JP6931487B2 - 変位検出装置 - Google Patents

変位検出装置 Download PDF

Info

Publication number
JP6931487B2
JP6931487B2 JP2017548837A JP2017548837A JP6931487B2 JP 6931487 B2 JP6931487 B2 JP 6931487B2 JP 2017548837 A JP2017548837 A JP 2017548837A JP 2017548837 A JP2017548837 A JP 2017548837A JP 6931487 B2 JP6931487 B2 JP 6931487B2
Authority
JP
Japan
Prior art keywords
data
coil
position detection
displacement
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017548837A
Other languages
English (en)
Other versions
JPWO2017078110A1 (ja
Inventor
太輔 後藤
太輔 後藤
伸行 赤津
伸行 赤津
坂元 和也
和也 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amiteq Co Ltd
Original Assignee
Amiteq Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amiteq Co Ltd filed Critical Amiteq Co Ltd
Publication of JPWO2017078110A1 publication Critical patent/JPWO2017078110A1/ja
Application granted granted Critical
Publication of JP6931487B2 publication Critical patent/JP6931487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • G01D5/2026Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element constituting a short-circuiting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、位置検出用のコイルを自励発振回路のインダクタンス要素として組み込んだ構成からなる変位検出装置に関し、微小変位センサ、直線位置センサ、回転位置センサ、傾斜センサ、圧力センサ、歪みセンサ、荷重センサ、2次元位置センサ、トルクセンサなど任意のタイプの位置の変位検出に応用可能なものである。
コイル(インダクタンス要素)を検出要素として使用する位置検出装置は従来から様々なタイプのものが知られている。その種の多くの位置検出装置においては、コイル励磁のための交流信号源を専用に具備し、該交流信号源から発生された交流信号をコイルに印加することで該コイルを交流励磁する。従来公知の誘導型位置検出装置には、例えば下記特許文献1及び2に示されたようなものがあり、1次コイルと2次コイルを備え、交流信号で1次コイルを励磁し、これに応じた2次出力信号を2次コイルに誘導するように構成され、検出対象位置に応じて変位する磁気応答部材(例えば鉄あるいは銅等)のコイルに対する相対的変位に応じて2次コイルのインダクタンスを変化させ、位置に応じた出力信号を生じる。この場合、1次コイルを励磁するための交流信号を発振するための発振回路が、コイルとは別に設けられる。
これに対して、LC発振回路の原理を利用して、検出要素としてのコイルを自励発振回路のインダクタンス要素として組み込むことにより、専用の励磁用交流信号源を不要にした近接センサも知られている(例えば特許文献3)。この種の自励発振型の近接センサは、専用の励磁用交流信号源を設ける必要がないため、装置構成を小型化することができるので有利である。しかし、自励発振回路におけるインダクタンス変化量が少ない場合には、正確な検出を行うことが困難であった。例えば、鉄等の磁気応答素材を変位部材として具備して自励発振型の位置検出装置を構成する場合、従来技術にあっては、装置の小型化更には微小化を実現することが困難であった。
