JP6933520B2 - Reinforcement anchor - Google Patents

Reinforcement anchor Download PDF

Info

Publication number
JP6933520B2
JP6933520B2 JP2017143625A JP2017143625A JP6933520B2 JP 6933520 B2 JP6933520 B2 JP 6933520B2 JP 2017143625 A JP2017143625 A JP 2017143625A JP 2017143625 A JP2017143625 A JP 2017143625A JP 6933520 B2 JP6933520 B2 JP 6933520B2
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving plate
anchor
divided
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143625A
Other languages
Japanese (ja)
Other versions
JP2019027011A (en
Inventor
壮大 堀
壮大 堀
功 土橋
功 土橋
松村 英樹
英樹 松村
紀之 山田
紀之 山田
宣興 安本
宣興 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Sekisui Chemical Co Ltd
Original Assignee
Taisei Corp
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Sekisui Chemical Co Ltd filed Critical Taisei Corp
Priority to JP2017143625A priority Critical patent/JP6933520B2/en
Publication of JP2019027011A publication Critical patent/JP2019027011A/en
Application granted granted Critical
Publication of JP6933520B2 publication Critical patent/JP6933520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、例えばシールド掘削用立坑壁に用いられる補強アンカーに関する。 The present invention relates to, for example, a reinforcing anchor used in a shaft wall for shield excavation.

従来、地下トンネルや下水本管などをシールド工法により施工する際に採用されるシールド掘進用立坑壁として、例えば特許文献1、2に示されるように、硬質ウレタン樹脂をガラス長繊維により強化した複合材料からなり、シールド掘削機のカッターによって切削可能な部材により構成した切削壁が用いられている。
ところが、シールド外径が大きい場合や発進到達部の地中深度が深い場合には、立坑周囲の地盤から切削壁に加わる土水圧が大きくなりその切削壁の立坑内側へのたわみが大きくなるため、施工が困難となる。そこで、切削壁の壁厚を大きくして強度を高めることで、上述したたわみを抑えることが考えられるが、立坑全体の壁厚が大きくなり、経済性が低い構造となる。
Conventionally, as a shaft excavation shaft wall used when constructing an underground tunnel or a sewage main by a shield method, as shown in Patent Documents 1 and 2, for example, a composite in which a hard urethane resin is reinforced with long glass fibers. A cutting wall made of material and composed of members that can be cut by a shield excavator cutter is used.
However, when the outer diameter of the shield is large or the depth of the ground at the starting point is deep, the soil water pressure applied to the cutting wall from the ground around the shaft increases and the deflection of the cutting wall inside the shaft increases. Construction becomes difficult. Therefore, it is conceivable to suppress the above-mentioned deflection by increasing the wall thickness of the cutting wall to increase the strength, but the wall thickness of the entire shaft becomes large, resulting in a structure with low economic efficiency.

そこで、切削可能なアンカーや切梁、或いは切削前に取り除くことが可能な除去式アンカー等を使用して切削壁を補強することで、切削壁のたわみを軽減することが可能となる。さらに、切削壁の壁厚を小さく抑えることにより、シールド外径が大きく、深度が深い条件でも適用することが可能となり、コストを低減したシールド掘進用立坑壁を採用することが行われている。 Therefore, it is possible to reduce the deflection of the cutting wall by reinforcing the cutting wall by using a machinable anchor or a cutting beam, a removable anchor that can be removed before cutting, or the like. Further, by keeping the wall thickness of the cutting wall small, it is possible to apply it even under the condition that the outer diameter of the shield is large and the depth is deep, and a shaft wall for shield excavation with reduced cost is adopted.

特開平8−303178号公報Japanese Unexamined Patent Publication No. 8-303178 特開平9−013875号公報Japanese Unexamined Patent Publication No. 9-013875

しかしながら、上述したような従来の切削壁をアンカーで補強する場合には、シールド掘削機による掘削が進みカッターでアンカーが切削されると、アンカー力がなくなり、アンカー力を切削壁に伝達する受圧板を拘束することができなくなる。そのため、受圧板を切削するために必要な反力が得られず、未切削の状態の受圧板がシールド掘削機のカッター近傍のチャンバー内に脱落し、チャンバー内で閉塞が生じ、工期が遅延するという問題があった。 However, when the conventional cutting wall as described above is reinforced with an anchor, when the excavation by the shield excavator progresses and the anchor is cut by the cutter, the anchor force disappears and the pressure receiving plate transmits the anchor force to the cutting wall. Can no longer be restrained. Therefore, the reaction force required to cut the pressure receiving plate cannot be obtained, and the uncut pressure receiving plate falls into the chamber near the cutter of the shield excavator, causing blockage in the chamber and delaying the construction period. There was a problem.

そこで、本発明は、上記問題点に鑑みてなされたもので、立坑のコストの増大を抑えるとともに、シールド掘削機のチャンバー内の閉塞を防止することができ、工期の遅延を抑制することができる補強アンカーを提供することを目的としている。 Therefore, the present invention has been made in view of the above problems, and it is possible to suppress an increase in the cost of the shaft, prevent blockage in the chamber of the shield excavator, and suppress a delay in the construction period. It is intended to provide a reinforcing anchor.

上記目的を達成するため、本発明に係る補強アンカーは、シールド掘削機で切削可能な切削壁を貫通させて所定の引張力が付与された状態で地盤に定着され、前記シールド掘削機によって切削可能な補強アンカーであって、引張り軸方向の一端側を定着材によって地盤に定着させるとともに、他端側が前記切削壁から突出し、外周面にねじ部を有する引張り材と、前記引張り材の外側に嵌合される受圧板と、前記引張り材のねじ部に締め込まれて前記受圧板を前記切削壁側に圧接した状態で保持する押さえナットと、を備え、前記受圧板は、前記引張り材の引張り軸回りに周回する周方向に複数に分割されていることを特徴としている。 In order to achieve the above object, the reinforcing anchor according to the present invention penetrates a cutting wall that can be cut by a shield excavator and is fixed to the ground in a state where a predetermined tensile force is applied, and can be cut by the shield excavator. A reinforcing anchor, one end side in the tension axis direction is fixed to the ground by a fixing material, and the other end side protrudes from the cutting wall and fits into a tension material having a threaded portion on an outer peripheral surface and the outside of the tension material. The pressure receiving plate is provided with a pressure receiving plate to be combined and a holding nut that is tightened to a screw portion of the tensioning material to hold the pressure receiving plate in a state of being pressed against the cutting wall side, and the pressure receiving plate is used to pull the tensioning material. It is characterized in that it is divided into a plurality of parts in the circumferential direction that orbits around the axis.

本発明では、引張力が付与された状態の引張り材の他端のねじ部に締め込まれる押さえナットによって、周方向に複数に分割された受圧板が組み合わされた状態で切削壁の壁面に圧接されて拘束される。これにより受圧板からアンカー力を切削壁に伝達することができ、補強アンカーにアンカー力が付与されて切削壁が補強される。
そして、シールド掘削機を掘進させてカッターで切削壁を切削する際には、補強アンカーが他端側から切削され、押さえナットによる締め込み力が低下して引張り材と受圧板との摩擦抵抗よりも引張り材の引張力(緊張力)が大きくなる。そのため、アンカー力(緊張力)が解放された段階で受圧板が拘束されなくなり、周方向に分割された小形状の複数の受圧板が分解し、シールド掘削機のチャンバー内に脱落することになる。このように、本発明では、受圧板がシールド掘削機で取り込み可能なサイズに分割された分割構造となっていることから、チャンバー内の閉塞を防止することが可能となり、効率よく切削された補強アンカーをシールド掘削機に取り込んで排出することができる。
しかも、本発明では、受圧板を周方向に分割するという簡単な構造であり、他のアンカー構成は、周知のものと同様の構成となるので、追加工程もなく施工できる利点がある。
In the present invention, a pressing nut that is tightened to the threaded portion at the other end of the tensioning material in a state where a tensile force is applied is used to press-contact the wall surface of the cutting wall in a state where a plurality of pressure receiving plates divided in the circumferential direction are combined. Being restrained. As a result, the anchor force can be transmitted from the pressure receiving plate to the cutting wall, and the anchor force is applied to the reinforcing anchor to reinforce the cutting wall.
Then, when the shield excavator is dug and the cutting wall is cut with a cutter, the reinforcing anchor is cut from the other end side, the tightening force by the holding nut is reduced, and the frictional resistance between the tension material and the pressure receiving plate is reduced. However, the tensile force (tension force) of the tension material increases. Therefore, when the anchor force (tension force) is released, the pressure receiving plate is not restrained, and a plurality of small pressure receiving plates divided in the circumferential direction are disassembled and fall into the chamber of the shield excavator. .. As described above, in the present invention, since the pressure receiving plate has a divided structure divided into a size that can be taken in by the shield excavator, it is possible to prevent blockage in the chamber, and the reinforcement is efficiently cut. The anchor can be taken into the shield excavator and ejected.
Moreover, the present invention has a simple structure in which the pressure receiving plate is divided in the circumferential direction, and the other anchor configurations are the same as those of the well-known ones, so that there is an advantage that the pressure receiving plate can be constructed without additional steps.

