JP5683321B2 - Steam turbine system and its warm-up method - Google Patents

Steam turbine system and its warm-up method Download PDF

Info

Publication number
JP5683321B2
JP5683321B2 JP2011043298A JP2011043298A JP5683321B2 JP 5683321 B2 JP5683321 B2 JP 5683321B2 JP 2011043298 A JP2011043298 A JP 2011043298A JP 2011043298 A JP2011043298 A JP 2011043298A JP 5683321 B2 JP5683321 B2 JP 5683321B2
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
temperature
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011043298A
Other languages
Japanese (ja)
Other versions
JP2012180775A (en
Inventor
英司 齋藤
英司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011043298A priority Critical patent/JP5683321B2/en
Priority to KR1020137016506A priority patent/KR101520561B1/en
Priority to CN201280004526.6A priority patent/CN103282607B/en
Priority to PCT/JP2012/052633 priority patent/WO2012117810A1/en
Publication of JP2012180775A publication Critical patent/JP2012180775A/en
Application granted granted Critical
Publication of JP5683321B2 publication Critical patent/JP5683321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/24Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical electrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、ボイラからタービンへ蒸気が供給される蒸気タービンシステム及びその暖機方法に関するものである。   The present invention relates to a steam turbine system in which steam is supplied from a boiler to a turbine, and a warm-up method thereof.

舶用主機として蒸気タービンを使用する船舶では、ターミナル停泊時に地震又は津波警報が発令されたときなどに対応して船舶を即座に離岸できるように、停泊中でもタービンを暖機しておく必要がある。タービンを暖機しておくことで、段階的な運転による暖機過程を経ることなく港湾全速航行が可能となる。   For ships using steam turbines as marine main engines, it is necessary to warm up the turbines even when they are anchored so that they can immediately leave the ship in response to an earthquake or tsunami warning issued when the terminal is anchored. . By warming up the turbine, it is possible to sail at full speed without going through the warm-up process by stepwise operation.

特許文献1には、蒸気タービン船における停泊中の暖機運転から出港時の通常運転へと移行するときの課題を解決する技術が開示されている。   Patent Document 1 discloses a technique for solving a problem when shifting from a warm-up operation during anchoring in a steam turbine ship to a normal operation when leaving a port.

特許第4184849号公報Japanese Patent No. 41844949

タービンを暖機するための蒸気は、ボイラから船舶前進運転時に使用される高圧タービンへ接続される主蒸気管と、主蒸気管から分岐された枝管(以下、暖機用蒸気管ともいう。)、及びタービンに設けられた供給口を介してタービン車室内部に供給される。暖機用蒸気管には、制御部によって制御されながら、蒸気圧力を調整する圧力調整弁が設けられる。なお、以下では、高圧タービン、中圧タービン及び低圧タービン等、複数のタービンからなる蒸気タービンシステムの場合の全てのタービンを総称して、単に「タービン」ともいう。   The steam for warming up the turbine is a main steam pipe connected from the boiler to a high-pressure turbine used during ship forward operation, and a branch pipe branched from the main steam pipe (hereinafter also referred to as a warm-up steam pipe). ) And a supply port provided in the turbine. The warm-up steam pipe is provided with a pressure adjustment valve that adjusts the steam pressure while being controlled by the control unit. Hereinafter, all turbines in the case of a steam turbine system including a plurality of turbines such as a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine are collectively referred to simply as “turbine”.

関連技術では、タービンへ流入する暖機蒸気量は、一意的に定められた蒸気圧力となるように調整されていた。すなわち、予め設定された一つの蒸気圧力以外の値には設定されることがなく、適切な暖機蒸気を供給するか否かであった。   In the related art, the amount of warm-up steam flowing into the turbine has been adjusted to a uniquely determined steam pressure. That is, it is not set to a value other than one preset steam pressure, and whether or not appropriate warm-up steam is supplied.

ボイラから供給される蒸気は、ボイラ負荷に応じて、蒸気温度、すなわち蒸気が有するエネルギーが変化する。そのため、一意的に定められた蒸気圧力となるように暖機蒸気量を制御する場合、タービンを常に期待し得る状態で暖機できなかった。すなわち、暖機用蒸気管における蒸気圧力と、タービン車室温度の関係を、事前試験によって確認することもできるが、実運転では、ボイラ負荷に応じて蒸気温度が変化するため、蒸気圧力を一意的に定められた値となるように調整する方法では、タービンを常に適切に暖機することができない。   The steam supplied from the boiler changes the steam temperature, that is, the energy of the steam, according to the boiler load. For this reason, when the amount of warm-up steam is controlled so as to achieve a uniquely determined steam pressure, the turbine cannot be warmed up in a state where the turbine can always be expected. In other words, the relationship between the steam pressure in the warm-up steam pipe and the turbine casing temperature can be confirmed by a preliminary test, but in actual operation, the steam temperature varies depending on the boiler load, so the steam pressure must be unique. In the method of adjusting to a predetermined value, the turbine cannot always be warmed up properly.

また、タービンに一意的に定められた圧力の蒸気が供給されるように調整する場合、ボイラから供給される蒸気の温度が低下して、暖機蒸気の温度が低くなると、比容積の関係からタービンに流入する蒸気流量が増加する。そのため、低圧タービンに必要以上の蒸気が流れて、低圧タービンを暖めすぎてしまい、低圧タービンが過暖機状態になるという問題があった。   Also, when adjusting the turbine so that steam with a uniquely determined pressure is supplied, if the temperature of the steam supplied from the boiler decreases and the temperature of the warm-up steam decreases, the relationship between the specific volume and The flow rate of steam flowing into the turbine increases. Therefore, there is a problem that excessive steam flows through the low-pressure turbine, which overheats the low-pressure turbine, and the low-pressure turbine is overheated.

本発明は、このような事情に鑑みてなされたものであって、ボイラ負荷に応じて変化するボイラからの蒸気エネルギーにかかわらず、タービン車室温度を安定的に保持することが可能な蒸気タービンシステム及びその暖機方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a steam turbine capable of stably maintaining the turbine casing temperature regardless of the steam energy from the boiler that changes according to the boiler load. It is an object of the present invention to provide a system and its warm-up method.

上記課題を解決するために、本発明の蒸気タービンシステム及びその暖機方法は以下の手段を採用する。
すなわち、本発明に係る蒸気タービンシステムは、主蒸気管から分岐された分岐蒸気管から第1タービン車室内へボイラから排出された温度条件が変化する蒸気を供給する供給口と、第1タービン車室の車室内外温度を測定する第1温度測定部と、分岐蒸気管に設けられ、測定された車室内外温度に基づいて第1タービン車室内へ供給される蒸気の圧力を調整する圧力制御部とを備える。
In order to solve the above problems, the steam turbine system and the warm-up method thereof according to the present invention employ the following means.
That is, a steam turbine system according to the present invention includes a supply port for supplying steam that changes in temperature conditions discharged from a boiler from a branched steam pipe branched from a main steam pipe into a first turbine casing, and a first turbine. A first temperature measurement unit that measures the temperature inside and outside the vehicle interior of the vehicle interior, and a pressure that is provided in the branch steam pipe and that adjusts the pressure of the steam supplied to the first turbine vehicle interior based on the measured vehicle interior / exterior temperature And a control unit.

