機時、排出口側配管S2には、蒸気バルブ33は閉じられ、蒸気バルブ34,35が開かれ、車室12内の圧力は、暖機ドレン排出配管S4に設けられている蒸気バルブ36の開度によって調整される。これによれば、高温高圧の主蒸気は車室本体12Aの車室本体12Aの吸入口P1から取り込むため、熱伸び許容が大きいように設計されている。ドレン排出口P3は、蒸気を排出する排出口P2に比べて、高温側付近から蒸気を導入することになり、車室本体12Aやロータ14にとって、より無理なく円滑な暖機が可能になる。なお、通常運転時は、例えば蒸気バルブ35で蒸気を締め切った状態のもとで、図示しない切換弁やドレン配管によって、車室本体12A内のドレンを排出できるようになっていて、ドレンが作業用蒸気配管S5に流入しない構成となっている。 As a modification of the first and second embodiments, as shown in FIG. 6, warm-up steam may be supplied from the drain discharge port P3. In this case, the drain discharge port P3 is located in the middle of the rotor 14 and is connected to the work steam pipe S5 via the drain discharge port side pipe S3. Further, steam valves 34 and 35 are provided in the drain discharge port side pipe S3, and when warming up, the steam valve 33 is closed and the steam valves 34 and 35 are opened in the discharge port side pipe S2. The pressure in the passenger compartment 12 is adjusted by the opening degree of the steam valve 36 provided in the warm-up drain discharge pipe S4. According to this, since the main steam of high temperature and high pressure is taken in from the suction port P1 of the passenger compartment main body 12A of the passenger compartment main body 12A, it is designed to have a large heat elongation tolerance. Compared to the discharge port P2 that discharges steam, the drain discharge port P3 introduces steam from the vicinity of the high temperature side, so that the vehicle interior main body 12A and the rotor 14 can warm up more reasonably and smoothly. During normal operation, for example, under the state where steam is shut off by the steam valve 35, the drain in the passenger compartment main body 12A can be discharged by a switching valve or a drain pipe (not shown), and the drain works. It is configured so that it does not flow into the steam pipe S5.

第1及び第2実施形態では、蒸気タービンとして背圧タービンを例に用いて説明したが、前述の暖機の方法は、復水器のある復水タービンにも採用できることは言うまでもない。この場合における暖機用蒸気は、例えば、暖機用蒸気の供給ラインを設けることで供給できる。 In the first and second embodiments, a back pressure turbine has been described as an example as a steam turbine, but it goes without saying that the above-mentioned warm-up method can also be adopted for a condensate turbine having a condenser. The warm-up steam in this case can be supplied, for example, by providing a warm-up steam supply line.

10 背圧タービン(蒸気タービン)
12 車室
14 ロータ
14A,14B シャフト部
16A,16B ジャーナル軸受
18 スラスト軸受
20 固定軸受台
22 スライド軸受台
24 熱伸び量測定部
31,32,33,34,35,36 蒸気バルブ
P1 吸入口
P2 排出口
P3 ドレン排出口
P4 暖機ドレン排出口
S1 吸入口側配管
S2 排出口側配管
S3 ドレン排出口側配管
S4 暖機ドレン排出配管
S5 作業用蒸気配管
S6 蒸気配管
B 基礎
10 Back pressure turbine (steam turbine)
12 Chassis 14 Rotor 14A, 14B Shaft 16A, 16B Journal bearing 18 Thrust bearing 20 Fixed bearing 22 Slide bearing 24 Thermal elongation measurement section 31, 32, 33, 34, 35, 36 Steam valve P1 Suction port P2 Exhaust Outlet P3 Drain discharge port P4 Warm-up drain discharge port S1 Suction port side piping S2 Discharge port side piping S3 Drain discharge port side piping S4 Warm-up drain discharge piping S5 Work steam piping S6 Steam piping B Basic

Claims (14)