特開平9−53909号公報 特開平10−153402公報 特開平10−173437号公報
本発明は上述の点に鑑みてなされたもので、精度の良い変位検出装置を提供しようとするものであり、更には、小型化を促進することができる構成からなる変位検出装置を提供しようとするものである。
本発明に係る変位検出装置は、コイルと、検出対象位置に応じて前記コイルに対して変位するように配置された磁気応答部材と、前記コイルを発振要素として組み込み、該コイルに対する前記磁気応答部材の変位に応じた該コイルのインダクタンス変化に応じて発振周波数が変化する自励発振回路と、前記自励発振回路の発振出力信号に基づき該自励発振回路の発振周波数に対応する計測値をデジタルの原初的位置検出データとして生成し、前記原初的位置検出データの時間的差分値をデジタル的に演算することにより速度データを生成し、該速度データを積分することにより変位データを求めるように構成された、演算部とを備える。
本発明によれば、コイルのインダクタンス変化に応じた自励発振回路の発振周波数に対応する計測値をデジタルの原初的位置検出データとして生成し、前記原初的位置検出データの時間的差分値をデジタル的に演算することにより速度データを生成し、該速度データを積分することにより位置データを算出する構成であるから、速度データを求める際の差分演算によって、温度あるいは位置検出装置の機械的取り付け位置などに起因するオフセット成分を自動的にキャンセル若しくは軽減することができる。従って、精度の良い位置検出装置を提供することができる。また、速度データを求める際の差分演算の時間差を適宜に設定することにより、速度データの値を拡大することができ、該速度データの積分演算によって得られる位置データのダイナミックレンジ若しくはスケールを適宜に拡大するように調整することができる。従って、検出対象が微小変位であっても、大きな値からなる位置データを得ることができ、微小変位の検出に適した位置検出装置を提供することができる。また、位置検出要素であるコイルを自励発振回路のインダクタンス要素として組み込むことにより、全体としての装置規模を小型化することができ、その意味でも微小変位の検出に適した小型の変位検出装置を提供することができる。
本発明の一実施例に係る位置検出装置の構成を示すブロック図。 図1における自励発振回路の構成例を示す回路図。 図1における演算部の動作例を説明する図。 本発明の変位検出装置の別の実施例を示すブロック図。 (a)は本発明の変位検出装置を振動センサに適用した実施例におけるコイルと磁気応答部材の組み合わせの一例を示す斜視図、(b)は振動センサに適用した実施例におけるコイルと磁気応答部材の組み合わせの別の一例を示す側面図。 本発明に係る変位検出装置を傾斜センサに応用した一例を示す正面略図。 本発明に係る変位検出装置を2次元センサに応用した一例を示す平面略図。 本発明に係る変位検出装置を適用した別の2次元センサの略図。 本発明に係る変位検出装置を圧力センサに応用した一例を示す側面略図。 本発明に係る変位検出装置をリニアセンサに応用した一例を示す略図。 本発明に係る変位検出装置をトルクセンサに応用した一例を示し、(a)はトルクセンサの側断面図、(b)は磁気応答部材の分解斜視図、(c)はコイルの配置を示す正面図。
図1は、本発明の一実施例に係る位置検出装置の構成を示すブロック図である。図において、変位検出装置は、1つのコイル11と、検出対象位置(機械的変位)に応じて該コイル11に対して相対的に変位するように非接触的に近接配置された磁気応答部材12と、該コイル11を発振要素として組み込み、該コイル11に対する該磁気応答部材12の変位に応じた該コイル11のインダクタンス変化に応じて発振周波数が変化する自励発振回路13と、前記自励発振回路13の発振出力信号に基づき前記検出対象位置に応じた位置データを求めるための演算部14とを備える。演算部14は、前記自励発振回路13の発振出力信号に基づき発振周波数に応じた計測値をデジタルで生成し、該計測値の時間的差分値を速度データとしてデジタル的に求め、該速度データをデジタル的に積分することにより変位データ(位置データ)を求めるように構成されている。