この発明によれば、蒸気がボイラから排出されて主蒸気管を通過した後、その蒸気は、主蒸気管から分岐された分岐蒸気管を通過して、第1タービン車室内へ供給される。また、第1タービン車室の車室内外温度が測定され、測定された車室内外温度に基づいて、第1タービン車室内へ供給される蒸気の圧力が調整される。よって、第1タービン車室内へ供給される蒸気の圧力は一定ではなく、第1タービン車室の車室内外温度に応じて変化する。   According to this invention, after the steam is discharged from the boiler and passes through the main steam pipe, the steam passes through the branch steam pipe branched from the main steam pipe and is supplied into the first turbine casing. Further, the temperature inside and outside the first turbine casing is measured, and the pressure of the steam supplied to the first turbine casing is adjusted based on the measured outside temperature inside the casing. Therefore, the pressure of the steam supplied to the first turbine casing is not constant and changes according to the temperature outside the casing of the first turbine casing.

一方、関連技術として、第1タービン車室へ供給される蒸気の圧力が一意的に定められている場合、ボイラから排出された蒸気の温度条件によって、第1タービン車室へ供給される蒸気流量が変化する。そのため、ボイラから排出される蒸気の温度条件に影響を受けて、第1タービンを適切に暖機できない。本発明では、測定された車室内外温度に応じて、第1タービン車室へ供給される蒸気流量が制御されるため、ボイラから排出される蒸気の温度条件にかかわらず、第1タービンを適切に暖機できる。   On the other hand, as related technology, when the pressure of the steam supplied to the first turbine casing is uniquely determined, the flow rate of steam supplied to the first turbine casing depending on the temperature condition of the steam discharged from the boiler Changes. Therefore, the first turbine cannot be properly warmed up due to the temperature condition of the steam discharged from the boiler. In the present invention, since the flow rate of the steam supplied to the first turbine casing is controlled according to the measured temperature inside and outside the vehicle interior, the first turbine is appropriately set regardless of the temperature condition of the steam discharged from the boiler. Can warm up.

例えば、第1タービン車室の車室内外温度が所定の温度下限よりも低いときは、第1タービン車室内へ供給される蒸気の圧力を上昇させて、第1タービンに流入するエネルギーを増加させ、暖機不足を解消する。反対に、第1タービン車室の車室内外温度が所定の温度上限よりも高いときは、第1タービン車室内へ供給される蒸気の圧力を低下させて、第1タービンに流入するエネルギーを減少させ、過暖機を防止する。   For example, when the temperature inside and outside the first turbine casing is lower than a predetermined lower temperature limit, the pressure of steam supplied to the first turbine casing is increased to increase the energy flowing into the first turbine. , Eliminate the lack of warm-up. Conversely, when the temperature inside and outside the first turbine casing is higher than a predetermined upper temperature limit, the pressure of the steam supplied to the first turbine casing is reduced to reduce the energy flowing into the first turbine. To prevent overheating.

本発明において、第1タービン車室から第2タービン車室へ供給された後、第2タービン車室から排出される蒸気の排気温度を測定する第2温度測定部をさらに備え、圧力制御部は、測定された車室内外温度及び排気温度に基づいて、第1タービン車室内へ供給される蒸気の圧力を調整してもよい。   In the present invention, after the first turbine casing is supplied to the second turbine casing, it further includes a second temperature measuring section that measures the exhaust temperature of the steam discharged from the second turbine casing, and the pressure control section The pressure of the steam supplied into the first turbine casing may be adjusted based on the measured outside temperature and exhaust temperature.

この発明によれば、ボイラから排出された蒸気は、第1タービン車室を通過して、第1タービン車室から第2タービン車室へ供給された後、第2タービン車室を通過して、第2タービン車室から排気される。そして、第2タービン車室から排出される蒸気の排気温度が測定され、測定された車室内外温度及び排気温度に基づいて、第1タービン車室内へ供給される蒸気の圧力が調整される。したがって、第1タービン車室の車室内外温度だけでなく、第2タービン車室から排出される蒸気の排気温度に応じて、第1タービン車室へ供給される蒸気の圧力が変化する。そのため、第2タービン車室から排出される蒸気の排気温度が指標となって、第1タービンだけでなく、第2タービンも適切に暖機できる。   According to the present invention, the steam discharged from the boiler passes through the first turbine casing, is supplied from the first turbine casing to the second turbine casing, and then passes through the second turbine casing. , Exhausted from the second turbine casing. Then, the exhaust temperature of the steam discharged from the second turbine casing is measured, and the pressure of the steam supplied into the first turbine casing is adjusted based on the measured outside temperature and exhaust temperature. Therefore, the pressure of the steam supplied to the first turbine casing changes according to not only the temperature outside the casing of the first turbine casing but also the exhaust temperature of the steam discharged from the second turbine casing. Therefore, the exhaust temperature of the steam discharged from the second turbine casing serves as an index, and not only the first turbine but also the second turbine can be appropriately warmed up.

例えば、第2タービン車室から排出される蒸気の排気温度が所定の温度上限よりも高いときは、第1タービン車室内へ供給される蒸気の圧力を低下させて、第1タービンに流入するエネルギーを減少させ、過暖機を防止する。   For example, when the exhaust temperature of the steam discharged from the second turbine casing is higher than a predetermined temperature upper limit, the energy flowing into the first turbine by reducing the pressure of the steam supplied to the first turbine casing To prevent overwarming.

本発明において、第1タービン車室から再熱器へ蒸気を供給する再熱蒸気管と、分岐蒸気管から再熱蒸気管内へ蒸気を供給する暖管用蒸気管とをさらに備え、圧力制御部は、測定された車室内外温度又は排気温度に基づいて暖管用蒸気管内へ供給される蒸気の圧力を調整してもよい。   In the present invention, the pressure control unit further includes a reheat steam pipe that supplies steam from the first turbine casing to the reheater, and a warm pipe steam pipe that supplies steam from the branch steam pipe into the reheat steam pipe. The pressure of the steam supplied into the warm pipe steam pipe may be adjusted based on the measured temperature inside and outside the vehicle or the exhaust temperature.

この発明によれば、再熱器が設けられて、第1タービン車室から再熱器へ蒸気が供給される再熱サイクルの蒸気タービンシステムにおいて、分岐蒸気管から再熱蒸気管内へ蒸気が供給される。そして、測定された車室内外温度又は排気温度に基づいて、第1タービン車室及び再熱蒸気管内へ供給される蒸気の圧力が調整される。したがって、第1タービン車室へ供給される蒸気の圧力だけでなく、再熱蒸気管へ供給される蒸気の圧力が変化する。そのため、第1タービンや第2タービンだけでなく、再熱蒸気管も適切に暖管できる。   According to the present invention, in a steam turbine system having a reheat cycle in which a reheater is provided and steam is supplied from the first turbine casing to the reheater, steam is supplied from the branch steam pipe into the reheat steam pipe. Is done. And the pressure of the steam supplied into the first turbine casing and the reheat steam pipe is adjusted based on the measured temperature outside the vehicle interior or exhaust temperature. Therefore, not only the pressure of the steam supplied to the first turbine casing but also the pressure of the steam supplied to the reheat steam pipe changes. Therefore, not only the first turbine and the second turbine but also the reheat steam pipe can be appropriately warmed up.