また、補強アンカーは、前記受圧板は、前記引張り軸方向に複数に分割されていることが好ましい。 Further, as for the reinforcing anchor, it is preferable that the pressure receiving plate is divided into a plurality of parts in the tension axis direction.

この場合には、受圧板が周方向と引張り軸方向の両方向に複数に分割されているので、受圧板が引張り材の突出端から脱落する際にさらに小さなサイズに分解される。そのため、これら分解された受圧板をシールド掘削機で確実に取り込むことができ、チャンバー内の閉塞をより確実に防ぐことができる。 In this case, since the pressure receiving plate is divided into a plurality of parts in both the circumferential direction and the tension axis direction, the pressure receiving plate is decomposed into a smaller size when it falls off from the protruding end of the tension material. Therefore, these disassembled pressure receiving plates can be reliably taken in by the shield excavator, and blockage in the chamber can be prevented more reliably.

また、補強アンカーは、前記引張り軸方向に分割された隣接する少なくとも一方の受圧板には、他方の受圧板における前記引張り軸方向に交差する方向への移動を規制するずれ止め部材が設けられていることが好ましい。 Further, in the reinforcing anchor, at least one adjacent pressure receiving plate divided in the tension axis direction is provided with a slip stopper that regulates the movement of the other pressure receiving plate in the direction intersecting the tension axis direction. It is preferable to have.

補強アンカーでは、引張り軸方向に分割された一方の受圧板が他方の受圧板に設けられるずれ止め部材によって引張り軸方向に交差する方向への移動が規制される。そのため、補強アンカーでアンカー力が維持されている状態において、押さえナットによって組み合わされた周方向に複数に分割された受圧板が一体性を高めることができ、分離することなく、切削壁の壁面に対する拘束状態を維持することができる。 In the reinforcing anchor, the movement of one pressure receiving plate divided in the tension axis direction in the direction intersecting the tension axis direction is restricted by a slip prevention member provided on the other pressure receiving plate. Therefore, in a state where the anchor force is maintained by the reinforcing anchor, the pressure receiving plates combined by the pressing nuts and divided into a plurality of parts in the circumferential direction can enhance the integrity, and can be applied to the wall surface of the cutting wall without being separated. The restrained state can be maintained.

また、補強アンカーは、前記引張り軸方向に分割された隣接する受圧板では、前記周方向に分割されるそれぞれの周方向分割面同士が前記周方向にずれていることが好ましい。 Further, in the reinforcing anchor, in the adjacent pressure receiving plates divided in the tension axis direction, it is preferable that the circumferential division surfaces divided in the circumferential direction are displaced in the circumferential direction.

この場合には、引張り軸方向に分割された隣接する受圧板同士を例えば周方向に90°ずらしておくことができ、引張り軸方向に隣接する受圧板同士の周方向分割面が引張り軸方向に連続しない構成となるため、受圧板が施工時の初期荷重によって分解することを抑制することができる。 In this case, the adjacent pressure receiving plates divided in the tension axis direction can be shifted by, for example, 90 ° in the circumferential direction, and the circumferential division surface between the pressure receiving plates adjacent in the tension axis direction is in the tension axis direction. Since the configuration is not continuous, it is possible to prevent the pressure receiving plate from being disassembled due to the initial load during construction.

また、補強アンカーは、分割されている前記受圧板は、前記シールド掘削機のチャンバーから機内に取り込み可能な形状をなしていることが好ましい。 Further, it is preferable that the pressure receiving plate, which is divided into the reinforcing anchors, has a shape that can be taken into the machine from the chamber of the shield excavator.

この場合には、シールド掘削機のチャンバー内の取り込み部、すなわち排土口の大きさに対応させたサイズに受圧板を分割することで、チャンバー内の閉塞を確実に防止することができる。 In this case, by dividing the pressure receiving plate into a size corresponding to the size of the intake portion in the chamber of the shield excavator, that is, the soil discharge port, blockage in the chamber can be reliably prevented.

また、補強アンカーは、前記切削壁には、切削可能な芯材が設けられており、前記受圧板は、前記芯材の側面に当接する積層板を有し、該積層板は、前記芯材の側面に対して直交する方向に沿う分割面を有して複数に分割されていることを特徴とすることが好ましい。 Further, the reinforcing anchor is provided with a machinable core material on the cutting wall, the pressure receiving plate has a laminated plate that abuts on the side surface of the core material, and the laminated plate is the core material. It is preferable that the lumber is divided into a plurality of divided surfaces having a divided surface along a direction orthogonal to the side surface of the above.

この場合には、分割された積層板のそれぞれが芯材の側面に直交する方向に当接させることができるので、受圧板によって芯材を確実に押さえることができる。 In this case, since each of the divided laminated plates can be brought into contact with the side surface of the core material in a direction orthogonal to each other, the core material can be reliably pressed by the pressure receiving plate.

また、補強アンカーは、前記引張り材は、アンカー材と、該アンカー材の前記切削壁から突出する突出端に引張力を超える摩擦力を付与した状態で一体的に外嵌し、外周面に前記ねじ部を有する筒状グリップと、を有し、前記アンカー材の突出端と前記筒状グリップとの間には硬化後に膨張する膨張性固化材が注入されていることが好ましい。 Further, the reinforcing anchor is integrally fitted with the tensioning material in a state where the anchoring material and the protruding end of the anchoring material projecting from the cutting wall are provided with a frictional force exceeding the tensile force, and the reinforcing anchor is integrally fitted on the outer peripheral surface. It is preferable that a tubular grip having a threaded portion and an expandable solidifying material that expands after curing are injected between the protruding end of the anchor material and the tubular grip.

この場合には、膨張性固化材が硬化により膨張することで、アンカー材の突出端と筒状グリップとが膨張圧の摩擦抵抗により一体化される。つまり、補強アンカーを施工する際には、筒状グリップをアンカー材の突出端の外側に嵌合させた状態で、双方の間に膨張性固化材を注入することで、両者を所定の摩擦抵抗により簡単に一体化させることができる。 In this case, the expandable solidifying material expands due to hardening, and the protruding end of the anchor material and the tubular grip are integrated by the frictional resistance of the expansion pressure. That is, when constructing the reinforcing anchor, the inflatable solidifying material is injected between the two in a state where the tubular grip is fitted to the outside of the protruding end of the anchor material, so that the two are subjected to a predetermined frictional resistance. Can be more easily integrated.

本発明の補強アンカーによれば、立坑のコストの増大を抑えるとともに、シールド掘削機のチャンバー内の閉塞を防止することができ、工期の遅延を抑制することができる。 According to the reinforcing anchor of the present invention, it is possible to suppress an increase in the cost of the shaft, prevent blockage in the chamber of the shield excavator, and suppress a delay in the construction period.

本発明の実施の形態による切削壁を備えた立坑の概略構成を示す側面図である。It is a side view which shows the schematic structure of the shaft with the cutting wall by embodiment of this invention. 図1に示す立坑を上方からみた図である。It is the figure which looked at the shaft shown in FIG. 1 from above. 複数の補強アンカーで補強された切削壁の正面図である。It is a front view of the cutting wall reinforced by a plurality of reinforcing anchors. 切削壁に施工されている補強アンカーの側面図である。It is a side view of the reinforcing anchor which is constructed on a cutting wall. 切削壁に施工されている補強アンカーを上方から見た図である。It is the figure which looked at the reinforcement anchor installed on the cutting wall from above. 切削壁に施工されている補強アンカーの正面図である。It is a front view of the reinforcing anchor constructed on the cutting wall. 図4に示す補強アンカーの縦断面図であるIt is a vertical sectional view of the reinforcing anchor shown in FIG. 図7に示すA−A線断面図である。FIG. 7 is a cross-sectional view taken along the line AA shown in FIG. 切削壁に施工されている補強アンカーを切削する工程を説明する側面図である。It is a side view explaining the process of cutting a reinforcing anchor constructed on a cutting wall. 図9に続く切削壁に施工されている補強アンカーを切削する工程を説明する側面図である。FIG. 5 is a side view illustrating a process of cutting a reinforcing anchor installed on a cutting wall following FIG. 9. 図10に続く切削壁に施工されている補強アンカーを切削する工程を説明する側面図である。FIG. 5 is a side view illustrating a process of cutting a reinforcing anchor installed on a cutting wall following FIG. 10.

