JP7136597B2 - reinforcement anchor - Google Patents

reinforcement anchor Download PDF

Info

Publication number
JP7136597B2
JP7136597B2 JP2018115559A JP2018115559A JP7136597B2 JP 7136597 B2 JP7136597 B2 JP 7136597B2 JP 2018115559 A JP2018115559 A JP 2018115559A JP 2018115559 A JP2018115559 A JP 2018115559A JP 7136597 B2 JP7136597 B2 JP 7136597B2
Authority
JP
Japan
Prior art keywords
anchor
receiving plate
pressure
wall
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115559A
Other languages
Japanese (ja)
Other versions
JP2019218726A (en
Inventor
真輔 松本
博明 坂本
壮大 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2018115559A priority Critical patent/JP7136597B2/en
Publication of JP2019218726A publication Critical patent/JP2019218726A/en
Application granted granted Critical
Publication of JP7136597B2 publication Critical patent/JP7136597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばシールド掘削用立坑壁等の地盤の壁面に取り付けられる補強アンカーに関する。 TECHNICAL FIELD The present invention relates to a reinforcing anchor that is attached to a wall surface of the ground, such as a shaft wall for shield excavation.

従来、地下トンネルや下水本管などをシールド工法により施工する際に採用されるシールド掘進用の立坑壁において、切削壁の部分をシールド掘削機のカッターによって切削可能な樹脂で形成したものが知られている。この立坑壁は、例えば硬質ウレタン樹脂をガラス長繊維により強化した複合材料からなる芯材を配列した切削壁で形成されている。 Conventionally, in the shaft walls for shield excavation, which are used when constructing underground tunnels and sewage mains by the shield construction method, it is known that the cut wall portion is made of resin that can be cut by the cutter of a shield excavator. ing. The shaft wall is formed of a cut wall in which a core material made of a composite material, for example, hard urethane resin reinforced with long glass fibers, is arranged.

このようなシールド掘進用の切削壁において、例えば特許文献1に示されるように、切削壁の壁面を切削可能なアンカーによって補強した壁構造が知られている。
特許文献1には、シールド掘削機で切削可能な切削壁に引張り材を貫通させて設置することによって、切削壁の壁面に所定の引張力が付与された状態で地盤に定着された補強アンカーが開示されている。この補強アンカーは、引張り材の引張力を受けて切削壁の壁面に圧接する受圧板を備えており、これらはシールド掘削機によって切削可能である。
In such a cut wall for shield excavation, a wall structure is known in which the wall surface of the cut wall is reinforced with a cuttable anchor, as disclosed in Patent Document 1, for example.
In Patent Document 1, a reinforcing anchor is fixed to the ground in a state in which a predetermined tensile force is applied to the wall surface of the cut wall by installing a tensile member through a cut wall that can be cut by a shield excavator. disclosed. The reinforcing anchor has a pressure plate that receives the tensile force of the tension member and presses against the wall surface of the cutting wall, which can be cut by a shield excavator.

特開2013-15006号公報JP 2013-15006 A

しかしながら、上述したような従来の切削壁を切削可能なアンカーで補強する場合、アンカーの緊張定着時に切削壁の壁面と受圧板との間で滑りが発生し、所定の位置にアンカーを打設できないといった問題があった。例えば、アンカーの傾斜角が30度の場合、受圧板の滑りは最大鉛直分力300kNになることがある。そのため、従来の滑り止め構造では、アンカーの緊張定着時に受圧板に滑りが発生して滑り止め用の部材が補強アンカー打設位置の下部に設置した腹起し部材と干渉するおそれがあった。 However, when reinforcing the conventional cut wall with a cuttable anchor as described above, slip occurs between the wall surface of the cut wall and the pressure receiving plate when the anchor is tensioned and fixed, and the anchor cannot be driven at a predetermined position. There was a problem. For example, if the anchor has an inclination angle of 30 degrees, the pressure plate slippage can result in a maximum vertical force component of 300 kN. Therefore, in the conventional anti-slip structure, when the anchor is tightened and fixed, the pressure receiving plate may slip, and the anti-slip member may interfere with the waling member installed below the reinforcing anchor placement position.

本発明は、このような問題点に鑑みてなされたもので、緊張定着時における壁面と受圧板当接部との間の滑りを抑制することで、引張り材を所定の位置に確実に打設することができる補強アンカーを提供することを目的としている。 The present invention has been made in view of such problems. The purpose is to provide a reinforcing anchor that can

本発明に係る補強アンカーは、壁面に圧接する受圧板当接部と、受圧板当接部に対して壁面と反対側の面に固定された滑り止め部材と、受圧板当接部及び滑り止め部材を壁面に固定する固定部材と、受圧板当接部及び滑り止め部材を貫通して壁面内に固定させた引張り材と、を備えたことを特徴とする。 A reinforcing anchor according to the present invention includes a pressure plate contact portion that presses against a wall surface, a non-slip member fixed to a surface opposite to the wall surface with respect to the pressure plate contact portion, a pressure plate contact portion, and a non-slip member. It is characterized by comprising a fixing member for fixing the member to the wall surface, and a tension member passing through the pressure receiving plate contact portion and the non-slip member and fixed in the wall surface.

本発明では、受圧板当接部は、滑り止め部材により受圧板当接部の鉛直分力による圧縮に耐えるように支持されているため、引張り材を緊張定着する際に壁面と受圧板当接部との間で生じる滑りを抑制することができる。そのため、アンカーを所定の位置に確実に打設することができ、補強アンカーに引張り材の引張力や緊張力が確実に付与されて壁面が補強される。したがって、補強アンカーを設けた壁面の打設や切削を確実に行うことができる。 In the present invention, the pressure plate contact portion is supported by the non-slip member so as to withstand compression by the vertical component force of the pressure plate contact portion. It is possible to suppress the slippage that occurs between the parts. Therefore, the anchor can be reliably driven into a predetermined position, and the tensile force and tension force of the tension member are reliably applied to the reinforcing anchor to reinforce the wall surface. Therefore, it is possible to reliably drive and cut the wall surface provided with the reinforcing anchors.

また、受圧板当接部と、滑り止め部材と、滑り止め部材に対して受圧板当接部と反対側に固定された受圧板本体と、で受圧板を形成することが好ましい。
受圧板は、受圧板当接部と滑り止め部材と受圧板本体とで形成されているため、引張り材の引張り力や緊張力を受圧板を通して壁面に無理なく伝達でき、しかも壁面と受圧板当接部との間で生じる滑りを抑制することができる。
Further, it is preferable that the pressure receiving plate is formed by the pressure receiving plate contact portion, the non-slip member, and the pressure plate main body fixed to the non-slip member on the opposite side of the pressure receiving plate contact portion.
Since the pressure plate is composed of a pressure plate contact portion, a non-slip member, and a pressure plate main body, the tensile force and tension of the tension member can be transmitted to the wall surface without difficulty through the pressure plate. It is possible to suppress the slippage that occurs between the contact parts.

また、受圧板当接部の壁面に当接する面の繊維の配列方向と滑り止め部材の繊維の配列方向とは、互いに交差する方向に配列されていることが好ましい。
受圧板当接部の壁面に当接する面に設けた繊維の配列方向によって曲げ性能を発現させることができると共に、滑り止め部材に設けた繊維の配列方向によって受圧板当接部の荷重方向の鉛直分力による圧縮に耐えることができる。
Further, it is preferable that the direction in which the fibers of the surface of the pressure-receiving plate contacting portion contact the wall surface and the direction in which the fibers of the non-slip member are arranged are arranged in directions that intersect each other.
The direction in which the fibers are arranged on the surface of the pressure plate contact portion that contacts the wall surface allows bending performance to be exhibited, and the direction in which the fibers are arranged in the non-slip member allows the pressure plate contact portion to be perpendicular to the load direction. It can withstand compression due to component forces.

また、受圧板当接部と壁面との間には、壁面の不陸を吸収する不陸調整部材が設けられていてもよい。
この場合、受圧板当接部を壁面に対して所定の姿勢で配置することができ、引張り材を緊張定着する際、受圧板当接部がずれて滑り易くなることを防ぐことができる。また、受圧板当接部と壁面の間に不陸調整部材を設けたため、壁面に不陸があっても緊張力を受圧板当接部から壁面に確実に伝達することができる。
Further, an unevenness adjusting member that absorbs unevenness of the wall surface may be provided between the pressure plate contact portion and the wall surface.
In this case, the pressure plate contact portion can be arranged in a predetermined posture with respect to the wall surface, and when the tension member is tightened and fixed, the pressure plate contact portion can be prevented from being displaced and becoming slippery. Further, since the unevenness adjusting member is provided between the pressure plate contact portion and the wall surface, even if the wall surface is uneven, the tension can be reliably transmitted from the pressure plate contact portion to the wall surface.