また、本発明に係る蒸気タービンシステムの暖機方法は、主蒸気管から分岐された分岐蒸気管から第1タービン車室内へボイラから排出された温度条件が変化する蒸気を供給するステップと、第1タービン車室の車室内外温度を測定するステップと、分岐蒸気管にて、測定された車室内外温度に基づいて第1タービン車室内へ供給される蒸気の圧力を調整するステップとを備える。
Further, the method for warming up the steam turbine system according to the present invention includes a step of supplying steam having a changed temperature condition discharged from the boiler from the branch steam pipe branched from the main steam pipe into the first turbine casing; Measuring the temperature inside and outside the first turbine casing, and adjusting the pressure of steam supplied to the first turbine casing based on the measured outside temperature in the branch steam pipe Prepare.

この発明によれば、測定された車室内外温度に応じて、第1タービン車室へ供給される蒸気流量が調整されるため、ボイラから排出される蒸気の温度条件にかかわらず、第1タービンを適切に暖機できる。   According to the present invention, since the flow rate of the steam supplied to the first turbine casing is adjusted according to the measured temperature inside and outside the vehicle interior, the first turbine is irrespective of the temperature condition of the steam discharged from the boiler. Can be warmed up properly.

ボイラ負荷に応じて変化するボイラからの蒸気エネルギーにかかわらず、タービン車室温度を安定的に保持することができる。   Regardless of the steam energy from the boiler that changes according to the boiler load, the turbine casing temperature can be stably maintained.

本発明の一実施形態に係る蒸気タービンシステムを示す構成図である。It is a lineblock diagram showing the steam turbine system concerning one embodiment of the present invention. 高中圧タービン車室の下半車室を示す端面図である。It is an end view which shows the lower half compartment of a high intermediate pressure turbine compartment. 本発明の一実施形態に係る蒸気タービンシステムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the steam turbine system which concerns on one Embodiment of this invention. 本発明の一実施形態の変形例に係る蒸気タービンシステムを示す構成図である。It is a lineblock diagram showing the steam turbine system concerning the modification of one embodiment of the present invention.

以下、本発明の一実施形態に係る蒸気タービンシステム1の構成について、図1を用いて説明する。図1は、本実施形態に係る蒸気タービンシステム1を示す構成図である。   Hereinafter, the structure of the steam turbine system 1 which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a configuration diagram showing a steam turbine system 1 according to the present embodiment.

蒸気タービンシステム1は、高圧タービン2H、中圧タービン2M及び低圧タービン2Lと、主ボイラ4Hと、再熱器4Rなどからなる。高圧タービン2Hと中圧タービン2Mは、高中圧タービン車室3内部に収納され、低圧タービン2Lは、低圧タービン車室5内部に収納される。なお、以下では、高圧タービン2H、中圧タービン2M及び低圧タービン2Lを総称して、単に「タービン」ともいう。   The steam turbine system 1 includes a high-pressure turbine 2H, an intermediate-pressure turbine 2M, a low-pressure turbine 2L, a main boiler 4H, a reheater 4R, and the like. The high-pressure turbine 2H and the intermediate-pressure turbine 2M are housed inside the high-medium-pressure turbine casing 3, and the low-pressure turbine 2L is housed inside the low-pressure turbine casing 5. Hereinafter, the high-pressure turbine 2H, the intermediate-pressure turbine 2M, and the low-pressure turbine 2L are collectively referred to simply as “turbine”.

蒸気タービンシステム1は、高圧タービン2Hから排出された蒸気を再熱器4Rで再加熱し、再加熱された蒸気を中圧タービン2Mに供給し膨張させる再熱サイクルを適用している。   The steam turbine system 1 applies a reheat cycle in which the steam discharged from the high pressure turbine 2H is reheated by the reheater 4R, and the reheated steam is supplied to the intermediate pressure turbine 2M to be expanded.

船舶前進運転時に主ボイラ4Hから高圧タービン2Hへ供給される主蒸気は、図1に示す主蒸気管L1−1,L1−2を通過して、高圧タービン2Hへ供給される。   The main steam supplied from the main boiler 4H to the high-pressure turbine 2H during ship forward operation passes through the main steam pipes L1-1 and L1-2 shown in FIG. 1 and is supplied to the high-pressure turbine 2H.

蒸気タービンシステム1は、タービン暖機システムを有する。タービン暖機システムは、主ボイラ4Hから供給される蒸気によって高圧タービン2H、中圧タービン2M及び高中圧タービン車室3を暖めることで、蒸気タービンシステム1を暖機状態にて保持する。   The steam turbine system 1 has a turbine warm-up system. The turbine warm-up system holds the steam turbine system 1 in a warm-up state by warming the high-pressure turbine 2H, the intermediate-pressure turbine 2M, and the high-medium-pressure turbine casing 3 with steam supplied from the main boiler 4H.

高圧タービン2Hや中圧タービン2M及び高中圧タービン車室3を暖機するための蒸気は、主ボイラ4Hから高圧タービン2Hへ接続される主蒸気管L1−1と、主蒸気管L1−1から分岐された枝管である暖機用蒸気管L2、圧力制御弁7、遮断弁8及び供給口9などからなるタービン暖機システムを介して高中圧タービン車室3に供給される。このように、タービン暖機システムは、高圧タービン2Hの手前に設けられ、高中圧タービン車室3内へボイラ4Hから排出された蒸気を供給する。暖機用蒸気管L2に設けられる圧力制御弁7は、タービン暖機状態に適したエネルギーを高中圧タービン車室3内に流入し得るように制御部6によって調整され、蒸気圧力を制御する。   Steam for warming up the high-pressure turbine 2H, the intermediate-pressure turbine 2M, and the high- and intermediate-pressure turbine casing 3 is supplied from the main steam pipe L1-1 connected to the high-pressure turbine 2H from the main boiler 4H and the main steam pipe L1-1. It is supplied to the high and medium pressure turbine casing 3 through a turbine warming system comprising a branching branch warming steam pipe L2, a pressure control valve 7, a shutoff valve 8, a supply port 9, and the like. As described above, the turbine warm-up system is provided in front of the high-pressure turbine 2H, and supplies the steam discharged from the boiler 4H into the high / medium-pressure turbine casing 3. The pressure control valve 7 provided in the warm-up steam pipe L2 is adjusted by the control unit 6 so as to allow energy suitable for the turbine warm-up state to flow into the high / medium-pressure turbine casing 3, and controls the steam pressure.

制御部6は、温度測定部12,13,14にて測定された温度に基づいて、圧力制御弁7を可変調整する。圧力制御弁7によって、暖機用蒸気管L2を流れる蒸気は様々な圧力に変更される。温度測定部12,13は、第1温度測定部の一例であり、温度測定部12は、高圧タービン2Hにおける高中圧タービン車室3の車室内外温度を測定し、温度測定部13は、中圧タービン2Mにおける高中圧タービン車室3の車室内外温度を測定する。温度測定部14は、第2温度測定部の一例であり、低圧タービン2Lから排出された蒸気の排気温度を測定する。   The control unit 6 variably adjusts the pressure control valve 7 based on the temperatures measured by the temperature measurement units 12, 13, and 14. The pressure control valve 7 changes the steam flowing through the warm-up steam pipe L2 to various pressures. The temperature measuring units 12 and 13 are an example of a first temperature measuring unit. The temperature measuring unit 12 measures the temperature inside and outside the high and medium pressure turbine casing 3 in the high-pressure turbine 2H, and the temperature measuring unit 13 The inside / outside temperature of the high / intermediate pressure turbine casing 3 in the pressure turbine 2M is measured. The temperature measurement unit 14 is an example of a second temperature measurement unit, and measures the exhaust temperature of the steam discharged from the low-pressure turbine 2L.