図2は、コイル11を自励発振用インダクタンス要素として組み込んだ自励発振回路13の一例を示す。自励発振回路13は、並列LC回路21と増幅器22とで構成されたコルピッツ型発振回路である。並列LC回路21は、自励コイルとして機能する前記コイル11と、コンデンサ23,24とからなる。増幅器22は、増幅素子としてのトランジスタ25と、電源−コレクタ間の抵抗26、エミッタ−接地間の抵抗27、ベース電圧設定用の抵抗28,29を含む。なお、増幅素子は、トランジスタに限らず、FETあるいはオペアンプ等任意の反転増幅素子を用いてよい。増幅器22の入力端子IN(ベース入力)に並列LC回路21の一方のコンデンサ23とコイル11の接続点の信号が入力し、増幅器22の出力端子OUT(コレクタ出力)が並列LC回路21の他方のコンデンサ24とコイル11の接続点に入力する。この例では、発振出力信号は、増幅器22の入力端子IN(ベース入力)から取り出されることができる。なお、自励発振回路20の基本構成は、図示のようなコルピッツ型発振回路に限らず、ハートレイ型発振回路、その他RLCによる発振回路であってもよい。
図1に戻り、演算部14は、前記自励発振回路13の発振出力信号に基づき発振周波数に応じた計測値を生成するための手段として、発振周期計測ステップ30を含む。この場合、例えば、発振周波数の周期をカウントし易いように、前記発振出力信号を適宜分周することにより、拡張した周期を持つ矩形波信号を生成し、該矩形波信号が持つ拡張した周期をカウントすることにより、前記発振周波数に応じた計測値を生成するとよい。検出対象位置に応じた前記コイル11の変位に応じて自励発振回路13のインダクタンスが変化し、その発振周波数が変化するので、ステップ30で求められる計測値は、検出対象変位を原初的に表現するものである。
次のステップ31では、前記ステップ30で求めた前記計測値の時間的差分値をデジタル的に求めることにより速度データVdを算出する。次に、ステップ32では、前記ステップ31で求めた速度データVdを積分することにより位置データ(すなわち変位データ)Ldを算出する。ステップ32で求められた位置データ(変位データ)Ldが、位置検出信号(変位検出信号)として出力される。
このように、ステップ31で速度データVdを一旦求め、ステップ32で該速度データVdを積分することにより位置データLdを算出する構成であるから、温度あるいは位置検出装置の機械的取り付け位置などに起因するオフセット成分を自動的にキャンセル若しくは軽減することができる。例えば、ステップ30で求めた前記計測値にそのようなオフセット成分が含まれていても、検出対象が静止しているときは、ステップ31において得られる速度データVdの値は0であるから、オフセット成分が自動的にキャンセルされる。また、検出対象軸等に位置検出装置を機械的に取り付ける時の取り付け原点設定も容易に行える。すなわち、取り付け時は検出対象が静止しているので、速度データVdの値は0であるから、任意の取り付け位置をそのまま原点として定めてよい。更に、検出対象が動いているときも、誤差又はオフセット成分が自動的にキャンセルされる。例えば、誤差又はオフセット成分をσで表し、前記ステップ30で求めた前記計測値の時点t0における値をX0、時点t1における値をX1で示し、それぞれの時点t0,t1における検出対象位置に対応する正しい計測値成分をa0,a1で示すと、前記ステップ31で求められる、時点t0,t1間の前記計測値X0,X1の差分値(速度データVd)は、
Vd=X1−X0=(a1+σ)−(a0+σ)=a1−a0
となり、時点t0,t1間における検出対象位置の正しい差分(速度データVd)を示す。このような差分値(速度データVd)を前記ステップ32で積分することにより、誤差成分σを除去した精度の良い位置データLdを得ることができる。従って、本発明によれば、誤差又はオフセット成分σを自動的に除去した精度の良い位置検出を行うことができる。
また、本発明によれば、前記ステップ31で行う差分演算の時間差を適宜に設定することが可能である。これにより、検出対象の変位に応じたインダクタンス変動に対して微小な発振周波数変化しか示さないような自励発振回路13を使用する位置検出装置においても、大きなダイナミックレンジで(若しくは拡大された数値スケールで)速度データVd及び位置データLdを生成することができ、自励発振回路13を使用して装置構成を小型化した位置検出装置において、精度の良い位置検出を行うことができる。また、検出対象位置の変化範囲が微小であっても、大きなダイナミックレンジで(若しくは拡大された数値スケールで)速度データVd及び位置データLdを生成することができるので、微小変位の検出に適した位置検出装置を提供することができる。以下、図3を参照して、この点について詳しく説明する。