本発明に係る補強アンカーによれば、緊張定着時における受圧板当接部と壁面との間の滑りを滑り止め部材で抑制することで、引張材を所定の位置に確実に打設することができる。 According to the reinforcing anchor of the present invention, the anti-slip member suppresses slippage between the pressure plate abutting portion and the wall surface when tension is fixed, so that the tension member can be reliably driven into the predetermined position. can.

本発明の第1の実施の形態による切削壁を備えた立坑の概略構成を示す側断面図である。1 is a side cross-sectional view showing a schematic configuration of a pit provided with cut walls according to a first embodiment of the present invention; FIG. 図1に示す立坑を上方からみた水平断面図である。FIG. 2 is a horizontal cross-sectional view of the shaft shown in FIG. 1 as seen from above; 補強アンカーで補強された切削壁の正面図である。FIG. 10 is a front view of a cutting wall reinforced with reinforcing anchors; 切削壁に施工された補強アンカーの拡大正面図である。FIG. 4 is an enlarged front view of a reinforcing anchor installed in a cut wall; 図4に示す補強アンカーのA-A線水平断面図である。FIG. 5 is a horizontal cross-sectional view of the reinforcing anchor shown in FIG. 4 taken along line AA; 図4に示す補強アンカーのB-B線縦断面図である。FIG. 5 is a vertical cross-sectional view of the reinforcing anchor shown in FIG. 4 taken along the line BB. 図4に示す補強アンカーのC-C線縦断面図である。FIG. 5 is a vertical cross-sectional view of the reinforcing anchor shown in FIG. 4 taken along the line CC. (a)~(d)は、芯材に受圧板を固定するためのボルト穴の配置例である。(a) to (d) are examples of arrangement of bolt holes for fixing the pressure receiving plate to the core member. (a)は積層板の壁面に当接する面と芯材を示す説明図、(b)は滑り止め部材の面と芯材を示す説明図である。(a) is an explanatory view showing the surface of the laminated plate abutting against the wall surface and the core material, and (b) is an explanatory view showing the surface of the non-slip member and the core material. (a)~(d)は、補強アンカーの施工手順を説明する要部縦断面図である。(a) to (d) are vertical cross-sectional views of essential parts for explaining the procedure for constructing the reinforcing anchor. 第2の実施の形態による、切削壁の壁面に設置された補強アンカーの正面図である。FIG. 5 is a front view of a reinforcing anchor installed in the wall surface of the cutting wall according to the second embodiment; 図11に示す補強アンカーのD-D線縦断面図である。FIG. 12 is a vertical cross-sectional view along line DD of the reinforcing anchor shown in FIG. 11; 第1変形例による補強アンカーの正面図である。FIG. 11 is a front view of a reinforcing anchor according to a first modification; 図13に示す補強アンカーのE-E線縦断面図である。FIG. 14 is a vertical cross-sectional view of the reinforcement anchor shown in FIG. 13 taken along line EE;

以下、本発明の実施の形態による補強アンカーについて、図面に基づいて詳細に説明する。
(第1の実施の形態)
第1の実施の形態による補強アンカー1について、図1~図10により説明する。
図1及び図2に示すように、本実施の形態による補強アンカー1は、例えばシールドトンネルの掘進工事で使用されるシールド掘削機2の発進部となる立坑30内の切削壁3に設置されている。補強アンカー1は、切削壁3を貫通させて所定の引張力や緊張力が付与された状態で地盤に定着されている。補強アンカー1は、シールド掘削機2によって切削可能な材料により構成されている。
Hereinafter, reinforcing anchors according to embodiments of the present invention will be described in detail based on the drawings.
(First embodiment)
A reinforcing anchor 1 according to a first embodiment will be described with reference to FIGS. 1 to 10. FIG.
As shown in FIGS. 1 and 2, the reinforcing anchor 1 according to the present embodiment is installed on the cutting wall 3 in the vertical shaft 30, which is the starting portion of the shield excavator 2 used, for example, in shield tunnel excavation work. there is The reinforcing anchor 1 penetrates the cutting wall 3 and is fixed to the ground in a state in which a predetermined tensile force or tension is applied. The reinforcing anchor 1 is made of material that can be cut by a shield excavator 2 .

立坑30は、シールド掘削機2の発進基地として地中に施工され、上面視で矩形状をなし、地上から掘り下げた掘削面に鉄筋コンクリート造の壁体を構築している。立坑30は、その内部にシールド掘削機2を掘進方向に向けて配置可能な寸法で、かつ発進に必要な設備を設置可能な寸法で構築している。 The shaft 30 is constructed underground as a starting base for the shield excavator 2, has a rectangular shape when viewed from above, and has a reinforced concrete wall on the excavation surface dug from the ground. The vertical pit 30 is constructed with a dimension that allows the shield excavator 2 to be placed therein in the direction of excavation, and a dimension that allows installation of equipment required for starting.

なお、立坑30は、上面視形状が矩形であることに限定されず、円形等でもよく、適宜の形状に施工できる。立坑30の構造としては、鉄筋コンクリート造であることに制限されない。立坑30は、例えば、その外郭部に沿って土留めとして打設した長尺の複数のH形鋼と、そのH形鋼同士の間をコンクリートまたはモルタルで充填した壁を備えていてもよい。或いは、立坑30はケーソン等で沈下させたコンクリート壁を備えていてもよい。 Note that the shape of the pit 30 is not limited to being rectangular when viewed from above, and may be circular or the like, and can be constructed in an appropriate shape. The structure of the shaft 30 is not limited to reinforced concrete construction. The shaft 30 may include, for example, a plurality of long H-beams driven as earth retaining walls along its outer shell and walls filled with concrete or mortar between the H-beams. Alternatively, the shaft 30 may have concrete walls sunken with caissons or the like.

シールド掘削機2は、立坑30の底盤上に設けられた発進架台32上において、カッター21を切羽、すなわち切削壁3の壁面3aに対向させる。しかも、シールド掘削機2は、シールド掘削機2の中心軸をトンネル中心軸に一致させた状態で配置される。 The shield excavator 2 causes the cutter 21 to face the face, that is, the wall surface 3 a of the cutting wall 3 on a starting frame 32 provided on the bottom plate of the shaft 30 . Moreover, the shield excavator 2 is arranged with the central axis of the shield excavator 2 aligned with the tunnel central axis.

切削壁3は、シールド掘削機2の発進基地として地中に施工された立坑30のうちシールド掘削機2で切削される発進領域に設けられている。切削壁3は、図3に示すように、シールド掘削機2の外径よりも大径の円形断面で、シールド掘削機2のカッター21によって切削される。 The cut wall 3 is provided in a starting area cut by the shield excavator 2 in a shaft 30 constructed in the ground as a starting base for the shield excavator 2 . The cutting wall 3 is cut by the cutter 21 of the shield excavator 2 with a circular cross section having a diameter larger than the outer diameter of the shield excavator 2, as shown in FIG.

切削壁3は、硬質ウレタン樹脂をガラス長繊維で強化した複合材から形成された、例えばSEW壁(積水化学工業株式会社所有のSEW(Shield Earth Retaining Wall System)工法によって施工された壁)や、H形鋼型のFRPや炭素繊維により補強されたコンクリート等のシールド発進・到達用土留め壁を採用することができる。
また、切削壁3は、ポリエステル樹脂をガラス長繊維や炭素繊維で強化した複合材料からなる掘削可能な複数の補強アンカー1により補強されている。
The cutting wall 3 is formed of a composite material in which hard urethane resin is reinforced with long glass fibers, for example, an SEW wall (a wall constructed by SEW (Shield Earth Retaining Wall System) method owned by Sekisui Chemical Co., Ltd.), An earth retaining wall for shield departure/arrival such as concrete reinforced with H-shaped steel type FRP or carbon fiber can be adopted.
The cutting wall 3 is reinforced by a plurality of excavable reinforcing anchors 1 made of a composite material in which polyester resin is reinforced with long glass fibers or carbon fibers.