また、暖機用蒸気管L2には、暖機中以外に蒸気が供給口9から高中圧タービン車室3へ流入しないように蒸気を遮断する遮断弁8が設けられる。   Further, the warm-up steam pipe L2 is provided with a shut-off valve 8 that shuts off the steam so that the steam does not flow into the high and medium pressure turbine casing 3 from the supply port 9 except during the warm-up.

タービン暖機システムは、ターミナル停泊時に地震又は津波警報が発令されたときなどに対応して船舶を即座に離岸できるように、停泊中においてタービンを暖機する。タービン暖機は、船舶運転時などの状態でタービンが駆動している間は行われず、ターミナルで荷役作業中などの状態でタービンが停止している場合やスタンバイモードにある場合に行われる。   The turbine warm-up system warms up the turbine during berthing so that the ship can be immediately taken off in response to an earthquake or tsunami warning issued when the terminal is berthed. The turbine warm-up is not performed while the turbine is being driven in a state such as when the ship is operating, but is performed when the turbine is stopped in a state such as a cargo handling operation at the terminal or in the standby mode.

タービン暖機中は、高中圧タービン車室3や低圧タービン車室5へ流入する蒸気のエネルギーによって、タービンが遊転してはならない。そのため、タービン静止状態からタービンを駆動可能とする起動トルク相当の蒸気流量や蒸気エネルギーが、高中圧タービン車室3や低圧タービン車室5へ流入しないように、暖機用蒸気の蒸気圧力が制御される。本実施形態では、暖機用蒸気管L2を流れる蒸気の圧力に上限を設けることや、低圧タービン2Lから排出される蒸気の排気温度に上限を設けることで、暖機用蒸気の蒸気圧力を調整する。   While the turbine is warming up, the turbine must not idle due to the energy of the steam flowing into the high and medium pressure turbine casing 3 and the low pressure turbine casing 5. Therefore, the steam pressure of the warm-up steam is controlled so that the steam flow or steam energy equivalent to the starting torque that enables the turbine to be driven from the stationary state of the turbine does not flow into the high / medium pressure turbine casing 3 or the low pressure turbine casing 5. Is done. In the present embodiment, the upper limit is set for the pressure of the steam flowing through the warm-up steam pipe L2, and the upper limit is set for the exhaust temperature of the steam discharged from the low-pressure turbine 2L, thereby adjusting the steam pressure of the warm-up steam. To do.

なお、高中圧タービン車室3の車室内外温度は、図1に示すように、特に主蒸気の入口側にて、高圧タービン2Hや中圧タービン2Mごとに1箇所ずつ測定するとしてもよいが、図2に示すように、タービン軸方向やタービンのラジアル方向に複数箇所で測定してもよい。図2は、高中圧タービン車室3の下半車室を示す端面図である。   In addition, as shown in FIG. 1, the vehicle interior / external temperature of the high / medium pressure turbine casing 3 may be measured at one location for each of the high pressure turbine 2H and the intermediate pressure turbine 2M, particularly on the main steam inlet side. As shown in FIG. 2, the measurement may be made at a plurality of locations in the turbine axial direction or the radial direction of the turbine. FIG. 2 is an end view showing the lower half casing of the high and medium pressure turbine casing 3.

高中圧タービン車室3は、図2に示すように、高圧タービン2H及び中圧タービン2Mを内部に収納する空間Sを有する。図2中の高中圧タービン車室3の左端が高圧タービン2Hの排気側であり、図2中の高中圧タービン車室3の右端が中圧タービン2Mの排気側である。そして、図2中の高中圧タービン車室3の中間部が高圧タービン2H、中圧タービン2Mともに蒸気入口側となる。   As shown in FIG. 2, the high and medium pressure turbine casing 3 has a space S in which the high pressure turbine 2H and the intermediate pressure turbine 2M are housed. The left end of the high and medium pressure turbine casing 3 in FIG. 2 is the exhaust side of the high pressure turbine 2H, and the right end of the high and medium pressure turbine casing 3 in FIG. 2 is the exhaust side of the intermediate pressure turbine 2M. And the intermediate part of the high and medium pressure turbine casing 3 in FIG. 2 is the steam inlet side for both the high pressure turbine 2H and the intermediate pressure turbine 2M.

高中圧タービン車室3には、高圧側入口の車室内温度センサ31Hと、高圧側入口の車室外温度センサ32Hと、中圧側入口の車室内温度センサ31Mと、中圧側入口の車室外温度センサ32Mが設けられる。制御部6における制御は、主に高圧側入口の車室内温度センサ31H、高圧側入口の車室外温度センサ32H、中圧側入口の車室内温度センサ31M及び中圧側入口の車室外温度センサ32Mの測定信号に基づいて行われる。   The high and medium pressure turbine casing 3 includes a vehicle interior temperature sensor 31H at the high pressure side entrance, a vehicle exterior temperature sensor 32H at the high pressure side entrance, a vehicle interior temperature sensor 31M at the medium pressure side entrance, and a vehicle exterior temperature sensor at the intermediate pressure side entrance. 32M is provided. The control in the control unit 6 mainly includes measurement of a vehicle interior temperature sensor 31H at the high pressure side inlet, a vehicle exterior temperature sensor 32H at the high pressure side entrance, a vehicle interior temperature sensor 31M at the intermediate pressure side entrance, and a vehicle exterior temperature sensor 32M at the intermediate pressure side entrance. This is done based on the signal.

高圧側入口の車室内温度センサ31H及び高圧側入口の車室外温度センサ32Hは、主蒸気が高圧タービン2Hに流入する領域であって、高中圧タービン車室3の内壁面とボルト孔41との間の距離が最も離れている点を含む仮想断面における車室3の内壁面(空間に隣接した領域の温度)及び外壁面の温度を測定するものである。同様に、中圧側入口の車室内温度センサ31M及び中圧側入口の車室外温度センサ32Mは、再熱蒸気が中圧タービン2Mに流入する領域であって、車室3の内壁面とボルト孔41との間の距離が最も離れている点を含む仮想断面における車室3の内壁面及び外壁面の温度を測定するものである。   The vehicle interior temperature sensor 31H at the high-pressure side inlet and the vehicle exterior temperature sensor 32H at the high-pressure side entrance are regions where main steam flows into the high-pressure turbine 2H. The temperature of the inner wall surface (the temperature of the area adjacent to the space) and the outer wall surface of the passenger compartment 3 in the virtual cross section including the point where the distance between them is farthest is measured. Similarly, the vehicle interior temperature sensor 31M at the intermediate pressure side inlet and the vehicle exterior temperature sensor 32M at the intermediate pressure side inlet are regions where reheated steam flows into the intermediate pressure turbine 2M. The temperature of the inner wall surface and the outer wall surface of the vehicle interior 3 in the virtual cross section including the point where the distance between them is farthest is measured.