以下、本発明による実施の形態の補強アンカーについて、図面に基づいて詳細に説明する。 Hereinafter, the reinforcing anchor of the embodiment according to the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施の形態による補強アンカー1は、シールドトンネルの掘進工事で使用されるシールド掘削機2の発進部となる切削壁3を貫通させて所定の引張力が付与された状態で地盤に定着され、シールド掘削機2によって切削可能に設けられている。
切削壁3は、シールド掘削機2の発進基地として地中に施工された立坑30の一部として設けられ、シールド掘削機2の外径よりも大径の断面形状をなし、シールド掘削機2のカッター21によって切削される。
As shown in FIG. 1, the reinforcing anchor 1 according to the present embodiment is provided with a predetermined tensile force by penetrating the cutting wall 3 which is the starting portion of the shield excavator 2 used in the excavation work of the shield tunnel. It is fixed to the ground in a state and is provided so that it can be cut by the shield excavator 2.
The cutting wall 3 is provided as a part of a shaft 30 constructed underground as a starting base of the shield excavator 2, has a cross-sectional shape larger than the outer diameter of the shield excavator 2, and has a cross-sectional shape of the shield excavator 2. It is cut by the cutter 21.

立坑30は、上面視で矩形状をなし、地上から掘り下げた壁面に鉄筋コンクリート造の壁を構築したものであり、シールド掘削機2を掘進方向に向けた状態で配置可能で、かつ発進に必要な設備を設置可能な寸法で構築されている。 The shaft 30 has a rectangular shape when viewed from above, and a reinforced concrete wall is constructed on a wall surface dug down from the ground. The shield excavator 2 can be arranged in a state of facing the excavation direction, and is necessary for starting. It is built with dimensions that allow the equipment to be installed.

なお、立坑30は、上面視形状が矩形であることに限定されず、円形であってもかまわない。さらに、立坑30の構造としては、鉄筋コンクリート造であることに制限されず、立坑30の外郭に沿って土留めとして打設した長尺の複数のH形鋼と、そのH形鋼同士の間をコンクリート又はモルタルで充填した壁や、ケーソン等で沈下させたコンクリート壁であってもよい。 The shaft 30 is not limited to having a rectangular shape when viewed from above, and may be circular. Further, the structure of the shaft 30 is not limited to the reinforced concrete structure, and between a plurality of long H-shaped steels placed as earth retaining along the outer shell of the shaft 30 and the H-shaped steels. It may be a wall filled with concrete or mortar, or a concrete wall sunk with a caisson or the like.

シールド掘削機2は、立坑30の底盤上に設けられた発進架台32上において、カッター21を切羽、すなわち切削壁3の壁面3aに対向させ、かつシールド掘削機2の中心軸を前記トンネル中心軸に一致させた状態で配置される。 In the shield excavator 2, the cutter 21 is opposed to the face, that is, the wall surface 3a of the cutting wall 3, and the central axis of the shield excavator 2 is the central axis of the tunnel on the starting platform 32 provided on the bottom of the shaft 30. It is placed in a state that matches.

切削壁3は、硬質ウレタン樹脂をガラス長繊維で強化した複合材から形成された例えばSEW壁(積水化学工業社所有のSEW(Shield Earth Retaining Wall System)工法によって施工された壁)、H形鋼型のFRPや炭素繊維により補強されたコンクリート等のシールド発進・到達用土留め壁を採用することができる。
また、切削壁3は、ポリエステル樹脂をガラス長繊維や炭素繊維で強化した複合材料からなる掘削可能な複数の補強アンカー1、1、…により補強されている。
The cutting wall 3 is, for example, a SEW wall (a wall constructed by the SEW (Sheeld Earth Retaining Wall System) method owned by Sekisui Chemical Industry Co., Ltd.) formed of a composite material in which hard urethane resin is reinforced with long glass fibers, and H-shaped steel. Shield starting / reaching retaining walls such as concrete reinforced with FRP or carbon fiber can be adopted.
Further, the cutting wall 3 is reinforced by a plurality of excavable reinforcing anchors 1, 1, ... Made of a composite material in which polyester resin is reinforced with long glass fibers or carbon fibers.

切削壁3は、図3に示すように、複数の鉛直方向に延びる切削部形成用芯材(以下、「芯材34」という)が水平方向に所定の間隔をあけて配置され、芯材34、34同士の間にはソイルセメント硬化体のみからなるセメント硬化部35を備えた構成となっている。
芯材34は、シールド掘削機2のカッター21によって切削可能な材料である硬質ウレタン樹脂をガラス長繊維により強化した柱状複合材料(施工現場の地盤や立坑の大きさによって特に限定されないが、例えば、600×300mmの積水化学工業株式会社、エスロンネオランバーFFU)の上下にH形鋼が継手及びボルトナット等を介して固定されて得られている。
As shown in FIG. 3, in the cutting wall 3, a plurality of core materials for forming a cutting portion (hereinafter, referred to as “core material 34”) extending in the vertical direction are arranged at predetermined intervals in the horizontal direction, and the core material 34 A cement-hardened portion 35 made of only a hardened soil cement is provided between the 34's.
The core material 34 is a columnar composite material in which hard urethane resin, which is a material that can be cut by the cutter 21 of the shield excavator 2, is reinforced with long glass fibers (the core material 34 is not particularly limited depending on the size of the ground and the shaft at the construction site, but is not particularly limited, for example. It is obtained by fixing H-shaped steels above and below a 600 x 300 mm Sekisui Chemical Industry Co., Ltd., Eslon Neo Lumber FFU) via joints, bolts and nuts, and the like.

図4〜図7に示すように、補強アンカー1は、一端側の定着端11b(図1及び図2参照)を定着材によって地盤Gに定着させるとともに、他端(突出端11a)側を切削壁3から突出させたアンカー材11と、アンカー材11の突出端11aに引張力を超える摩擦力をもって一体的に外嵌し、外周面にねじ部12a(図7参照)を有するテンドングリップ12(筒状グリップ)と、テンドングリップ12の外側に嵌合され、切削壁3の壁面3aを圧接する受圧板4と、テンドングリップ12のねじ部12aに締め込まれて受圧板4を切削壁3側に圧接した状態で保持する押さえナット13と、を備えている。
ここで、アンカー材11とテンドングリップ12とが引張り材を構成している。
As shown in FIGS. 4 to 7, in the reinforcing anchor 1, the fixing end 11b (see FIGS. 1 and 2) on one end side is fixed to the ground G by a fixing material, and the other end (protruding end 11a) side is cut. A tendon grip 12 (see FIG. 7) that integrally fits the anchor material 11 protruding from the wall 3 and the protruding end 11a of the anchor material 11 with a frictional force exceeding the tensile force, and has a threaded portion 12a (see FIG. 7) on the outer peripheral surface. (Cylindrical grip), a pressure receiving plate 4 that is fitted to the outside of the tendon grip 12 and press-contacts the wall surface 3a of the cutting wall 3, and a pressure receiving plate 4 that is tightened to the threaded portion 12a of the tendon grip 12 to bring the pressure receiving plate 4 to the cutting wall 3 side. It is provided with a pressing nut 13 that holds the presser nut 13 in a state of being pressed against the surface.
Here, the anchor material 11 and the tendon grip 12 form a tension material.

アンカー材11は、図1に示すように、切削可能な炭素繊維より線からなる引張り材として機能し、切削壁3の壁面3a側から裏面側の地盤Gまで削孔されたアンカー固定孔31(図7参照)に挿入され、先端部分(定着端11b)が定着地盤Gにおいてアンカー固定孔31に充填されたグラウト16により定着される。アンカー材11は、受圧板4を介して切削壁3の壁面3aに土圧や水圧に耐える力で圧接させる引張張力を付与することができる。なお、本実施の形態のアンカー材11は、立坑30内から斜め下方に向けて配置されている。
そして、アンカー材11のうち突出端11a及び定着端11bを除く部分は、波付き硬質ポリエチレン管等のシース管15に挿通され、アンカー固定孔31に充填されるグラウト16に対して非定着の状態になっている。
As shown in FIG. 1, the anchor material 11 functions as a pulling material composed of stranded carbon fibers that can be cut, and an anchor fixing hole 31 (a hole is formed from the wall surface 3a side of the cutting wall 3 to the ground G on the back surface side) ( (See FIG. 7), and the tip portion (fixing end 11b) is fixed by the grout 16 filled in the anchor fixing hole 31 in the fixing ground G. The anchor material 11 can apply a tensile tension that causes the wall surface 3a of the cutting wall 3 to be pressed against the wall surface 3a of the cutting wall 3 with a force that can withstand earth pressure or water pressure via the pressure receiving plate 4. The anchor material 11 of the present embodiment is arranged diagonally downward from the inside of the shaft 30.
Then, the portion of the anchor material 11 other than the protruding end 11a and the fixing end 11b is inserted into a sheath pipe 15 such as a corrugated rigid polyethylene pipe and is not fixed to the grout 16 filled in the anchor fixing hole 31. It has become.