切削壁3は、図3に示すように、鉛直方向に延びる複数の切削部形成用芯材34(以下、単に「芯材34」という)が水平方向に所定の間隔をあけて配置されている。芯材34、34同士の間にはソイルセメント硬化体のみからなるセメント硬化部35を備えた構成となっている。
芯材34は、シールド掘削機2のカッター21によって切削可能な材料である硬質ウレタン樹脂をガラス長繊維により強化した柱状複合材料34aを有する。柱状複合材料34aは、施工現場の地盤や立坑の大きさによって特に限定されないが、例えば、600×300mmの積水化学工業株式会社製エスロンネオランバーFFUからなる。しかも、芯材34は、柱状複合材料34aの上下にH形鋼34bが継手及びボルトナット等を介して固定されている。図3に示す芯材34において、二点鎖線で示す切削壁3内には柱状複合材料34aが配列されている。
As shown in FIG. 3, the cutting wall 3 includes a plurality of vertically extending core members 34 for forming a cut portion (hereinafter simply referred to as "core members 34") arranged at predetermined intervals in the horizontal direction. . Between the core members 34, 34, there is provided a hardened cement portion 35 consisting only of hardened soil cement.
The core material 34 has a columnar composite material 34 a made by reinforcing hard urethane resin, which is a material that can be cut by the cutter 21 of the shield excavator 2 , with long glass fibers. The columnar composite material 34a is not particularly limited depending on the ground of the construction site or the size of the shaft, but is made of, for example, ESLON NEO LUMBER FFU manufactured by Sekisui Chemical Co., Ltd. with a size of 600×300 mm. In addition, the core material 34 has H-shaped steels 34b fixed above and below the columnar composite material 34a via joints, bolts, nuts, and the like. In the core member 34 shown in FIG. 3, columnar composite materials 34a are arranged in the cut wall 3 indicated by a two-dot chain line.

次に補強アンカー1について、図4~図7により説明する。補強アンカー1は、アンカー材11(引張り材)と、グリップ部材12(引張り材)と、押さえナット13と、受圧板4と、を有する。
アンカー材11は、立坑30内から受圧板4と切削壁3を貫通して地盤G内に向けて斜め下方に延びている。アンカー材11は、上端側の突出端11aを切削壁3から外側に突出させ、下端側の定着端11bが地盤G内に延びて定着材によって定着されている。グリップ部材12は、アンカー材11の突出端11aに引張力を超える摩擦力をもって一体的に外嵌し、外周面にねじ部12a(図7参照)を有する。押さえナット13は、グリップ部材12のねじ部12aに締め込まれて受圧板4を切削壁3側に押し付けて圧接させている。受圧板4は、グリップ部材12の外側に嵌合され、切削壁3の壁面3aを圧接している。
ここで、アンカー材11とグリップ部材12とは引張り材を構成している。
Next, the reinforcing anchor 1 will be explained with reference to FIGS. 4 to 7. FIG. The reinforcing anchor 1 has an anchor member 11 (tension member), a grip member 12 (tension member), a pressing nut 13 and a pressure receiving plate 4 .
The anchor member 11 extends obliquely downward into the ground G from within the shaft 30 through the pressure receiving plate 4 and the cutting wall 3 . The anchor member 11 has a protruding end 11a on the upper end side projecting outward from the cut wall 3, and a fixed end 11b on the lower end side extending into the ground G and fixed by a fixing material. The grip member 12 is integrally fitted onto the projecting end 11a of the anchor member 11 with a frictional force exceeding the tensile force, and has a threaded portion 12a (see FIG. 7) on its outer peripheral surface. The pressing nut 13 is screwed onto the threaded portion 12a of the grip member 12 to press the pressure receiving plate 4 against the cutting wall 3 side. The pressure receiving plate 4 is fitted outside the grip member 12 and presses against the wall surface 3 a of the cutting wall 3 .
Here, the anchor member 11 and the grip member 12 constitute a tension member.

アンカー材11は、図1及び図7に示すように、切削可能な炭素繊維より線からなる引張り材として機能する。アンカー材11は、切削壁3の壁面3a側から裏面側の地盤Gまで削孔されたアンカー固定孔31に挿入され、下端側の定着端11bが地盤Gにおいてアンカー固定孔31に充填されたグラウト16により定着される。アンカー材11は、受圧板4を介して切削壁3の壁面3aに土圧や水圧に耐える力で圧接させる引張張力を付与することができる。
アンカー材11は、両端の突出端11a及び定着端11bを除く長手方向中間部分が、図7に示すように波付き硬質ポリエチレン管等のシース管15に挿通され、アンカー固定孔31に充填されるグラウト16に対して非定着の状態になっている。
The anchor material 11, as shown in FIGS. 1 and 7, functions as a tensile material made of carbon fiber stranded wire that can be cut. The anchor material 11 is inserted into the anchor fixing hole 31 drilled from the wall surface 3a side of the cutting wall 3 to the ground G on the back side, and the fixing end 11b on the lower end side is the grout that fills the anchor fixing hole 31 in the ground G. 16. The anchor material 11 can apply tensile tension to the wall surface 3a of the cut wall 3 via the pressure receiving plate 4 with a force that withstands earth pressure and water pressure.
As shown in FIG. 7, the anchor member 11 is inserted through a sheath tube 15 such as a corrugated hard polyethylene tube, etc., and filled into the anchor fixing hole 31. It is in a non-fixed state with respect to the grout 16 .

図6及び図7に示すように、グリップ部材12は、いわゆるテンドングリップを用いることができ、定着用膨張モルタル14を介してアンカー材11の突出端11aに一体に設けられている。グリップ部材12は、FRP等の切削可能な材料から形成されており、外周面は押さえナット13を螺合できるようにねじ加工されている。
受圧板4及び押さえナット13を装着させた状態において、グリップ部材12とアンカー材11の突出端11aとの間には定着用膨張モルタル14が注入され、膨張した状態で硬化している。定着用膨張モルタル14は硬化に伴い膨張するため、アンカー材11の突出端11aとグリップ部材12とがその膨張により一体に密接され、ひいては摩擦力によりグリップ部材12は受圧板4に定着する。なお、定着用膨張モルタル14は、一般のアンカー工法に使用される公知のものを使用できる。
As shown in FIGS. 6 and 7, the grip member 12 can use a so-called tendon grip, and is provided integrally with the protruding end 11a of the anchor member 11 via the expansion mortar 14 for fixing. The grip member 12 is made of a machinable material such as FRP, and its outer peripheral surface is threaded so that the retaining nut 13 can be screwed thereon.
With the pressure-receiving plate 4 and the holding nut 13 attached, the fixing expansion mortar 14 is injected between the grip member 12 and the protruding end 11a of the anchor member 11, and is hardened in the expanded state. Since the expansion mortar 14 for fixing expands as it hardens, the projection end 11a of the anchor material 11 and the grip member 12 are brought into close contact with each other due to the expansion, and the grip member 12 is fixed to the pressure receiving plate 4 by frictional force. As the fixing expansion mortar 14, a known one used in general anchor construction methods can be used.

押さえナット13は、FRP等の切削可能な材料からなるものが用いられ、上述したようにグリップ部材12の外周面のねじ部12aに螺合可能である。押さえナット13を締め付けることで、受圧板4を引張り軸O方向で切削壁3の壁面3a側に押し付けることができる。つまり、受圧板4は、押さえナット13を締め付けることにより、切削壁3との間で挟持される。 The holding nut 13 is made of a machinable material such as FRP, and can be screwed onto the threaded portion 12a on the outer peripheral surface of the grip member 12 as described above. By tightening the pressing nut 13, the pressure receiving plate 4 can be pressed against the wall surface 3a of the cutting wall 3 in the direction of the tension axis O. That is, the pressure receiving plate 4 is clamped between the cutting wall 3 by tightening the retaining nut 13 .

受圧板4は、FRP等の切削可能な材料から形成されている。受圧板4は、受圧板本体40と、切削壁3の壁面3aに押圧される積層板41と、受圧板本体40と積層板41の間に設けられた板状の滑り止め部材42と、を有している。積層板41は滑り止め部材42と積層され、一体形成されている。一体化された二層構造の積層板41及び滑り止め部材42で重ね板部43を構成する。積層板41は受圧板当接部に含まれる。 The pressure receiving plate 4 is made of a machinable material such as FRP. The pressure receiving plate 4 includes a pressure receiving plate main body 40, a laminated plate 41 pressed against the wall surface 3a of the cutting wall 3, and a plate-shaped non-slip member 42 provided between the pressure receiving plate main body 40 and the laminated plate 41. have. The laminated plate 41 is laminated with the non-slip member 42 and formed integrally. The laminated plate 41 and the non-slip member 42 having a two-layer structure integrated together form a laminated plate portion 43 . The laminated plate 41 is included in the pressure receiving plate contact portion.