なお、高中圧タービン車室3に、高圧側出口の車室内温度センサ33Hと、高圧側出口の車室外温度センサ34Hと、中圧側出口の車室内温度センサ33Mと、中圧側出口の車室外温度センサ34Mを設けて、高中圧タービン車室3の温度を測定して、制御部6における制御に用いてもよい。高圧側出口の車室内温度センサ33H、高圧側出口の車室外温度センサ34H、中圧側出口の車室内温度センサ33M及び中圧側出口の車室外温度センサ34Mの測定信号は参考情報として用いられる。   The high- and medium-pressure turbine casing 3 includes a high-pressure-side outlet cabin temperature sensor 33H, a high-pressure-side outlet cabin temperature sensor 34H, a medium-pressure-side outlet cabin temperature sensor 33M, and a medium-pressure-side outlet cabin temperature. A sensor 34 </ b> M may be provided to measure the temperature of the high and medium pressure turbine casing 3 and used for control in the control unit 6. The measurement signals of the high-pressure-side outlet cabin temperature sensor 33H, the high-pressure-side outlet cabin temperature sensor 34H, the intermediate-pressure-side outlet cabin temperature sensor 33M, and the intermediate-pressure-side outlet cabin temperature sensor 34M are used as reference information.

高圧側出口の車室内温度センサ33H及び高圧側出口の車室外温度センサ34Hは、主蒸気が高圧タービン2Hから流出する領域の仮想断面における車室3の内壁面及び外壁面の温度を測定するものである。同様に、中圧側出口の車室内温度センサ33Mと、中圧側出口の車室外温度センサ34Mは、再熱蒸気が中圧タービン2Mから流出する領域の仮想断面における車室3の内壁面及び外壁面の温度を測定するものである。   The vehicle interior temperature sensor 33H at the high pressure side outlet and the vehicle exterior temperature sensor 34H at the high pressure side exit measure the temperatures of the inner wall surface and the outer wall surface of the vehicle chamber 3 in a virtual section of the region where the main steam flows out from the high pressure turbine 2H. It is. Similarly, the vehicle interior temperature sensor 33M at the intermediate pressure side outlet and the vehicle interior outside temperature sensor 34M at the intermediate pressure side outlet have an inner wall surface and an outer wall surface of the vehicle cabin 3 in a virtual cross section of the region where the reheat steam flows out from the intermediate pressure turbine 2M. The temperature is measured.

その他にも、高中圧タービン車室3に、高圧側入口ボルト温度センサ35Hと、中圧側入口ボルト温度センサ35Mと、高圧側出口ボルト温度センサ36Hと、中圧側出口ボルト温度センサ36Mを設けて、ボルト穴41中のボルトの温度を測定して、制御部6における制御の参照温度として用いてもよい。高圧側入口ボルト温度センサ35H、中圧側入口ボルト温度センサ35M、高圧側出口ボルト温度センサ36H及び中圧側出口ボルト温度センサ36Mの測定信号は、対応するボルトの温度が、隣接する高中圧タービン車室3の車室内外温度と連動して変化しているか否かを確認するため等に用いられる。   In addition, the high and medium pressure turbine casing 3 is provided with a high pressure side inlet bolt temperature sensor 35H, a medium pressure side inlet bolt temperature sensor 35M, a high pressure side outlet bolt temperature sensor 36H, and a medium pressure side outlet bolt temperature sensor 36M. The temperature of the bolt in the bolt hole 41 may be measured and used as a reference temperature for control in the control unit 6. The measurement signals of the high pressure side inlet bolt temperature sensor 35H, the intermediate pressure side inlet bolt temperature sensor 35M, the high pressure side outlet bolt temperature sensor 36H, and the intermediate pressure side outlet bolt temperature sensor 36M indicate that the corresponding bolt temperature is the adjacent high and medium pressure turbine casing. 3 is used to check whether the temperature changes in conjunction with the temperature inside and outside the vehicle.

次に、本実施形態に係る蒸気タービンシステム1の動作について、図3を用いて説明する。図3は、本実施形態に係る蒸気タービンシステム1の動作を示すフローチャートである。   Next, operation | movement of the steam turbine system 1 which concerns on this embodiment is demonstrated using FIG. FIG. 3 is a flowchart showing the operation of the steam turbine system 1 according to the present embodiment.

タービンの暖機保持は、タービン内への入熱や、タービンからの放熱・排熱、タービンの保熱等の熱量バランスで達成されることから、本実施形態では、タービンが暖機を保持できているか否かの判断は、温度を用いて定量的に行う。   Turbine warm-up maintenance is achieved by a heat balance such as heat input into the turbine, heat dissipation / exhaust heat from the turbine, heat retention of the turbine, etc. In this embodiment, the turbine can maintain warm-up. The determination of whether or not is quantitatively performed using temperature.

具体的には、一旦定常状態に到達した高中圧タービン車室3の車室内外温度が、タービンの暖機保持状態として適切か否かを制御部6が判断する。暖機保持状態が不足している場合は、暖機用蒸気管L2を流れる蒸気流量を増加して、高中圧タービン車室3内部への供給熱量を増やしたり、暖機保持状態が過剰な場合は暖機用蒸気管L2を流れる蒸気流量を絞って、高中圧タービン車室3内部への供給熱量を制限したりする。   Specifically, the control unit 6 determines whether or not the temperature inside and outside the high and medium pressure turbine casing 3 that has once reached a steady state is appropriate as the warm-up state of the turbine. When the warm-up maintenance state is insufficient, the flow rate of steam flowing through the warm-up steam pipe L2 is increased to increase the amount of heat supplied to the inside of the high / medium pressure turbine casing 3, or when the warm-up maintenance state is excessive Restricts the amount of heat supplied to the inside of the high and medium pressure turbine casing 3 by restricting the flow rate of the steam flowing through the warm-up steam pipe L2.

すなわち、高中圧タービン車室3の車室内外温度によってタービン暖機システムの効果を定量評価し、タービンにとって適当な暖機状態となるように、高中圧タービン車室3に流入する蒸気流量を制御する。   That is, the effect of the turbine warm-up system is quantitatively evaluated based on the temperature inside and outside the high- and medium-pressure turbine casing 3, and the flow rate of the steam flowing into the high and medium-pressure turbine casing 3 is controlled so that the warm-up state is appropriate for the turbine. To do.

関連技術では、暖機用蒸気管を流れる蒸気は、予め設定された圧力P1で固定されていた。そのため、タービン車室温度は、計測されたとしても、タービン車室へ流入する蒸気の状態に応じて変化する結果として計測されるのみであった。   In the related art, the steam flowing through the warm-up steam pipe is fixed at a preset pressure P1. Therefore, even if the turbine casing temperature is measured, it is only measured as a result of changing according to the state of the steam flowing into the turbine casing.

本実施形態では、まず、蒸気が暖機用蒸気管L2へ流入するように蒸気元弁が開放され、同時に暖機用蒸気管L2内に溜まった水がドレン弁の開放によって排出される(ステップS1)。次に、暖機用蒸気が高中圧タービン車室3へ流入するように遮断弁8が開放される(ステップS2)。このとき、圧力制御弁7後の暖機用蒸気の実圧力P0が、暖機蒸気設定圧力P1としてまず調整される(ステップS3)。そして、熱的飽和状態に至るまでその状態が保持される(ステップS4)。ここで、飽和状態とは、例えば温度変化率が1℃/hrよりも小さいときである。   In the present embodiment, first, the steam source valve is opened so that the steam flows into the warm-up steam pipe L2, and at the same time, water accumulated in the warm-up steam pipe L2 is discharged by opening the drain valve (step). S1). Next, the shutoff valve 8 is opened so that the warm-up steam flows into the high and medium pressure turbine casing 3 (step S2). At this time, the actual pressure P0 of the warm-up steam after the pressure control valve 7 is first adjusted as the warm-up steam set pressure P1 (step S3). The state is maintained until the thermal saturation state is reached (step S4). Here, the saturated state is when the temperature change rate is smaller than 1 ° C./hr, for example.