図7及び図8に示すように、テンドングリップ12は、定着用膨張モルタル14(膨張性固化材)を介してアンカー材11の突出端11aに一体的に設けられている。テンドングリップ12は、FRP等の切削可能な材料から形成されており、外周面に押さえナット13が螺合可能なねじ加工がされている。受圧板4及び押さえナット13を装着させた状態において、テンドングリップ12とアンカー材11の突出端11aとの間には定着用膨張モルタル14が注入され、膨張した状態で硬化している。定着用膨張モルタル14は、硬化に伴い膨張するため、アンカー材11の突出端11aとテンドングリップ12とがその膨張により一体的に密接され、ひいては摩擦力によりテンドングリップ12は受圧板4に定着する。なお、定着用膨張モルタル14は、一般のアンカー工法に使用される公知のものを使用することができる。 As shown in FIGS. 7 and 8, the tendon grip 12 is integrally provided at the protruding end 11a of the anchor material 11 via the fixing expansion mortar 14 (expandable solidifying material). The tendon grip 12 is made of a machinable material such as FRP, and is threaded on the outer peripheral surface so that the holding nut 13 can be screwed. In the state where the pressure receiving plate 4 and the pressing nut 13 are attached, the fixing expansion mortar 14 is injected between the tendon grip 12 and the protruding end 11a of the anchor material 11 and is cured in the expanded state. Since the fixing expansion mortar 14 expands as it hardens, the protruding end 11a of the anchor material 11 and the tendon grip 12 are integrally brought into close contact with each other due to the expansion, and the tendon grip 12 is fixed to the pressure receiving plate 4 by frictional force. .. As the fixing expansion mortar 14, a known one used in a general anchoring method can be used.

押さえナット13は、FRP等の切削可能な材料からなるものが用いられ、上述したようにテンドングリップ12の外周面のねじ部12aに螺合可能である。押さえナット13を締め付けることで、受圧板4を引張り軸O方向で切削壁3の壁面3a側に押し付けることができる。つまり、受圧板4は、押さえナット13を締め付けることにより、切削壁3との間で挟持される。 The press nut 13 is made of a machinable material such as FRP, and can be screwed into the threaded portion 12a on the outer peripheral surface of the tendon grip 12 as described above. By tightening the pressing nut 13, the pressure receiving plate 4 can be pressed against the wall surface 3a side of the cutting wall 3 in the tension axis O direction. That is, the pressure receiving plate 4 is sandwiched between the pressure receiving plate 4 and the cutting wall 3 by tightening the pressing nut 13.

次に、受圧板4の構成について具体的に説明する。
図6に示すように、受圧板4は、引張り軸O方向に沿って複数(ここでは3つ)に分割され、かつ分割された受圧板4(後述する第1受圧板41、第2受圧板42、積層板43)はそれぞれアンカー材11の引張り軸O回りに周回する周方向に複数(2つ)に分割されている。
具体的に受圧板4は、FRP等の切削可能な材料から形成され、引張り軸O方向で押さえナット13から切削壁3に向けて第1受圧板41、第2受圧板42、積層板43の順で配置され3つの部材に分割されている。第1受圧板41、第2受圧板42、積層板43は引張り軸O方向から見て矩形状に形成され、さらに第1受圧板41及び第2受圧板42は同形状となっている。
Next, the configuration of the pressure receiving plate 4 will be specifically described.
As shown in FIG. 6, the pressure receiving plate 4 is divided into a plurality of (three in this case) along the tension axis O direction, and the divided pressure receiving plates 4 (first pressure receiving plate 41 and second pressure receiving plate described later). 42 and the laminated plate 43) are each divided into a plurality (two) in the circumferential direction around the tension axis O of the anchor material 11.
Specifically, the pressure receiving plate 4 is formed of a machinable material such as FRP, and of the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 from the pressing nut 13 toward the cutting wall 3 in the tension axis O direction. They are arranged in order and divided into three members. The first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 are formed in a rectangular shape when viewed from the tension axis O direction, and the first pressure receiving plate 41 and the second pressure receiving plate 42 have the same shape.

図7に示すように、第1受圧板41及び第2受圧板42は、テンドングリップ12が挿通可能な挿通孔41a、42aがそれぞれ同軸となるように設けられている。これら挿通孔41a、42aの内径は、テンドングリップ12の外径とほぼ一致している。第1受圧板41は、挿通孔41aの孔軸方向に沿って全体が同じ厚さとなる板状に形成されている。すなわち、孔軸方向の両端面41b、41cは、テンドングリップ12に第1受圧板41が外嵌した状態でアンカー材11の長さ方向(引張り軸O)に直交する平面となっている。第2受圧板42は、テンドングリップ12に外嵌した状態で、孔軸方向で第1受圧板41に当接する第1端面42bが引張り軸Oに直交する平面をなし、積層板43に当接する第2端面42cが引張り軸Oに対して斜めに交差し、かつ切削壁3の壁面3aの平面方向(すなわち、鉛直方向)に平行な平面をなしている。 As shown in FIG. 7, the first pressure receiving plate 41 and the second pressure receiving plate 42 are provided so that the insertion holes 41a and 42a through which the tendon grip 12 can be inserted are coaxial with each other. The inner diameters of the insertion holes 41a and 42a are substantially the same as the outer diameter of the tendon grip 12. The first pressure receiving plate 41 is formed in a plate shape having the same thickness as a whole along the hole axis direction of the insertion hole 41a. That is, both end faces 41b and 41c in the hole axis direction are flat surfaces orthogonal to the length direction (tension axis O) of the anchor material 11 with the first pressure receiving plate 41 externally fitted to the tendon grip 12. The second pressure receiving plate 42 has a first end surface 42b that abuts on the first pressure receiving plate 41 in the hole axis direction in a state of being fitted onto the tendon grip 12 so as to form a plane orthogonal to the tension axis O and abut on the laminated plate 43. The second end surface 42c intersects the tension axis O at an angle and forms a plane parallel to the plane direction (that is, the vertical direction) of the wall surface 3a of the cutting wall 3.

積層板43は、板状をなし、中心部にテンドングリップ12が挿通可能な挿通孔43aが形成されている。積層板43は、テンドングリップ12に外嵌した状態で、一方の第1板面43bが第2受圧板42の第2端面42cに当接し、他方の第2板面43cが切削壁3の壁面3aのうち芯材の側面に当接するように構成されている。 The laminated plate 43 has a plate shape, and an insertion hole 43a through which the tendon grip 12 can be inserted is formed in the center thereof. In the laminated plate 43, one of the first plate surfaces 43b is in contact with the second end surface 42c of the second pressure receiving plate 42, and the other second plate surface 43c is the wall surface of the cutting wall 3 in a state where the laminated plate 43 is externally fitted to the tendon grip 12. Of 3a, it is configured to abut on the side surface of the core material.

図4〜図6に示すように、第1受圧板41、第2受圧板42、積層板43は、それぞれ中心を通る位置で周方向に二分割されている。ここで、第1受圧板41、第2受圧板42、積層板43において、周方向に分割された面を周方向分割面という。そして、引張り軸O方向に隣接する第1受圧板41と第2受圧板42とは、それぞれの周方向分割面41d、42d同士が周方向に90°ずれた状態で組み付けられている。 As shown in FIGS. 4 to 6, the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 are each divided into two in the circumferential direction at a position passing through the center. Here, in the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43, the surface divided in the circumferential direction is referred to as a circumferential divided surface. The first pressure receiving plate 41 and the second pressure receiving plate 42 adjacent to each other in the tension axis O direction are assembled in a state in which the circumferentially divided surfaces 41d and 42d are displaced by 90 ° in the circumferential direction.