受圧板本体40は、図7に示すように、グリップ部材12が挿通可能な挿通孔40aが形成されている。挿通孔40aの内径は、グリップ部材12の外径とほぼ一致している。
受圧板本体40は、挿通孔40aの孔軸方向で滑り止め部材42及び積層板41を介して壁面3aに当接する第1端面40bが孔軸方向に対して斜めに交差し、孔軸方向で押さえナット13側の第2端面40cが孔軸方向に直交する平面となっている。第1端面40b及び第2端面40cは、それぞれ面方向に直交する方向から見て、例えば矩形状に形成されている。
As shown in FIG. 7, the pressure receiving plate main body 40 is formed with an insertion hole 40a through which the grip member 12 can be inserted. The inner diameter of the insertion hole 40 a is approximately the same as the outer diameter of the grip member 12 .
The pressure receiving plate main body 40 has a first end face 40b that abuts on the wall surface 3a via the non-slip member 42 and the laminated plate 41 in the axial direction of the insertion hole 40a. A second end surface 40c on the side of the presser nut 13 is a flat surface perpendicular to the axial direction of the hole. The first end face 40b and the second end face 40c are formed in, for example, a rectangular shape when viewed from a direction perpendicular to the plane direction.

積層された積層板41及び滑り止め部材42は、それぞれ板状をなし、中心部にグリップ部材12が挿通可能な挿通孔41a、42aが形成されている。滑り止め部材42は、グリップ部材12に外嵌した状態で、一方の第1板面42bが受圧板本体40の第1端面40bに当接し、他方の第2板面42cが積層板41の第1板面41bに当接している。積層板41は、グリップ部材12に外嵌した状態で、一方の第1板面41bに対向する他方の第2板面41cが切削壁3の壁面3aのうち芯材34の側面に当接している(図5参照)。 The stacked laminated plate 41 and anti-slip member 42 are plate-shaped, and are provided with insertion holes 41a and 42a through which the grip member 12 can be inserted. The non-slip member 42 is fitted on the grip member 12 so that one first plate surface 42b abuts the first end surface 40b of the pressure receiving plate main body 40, and the other second plate surface 42c contacts the first end surface 40b of the pressure receiving plate body 40. It is in contact with one plate surface 41b. In the state where the laminated plate 41 is fitted on the grip member 12, the second plate surface 41c, which faces the first plate surface 41b, is in contact with the side surface of the core member 34 of the wall surface 3a of the cutting wall 3. (See Figure 5).

図4及び図7において、積層板41及び滑り止め部材42は受圧板本体40の第1端面40bに対して上方に延びて長方形板状とされ、切削可能なボルト51(固定部材)によって切削壁3の壁面3aに固定されている。積層板41及び滑り止め部材42は、左右の部分でボルト51によって隣り合う2本の芯材34の柱状複合材料34aにそれぞれ固定されて支持されている。 4 and 7, the laminated plate 41 and the non-slip member 42 extend upward from the first end surface 40b of the pressure plate main body 40 to form a rectangular plate. 3 is fixed to the wall surface 3a. The laminated plate 41 and the non-slip member 42 are supported by being fixed to the columnar composite materials 34a of the two adjacent core members 34 by bolts 51 at the left and right portions.

受圧板4の積層板41及び滑り止め部材42には、厚さ方向に貫通し、ボルト51が挿通可能な孔径からなる2組のボルト挿通孔52、52(貫通孔)が左右両側に形成されている(図4参照)。2組のボルト挿通孔52、52は、立坑内側から見た正面視で2本の芯材34の柱状複合材料34aに重なる位置で上下方向に間隔をあけて2個ずつ配列されている。2組のボルト挿通孔52、52のそれぞれに挿通されるボルト51は、切削壁3の芯材34の柱状複合材料34aに向けて打ち込まれている。 Two sets of bolt insertion holes 52, 52 (through holes) are formed on the left and right sides of the laminated plate 41 of the pressure receiving plate 4 and the non-slip member 42, and penetrate in the thickness direction. (See Figure 4). The two sets of bolt insertion holes 52, 52 are arranged two by two at positions overlapping the columnar composite materials 34a of the two core members 34 when viewed from the inside of the vertical shaft. A bolt 51 inserted through each of the two sets of bolt insertion holes 52 , 52 is driven toward the columnar composite material 34 a of the core material 34 of the cutting wall 3 .

図3及び図8に示すSEW壁の切削壁3の壁面3aにおいて、芯材34に穿孔するボルト挿通孔52は図8(a)に示すように、芯材34に欠損を生じないように上下方向に配列する。図8(b)に示すように、ボルト挿通孔52は横方向に配列しない。但し、芯材34の幅bが欠損を生じない程度に大きい場合には、ボルト挿通孔52は横方向に配列してもよい。
芯材34に穿孔するボルト挿通孔52の変形例の配列として、後述するように図8(c)、(d)に示すものを採用してもよい。
In the wall surface 3a of the cut wall 3 of the SEW wall shown in FIGS. 3 and 8, the bolt insertion holes 52 drilled in the core material 34 are arranged vertically so as not to damage the core material 34, as shown in FIG. 8(a). Arrange in direction. As shown in FIG. 8(b), the bolt insertion holes 52 are not arranged in the horizontal direction. However, if the width b of the core member 34 is large enough to prevent damage, the bolt insertion holes 52 may be arranged in the horizontal direction.
As a modified arrangement of the bolt insertion holes 52 drilled in the core member 34, those shown in FIGS. 8(c) and 8(d) may be adopted as described later.

図6及び図7に示すように、重ね板部43において、ボルト挿通孔52及び芯材34に削孔されるボルト孔36とボルト51との間にはエポキシ系接着剤や充填用樹脂等の充填材53が充填されている。つまり、ボルト51は、ボルト挿通孔52と切削壁3の芯材34に貫通されるボルト孔36とに跨るように固定されている。ここで、ボルト51は、例えばFRP等の切削可能な材料からなる。 As shown in FIGS. 6 and 7, in the overlapping plate portion 43, between the bolt insertion hole 52 and the bolt hole 36 drilled in the core material 34 and the bolt 51, an epoxy adhesive, a filling resin, or the like is applied. Filler 53 is filled. That is, the bolt 51 is fixed across the bolt insertion hole 52 and the bolt hole 36 through which the core material 34 of the cut wall 3 penetrates. Here, the bolt 51 is made of a machinable material such as FRP.

図9(a)において、受圧板4の積層板41はFRP等の切削可能な材料で形成されており、曲げ性能を発現させるために繊維方向を水平に配列した第2板面41cが切削壁3の壁面3aに当接している。
図9(b)において、重ね板部43における積層板41に固定した滑り止め部材42は、本実施形態ではガラス繊維補強発泡ウレタン(例えば、積水化学工業株式会社製のエスロンネオランバーFFU)で形成されており、積層板41の鉛直分力による圧縮に耐えるように、含有されるガラス繊維の方向を受圧板4の荷重方向に一致させて配置されている。滑り止め部材42の繊維方向を荷重方向に配列させた第1板面42bは受圧板本体40側に配設されている。積層板41の第2板面41cと滑り止め部材42の第1板面42bの繊維の配列方向は直交していなくてもよく、交差する方向であればよい。
In FIG. 9(a), the laminated plate 41 of the pressure receiving plate 4 is made of a material such as FRP that can be cut. 3 is in contact with the wall surface 3a.
In FIG. 9B, the non-slip member 42 fixed to the laminated plate 41 in the laminated plate portion 43 is made of urethane foam reinforced with glass fiber (for example, Eslon Neo Lumber FFU manufactured by Sekisui Chemical Co., Ltd.) in this embodiment. The direction of the contained glass fibers is aligned with the load direction of the pressure receiving plate 4 so as to withstand the compression by the vertical component force of the laminated plate 41 . A first plate surface 42b in which the fiber direction of the non-slip member 42 is arranged in the load direction is disposed on the pressure plate main body 40 side. The arrangement directions of the fibers on the second plate surface 41c of the laminated plate 41 and the first plate surface 42b of the non-slip member 42 do not have to be orthogonal, and may be in directions that intersect each other.