暖機用蒸気を供給しているとき、タービン排気温度TEが、過暖機状態の目安となるタービン排気温度上限TEmax(例えば75℃)に対して、TE<TEmaxとなり、かつタービン車室壁実温度T0がターゲット車室温度下限TL(例えば200℃)やターゲット車室温度上限TH(例えば250℃)に対して、TL<T0<THとなるように暖機蒸気設定圧力P1が制御される。これにより、暖機状態は、TE<TEmax、かつTL<T0<THとなる圧力P1で保持される。   When the warm-up steam is supplied, the turbine exhaust temperature TE is TE <TEmax with respect to the turbine exhaust temperature upper limit TEmax (for example, 75 ° C.) that is a guideline for the overwarm condition, and the turbine casing wall actual The warm-up steam set pressure P1 is controlled such that the temperature T0 is TL <T0 <TH with respect to the target passenger compartment temperature lower limit TL (eg, 200 ° C.) and the target passenger compartment temperature upper limit TH (eg, 250 ° C.). As a result, the warm-up state is maintained at a pressure P1 that satisfies TE <TEmax and TL <T0 <TH.

ここで、タービン排気温度TEは、低圧タービン2Lから排気された蒸気の温度、すなわち温度測定部14で測定された温度である。タービン車室壁実温度T0は、例えば図2で示した高圧側入口の車室内温度センサ31H、高圧側入口の車室外温度センサ32H、中圧側入口の車室内温度センサ31M及び中圧側入口の車室外温度センサ32Mに基づく測定温度であり、これらのセンサから得られる平均温度又はいずれか一点の温度などである。   Here, the turbine exhaust temperature TE is the temperature of the steam exhausted from the low-pressure turbine 2 </ b> L, that is, the temperature measured by the temperature measuring unit 14. The turbine casing wall actual temperature T0 is, for example, the vehicle interior temperature sensor 31H at the high pressure side inlet, the vehicle exterior temperature sensor 32H at the high pressure side entrance, the vehicle interior temperature sensor 31M at the intermediate pressure side entrance, and the vehicle at the intermediate pressure side entrance shown in FIG. It is a measured temperature based on the outdoor temperature sensor 32M, and is an average temperature obtained from these sensors or a temperature at any one point.

ステップS5にて、タービン排気温度TEについて、TE<Tmaxであるか否かが判断され、TE≧TEmaxの場合、過暖機と判断され、現状の暖機蒸気設定圧力P1に対して設定圧力P1を下げるための圧力幅βを減少させて、P1=P1−βとする(ステップS11)。これにより、高中圧タービン車室3へ流入するエネルギーを減少させ、過暖機を防止する。   In step S5, it is determined whether or not TE <Tmax for the turbine exhaust temperature TE. If TE ≧ TEmax, it is determined that the engine is overheated, and the set pressure P1 is set with respect to the current warmup steam set pressure P1. The pressure width β for reducing the pressure is decreased to P1 = P1−β (step S11). Thereby, the energy which flows into the high intermediate pressure turbine casing 3 is reduced, and overheating is prevented.

また、ステップS6にて、タービン車室壁実温度T0について、T0>TLであるか否かが判断され、T0≦TLの場合、暖機不足と判断され、現状の暖機蒸気設定圧力P1に対して設定圧力P1を上げるための圧力幅αを上昇させて、P1=P1+αとする(ステップS8)。これにより、高中圧タービン車室3へ流入するエネルギーを上昇させ、暖機不足を解消する。このとき、設定圧力P1は、暖機蒸気圧力上限Pmaxに対してP1<Pmaxを満たすか否かが判断される(ステップS9)。設定圧力P1はP1<Pmaxの範囲で制御されるが、設定圧力P1がP1=Pmaxとなって暖機蒸気圧力上限Pmaxに到達しても、タービン車室壁実温度T0がターゲット車室温度下限TLに到達せずT0>TLとならない場合は、現状の蒸気温度(蒸気エネルギー)ではターゲット車室温度を達成できない。そのため、オペレータに蒸気状態の改善、例えばボイラ負荷を上げて蒸気温度を上昇させるなどの注意を促す。   In step S6, it is determined whether or not T0> TL for the turbine casing wall actual temperature T0. If T0 ≦ TL, it is determined that the warm-up is insufficient, and the current warm-up steam set pressure P1 is set. On the other hand, the pressure width α for increasing the set pressure P1 is increased to P1 = P1 + α (step S8). Thereby, the energy which flows into the high intermediate pressure turbine casing 3 is raised, and the warm-up shortage is solved. At this time, it is determined whether or not the set pressure P1 satisfies P1 <Pmax with respect to the warm-up steam pressure upper limit Pmax (step S9). The set pressure P1 is controlled within the range of P1 <Pmax. However, even if the set pressure P1 reaches P1 = Pmax and reaches the warm-up steam pressure upper limit Pmax, the turbine casing wall actual temperature T0 is the target casing temperature lower limit. When TL is not reached and T0> TL is not satisfied, the target passenger compartment temperature cannot be achieved with the current steam temperature (steam energy). Therefore, the operator is cautioned to improve the steam state, for example, increase the boiler load to raise the steam temperature.

さらに、ステップS7にて、タービン車室壁実温度T0について、T0<THであるか否かが判断され、T0≧THの場合も過暖機と判断され、現状の暖機蒸気設定圧力P1をP1=P1−βとする(ステップS11)。これにより、高中圧タービン車室3へ流入するエネルギーを減少させ、過暖機を防止する。   Further, in step S7, it is determined whether or not T0 <TH for the turbine casing wall actual temperature T0. If T0 ≧ TH, it is also determined that the engine is overwarming, and the current warming steam set pressure P1 is set. P1 = P1−β is set (step S11). Thereby, the energy which flows into the high intermediate pressure turbine casing 3 is reduced, and overheating is prevented.

次に、図4を参照して、本発明の一実施形態の変形例について説明する。図4は、本発明の一実施形態の変形例に係る蒸気タービンシステム11を示す構成図である。   Next, a modification of one embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram showing a steam turbine system 11 according to a modification of the embodiment of the present invention.

本変形例の蒸気タービンシステム11では、タービン暖機システムにおける制御対象を高中圧タービン車室3だけでなく、再熱蒸気管も対象とする。再熱蒸気管は、高圧タービン2Hから再熱器4Rを通過して中圧タービン2Mに至るまでの配管である。本変形例は、図1の蒸気タービンシステムと比べて、暖管用蒸気管L3が設けられる点が異なる。   In the steam turbine system 11 of this modification, not only the high and medium pressure turbine casing 3 but also the reheat steam pipe are targeted for control in the turbine warm-up system. The reheat steam pipe is a pipe from the high pressure turbine 2H to the intermediate pressure turbine 2M through the reheater 4R. This modification is different from the steam turbine system of FIG. 1 in that a warm pipe steam pipe L3 is provided.