なお、第1受圧板41、第2受圧板42、積層板43において分割されたものは、シールド掘削機2のチャンバー22(図2参照)から機内に取り込み可能な形状・大きさに分割されている。例えば、外径430mmで長さ860mm以下の形状・大きさに分割することで、一般的なシールド掘削機2で取り込みが可能となる。そのため、本実施の形態では、第1受圧板41、第2受圧板42、積層板43のそれぞれが周方向に二分割されているが、取り込み形態に応じて周方向の分割数を例えば三分割や四分割に変更することも可能である。 The first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 are divided into shapes and sizes that can be taken into the machine from the chamber 22 (see FIG. 2) of the shield excavator 2. There is. For example, by dividing into a shape and size having an outer diameter of 430 mm and a length of 860 mm or less, it can be taken in by a general shield excavator 2. Therefore, in the present embodiment, each of the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 is divided into two in the circumferential direction, but the number of divisions in the circumferential direction is divided into, for example, three according to the intake form. It is also possible to change to or quadrant.

なお、第1受圧板41、第2受圧板42、積層板43を構成する部品には、取り付け位置を決めたり、仮固定したりするための位置決め構造を設けてもよい。
第2受圧板42には、図4に示すように、引張り軸O方向の引張側に位置する第1受圧板41における、引張り軸Oに直交する方向への横移動を規制する第1ずれ止め部材44が設けられている。第1ずれ止め部材44は、第2受圧板42の第1端面42bの外周縁の辺毎に2つずつ設けられ、引張り軸O方向の引張側に向けて突出している。つまり、第1受圧板41は、第2受圧板42と組み合わされた状態で、第1受圧板41の外周面が複数の第1ずれ止め部材44によって外側から押さえられ、横移動が規制されている。
The parts constituting the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 may be provided with a positioning structure for determining the mounting position or temporarily fixing the parts.
As shown in FIG. 4, the second pressure receiving plate 42 has a first slip stopper that regulates lateral movement of the first pressure receiving plate 41 located on the tension side in the tension axis O direction in a direction orthogonal to the tension axis O. A member 44 is provided. Two first displacement prevention members 44 are provided for each side of the outer peripheral edge of the first end surface 42b of the second pressure receiving plate 42, and project out toward the tension side in the tension axis O direction. That is, in the state where the first pressure receiving plate 41 is combined with the second pressure receiving plate 42, the outer peripheral surface of the first pressure receiving plate 41 is pressed from the outside by the plurality of first displacement prevention members 44, and the lateral movement is restricted. There is.

さらに、積層板43にも、第2受圧板42の第1ずれ止め部材44と同様の第2ずれ止め部材45が設けられており、第2受圧板42における引張り軸Oに直交する方向への横移動を規制する構成となっている。第2ずれ止め部材45は、第1板面43bの外周部の辺毎に2つずつ設けられ、引張り軸O方向の引張側に向けて突出している。つまり、第2受圧板42は、積層板43と組み合わされた状態で、第2受圧板42の外周面が複数の第2ずれ止め部材45によって外側から押さえられ、横移動が規制されている。 Further, the laminated plate 43 is also provided with a second slip prevention member 45 similar to the first slip prevention member 44 of the second pressure receiving plate 42, in a direction orthogonal to the tension axis O of the second pressure receiving plate 42. It is configured to regulate lateral movement. Two second slip prevention members 45 are provided for each side of the outer peripheral portion of the first plate surface 43b, and project toward the tension side in the tension axis O direction. That is, in the state where the second pressure receiving plate 42 is combined with the laminated plate 43, the outer peripheral surface of the second pressure receiving plate 42 is pressed from the outside by the plurality of second slip prevention members 45, and the lateral movement is restricted.

次に、切削壁3に複数の補強アンカー1の施工方法、すなわち立坑30の切削壁3を補強アンカー1を使用して補強する施工について、図面を用いて説明する。
先ず、図1及び図2に示すように、施工された切削壁3のうち予め設定された複数の位置に切削壁3を貫通するとともに定着地盤Gに達する所定長のアンカー固定孔31を、削孔機を使用して削孔する。具体的には、切削壁3の芯材34、34同士(図3参照)の間のセメント硬化部において、削孔ドリルを用いて、例えば下方斜め5〜45度の傾斜角度で穿孔する。
Next, a method of constructing a plurality of reinforcing anchors 1 on the cutting wall 3, that is, a construction of reinforcing the cutting wall 3 of the shaft 30 by using the reinforcing anchor 1 will be described with reference to the drawings.
First, as shown in FIGS. 1 and 2, an anchor fixing hole 31 having a predetermined length that penetrates the cutting wall 3 at a plurality of preset positions of the constructed cutting wall 3 and reaches the fixing ground G is cut. Drill holes using a drilling machine. Specifically, in the cement-hardened portion between the core members 34, 34 of the cutting wall 3 (see FIG. 3), a drill is used to drill a hole at an inclination angle of, for example, 5 to 45 degrees downward.

そして、図7に示すように、部分的にシース管15を被着させたアンカー材11の先端がアンカー固定孔31の先端部に達するとともに、アンカー材11の突出端11aが切削壁3の壁面3aから突出し、かつ押さえナット13の締め込み長を確保した突出長でアンカー固定孔31に挿入する。このときシース管15は、切削壁3から定着地盤G側に向けて所定長の長さになるように配置されている。 Then, as shown in FIG. 7, the tip of the anchor material 11 partially covered with the sheath tube 15 reaches the tip of the anchor fixing hole 31, and the protruding end 11a of the anchor material 11 is the wall surface of the cutting wall 3. It is inserted into the anchor fixing hole 31 with a protruding length that protrudes from 3a and secures a tightening length of the holding nut 13. At this time, the sheath pipe 15 is arranged so as to have a predetermined length from the cutting wall 3 toward the fixing ground G side.

その後、アンカー材11が挿入されたアンカー固定孔31に定着材(グラウト16)を注入する。このとき、シース管15の内側にグラウト16が浸入しないようにする。これにより、アンカー材11の先端側の定着端11b(図1及び図2参照)は、グラウト16の硬化に伴いアンカー固定孔31内で定着地盤Gと一体的に固定され、定着される。 After that, the fixing material (grout 16) is injected into the anchor fixing hole 31 into which the anchor material 11 is inserted. At this time, the grout 16 is prevented from entering the inside of the sheath tube 15. As a result, the fixing end 11b (see FIGS. 1 and 2) on the tip end side of the anchor material 11 is integrally fixed and fixed in the anchor fixing hole 31 with the fixing ground G as the grout 16 is hardened.

次に、アンカー材11の突出端11aにテンドングリップ12を外側から嵌合させ、さらにそのテンドングリップ12の外側に受圧板4、支圧板17の順で挿通させ、さらに押さえナット13をテンドングリップ12の外周面のねじ部12aに螺合させておく。 Next, the tendon grip 12 is fitted to the protruding end 11a of the anchor material 11 from the outside, the pressure receiving plate 4 and the bearing plate 17 are inserted into the outside of the tendon grip 12 in this order, and the pressing nut 13 is further inserted into the tendon grip 12. It is screwed into the threaded portion 12a on the outer peripheral surface of the above.

そして、テンドングリップ12とアンカー材11の突出端11aとの間に定着用膨張モルタル14を注入し硬化させる。このとき定着用膨張モルタル14が膨張し、アンカー材11の突出端11aとテンドングリップ12とが接着した状態で固定され、その膨張圧による摩擦力によって密接した状態で一体化される。そして、定着用膨張モルタル14の膨張、硬化により所定の摩擦力が得られた後、テンドングリップ12の押さえナット13より張り出した部分をジャッキアップ装置(図示省略)により把持してアンカー材11を引抜く方向に緊張力を付与して所定の緊張状態とするとともに、押さえナット13を切削壁3側に締め込み、緊張状態を保持させる。これにより、受圧板4を切削壁3に圧接させることができる。
これにより複数のアンカー材11、11、…によって切削壁3を補強することができ、切削壁3が完成した状態となる。
Then, the fixing expansion mortar 14 is injected between the tendon grip 12 and the protruding end 11a of the anchor material 11 and cured. At this time, the fixing expansion mortar 14 expands, and the protruding end 11a of the anchor material 11 and the tendon grip 12 are fixed in a state of being adhered to each other, and are integrated in a close state by the frictional force due to the expansion pressure. Then, after a predetermined frictional force is obtained by expanding and hardening the fixing expansion mortar 14, the portion of the tendon grip 12 protruding from the holding nut 13 is gripped by a jack-up device (not shown) to pull the anchor material 11. A tension force is applied in the pulling direction to bring the tension state into a predetermined state, and the pressing nut 13 is tightened to the cutting wall 3 side to maintain the tension state. As a result, the pressure receiving plate 4 can be brought into pressure contact with the cutting wall 3.
As a result, the cutting wall 3 can be reinforced by the plurality of anchor materials 11, 11, ..., And the cutting wall 3 is in a completed state.