次に、切削壁3に補強アンカー1を施工する方法、すなわち立坑30の切削壁3を、補強アンカー1を用いて補強する施工について、図10を中心に説明する。
先ず、図1及び図2に示すように、施工された立坑30の切削壁3に、削孔機を使用して、所定長のアンカー固定孔31を縦横方向に所定間隔を開けて複数削孔する。各アンカー固定孔31は切削壁3を貫通して地盤Gに達する。具体的には、切削壁3の芯材34、34同士(図3参照)の間のセメント硬化部35に、削孔ドリルを用いて例えば斜め下向きに5~45度の傾斜角度で穿孔する。アンカー固定孔31は、後述する重ね板部43の挿通孔41a、42aと同軸になる位置に穿孔する。
Next, a method of constructing the reinforcing anchor 1 on the cut wall 3, that is, the construction of reinforcing the cut wall 3 of the vertical shaft 30 using the reinforcing anchor 1 will be described mainly with reference to FIG.
First, as shown in FIGS. 1 and 2, a plurality of anchor fixing holes 31 of a predetermined length are drilled in the cut wall 3 of the constructed vertical shaft 30 at predetermined intervals in the vertical and horizontal directions using a drilling machine. do. Each anchor fixing hole 31 penetrates the cutting wall 3 and reaches the ground G. Specifically, the hardened cement portion 35 between the core members 34 of the cutting wall 3 (see FIG. 3) is drilled obliquely downward at an angle of 5 to 45 degrees, for example, using a drill. The anchor fixing holes 31 are drilled at positions coaxial with insertion holes 41a and 42a of the overlapping plate portion 43, which will be described later.

アンカー材11用のアンカー固定孔31を削孔した後、図4及び図10(a)に示すように、切削壁3の隣り合う2本の芯材34間の上に受圧板4の滑り止め部材42及び積層板41からなる重ね板部43を取り付ける。重ね板部43は、重ね板部43自体の許容応力度や鉛直分力に基づいて予め設計された形状、大きさ、ボルト挿通孔52、挿通孔41a,42aの孔径、位置が決められたものを加工しておく。 After drilling the anchor fixing hole 31 for the anchor material 11, as shown in FIGS. A stacking plate portion 43 composed of the member 42 and the laminated plate 41 is attached. The stacking plate portion 43 is designed in advance based on the allowable stress level and vertical component force of the stacking plate portion 43 itself. are processed.

重ね板部43の取付けに際し、重ね板部43を壁面3aの所定の固定位置に、例えば接着材等を使用して仮に固定する。このとき、重ね板部43の滑り止め部材42は、積層板41の鉛直分力による圧縮に耐えるように、材料の繊維方向を鉛直方向(受圧板4の荷重方向)に向けて配置する。
なお、重ね板部43は、予め工場等で滑り止め部材42と積層板41を一体に固着しておくことが好ましい。その際、積層板41の繊維の方向と滑り止め部材42の繊維の方向を交差する方向、好ましくは直交する方向に配設するものとする。
When attaching the overlapping plate portion 43, the overlapping plate portion 43 is temporarily fixed to a predetermined fixing position on the wall surface 3a by using an adhesive or the like. At this time, the non-slip member 42 of the laminated plate portion 43 is arranged with the fiber direction of the material facing the vertical direction (the load direction of the pressure receiving plate 4) so as to withstand compression by the vertical component force of the laminated plate 41.
In addition, it is preferable that the laminated plate portion 43 has the non-slip member 42 and the laminated plate 41 fixed together in advance at a factory or the like. At that time, the direction of the fibers of the laminated plate 41 and the direction of the fibers of the non-slip member 42 are arranged in a direction intersecting, preferably perpendicular to each other.

切削壁3には、重ね板部43に予め形成されたボルト挿通孔52と同軸となるように切削壁3の芯材34にボルト孔36を削孔する。切削壁3の芯材34に削孔されるボルト孔36は、その孔長がボルト51の長さに対応していればよく、ボルト51が芯材34に根入れされる適宜な長さに設定されている(図6参照)。なお、ボルト51及びボルト孔36は、切削壁3より奥の地盤Gに到達するように設けられていてもよい。 A bolt hole 36 is drilled in the core member 34 of the cut wall 3 so as to be coaxial with the bolt insertion hole 52 previously formed in the overlapping plate portion 43 . The bolt hole 36 drilled in the core material 34 of the cut wall 3 has only to have a hole length corresponding to the length of the bolt 51 , and the bolt 51 has an appropriate length to be embedded in the core material 34 . is set (see FIG. 6). The bolt 51 and the bolt hole 36 may be provided so as to reach the ground G behind the cut wall 3 .

その後、図10(b)に示すように、重ね板部43のボルト挿通孔52及び切削壁3の芯材34のボルト孔36に充填材53を充填する。次いで、図10(c)に示すように、ボルト51を回転させながらボルト挿通孔52及びボルト孔36に挿入し、孔内の充填材53の余剰分が孔から溢れたことを確認することで充填状態を把握する。なお、ボルト51の挿通の際には、くさび状のナット等を使用することでボルト挿通孔52の中心軸にボルト51を配置させることが好ましい。 After that, as shown in FIG. 10B, the bolt insertion holes 52 of the stacking plate portion 43 and the bolt holes 36 of the core material 34 of the cutting wall 3 are filled with the filler 53 . Next, as shown in FIG. 10(c), the bolt 51 is rotated and inserted into the bolt insertion hole 52 and the bolt hole 36, and it is confirmed that the surplus of the filler 53 in the holes overflows the holes. Know the filling status. When inserting the bolt 51, it is preferable to arrange the bolt 51 on the center axis of the bolt insertion hole 52 by using a wedge-shaped nut or the like.

ここで、重ね板部43の一例として、積層板41の厚みが60~120mmのときに、滑り止め部材42の厚みを100mm以上とする。ボルト挿通孔52の孔径を、例えば直径25mmのボルト51に対して3~10mm程度大きく設定することができる。そして、ボルト挿通孔52のボルト51との空隙部には、充填材53としてエポキシ系接着剤または充填用樹脂等の充填材53を充填する。芯材34に穿孔するボルト挿通孔52の上下方向の間隔は例えば180mm程度に設定する。 Here, as an example of the laminated plate portion 43, when the thickness of the laminated plate 41 is 60 to 120 mm, the thickness of the non-slip member 42 is set to 100 mm or more. The hole diameter of the bolt insertion hole 52 can be set larger than that of the bolt 51 having a diameter of 25 mm, for example, by about 3 to 10 mm. A gap between the bolt insertion hole 52 and the bolt 51 is filled with a filler 53 such as an epoxy adhesive or a filler resin. The vertical interval between the bolt insertion holes 52 drilled in the core member 34 is set to about 180 mm, for example.

そして、図10(d)において、部分的にシース管15を被着させたアンカー材11を、重ね板部43の挿通孔41a、42aを通してアンカー固定孔31内に挿入する(図7参照)。アンカー材11の先端がアンカー固定孔31の底部に達した状態で、アンカー材11の突出端11aが切削壁3の壁面3aから突出し、かつ押さえナット13の締め込み長を確保した突出長でアンカー固定孔31に挿入されている。シース管15は、切削壁3から地盤G側に向けて所定長の長さになるように配置されている。なお、予めアンカー材11の突出端11aには、グリップ部材12を外側から嵌合させておく。
その後、アンカー材11が挿入されたアンカー固定孔31に定着材(グラウト16)を注入する。このとき、シース管15の内側にグラウト16が浸入しないようにする。これにより、アンカー材11の先端側の定着端11b(図1及び図2参照)は、グラウト16の硬化に伴いアンカー固定孔31内で地盤Gと一体に固定され、定着される。
Then, in FIG. 10(d), the anchor material 11 partially covered with the sheath tube 15 is inserted into the anchor fixing hole 31 through the insertion holes 41a and 42a of the overlapping plate portion 43 (see FIG. 7). With the tip of the anchor material 11 reaching the bottom of the anchor fixing hole 31, the protruding end 11a of the anchor material 11 protrudes from the wall surface 3a of the cut wall 3, and the anchor is secured with a protruding length that secures the tightening length of the holding nut 13. It is inserted into the fixing hole 31 . The sheath tube 15 is arranged to have a predetermined length from the cutting wall 3 toward the ground G side. In addition, the grip member 12 is previously fitted to the projecting end 11a of the anchor member 11 from the outside.
Thereafter, a fixing material (grout 16) is injected into the anchor fixing hole 31 into which the anchor material 11 has been inserted. At this time, the grout 16 is prevented from entering the inside of the sheath tube 15. - 特許庁As a result, the fixing end 11b (see FIGS. 1 and 2) of the anchor member 11 is fixed integrally with the ground G within the anchor fixing hole 31 as the grout 16 hardens.