車室とロータとを備える蒸気タービンにおける前記車室に暖機用の蒸気を導入して暖機を行う暖機方法であって、
前記車室の熱伸び量に応じて前記車室内の圧力を調整する蒸気タービンの暖機方法。
A warm-up method in which steam for warming up is introduced into the passenger compartment of a steam turbine including a passenger compartment and a rotor to warm up the turbine.
A method for warming up a steam turbine that adjusts the pressure in the passenger compartment according to the amount of heat expansion in the passenger compartment.
前記車室の熱伸び量が所定値に到達した場合に暖機運転を終了する請求項1に記載の蒸気タービンの暖機方法。 The method for warming up a steam turbine according to claim 1, wherein the warm-up operation is terminated when the heat elongation amount of the passenger compartment reaches a predetermined value. 車室とロータとを備える蒸気タービンにおける前記車室に暖機用の蒸気を導入して暖機を行う暖機方法であって、
前記車室の熱伸び量及び前記車室内の温度を取得し、これらのうち少なくとも一方に応じて前記車室内の圧力を調整する蒸気タービンの暖機方法。
A warm-up method in which steam for warming up is introduced into the passenger compartment of a steam turbine including a passenger compartment and a rotor to warm up the turbine.
A method for warming up a steam turbine that acquires the amount of heat elongation in the vehicle interior and the temperature in the vehicle interior and adjusts the pressure in the vehicle interior according to at least one of them.
取得した前記車室の熱伸び量及び前記車室内の温度のうち、少なくとも一方が所定値に到達した場合に暖機運転を終了する請求項3に記載の蒸気タービンの暖機方法。 The method for warming up a steam turbine according to claim 3, wherein the warm-up operation is terminated when at least one of the acquired heat elongation amount in the passenger compartment and the temperature in the passenger compartment reaches a predetermined value. 前記車室内の圧力の調整は、段階的に圧力を上昇させる調整である請求項1乃至4のいずれかに記載の蒸気タービンの暖機方法。 The method for warming up a steam turbine according to any one of claims 1 to 4, wherein the adjustment of the pressure in the vehicle interior is an adjustment in which the pressure is gradually increased. 前記蒸気タービンは、前記ロータを支持するスライド軸受台を備え、
前記車室の熱伸び量を前記スライド軸受台の移動量から取得する請求項1乃至5のいずれかに記載の蒸気タービンの暖機方法。
The steam turbine includes a slide bearing base that supports the rotor.
The method for warming up a steam turbine according to any one of claims 1 to 5, wherein the amount of heat elongation in the vehicle interior is obtained from the amount of movement of the slide bearing base.
前記車室を暖機する前記蒸気は、前記蒸気タービンの前記ロータで仕事を終了した蒸気を前記車室から排出する排出口から導入する請求項1乃至6のいずれかに記載の蒸気タービンの暖機方法。 The warming of the steam turbine according to any one of claims 1 to 6, wherein the steam for warming the passenger compartment is introduced from an outlet for discharging steam that has finished work in the rotor of the steam turbine from the passenger compartment. Machine method. 前記車室を暖機する前記蒸気は、前記蒸気タービンの前記ロータの途中位置の前記車室に設けられたドレン排出口から導入する請求項1乃至6のいずれかに記載の蒸気タービンの暖機方法。 The warm-up of the steam turbine according to any one of claims 1 to 6, wherein the steam for warming the passenger compartment is introduced from a drain outlet provided in the passenger compartment at an intermediate position of the rotor of the steam turbine. Method. 前記蒸気タービンは、背圧タービンとされる請求項1乃至8のいずれかに記載の蒸気タービンの暖機方法。 The method for warming up a steam turbine according to any one of claims 1 to 8, wherein the steam turbine is a back pressure turbine. 前記車室を暖機する蒸気によって前記車室が昇温され、前記車室内の温度が飽和する所定温度は、前記蒸気タービンが暖機終了後に、前記車室に供給される主蒸気の温度に対して、100℃から150℃低い温度に設定される請求項1乃至9のいずれかに記載の蒸気タービンの暖機方法。 The temperature of the passenger compartment is raised by the steam that warms the passenger compartment, and the predetermined temperature at which the temperature of the passenger compartment is saturated becomes the temperature of the main steam supplied to the passenger compartment after the steam turbine finishes warming up. The method for warming up a steam turbine according to any one of claims 1 to 9, wherein the temperature is set to be 100 ° C. to 150 ° C. lower. 車室とロータとを備える蒸気タービンであって、
前記車室に暖機用の蒸気を導入する暖機の際に、前記車室の熱伸び量に応じて前記車室内の圧力を調整させる制御部を備える蒸気タービン。
A steam turbine with a passenger compartment and a rotor
A steam turbine including a control unit that adjusts the pressure in the passenger compartment according to the amount of heat expansion in the passenger compartment during warm-up in which steam for warming up is introduced into the passenger compartment.
前記ロータを支持すスライド軸受台を備え、
前記制御部は、前記車室の熱伸び量を前記スライド軸受台の移動量から取得し、取得した前記車室の熱伸び量が所定値に到達した場合に暖機を終了させる請求項11に記載の蒸気タービン。
A slide bearing base for supporting the rotor is provided.
13. The steam turbine described.
車室とロータとを備える蒸気タービンであって、
前記車室に暖機用の蒸気を導入する暖機の際に、前記車室の熱伸び量及び車室内の温度を取得し、これらのうち少なくとも一方に応じて、前記車室内の圧力を調整させる制御部を備える蒸気タービン。
A steam turbine with a passenger compartment and a rotor
At the time of warming up by introducing steam for warming up into the passenger compartment, the amount of heat expansion of the passenger compartment and the temperature inside the passenger compartment are acquired, and the pressure inside the passenger compartment is adjusted according to at least one of these. A steam turbine equipped with a control unit that allows the turbine to operate.
前記ロータを支持するスライド軸受台を備え、
前記制御部は、前記車室の熱伸び量を前記スライド軸受台の移動量から取得し、取得した前記車室の熱伸び量及び前記車室内の温度のうち、少なくとも一方が所定値に到達した場合に暖機を終了させる請求項13に記載の蒸気タービン。
A slide bearing base for supporting the rotor is provided.
The control unit acquires the heat elongation amount of the vehicle interior from the movement amount of the slide bearing base, and at least one of the acquired heat elongation amount of the vehicle interior and the temperature of the vehicle interior reaches a predetermined value. The steam turbine according to claim 13, wherein the warm-up is terminated in the case.
JP2018010686A 2018-01-25 2018-01-25 Steam turbine warm-up method and steam turbine Active JP6938394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010686A JP6938394B2 (en) 2018-01-25 2018-01-25 Steam turbine warm-up method and steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010686A JP6938394B2 (en) 2018-01-25 2018-01-25 Steam turbine warm-up method and steam turbine