このように、本実施の形態では、緊張力が付与された状態のアンカー材11の突出端11aに固定されたテンドングリップ12に締め込まれる押さえナット13によって、周方向に複数に分割された受圧板4が組み合わされた状態で切削壁3の壁面3aに圧接されて拘束される。これにより受圧板4からアンカー力を切削壁3に伝達することができ、補強アンカー1にアンカー力が付与されて切削壁3が補強される。
そして、このように構成される切削壁3では、複数の補強アンカー1によって補強されているので、切削壁3が土水圧によって立坑30内側に撓んだりすることが抑えられる。
As described above, in the present embodiment, the pressure receiving force is divided into a plurality of parts in the circumferential direction by the pressing nut 13 tightened to the tendon grip 12 fixed to the protruding end 11a of the anchor material 11 in the state where the tension force is applied. In a state where the plates 4 are combined, they are pressed against the wall surface 3a of the cutting wall 3 and restrained. As a result, the anchor force can be transmitted from the pressure receiving plate 4 to the cutting wall 3, and the anchor force is applied to the reinforcing anchor 1 to reinforce the cutting wall 3.
Since the cutting wall 3 configured in this way is reinforced by a plurality of reinforcing anchors 1, it is possible to prevent the cutting wall 3 from bending inward of the shaft 30 due to soil water pressure.

次に、上述した構成の複数の補強アンカー1で補強した切削壁3をシールド掘削機2で切削する方法と、その作用について、図面を用いて詳細に説明する。
先ず、図1及び図2に示すように、立坑30の底盤にシールド掘削機2が載置される発進架台32を設置し、その発進架台32上に、カッター21を切削壁3に対向させた状態でシールド掘削機2を設置する。そして、シールド掘削機2を発進させるための駆動装置等のすべての準備を完了させる。
Next, a method of cutting the cutting wall 3 reinforced by the plurality of reinforcing anchors 1 having the above-described configuration with the shield excavator 2 and its operation will be described in detail with reference to the drawings.
First, as shown in FIGS. 1 and 2, a starting pedestal 32 on which the shield excavator 2 is mounted is installed on the bottom of the shaft 30, and the cutter 21 is opposed to the cutting wall 3 on the starting pedestal 32. Install the shield excavator 2 in this state. Then, all preparations such as a drive device for starting the shield excavator 2 are completed.

続いて、シールド掘削機2のカッター21を回転させるとともに、立坑30のうちシールド掘削機2の後方で切削壁3に対向する位置に設置された反力壁33に推進反力を取って発進させる。なお、側方(径方向)に反力を取る構造のシールド掘削機2の場合には、シールド掘削機2の側方に反力壁が設置される。 Subsequently, the cutter 21 of the shield excavator 2 is rotated, and the reaction force wall 33 installed at a position facing the cutting wall 3 behind the shield excavator 2 in the shaft 30 is subjected to a propulsion reaction force to start the shaft. .. In the case of the shield excavator 2 having a structure that takes a reaction force in the lateral direction (diameter direction), a reaction force wall is installed on the side of the shield excavator 2.

そして、図9に示すように、シールド掘削機2を掘進させてカッター21で切削壁3を切削する。このとき、補強アンカー1の突出端11a側からテンドングリップ12が所定の長さまで切削されていくと、押さえナット13による締め込み力が低下するとともに、アンカー材11とテンドングリップ12との摩擦抵抗よりもアンカー材11の引張力(緊張力)が大きくなる。そのため、図10に示すように、テンドングリップ12とアンカー材11との縁が切れて双方の固着状態が解除され、テンドングリップ12とアンカー材11とが分離する。そして、アンカー力(緊張力)が解放された段階で受圧板4が拘束されなくなり、周方向に分割された複数の受圧板4(第1受圧板41、第2受圧板42、及び積層板43)が分解し、シールド掘削機2のチャンバー22(図1参照)内に脱落することになる。例えば、テンドングリップ12の長さが400mmのときに、その半分の長さの200mmが切削されたときに、上述したような作用が生じ、複数に分割された第1受圧板41、第2受圧板42、及び積層板43が脱落することになる。
次に、複数の分割された受圧板4が脱落した後には、図11に示すように、シールド掘削機2のカッター21の衝撃により、残ったテンドングリップ12が押さえナット13とともにアンカー材11から引き抜け、脱落する。
Then, as shown in FIG. 9, the shield excavator 2 is excavated and the cutting wall 3 is cut by the cutter 21. At this time, when the tendon grip 12 is cut to a predetermined length from the protruding end 11a side of the reinforcing anchor 1, the tightening force by the pressing nut 13 decreases, and the frictional resistance between the anchor material 11 and the tendon grip 12 increases. Also, the tensile force (tension force) of the anchor material 11 becomes large. Therefore, as shown in FIG. 10, the edge between the tendon grip 12 and the anchor material 11 is cut off, the fixed state of both is released, and the tendon grip 12 and the anchor material 11 are separated. Then, when the anchor force (tension force) is released, the pressure receiving plate 4 is no longer restrained, and a plurality of pressure receiving plates 4 (first pressure receiving plate 41, second pressure receiving plate 42, and laminated plate 43) divided in the circumferential direction are not restrained. ) Disassembles and falls into the chamber 22 (see FIG. 1) of the shield excavator 2. For example, when the length of the tendon grip 12 is 400 mm, when 200 mm, which is half the length of the tendon grip 12, is cut, the above-mentioned action occurs, and the first pressure receiving plate 41 and the second pressure receiving plate 41 and the second pressure receiving plate are divided into a plurality of parts. The plate 42 and the laminated plate 43 will fall off.
Next, after the plurality of divided pressure receiving plates 4 have fallen off, as shown in FIG. 11, the remaining tendon grip 12 is pulled from the anchor material 11 together with the holding nut 13 by the impact of the cutter 21 of the shield excavator 2. It comes off and falls out.

このように、本実施の形態では、受圧板4がシールド掘削機2で取り込み可能なサイズに分割された分割構造となっていることから、チャンバー22内の閉塞を防止することが可能となり、効率よく切削された補強アンカー1をシールド掘削機2に取り込んで排出することができる。
しかも、本実施の形態では、受圧板4を周方向に分割するという簡単な構造であり、他のアンカー構成は、周知のものと同様の構成となるので、追加工程もなく施工できる利点がある。
As described above, in the present embodiment, since the pressure receiving plate 4 has a divided structure divided into a size that can be taken in by the shield excavator 2, it is possible to prevent blockage in the chamber 22 and to improve efficiency. The well-cut reinforcing anchor 1 can be taken into the shield excavator 2 and discharged.
Moreover, in the present embodiment, the pressure receiving plate 4 has a simple structure of being divided in the circumferential direction, and the other anchor configurations are the same as those of the well-known ones, so that there is an advantage that the pressure receiving plate 4 can be constructed without additional steps. ..

また、本実施の形態では、受圧板4が周方向と引張り軸O方向の両方向に複数に分割されているので、受圧板4がアンカー材11の突出端11aから脱落する際にさらに小さなサイズに分解される。そのため、これら分解された受圧板4をシールド掘削機2で確実に取り込むことができ、チャンバー22内の閉塞をより確実に防ぐことができる。 Further, in the present embodiment, since the pressure receiving plate 4 is divided into a plurality of portions in both the circumferential direction and the tension axis O direction, the pressure receiving plate 4 becomes smaller in size when it falls off from the protruding end 11a of the anchor material 11. It is disassembled. Therefore, these disassembled pressure receiving plates 4 can be reliably taken in by the shield excavator 2, and blockage in the chamber 22 can be prevented more reliably.

また、本実施の形態では、第1受圧板41が第2受圧板42に設けられる第1ずれ止め部材44によって引張り軸O方向に交差する方向への移動が規制される。また、第2受圧板42が積層板43に設けられる第2ずれ止め部材45によって引張り軸O方向に交差する方向への移動が規制される。そのため、補強アンカー1でアンカー力が維持されている状態において、押さえナット13によって組み合わされた周方向に複数に分割された受圧板4が一体性を高めることができ、分離することなく、切削壁3の壁面3aに対する拘束状態を維持することができる。 Further, in the present embodiment, the movement of the first pressure receiving plate 41 in the direction of intersecting the tension axis O direction is restricted by the first slip prevention member 44 provided on the second pressure receiving plate 42. Further, the movement of the second pressure receiving plate 42 in the direction of intersecting the tension axis O direction is restricted by the second slip prevention member 45 provided on the laminated plate 43. Therefore, in a state where the anchor force is maintained by the reinforcing anchor 1, the pressure receiving plate 4 divided into a plurality of parts in the circumferential direction combined by the pressing nut 13 can enhance the integrity, and the cutting wall is not separated. The restrained state with respect to the wall surface 3a of 3 can be maintained.