ここで、グリップ部材12は、図7に示すように、予め例えば工場等でアンカー材11の突出端11aに固定する加工をしておく。具体的には、アンカー材11の突出端11aの外側からグリップ部材12を嵌合させた後、グリップ部材12とアンカー材11の突出端11aとの間に定着用膨張モルタル14を注入し硬化させる。このとき、定着用膨張モルタル14が膨張し、アンカー材11の突出端11aとグリップ部材12とが接着した状態で固定され、その膨張圧による摩擦力によって密接した状態で一体化される。これにより、定着用膨張モルタル14の膨張、硬化により所定の摩擦力が得られる。 Here, as shown in FIG. 7, the grip member 12 is previously processed to be fixed to the projecting end 11a of the anchor member 11, for example, at a factory or the like. Specifically, after the grip member 12 is fitted from the outside of the projecting end 11a of the anchor material 11, the expanding mortar 14 for fixing is injected between the grip member 12 and the projecting end 11a of the anchor material 11 and hardened. . At this time, the expanding mortar 14 for fixing expands, and the protruding end 11a of the anchor material 11 and the grip member 12 are fixed in an adhered state, and are brought into close contact with each other by the frictional force generated by the expansion pressure. As a result, the fixing expansion mortar 14 expands and hardens to obtain a predetermined frictional force.

次に、図10(d)、図7に示すように、グリップ部材12の外側に受圧板4の受圧板本体40、支圧板17の順で挿通させ、さらに押さえナット13をグリップ部材12の外周面のねじ部12aに螺合させる。つまり、グリップ部材12の押さえナット13より張り出した部分をジャッキアップ装置(図示省略)により把持してアンカー材11を引抜く方向に緊張力を付与して所定の緊張状態にする。そして、押さえナット13をグリップ部材12の切削壁3側に締め込み、緊張状態を保持させる。これにより、受圧板4を切削壁3に圧接させることができる。こうして、補強アンカー1を組み立て施工できる。
このような補強アンカー1を切削壁3の領域内に縦横方向に間隔を開けて複数個施工する。これにより、複数の補強アンカー1によって切削壁3を補強することができ、切削壁3が完成した状態となる。
Next, as shown in FIGS. 10(d) and 7, the pressure receiving plate main body 40 of the pressure receiving plate 4 and the pressure plate 17 are inserted in this order onto the outside of the grip member 12. It is screwed into the threaded portion 12a of the surface. That is, the portion of the grip member 12 that protrudes from the holding nut 13 is gripped by a jack-up device (not shown), and tension is applied in the direction of pulling out the anchor member 11 to create a predetermined tension state. Then, the holding nut 13 is tightened on the side of the cutting wall 3 of the grip member 12 to maintain the tension. As a result, the pressure receiving plate 4 can be brought into pressure contact with the cutting wall 3 . In this way, the reinforcing anchor 1 can be assembled and constructed.
A plurality of such reinforcing anchors 1 are constructed in the area of the cutting wall 3 with a space in the vertical and horizontal directions. As a result, the cut wall 3 can be reinforced by the plurality of reinforcing anchors 1, and the cut wall 3 is completed.

本実施形態による補強アンカー1では、緊張力が付与された状態のアンカー材11の突出端11aに固定されたグリップ部材12に締め込まれる押さえナット13によって、受圧板4が切削壁3の壁面3aに圧接されて拘束される。これにより受圧板4からアンカー力を切削壁3に伝達することができ、補強アンカー1にアンカー力が付与されて切削壁3が補強される。
このように構成された切削壁3は、複数の補強アンカー1によって補強されているので、切削壁3が土水圧によって立坑30内側に撓んだりすることが抑えられる。
In the reinforcing anchor 1 according to this embodiment, the pressure receiving plate 4 is pushed into the wall surface 3a of the cutting wall 3 by the holding nut 13 which is fastened to the grip member 12 fixed to the protruding end 11a of the anchor material 11 to which tension is applied. is pressed against and restrained. As a result, the anchor force can be transmitted from the pressure receiving plate 4 to the cutting wall 3 , and the anchor force is applied to the reinforcing anchor 1 to reinforce the cutting wall 3 .
Since the cut wall 3 constructed in this manner is reinforced by a plurality of reinforcing anchors 1, the cut wall 3 is prevented from bending toward the inside of the shaft 30 due to earth and water pressure.

次に、上述した実施形態による補強アンカー1の作用について、図面を用いて詳細に説明する。
本実施の形態では、図7に示すように、ボルト51によって切削壁3に固定された積層板41及び滑り止め部材42を有する重ね板部43によって受圧板4が壁面3a当接されて支持されている。そのため、壁面3aに当接する重ね板部43の積層板41の第2板面41cに設けた繊維の配列方向によって曲げ性能を発現させることができる。しかも、アンカー材11を緊張定着する際に、切削壁3と積層板41との間で生じる滑りを滑り止め部材42によって受圧板本体40との間で抑制することができる。こうして、補強アンカー1を所定の位置に確実に打設することができ、補強アンカー1にアンカー材11の引張力(緊張力)が確実に付与されて切削壁3が補強される。
Next, the action of the reinforcing anchor 1 according to the embodiment described above will be described in detail using the drawings.
In this embodiment, as shown in FIG. 7, the pressure receiving plate 4 is supported by contacting the wall surface 3a by a laminated plate 41 fixed to the cutting wall 3 by bolts 51 and a laminated plate portion 43 having an anti-slip member 42. ing. Therefore, the bending performance can be exhibited depending on the arrangement direction of the fibers provided on the second plate surface 41c of the laminated plate 41 of the laminated plate portion 43 that contacts the wall surface 3a. Moreover, when the anchor member 11 is fixed under tension, slippage between the cut wall 3 and the laminated plate 41 can be suppressed by the non-slip member 42 between the pressure receiving plate main body 40 and the cut wall 3 . Thus, the reinforcing anchor 1 can be reliably driven into a predetermined position, and the tensile force (tension) of the anchor material 11 is reliably applied to the reinforcing anchor 1 to reinforce the cut wall 3 .

したがって、シールド掘進用の立坑30への切削可能な補強アンカー1の打設を確実に行うことができる。とくに、シールド外径が大きいときの立坑30の場合には、上述したように滑り止め部材42と受圧板本体40との間で滑りが生じ易いことから、上記の効果が大きい。 Therefore, it is possible to reliably drive the cuttable reinforcing anchor 1 into the shaft 30 for shield excavation. In particular, in the case of the shaft 30 when the shield outer diameter is large, as described above, the non-slip member 42 and the pressure receiving plate main body 40 are likely to slip, so the above effect is great.

また、本実施の形態では、ボルト51が積層板41及び滑り止め部材42からなる重ね板部43と切削壁3にわたって挿通されるので、重ね板部43を切削壁3の壁面3aに対して強固に固定することができる。
また、本実施形態の重ね板部43は、ボルト挿通孔52が複数組設けられ且つそれぞれの組が互いに上下方向にずれた位置に配置されているので、一対のボルト挿通孔52が横方向の直線上に形成された場合に比べて、重ね板部43の幅方向の断面欠損の小さな構造を実現することができる。
Further, in the present embodiment, the bolt 51 is inserted through the overlapping plate portion 43 composed of the laminated plate 41 and the non-slip member 42 and the cutting wall 3 , so that the overlapping plate portion 43 is firmly attached to the wall surface 3 a of the cutting wall 3 . can be fixed to
Further, in the stacking plate portion 43 of the present embodiment, a plurality of sets of bolt insertion holes 52 are provided and the respective sets are arranged at positions shifted from each other in the vertical direction. It is possible to realize a structure in which the cross-sectional loss in the width direction of the overlapping plate portion 43 is small compared to the case where the overlapping plate portion 43 is formed on a straight line.

しかも、本実施の形態では、重ね板部43を固定するボルト51が充填材53によってボルト挿通孔52及びボルト孔36内で強固に固定されるので、重ね板部43を切削壁3の壁面3aに強固に固定することができる。そのため、切削壁3と受圧板4との間で生じる滑りをより確実に抑制することができる。 Moreover, in the present embodiment, since the bolts 51 for fixing the overlapping plate portion 43 are firmly fixed in the bolt insertion holes 52 and the bolt holes 36 by the filler 53, the overlapping plate portion 43 is attached to the wall surface 3a of the cutting wall 3. can be firmly fixed to the Therefore, slippage between the cut wall 3 and the pressure receiving plate 4 can be suppressed more reliably.