Publications (2)

Publication Number Publication Date
JP2019127906A JP2019127906A (en) 2019-08-01
JP6938394B2 true JP6938394B2 (en) 2021-09-22

Family

ID=67471142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010686A Active JP6938394B2 (en) 2018-01-25 2018-01-25 Steam turbine warm-up method and steam turbine

Country Status (1)

Country Link
JP (1) JP6938394B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122105A (en) * 1981-01-22 1982-07-29 Toshiba Corp High pressure turbine warming control apparatus
CH671807A5 (en) * 1986-08-11 1989-09-29 Proizv Ob Turbostroenia
JP4188112B2 (en) * 2003-03-13 2008-11-26 株式会社東芝 Steam turbine plant and steam turbine pre-warming method
JP4424970B2 (en) * 2003-11-11 2010-03-03 株式会社川崎造船 Steam turbine ship main turbine speed-up method and speed-up equipment
JP2010019190A (en) * 2008-07-11 2010-01-28 Toshiba Corp Steam turbine and method of cooling steam turbine
JP5683321B2 (en) * 2011-02-28 2015-03-11 三菱重工業株式会社 Steam turbine system and its warm-up method
JP6004484B2 (en) * 2013-03-29 2016-10-12 三菱日立パワーシステムズ株式会社 Steam turbine power plant
EP3029280B1 (en) * 2014-12-04 2023-02-08 General Electric Technology GmbH A method for starting a steam turbine
JP6431364B2 (en) * 2014-12-25 2018-11-28 株式会社東芝 Plant control device
JP6641190B2 (en) * 2016-02-22 2020-02-05 三菱日立パワーシステムズ株式会社 Displacement measurement system, turbine equipment and displacement measurement method
WO2017169483A1 (en) * 2016-03-31 2017-10-05 三菱日立パワーシステムズ株式会社 Casing position adjustment device

Also Published As

Publication number Publication date
JP2019127906A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP6276000B2 (en) Expander-integrated compressor, refrigerator, and operation method of refrigerator
JP5279763B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
JP5328527B2 (en) Waste heat regeneration system and control method thereof
JP2009511809A (en) Steam turbine warm-up method
JP6776092B2 (en) Steam turbine and temperature control method
KR102006013B1 (en) Chiller device
US6978623B2 (en) Gas turbine, driving method thereof and gas turbine combined electric power generation plant
EP3112607B1 (en) Gas turbine cool-down phase operation methods
US20150098791A1 (en) Method and system for passive clearance control in a gas turbine engine
JP4657057B2 (en) Reheat steam turbine plant
EP3124755A1 (en) Generator device
JP6938394B2 (en) Steam turbine warm-up method and steam turbine
KR102084922B1 (en) Combined cycle plant, control device and starting method
KR101883368B1 (en) Method for controlling cooling system for operation cost reduction of refrigerator
JP2002188860A (en) Heat pump water heater
JP2002188860A5 (en)
KR20190117063A (en) System and method for turbo charger cooling
JP5176474B2 (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP6946163B2 (en) Oil pump controller, control method, and control program and turbo chiller
KR101944285B1 (en) Plant control apparatus, plant control method and power generating plant
KR101560511B1 (en) Warm water heating system, control device and control method
JP2007182829A (en) Steam turbine and steam turbine casing cooling method
JP2001208434A (en) Heat pump hot water supplier
US20210355841A1 (en) Steam turbine

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150