再熱蒸気管を暖管するための蒸気は、主ボイラ4Hから高圧タービン2Hへ接続される主蒸気管L1−1と、主蒸気管L1−1から分岐された枝管である暖機用蒸気管L2と、暖機用蒸気管L2から分岐された暖管用蒸気管L3を通過して、再熱蒸気管に供給される。暖管用蒸気管L3には、暖機中以外に蒸気が再熱蒸気管に流入しないように蒸気を遮断する遮断弁15が設けられる。   The steam for warming the reheat steam pipe is a main steam pipe L1-1 connected from the main boiler 4H to the high-pressure turbine 2H, and a warming steam that is a branch pipe branched from the main steam pipe L1-1. It passes through the pipe L2 and the warm pipe steam pipe L3 branched from the warm-up steam pipe L2, and is supplied to the reheat steam pipe. The warm pipe steam pipe L3 is provided with a shutoff valve 15 for shutting off steam so that steam does not flow into the reheat steam pipe except during warm-up.

本変形例によれば、測定されたタービン車室壁実温度T0又は排気温度に基づいて、再熱蒸気管内へ供給される蒸気の圧力が調整される。したがって、高中圧タービン車室3へ供給される蒸気の圧力だけでなく、再熱蒸気管へ供給される蒸気の圧力が変化する。そのため、高圧タービン2Hや中圧タービン2Mだけでなく、再熱蒸気管も適切に暖管できる。したがって、蒸気タービンシステムを急に駆動する場合でも、再熱蒸気管が急速に加熱されることがなく、再熱蒸気管に係る熱応力を低減できる。   According to this modification, the pressure of the steam supplied into the reheat steam pipe is adjusted based on the measured turbine casing wall actual temperature T0 or the exhaust temperature. Therefore, not only the pressure of the steam supplied to the high and medium pressure turbine casing 3 but also the pressure of the steam supplied to the reheat steam pipe changes. Therefore, not only the high pressure turbine 2H and the intermediate pressure turbine 2M but also the reheat steam pipe can be appropriately warmed up. Therefore, even when the steam turbine system is driven suddenly, the reheat steam pipe is not rapidly heated, and the thermal stress on the reheat steam pipe can be reduced.

なお、再熱蒸気管を暖管する場合、高中圧タービン車室3へ与えられる熱量は暖管に利用される分減少するため、調整される暖機蒸気設定圧力P1は上述した実施形態の設定圧力P1よりも大きくなる。   When warming the reheat steam pipe, the amount of heat applied to the high / medium pressure turbine casing 3 is reduced by the amount used for the warm pipe, so the warm-up steam set pressure P1 to be adjusted is set in the above-described embodiment. It becomes larger than the pressure P1.

以上、本発明の一実施形態及び変形例によれば、期待されるタービン暖機状態が保持されるように蒸気圧力が制御され、蒸気の温度条件にかかわらず流入する蒸気エネルギーを能動的に調整でき、暖機状態が適切に保持される。その結果、ターミナル停泊時に津波警報が発令されたときなどに対応して船舶を即座に離岸できる。また、ボイラ負荷にかかわらず、タービン車室内外温度やタービン排気温度のターゲット値に近づくように、蒸気による流入エネルギーを制御できるため、タービンの過暖機や暖機不足を防止できる。   As described above, according to the embodiment and the modification of the present invention, the steam pressure is controlled so that the expected turbine warm-up state is maintained, and the inflow steam energy is actively adjusted regardless of the steam temperature condition. And the warm-up state is properly maintained. As a result, it is possible to leave the ship immediately in response to a tsunami warning issued when the terminal is anchored. Further, since the inflow energy due to the steam can be controlled so as to approach the target values of the turbine vehicle interior / outside temperature and the turbine exhaust temperature regardless of the boiler load, it is possible to prevent the turbine from being overheated or insufficiently warmed up.

また、ボイラから供給される蒸気の温度が低下して、暖機蒸気の温度が低くなった場合、関連技術ではタービンに一意的に定められた圧力の蒸気が供給されるように調整するため、比容積の関係からタービンに流入する蒸気流量が増加する。そのため、低圧タービンに必要以上の蒸気が流れて、低圧タービンを暖めすぎてしまい、低圧タービンが過暖機状態になるという問題があった。一方、本実施形態及び変形例では、低圧タービン2Lから排気された蒸気の温度であるタービン排気温度TEを指標として、蒸気圧力が制御されるため、過暖機状態では暖機蒸気の流量が絞られ、低圧タービン2Lの過暖機を防止できる。   In addition, when the temperature of the steam supplied from the boiler decreases and the temperature of the warm-up steam decreases, the related technology adjusts so that steam with a uniquely determined pressure is supplied to the turbine. The steam flow rate flowing into the turbine increases due to the specific volume. Therefore, there is a problem that excessive steam flows through the low-pressure turbine, which overheats the low-pressure turbine, and the low-pressure turbine is overheated. On the other hand, in this embodiment and the modification, the steam pressure is controlled using the turbine exhaust temperature TE, which is the temperature of the steam exhausted from the low-pressure turbine 2L, as an index. Therefore, overheating of the low pressure turbine 2L can be prevented.

なお、上記説明では、蒸気タービンシステム1が再熱サイクルを適用する場合について説明したが、本発明はこの例に限定されない。たとえば、再熱器4Rや再熱蒸気管を設けないランキンサイクルを適用した蒸気タービンシステムでも、本発明のタービン暖機システムを設置でき、タービンを適切に暖機できる。   In addition, in the said description, although the case where the steam turbine system 1 applied a reheat cycle was demonstrated, this invention is not limited to this example. For example, even in a steam turbine system to which a Rankine cycle without a reheater 4R or a reheat steam pipe is applied, the turbine warm-up system of the present invention can be installed, and the turbine can be warmed up appropriately.

1,11 蒸気タービンシステム
2H 高圧タービン
2M 中圧タービン
2L 低圧タービン
3 高中圧タービン車室(第1タービン車室)
4H 主ボイラ(ボイラ)
4R 再熱器
5 低圧タービン車室(第2タービン車室)
6 制御部
7 圧力制御弁(圧力制御部)
8,15 遮断弁
9 供給口
12,13 温度測定部(第1温度測定部)
14 温度測定部(第2温度測定部)
L1 主蒸気管
L2 暖機用蒸気管(分岐蒸気管)
L3 暖管用蒸気管
1,11 Steam turbine system 2H High pressure turbine 2M Medium pressure turbine 2L Low pressure turbine 3 High and medium pressure turbine casing (first turbine casing)
4H main boiler (boiler)
4R Reheater 5 Low pressure turbine casing (second turbine casing)
6 Control unit 7 Pressure control valve (pressure control unit)
8, 15 Shut-off valve 9 Supply port 12, 13 Temperature measuring part (first temperature measuring part)
14 Temperature measurement unit (second temperature measurement unit)
L1 Main steam pipe L2 Warm-up steam pipe (branch steam pipe)
L3 Steam pipe for warm pipe

Claims (4)