このように、本実施の形態による補強アンカー1では、緊張定着時における切削壁3と受圧板4との間の滑りを抑制することで、アンカー材11を所定の位置に確実に打設することができる。 As described above, in the reinforcing anchor 1 according to the present embodiment, by suppressing slippage between the cut wall 3 and the pressure receiving plate 4 during tension fixing, the anchor material 11 can be reliably driven at a predetermined position. can be done.

次に、他の実施の形態及び変形例による補強アンカーについて説明する。なお、上述した第1の実施の形態の構成要素と同一または同様な構成要素には同一符号を付し、これらについては、詳しい説明は省略する。 Next, reinforcing anchors according to other embodiments and modifications will be described. Components identical or similar to those of the above-described first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

(第2の実施の形態)
図11及び図12に示すように、第2の実施の形態による補強アンカー1Aは、受圧板4の積層板41及び滑り止め部材42からなる重ね板部43Aを、受圧板本体40の下側で固定した構成を有している。
すなわち、受圧板4の重ね板部43Aは、積層板41及び滑り止め部材42が受圧板本体40よりも下方に延長されて一体に形成され、例えば矩形板状に形成されている。重ね板部43Aは、受圧板本体40及び切削壁3の間に設置され、切削可能なボルト51により切削壁3に固定されている。重ね板部43Aには、受圧板本体40の左右両側の下方位置にそれぞれ上下に間隔をあけて2組のボルト挿通孔52、52が穿孔されている。更に切削壁3には、ボルト挿通孔52と同軸で延長上にボルト孔36が穿孔されている。
(Second embodiment)
As shown in FIGS. 11 and 12, in the reinforcing anchor 1A according to the second embodiment, the overlapping plate portion 43A composed of the laminated plate 41 of the pressure receiving plate 4 and the non-slip member 42 is attached to the lower side of the pressure receiving plate main body 40. It has a fixed configuration.
That is, the stacked plate portion 43A of the pressure receiving plate 4 is integrally formed by extending the laminated plate 41 and the non-slip member 42 downward from the pressure receiving plate main body 40, and is formed in, for example, a rectangular plate shape. The stacking plate portion 43A is installed between the pressure receiving plate main body 40 and the cutting wall 3, and is fixed to the cutting wall 3 by a bolt 51 that can be cut. Two sets of bolt insertion holes 52, 52 are bored in the stacking plate portion 43A at lower positions on both left and right sides of the pressure receiving plate main body 40 with a vertical interval therebetween. Furthermore, the cut wall 3 is provided with a bolt hole 36 extending coaxially with the bolt insertion hole 52 .

この場合、受圧板4における積層板41及び滑り止め部材42が切削壁3にボルト51によって固定されているので、アンカー材11を緊張定着する際に切削壁3と重ね板部43Aとの間で生じる滑りを抑制できる。そのため、受圧板4の上方に障害物等があってもアンカー材11を所定の位置に確実に打設することができ、補強アンカー1Aにアンカー材11の引張力(緊張力)が確実に付与されて切削壁3が補強される。
したがって、開口径が大きいシールド掘進用の立坑30への切削可能な補強アンカー1Aの打設を確実に行うことができる。
In this case, since the laminated plate 41 and the non-slip member 42 of the pressure receiving plate 4 are fixed to the cutting wall 3 by the bolts 51, when the anchor member 11 is fixed under tension, there is a gap between the cutting wall 3 and the laminated plate portion 43A. Any slippage that occurs can be suppressed. Therefore, even if there is an obstacle or the like above the pressure receiving plate 4, the anchor material 11 can be reliably driven into a predetermined position, and the tensile force (tension) of the anchor material 11 can be reliably applied to the reinforcing anchor 1A. and the cutting wall 3 is reinforced.
Therefore, it is possible to reliably drive the cuttable reinforcing anchor 1A into the shaft 30 for shield excavation having a large opening diameter.

(第1変形例)
次に、第1変形例による補強アンカー1Bについて、図13及び図14を用いて説明する。
第1変形例による補強アンカー1Bは、第一実施形態による補強アンカー1において、受圧板4の積層板41と切削壁3の壁面3aとの間に不陸調整部材6が設けられている。不陸調整部材6は、例えば、布袋の中にグラウトを充填した材料が用いられ、切削壁3の構築時に生じる壁面3aの不陸(凹凸)を吸収することができる。
そのため、壁面3aに不陸があっても、受圧板4の積層板41を切削壁3の壁面3aに対して所定の姿勢で配置することができる。そのため、アンカー材11を緊張定着する際に、受圧板4がずれて滑り易くなることを防ぐことができる。また、アンカー力を受圧板4の背面の芯材34、34に確実に伝達することができる。
(First modification)
Next, a reinforcing anchor 1B according to a first modified example will be described with reference to FIGS. 13 and 14. FIG.
A reinforcing anchor 1B according to a first modification is provided with an unevenness adjusting member 6 between the laminated plate 41 of the pressure receiving plate 4 and the wall surface 3a of the cutting wall 3 in the reinforcing anchor 1 according to the first embodiment. The unevenness adjusting member 6 is made of, for example, a cloth bag filled with grout, and can absorb the unevenness (unevenness) of the wall surface 3a that occurs when the cutting wall 3 is constructed.
Therefore, even if the wall surface 3a is uneven, the laminated plate 41 of the pressure receiving plate 4 can be arranged in a predetermined posture with respect to the wall surface 3a of the cutting wall 3. FIG. Therefore, it is possible to prevent the pressure receiving plate 4 from slipping easily when the anchor material 11 is fixed under tension. In addition, the anchor force can be reliably transmitted to the core members 34, 34 on the back surface of the pressure receiving plate 4. As shown in FIG.

以上、本発明の各実施の形態による補強アンカー1、1A、1Bついて説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した第1の実施の形態の重ね板部43では、一対のボルト挿通孔52、52が上下方向に間隔をあけて配置された構成としているが、このような配置、数量であることに制限されることはない。例えば、シールド開口径が大きく、鉛直分力が大きくなる場合には、1つの重ね板部43、43Aにおけるボルト51の本数を増やす構成とすればよい。
Although the reinforcing anchors 1, 1A, and 1B according to the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the spirit of the present invention. .
For example, in the stacking plate portion 43 of the first embodiment described above, the pair of bolt insertion holes 52, 52 are arranged with a gap in the vertical direction. is not limited to For example, when the shield opening diameter is large and the vertical component force is large, the number of bolts 51 in one overlapping plate portion 43, 43A may be increased.

例えば、図9(c)に示す第2変形例のように、3つのボルト挿通孔52及びボルト51が互いに上下方向にずれた位置に千鳥状に配置された構成を採用してもよい。
また、図9(d)に示す第3変形例のように、4つのボルト挿通孔52及びボルト51が上下方向に互いにずれた位置にそれぞれ千鳥状に配置された構成を採用してもよい。
For example, as in a second modification shown in FIG. 9C, a configuration may be employed in which three bolt insertion holes 52 and bolts 51 are arranged in a staggered manner at positions shifted in the vertical direction.
Further, as in a third modification shown in FIG. 9D, a configuration in which the four bolt insertion holes 52 and the bolts 51 are arranged in a staggered manner at positions shifted from each other in the vertical direction may be adopted.

また、本実施の形態では、重ね板部43、43Aを固定するための固定部材としてボルト51及びボルト挿通孔52及びボルト孔36を採用しているが、これに限定されない。固定部材として、例えばピン材等からなる棒状部材を固定部材として採用してもよい。或いは、ボルト51やピン材等に代えて接着材等を固定部材として用いてもよい。 Moreover, in the present embodiment, the bolt 51, the bolt insertion hole 52, and the bolt hole 36 are used as fixing members for fixing the overlapping plate portions 43 and 43A, but the present invention is not limited to this. As the fixing member, for example, a rod-like member made of a pin material or the like may be adopted as the fixing member. Alternatively, an adhesive material or the like may be used as a fixing member instead of the bolt 51, pin material or the like.