また、本実施の形態では、引張り軸O方向に分割された隣接する第1受圧板41と第2受圧板42の周方向分割面41d、42d同士をそれぞれ周方向に例えば90°ずらしておくことで、その周方向分割面41d、42dが引張り軸O方向に連続しない構成となるため、受圧板4が施工時の初期荷重によって分解することを抑制することができる。 Further, in the present embodiment, the circumferentially divided surfaces 41d and 42d of the adjacent first pressure receiving plate 41 and the second pressure receiving plate 42 divided in the tension axis O direction are shifted by, for example, 90 ° in the circumferential direction. Since the circumferential division surfaces 41d and 42d are not continuous in the tension axis O direction, it is possible to prevent the pressure receiving plate 4 from being disassembled due to the initial load during construction.

また、本実施の形態では、分割されている受圧板4がシールド掘削機2のチャンバー22から機内に取り込み可能な形状に分割されているから、シールド掘削機2のチャンバー22内の取り込み部、すなわち排土口の大きさに対応させたサイズに受圧板4を分割することで、チャンバー22内の閉塞を確実に防止することができる。 Further, in the present embodiment, since the divided pressure receiving plate 4 is divided into a shape that can be taken into the machine from the chamber 22 of the shield excavator 2, the take-in portion in the chamber 22 of the shield excavator 2, that is, By dividing the pressure receiving plate 4 into a size corresponding to the size of the soil discharge port, blockage in the chamber 22 can be reliably prevented.

また、本実施の形態では、積層板43が芯材の側面に対して直交する方向に沿う分割面を有して複数に分割され、分割された積層板43のそれぞれが芯材の側面に直交する方向に当接させることができるので、受圧板4によって芯材を確実に押さえることができる。 Further, in the present embodiment, the laminated board 43 has a divided surface along a direction orthogonal to the side surface of the core material and is divided into a plurality of parts, and each of the divided laminated plates 43 is orthogonal to the side surface of the core material. Since the contact can be made in the direction in which the core material is formed, the core material can be reliably pressed by the pressure receiving plate 4.

また、本実施の形態では、アンカー材11の突出端11aとテンドングリップ12との間には硬化後に膨張する定着用膨張モルタル14が注入され、定着用膨張モルタル14が硬化により膨張することで、アンカー材11の突出端11aとテンドングリップ12とが膨張圧の摩擦抵抗により一体化される。つまり、補強アンカー1を施工する際には、テンドングリップ12をアンカー材11の突出端11aの外側に嵌合させた状態で、双方の間に定着用膨張モルタル14を注入することで、両者を所定の摩擦抵抗により簡単に一体化させることができる。 Further, in the present embodiment, the fixing expansion mortar 14 that expands after curing is injected between the protruding end 11a of the anchor material 11 and the tendon grip 12, and the fixing expansion mortar 14 expands due to curing. The protruding end 11a of the anchor material 11 and the tendon grip 12 are integrated by the frictional resistance of the expansion pressure. That is, when constructing the reinforcing anchor 1, the tendon grip 12 is fitted to the outside of the protruding end 11a of the anchor material 11, and the fixing expansion mortar 14 is injected between the two to hold both. It can be easily integrated by a predetermined frictional resistance.

以上、本発明による補強アンカーの実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では、切削壁3の対象として発進立坑としているが、到達立坑を切削壁の対象とすることも可能である。
Although the embodiment of the reinforcing anchor according to the present invention has been described above, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the spirit of the present invention.
For example, in the above-described embodiment, the starting shaft is the target of the cutting wall 3, but the reaching shaft can also be the target of the cutting wall.

また、本実施の形態では、受圧板4の分割構造として引張り軸O方向に沿って三分割とし、第1受圧板41、第2受圧板42、積層板43を設けた構成としているが、引張り軸O方向に沿う分割数はこれに限定されることはなく、引張り軸O方向に沿って分割されない構成であってもよい。要は、受圧板4が周方向に分割されていればよいのである。 Further, in the present embodiment, the pressure receiving plate 4 is divided into three parts along the tension axis O direction, and the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 are provided. The number of divisions along the axis O direction is not limited to this, and the configuration may not be divided along the tension axis O direction. The point is that the pressure receiving plate 4 only needs to be divided in the circumferential direction.

さらに、本実施の形態では、引張り軸O方向に分割された隣接する少なくとも一方の受圧板に、他方の受圧板における引張り軸O方向に交差する方向への移動を規制するずれ止め部材44、45が設けられているが、このようなずれ止め部材44、45を省略することも可能である。また、ずれ止め部材44、45の位置や数量についても、上述した実施の形態に限定されることはない。 Further, in the present embodiment, the slip stoppers 44, 45 that regulate the movement of at least one adjacent pressure receiving plate divided in the tension axis O direction in the direction intersecting the tension axis O direction in the other pressure receiving plate. However, it is also possible to omit such slip prevention members 44 and 45. Further, the positions and quantities of the slip prevention members 44 and 45 are not limited to the above-described embodiment.

さらにまた、本願発明では、引張り軸O方向に分割された隣接する第1受圧板41と第2受圧板42において、周方向に分割されるそれぞれの周方向分割面41d、42d同士が周方向にずれた構成としているが、周方向のずれの角度は適宜設定することができ、またこのようなずれをもたせない構成、すなわち周方向分割面41d、42d同士を引張り軸O方向に一致させていてもよい。
また、本実施の形態のように、シールド掘削機2のカッター21で削られるときに受圧板4が分割される場合には、第1受圧板41、第2受圧板42、積層板43を構成する部品同士などを接着剤で仮固定してもよい。
Furthermore, in the present invention, in the adjacent first pressure receiving plate 41 and the second pressure receiving plate 42 divided in the tension axis O direction, the circumferentially divided surfaces 41d and 42d, which are divided in the circumferential direction, are in the circumferential direction. Although the configuration is deviated, the angle of the deviation in the circumferential direction can be set as appropriate, and the configuration that does not have such a deviation, that is, the circumferential division surfaces 41d and 42d are aligned with each other in the tensile axis O direction. May be good.
Further, when the pressure receiving plate 4 is divided when being scraped by the cutter 21 of the shield excavator 2 as in the present embodiment, the first pressure receiving plate 41, the second pressure receiving plate 42, and the laminated plate 43 are configured. Parts to be used may be temporarily fixed with an adhesive.

また、アンカー材11の突出端11aとテンドングリップ12からなる筒状グリップとの間に、硬化後に膨張する定着用膨張モルタル(膨張性固化材)を注入する構成に限定されることはなく、単に硬化により接着される固化材を採用することも可能である。 Further, the configuration is not limited to a configuration in which an expansion mortar (expandable solidifying material) for fixing that expands after curing is injected between the protruding end 11a of the anchor material 11 and the tubular grip composed of the tendon grip 12. It is also possible to use a solidifying material that is adhered by curing.

また、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 Further, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present invention.

1 補強アンカー
2 シールド掘削機
3 切削壁
4 受圧板
11 アンカー材
12 テンドングリップ(筒状グリップ)
13 押さえナット
14 定着用膨張モルタル(膨張性固化材)
30 立坑
31 アンカー固定孔
41 第1受圧板
42 第2受圧板
43 積層板
44、45 ずれ止め部材
G 定着地盤
O 引張り軸
1 Reinforcement anchor 2 Shield excavator 3 Cutting wall 4 Pressure receiving plate 11 Anchor material 12 Tendon grip (cylindrical grip)
13 Holding nut 14 Expansion mortar for fixing (expandable solidifying material)
30 Shaft sink 31 Anchor fixing hole 41 1st pressure receiving plate 42 2nd pressure receiving plate 43 Laminated plate 44, 45 Anti-slip member G Fixing ground O Tension shaft

Claims (5)