蒸気管から分岐された分岐蒸気管から第1タービン車室内へボイラから排出された温度条件が変化する蒸気を供給する供給口と、
前記第1タービン車室の車室内外温度を測定する第1温度測定部と、
前記分岐蒸気管に設けられ、測定された前記車室内外温度に基づいて前記第1タービン車室内へ供給される前記蒸気の圧力を調整する圧力制御部と、
を備える蒸気タービンシステム。
To branch a steam pipe or we first turbine wheel chamber branched from the main steam pipe, a supply port for supplying the steam temperature condition, which is discharged from the boiler is changed,
A first temperature measuring unit for measuring a temperature inside and outside the first turbine casing;
A pressure control unit that is provided in the branch steam pipe and adjusts the pressure of the steam supplied to the first turbine casing based on the measured temperature outside the casing;
A steam turbine system comprising:
前記第1タービン車室から第2タービン車室へ供給された後、前記第2タービン車室から排出される前記蒸気の排気温度を測定する第2温度測定部をさらに備え、
前記圧力制御部は、測定された前記車室内外温度及び前記排気温度に基づいて、前記第1タービン車室内へ供給される前記蒸気の圧力を調整する請求項1に記載の蒸気タービンシステム。
A second temperature measuring unit for measuring an exhaust temperature of the steam discharged from the second turbine casing after being supplied from the first turbine casing to the second turbine casing;
2. The steam turbine system according to claim 1, wherein the pressure control unit adjusts a pressure of the steam supplied into the first turbine casing based on the measured temperature outside the cabin and the exhaust temperature.
前記第1タービン車室から再熱器へ蒸気を供給する再熱蒸気管と、
前記分岐蒸気管から前記再熱蒸気管内へ蒸気を供給する暖管用蒸気管と、
をさらに備え、
前記圧力制御部は、測定された前記車室内外温度又は前記排気温度に基づいて前記暖管用蒸気管内へ供給される前記蒸気の圧力を調整する請求項2に記載の蒸気タービンシステム。
A reheat steam pipe for supplying steam from the first turbine casing to the reheater;
A warm pipe steam pipe for supplying steam from the branch steam pipe into the reheat steam pipe;
Further comprising
3. The steam turbine system according to claim 2, wherein the pressure control unit adjusts the pressure of the steam supplied into the warm pipe steam pipe based on the measured temperature inside and outside the vehicle or the exhaust temperature.
主蒸気管から分岐された分岐蒸気管から第1タービン車室内へボイラから排出された温度条件が変化する蒸気を供給するステップと、
前記第1タービン車室の車室内外温度を測定するステップと、
前記分岐蒸気管にて、測定された前記車室内外温度に基づいて前記第1タービン車室内へ供給される前記蒸気の圧力を調整するステップと、
を備える蒸気タービンシステムの暖機方法。
Supplying steam from the branch steam pipe branched from the main steam pipe into the first turbine casing to change the temperature condition discharged from the boiler;
Measuring the temperature inside and outside the first turbine casing;
Adjusting the pressure of the steam supplied into the first turbine casing based on the measured temperature outside the casing in the branch steam pipe;
A method for warming up a steam turbine system comprising:
JP2011043298A 2011-02-28 2011-02-28 Steam turbine system and its warm-up method Active JP5683321B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011043298A JP5683321B2 (en) 2011-02-28 2011-02-28 Steam turbine system and its warm-up method
KR1020137016506A KR101520561B1 (en) 2011-02-28 2012-02-06 Steam turbine system and warmup method therefor
CN201280004526.6A CN103282607B (en) 2011-02-28 2012-02-06 Steam turbine system and warm-up method therefor
PCT/JP2012/052633 WO2012117810A1 (en) 2011-02-28 2012-02-06 Steam turbine system and warmup method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043298A JP5683321B2 (en) 2011-02-28 2011-02-28 Steam turbine system and its warm-up method

Publications (2)

Publication Number Publication Date
JP2012180775A JP2012180775A (en) 2012-09-20
JP5683321B2 true JP5683321B2 (en) 2015-03-11

Family

ID=46757749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043298A Active JP5683321B2 (en) 2011-02-28 2011-02-28 Steam turbine system and its warm-up method

Country Status (4)

Country Link
JP (1) JP5683321B2 (en)
KR (1) KR101520561B1 (en)
CN (1) CN103282607B (en)
WO (1) WO2012117810A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760538B1 (en) 2011-09-30 2022-08-10 Nyxoah SA Antenna providing variable communication with an implant
CN103437835A (en) * 2013-08-29 2013-12-11 中国神华能源股份有限公司 Device and method for conducting high pressure cylinder warming on gas-steam combined cycle unit
JP6479468B2 (en) * 2014-12-26 2019-03-06 三菱重工業株式会社 Steam turbine equipment, ship, and control method of steam turbine equipment
JP6938394B2 (en) * 2018-01-25 2021-09-22 三菱パワー株式会社 Steam turbine warm-up method and steam turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163411U (en) * 1979-05-15 1980-11-25
JPS61171807A (en) * 1985-01-28 1986-08-02 Toshiba Corp Turbine warming controller
JPH09303110A (en) * 1996-05-09 1997-11-25 Toshiba Corp Warming system for steam turbine
JP3890104B2 (en) * 1997-01-31 2007-03-07 株式会社東芝 Combined cycle power plant and steam supply method for cooling the same
DE69931413T2 (en) * 1998-01-29 2007-05-03 Mitsubishi Heavy Industries, Ltd. Cooled system in a combined cycle power plant
JP4229579B2 (en) * 2000-08-31 2009-02-25 株式会社東芝 Combined cycle power plant and method for supplying steam for heating and cooling combined cycle power plant
JP2003020905A (en) * 2001-07-06 2003-01-24 Mitsubishi Heavy Ind Ltd Operating system and operating method for reheating electric power plant
JP4184849B2 (en) * 2003-03-31 2008-11-19 株式会社川崎造船 Steam turbine ship main turbine warm-up / warm-pipe system and warm-up / warm-pipe method
US8359824B2 (en) * 2008-07-29 2013-01-29 General Electric Company Heat recovery steam generator for a combined cycle power plant

Also Published As

Publication number Publication date
KR20130098418A (en) 2013-09-04
CN103282607B (en) 2015-06-03
WO2012117810A1 (en) 2012-09-07
JP2012180775A (en) 2012-09-20
KR101520561B1 (en) 2015-05-14
CN103282607A (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103089339B (en) For active clearance control system and the method for combustion gas turbine
JP5683321B2 (en) Steam turbine system and its warm-up method
TWI692576B (en) Plant control device, plant control method and power plant
US8201525B2 (en) Cooling device for engine
EP2239438B1 (en) Systems and Methods for Controlling Compressor Extraction Cooling
WO2015052837A1 (en) Engine system provided with intake bypass device
JP2010163920A (en) Cooling device of engine
JP2010156332A (en) Device for starting up steam turbine against rated pressure
JP2013238228A (en) System and method for active temperature control in steam turbine
JP5700113B2 (en) Internal combustion engine warm-up promoting device
US8015824B2 (en) Method and system for regulating a cooling fluid within a turbomachine in real time
JP2012145109A (en) System and method for controlling flow through rotor
RU2498098C2 (en) Turbine cooling system and method of cooling turbine section with intermediate pressure
JP2007192168A (en) Control valve for steam turbine and steam turbine electrical power plant
JP4657057B2 (en) Reheat steam turbine plant
KR101965950B1 (en) Steam turbine plant
JP5374317B2 (en) Steam turbine and method of operating steam turbine
CN106555618B (en) The tip clearance control system and its method of gas turbine
JP5851773B2 (en) Marine main engine steam turbine equipment, ship equipped with the same, and operation method of main marine steam turbine equipment
ES2678676T3 (en) System and method to control bleeding air temperature
JP4335665B2 (en) Internal combustion engine with cylinder coolant temperature controller
JP6194757B2 (en) Supercharging assistance system for internal combustion engine and supercharging assistance method for internal combustion engine
JP6479468B2 (en) Steam turbine equipment, ship, and control method of steam turbine equipment
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP5357741B2 (en) Steam turbine and method of operating steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R151 Written notification of patent or utility model registration

Ref document number: 5683321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151