また、本実施の形態では、補強アンカー1、1A、1Bを設ける切削壁3の適用対象がシールド掘削機の発進基地の立坑としたが、これに限定されることはない。例えば、シールド掘削機2の到達基地となる立坑の切削壁3に設けてもよい。更に、この到達基地からシールド掘削機2を方向転換させて発進させるための立坑の切削壁3に設けてもよい。
さらに、切削壁3の断面形状として、本実施の形態のように円形断面に限定されることはなく、例えば矩形断面などの他の形状であってもよい。
Further, in the present embodiment, the cutting wall 3 on which the reinforcing anchors 1, 1A, and 1B are provided is applied to the vertical shaft of the starting base of the shield excavator, but it is not limited to this. For example, it may be provided on the cutting wall 3 of the vertical shaft that serves as the arrival base of the shield excavator 2 . Further, it may be provided on the cut wall 3 of the shaft for turning the shield excavator 2 from this arrival base and starting it.
Furthermore, the cross-sectional shape of the cut wall 3 is not limited to a circular cross-section as in the present embodiment, and may be other shapes such as a rectangular cross-section.

また、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 Further, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the scope of the present invention.

1、1A、1B 補強アンカー
2 シールド掘削機
3 切削壁
3a 壁面
4 受圧板
6 不陸調整部材
11 アンカー材
12 グリップ部材
13 押さえナット
14 定着用膨張モルタル
30 立坑
31 アンカー固定孔
36 ボルト孔
40 受圧板本体
41 積層板(受圧板当接部)
42 滑り止め部材
43 重ね板部
51 ボルト
52 ボルト挿通孔
53 充填材
G 地盤
O 引張り軸
Reference Signs List 1, 1A, 1B Reinforcement anchor 2 Shield excavator 3 Cutting wall 3a Wall surface 4 Pressure receiving plate 6 Unevenness adjusting member 11 Anchor material 12 Grip member 13 Pressing nut 14 Expansion mortar for fixing 30 Vertical shaft 31 Anchor fixing hole 36 Bolt hole 40 Pressure receiving plate Body 41 Laminated plate (pressure-receiving plate contact portion)
42 Non-slip member 43 Stacked plate portion 51 Bolt 52 Bolt insertion hole 53 Filler G Ground O Tension shaft

Claims (4)

壁面に圧接する受圧板当接部と、
前記受圧板当接部に対して前記壁面と反対側の面に固定された滑り止め部材と、
前記受圧板当接部及び前記滑り止め部材を前記壁面に固定する固定部材と、
前記受圧板当接部及び前記滑り止め部材を貫通して前記壁面内に固定させた引張り材と、
を備え
前記固定部材は、前記引張り材に対して上下方向にずれた位置において、前記受圧板当接部及び前記滑り止め部材を貫通することを特徴とする補強アンカー。
a pressure-receiving plate abutting portion that presses against a wall surface;
a non-slip member fixed to the surface opposite to the wall surface with respect to the pressure-receiving plate contact portion;
a fixing member that fixes the pressure-receiving plate contact portion and the non-slip member to the wall surface;
a tension member fixed in the wall surface through the pressure-receiving plate contact portion and the non-slip member;
with
The reinforcing anchor , wherein the fixing member penetrates the pressure-receiving plate contact portion and the non-slip member at a position shifted in the vertical direction with respect to the tension member .
前記受圧板当接部と、前記滑り止め部材と、前記滑り止め部材に対して前記受圧板当接部と反対側に固定された受圧板本体と、で受圧板を形成する請求項1に記載された補強アンカー。 2. The pressure receiving plate according to claim 1, wherein the pressure receiving plate contact portion, the non-slip member, and a pressure plate main body fixed to the non-slip member on the side opposite to the pressure receiving plate contact portion form a pressure plate. reinforced anchor. 前記受圧板当接部の前記壁面に当接する面の繊維の配列方向と前記滑り止め部材の繊維の配列方向とは、互いに交差する方向に配列されている請求項1または2に記載された補強アンカー。 3. The reinforcement according to claim 1 or 2, wherein the fiber arrangement direction of the surface of the pressure-receiving plate contact portion contacting the wall surface and the fiber arrangement direction of the non-slip member are arranged in directions that intersect each other. anchor. 前記受圧板当接部と前記壁面との間には、前記壁面の不陸を吸収する不陸調整部材が設けられている請求項1乃至3のいずれか1項に記載された補強アンカー。 4. The reinforcing anchor according to any one of claims 1 to 3, wherein an unevenness adjusting member for absorbing unevenness of the wall surface is provided between the pressure receiving plate contact portion and the wall surface.
JP2018115559A 2018-06-18 2018-06-18 reinforcement anchor Active JP7136597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115559A JP7136597B2 (en) 2018-06-18 2018-06-18 reinforcement anchor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115559A JP7136597B2 (en) 2018-06-18 2018-06-18 reinforcement anchor

Publications (2)

Publication Number Publication Date
JP2019218726A JP2019218726A (en) 2019-12-26
JP7136597B2 true JP7136597B2 (en) 2022-09-13

Family

ID=69095990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115559A Active JP7136597B2 (en) 2018-06-18 2018-06-18 reinforcement anchor

Country Status (1)

Country Link
JP (1) JP7136597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053402B2 (en) * 2018-08-07 2022-04-12 鹿島建設株式会社 Rectangular shaft and its construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064678A (en) 2001-08-23 2003-03-05 Kyuichi Maruyama Structure stabilizing device and construction method for tunnel excavation
JP2013015006A (en) 2011-06-09 2013-01-24 Sekisui Chem Co Ltd Shaft wall structure and construction method thereof
JP2014084576A (en) 2012-10-19 2014-05-12 Sekisui Chem Co Ltd Timbering member, and cutting method for earth-retaining wall
JP2017036592A (en) 2015-08-10 2017-02-16 吉佳エンジニアリング株式会社 Pressure receiving plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218378A (en) * 1995-02-15 1996-08-27 Taisei Corp Earth retaining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064678A (en) 2001-08-23 2003-03-05 Kyuichi Maruyama Structure stabilizing device and construction method for tunnel excavation
JP2013015006A (en) 2011-06-09 2013-01-24 Sekisui Chem Co Ltd Shaft wall structure and construction method thereof
JP2014084576A (en) 2012-10-19 2014-05-12 Sekisui Chem Co Ltd Timbering member, and cutting method for earth-retaining wall
JP2017036592A (en) 2015-08-10 2017-02-16 吉佳エンジニアリング株式会社 Pressure receiving plate

Also Published As

Publication number Publication date
JP2019218726A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
KR101201829B1 (en) Micropile
KR101682510B1 (en) Construction method of retaining wall to secure safety using PC panel and permanent anchor
JP4856920B2 (en) Crushing method and crushing tool
JP5926615B2 (en) Shaft wall structure and construction method
JP6933520B2 (en) Reinforcement anchor
JP2016528406A (en) Beam connection structure of temporary retaining works for earth retaining
JP7136597B2 (en) reinforcement anchor
JP4893391B2 (en) Steel pipe sheet pile upset, steel pipe sheet pile using upset, and upset method
KR101426066B1 (en) End supporting multi micro pile and method for reinforcing structure base using this
KR101489387B1 (en) End supporting multi micro pile and method for constructing the same
KR100770250B1 (en) Construnction method of retaining wall and retaining wall structure using the same
JP2007247308A (en) Pulling-out bearing strength reinforcing for pile group comprised of inclined piles and structure constructed according to the same
KR101939020B1 (en) Footing bar jointed pressure supporting unit and foundation construction method of caliber penetrator using the same
JP4459835B2 (en) Segment for underground structure bulkhead
JP7032143B2 (en) Reinforcing anchor
KR101447021B1 (en) Soil nail assembly and Method for reinforcing slopes using the same
KR102345291B1 (en) Tunnel construction method and tunnel supporting structure
JP2010281034A (en) Structure for reinforcing masonry wall, and masonry structure
JP7211779B2 (en) Shield start-side shaft wall and shield start-side shaft wall construction method
JP2016528407A (en) Deflection prevention beam for construction of earth retaining facilities
KR101757975B1 (en) Anchor having a fixing device at a side of pressure plate to depress the land slope and method of installing the same
JP2008031759A (en) Ground anchor and ground anchoring method
KR101414053B1 (en) Boring device for phc pile and the method for reinforcement of phc pile using the same
JP2007051485A (en) Structure and method for joining foundation of structure and sheet pile together
KR101182802B1 (en) a Complex Micro Pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R151 Written notification of patent or utility model registration

Ref document number: 7136597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151