シールド掘削機で切削可能な切削壁を貫通させて所定の引張力が付与された状態で地盤に定着され、前記シールド掘削機によって切削可能な補強アンカーであって、
引張り軸方向の一端側を定着材によって地盤に定着させるとともに、他端側が前記切削壁から突出し、外周面にねじ部を有する引張り材と、
前記引張り材の外側に嵌合される受圧板と、
前記引張り材のねじ部に締め込まれて前記受圧板を前記切削壁側に圧接した状態で保持する押さえナットと、
を備え、
前記受圧板は、前記引張り材の引張り軸回りに周回する周方向に複数に分割され
前記受圧板は、前記引張り軸方向に複数に分割され、
前記引張り軸方向に分割された隣接する受圧板では、前記周方向に分割されるそれぞれの周方向分割面同士が前記周方向にずれていることを特徴とする補強アンカー。
A reinforcing anchor that penetrates a cutting wall that can be cut by a shield excavator, is fixed to the ground in a state where a predetermined tensile force is applied, and can be cut by the shield excavator.
One end side in the tension axis direction is fixed to the ground by a fixing material, and the other end side protrudes from the cutting wall and has a threaded portion on the outer peripheral surface.
A pressure receiving plate fitted to the outside of the tension material and
A holding nut that is tightened into the threaded portion of the pulling material and holds the pressure receiving plate in a state of being pressed against the cutting wall side.
With
The pressure receiving plate is divided into a plurality of pieces in the circumferential direction around the tension axis of the tension material .
The pressure receiving plate is divided into a plurality of parts in the tension axis direction.
In the adjacent pressure receiving plates divided in the tension axis direction, the reinforcing anchors are characterized in that the circumferentially divided surfaces divided in the circumferential direction are displaced in the circumferential direction.
前記引張り軸方向に分割された隣接する少なくとも一方の受圧板には、他方の受圧板における前記引張り軸方向に交差する方向への移動を規制するずれ止め部材が設けられていることを特徴とする請求項に記載の補強アンカー。 At least one of the adjacent pressure receiving plates divided in the tension axis direction is provided with a slip stopper that regulates the movement of the other pressure receiving plate in the direction intersecting the tension axis direction. The reinforcing anchor according to claim 1. シールド掘削機で切削可能な切削壁を貫通させて所定の引張力が付与された状態で地盤に定着され、前記シールド掘削機によって切削可能な補強アンカーであって、
引張り軸方向の一端側を定着材によって地盤に定着させるとともに、他端側が前記切削壁から突出し、外周面にねじ部を有する引張り材と、
前記引張り材の外側に嵌合される受圧板と、
前記引張り材のねじ部に締め込まれて前記受圧板を前記切削壁側に圧接した状態で保持する押さえナットと、
を備え、
前記受圧板は、前記引張り材の引張り軸回りに周回する周方向に複数に分割され
分割されている前記受圧板は、外径430mmかつ長さ860mm以下の大きさであることを特徴とする補強アンカー。
A reinforcing anchor that penetrates a cutting wall that can be cut by a shield excavator, is fixed to the ground in a state where a predetermined tensile force is applied, and can be cut by the shield excavator.
One end side in the tension axis direction is fixed to the ground by a fixing material, and the other end side protrudes from the cutting wall and has a threaded portion on the outer peripheral surface.
A pressure receiving plate fitted to the outside of the tension material and
A holding nut that is tightened into the threaded portion of the pulling material and holds the pressure receiving plate in a state of being pressed against the cutting wall side.
With
The pressure receiving plate is divided into a plurality of pieces in the circumferential direction around the tension axis of the tension material .
The divided pressure receiving plate is a reinforcing anchor having an outer diameter of 430 mm and a length of 860 mm or less.
前記切削壁には、切削可能な芯材が設けられており、
前記受圧板は、前記芯材の側面に当接する積層板を有し、
該積層板は、前記芯材の側面に対して直交する方向に沿う分割面を有して複数に分割されていることを特徴とする請求項1乃至のいずれか1項に記載の補強アンカー。
The cutting wall is provided with a core material that can be cut.
The pressure receiving plate has a laminated plate that abuts on the side surface of the core material.
The reinforcing anchor according to any one of claims 1 to 3 , wherein the laminated board has a dividing surface along a direction orthogonal to the side surface of the core material and is divided into a plurality of parts. ..
前記引張り材は、アンカー材と、該アンカー材の前記切削壁から突出する突出端に引張力を超える摩擦力を付与した状態で一体的に外嵌し、外周面に前記ねじ部を有する筒状グリップと、を有し、
前記アンカー材の突出端と前記筒状グリップとの間には硬化後に膨張する膨張性固化材が注入されていることを特徴とする請求項1乃至のいずれか1項に記載の補強アンカー。
The tension material is integrally fitted with the anchor material in a state where a frictional force exceeding the tensile force is applied to the protruding end of the anchor material protruding from the cutting wall, and has a tubular shape having the threaded portion on the outer peripheral surface. With a grip,
The reinforcing anchor according to any one of claims 1 to 4 , wherein an expandable solidifying material that expands after curing is injected between the protruding end of the anchor material and the tubular grip.
JP2017143625A 2017-07-25 2017-07-25 Reinforcement anchor Active JP6933520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143625A JP6933520B2 (en) 2017-07-25 2017-07-25 Reinforcement anchor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143625A JP6933520B2 (en) 2017-07-25 2017-07-25 Reinforcement anchor

Publications (2)

Publication Number Publication Date
JP2019027011A JP2019027011A (en) 2019-02-21
JP6933520B2 true JP6933520B2 (en) 2021-09-08

Family

ID=65477688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143625A Active JP6933520B2 (en) 2017-07-25 2017-07-25 Reinforcement anchor

Country Status (1)

Country Link
JP (1) JP6933520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438990A (en) * 2019-07-01 2019-11-12 中铁建华南建设有限公司 The construction method of cable bolting structure
CN110424968B (en) * 2019-07-04 2020-07-17 北京科技大学 Shaft reinforcing method based on anchoring and grouting anti-corrosion measures
CN110500127B (en) * 2019-07-19 2020-12-15 山东科技大学 Dynamic treatment method for preventing non-uniform settlement of roof in roof cutting roadway without coal pillars

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709790B2 (en) * 1993-12-10 1998-02-04 丸藤シートパイル株式会社 Earth anchor fixing device
JPH1037668A (en) * 1996-07-29 1998-02-10 Kumagai Gumi Co Ltd Obstruction cutter for sealed type shield machine and removing method of obstruction using cutter thereof
JP2002294700A (en) * 2001-04-02 2002-10-09 Kozo Koji Kk Self-aligning anchor fixing device
JP2004092260A (en) * 2002-09-02 2004-03-25 Mitsubishi Engineering Plastics Corp Member for pressure bearing plate, and pressure bearing plate method
JP3901080B2 (en) * 2002-11-28 2007-04-04 Jfeエンジニアリング株式会社 Shield machine
JP2003313877A (en) * 2003-04-22 2003-11-06 Kubota Corp Pressure receiving plate for anchor construction
JP2005076274A (en) * 2003-08-29 2005-03-24 Sankyu Inc Divided earth retaining frame
JP5571536B2 (en) * 2010-11-19 2014-08-13 雄三 坂本 Landslide protection work
JP6163380B2 (en) * 2013-08-06 2017-07-12 積水化学工業株式会社 Fixing structure of tension member and tensile force transmission member, ground anchor
JP6220602B2 (en) * 2013-08-23 2017-10-25 積水化学工業株式会社 Ground anchor and ground anchor method
CN104612722B (en) * 2015-01-07 2017-01-25 同济大学 Tunnel gate strengthening method for starting and arriving of annular shield or annular pushing pipe

Also Published As

Publication number Publication date
JP2019027011A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6933520B2 (en) Reinforcement anchor
KR101671123B1 (en) Tunnel construction method by using pre-support and post-support, and suitable device therefor
KR100910987B1 (en) Backfilling Apparatus for Wale
JP4856920B2 (en) Crushing method and crushing tool
JP5926615B2 (en) Shaft wall structure and construction method
KR101674656B1 (en) CIP retaining wall with steel tube
JP7136597B2 (en) reinforcement anchor
KR101613039B1 (en) Retaining wall and construction method thereof using cast-in-place concrete pile and soil cement pile
JP7211779B2 (en) Shield start-side shaft wall and shield start-side shaft wall construction method
JP4459835B2 (en) Segment for underground structure bulkhead
JP7032143B2 (en) Reinforcing anchor
JP3960559B1 (en) Reinforcement pipe with pressure plate, ground fall prevention method, and slope reinforcement method
KR101000569B1 (en) Slope reinforcement nailing for road and housing area and method which uses them
JP2006057404A (en) Front-end head and construction tool for foundation pile, and foundation pile
KR20160041673A (en) Easy to re-tensile adjustment
KR101757975B1 (en) Anchor having a fixing device at a side of pressure plate to depress the land slope and method of installing the same
JP6163380B2 (en) Fixing structure of tension member and tensile force transmission member, ground anchor
JP6322490B2 (en) Pile head treatment method for severing material and site-built pile
KR20100138455A (en) Block for backfilling and method backfilling by that
EP1767710A1 (en) Composite anchor bolt and construction method for the anchor bolt
KR20150109981A (en) Small bore steel pipe pile
KR20190109883A (en) Composite phc pile for soil retaining wall
JP2013199772A (en) Shield drilling method
JP2022076106A (en) Shaft wall and construction method of shaft wall
JP2006249745A (en) Horizontal sheet pile for cutting of tunnel excavator and earth retaining wall using this sheet pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150