図3(a)において、時間的に変化する検出対象位置に応じて前記ステップ30で求められる前記計測値(つまり、原初的位置検出データ)の一例を実線F1で示し、この実線F1で示される前記計測値(原初的位置検出データ)を3種の異なる時間差で差分演算(微分)することによって得られる速度データVdの一例をそれぞれ破線F2、一点鎖線F3、二点鎖線F4で示す。この例では、破線F2で示される速度データVdは時間差「1」で前記計測値(原初的位置検出データ)を差分演算することによって得られ、一点鎖線F3で示される速度データVdはその5倍の時間差「5」で前記計測値(原初的位置検出データ)を差分演算することによって得られ、二点鎖線F4で示される速度データVdはその10倍の時間差「10」で前記計測値(原初的位置検出データ)を差分演算することによって得られる。図示例において、時刻t0とt1の差をα(秒)とすると、時間差「1」の差分演算とは、或る時点の前記計測値(原初的位置検出データ)X(0)に対する、それよりα(秒)前の時点の前記計測値(原初的位置検出データ)X(−1)を求めることからなり、時間差「5」の差分演算とは、或る時点の前記計測値(原初的位置検出データ)X(0)に対する、それより5α(秒)前の時点の前記計測値(原初的位置検出データ)X(−5)を求めることからなり、また、時間差「10」の差分演算とは、或る時点の前記計測値(原初的位置検出データ)X(0)に対する、それより10α(秒)前の時点の前記計測値(原初的位置検出データ)X(−10)を求めることからなる。
図3(a)において、実線F1で示される前記計測値(原初的位置検出データ)は、時刻t0からt10までの間で勾配「1」で直線的に変化し、t10以降は一定値(10)を維持する。破線F2で示される速度データVdは、時刻t0からt1までの間で勾配「1」で直線的に変化し、時刻t1からt10までの間で値「1」を維持し、以後は「0」である。一点鎖線F3で示される速度データVdは、時刻t0からt5までの間で勾配「1」で直線的に変化し、時刻t5からt10までの間で値「5」を維持し、時刻t10からt15までの間で勾配「−1」で直線的に変化し、以後は「0」である。二点鎖線4で示される速度データVdは、時刻t0からt10までの間で勾配「1」で直線的に変化し、時刻t10からt20までの間で勾配「−1」で直線的に変化し、以後は「0」である。このように、前記ステップ31で行う差分演算の時間差が長くなると、差分演算によって得られる速度データVdのダイナミックレンジ(若しくは数値スケール)が広がり、速度データVdが大きな値で得られる。
図3(a)で破線F2、一点鎖線F3、二点鎖線F4で示した各速度データVdの積分値(位置データLd)は、それぞれ図3(b)で破線F2i、一点鎖線F3i、二点鎖線F4iで示すような特性を示すものとなる。なお、図3(b)の縦軸は、図3(a)の縦軸の1/10のスケールで、縮小して示してある。図3(a)において実線F1で示された、同じ検出対象位置に応じた計測値(原初的位置検出データ)に対して、図3(b)において破線F2i、一点鎖線F3i、二点鎖線F4iで示すように、異なるダイナミックレンジ(若しくはスケール)特性を示す位置データLdが得られることになる。例えば、実線F1で示された検出対象位置に応じた計測値(原初的位置検出データ)の値が略「10」で安定したとき、破線F2iで示された位置データLdの値は略「10」、一点鎖線F3iで示された位置データLdの値は略「50」、二点鎖線F4iで示された位置データLdの値は略「100」となる。つまり、ステップ30で求めた発振周波数に基づく計測値(原初的位置検出データ)に対して、破線F2iで示された位置データLdは同程度のスケールで、一点鎖線F3iで示された位置データLdは略50倍のスケールで、二点鎖線F4iで示された位置データLdは略100倍のスケールで、表される。これは、積分に際しての増分値(Vdの値)がそれぞれ異なるからである。検出対象の動きが微小変位である場合、ステップ30で求められる計測値(原初的位置検出データ)の変化幅(ダイナミックレンジ)が小さいが、二点鎖線F4iで示されたもののように大きなスケール(ダイナミックレンジ)で拡大された位置データLdが得られるように、前記ステップ31で行う差分演算の時間差を適切に設定することにより、精度の良い位置検出を行うことができる。
このように、前記ステップ31で行う差分演算の時間差を適宜に設定することにより、前記ステップ32で行う積分演算によって得られる位置データLdのダイナミックレンジを適宜に拡大するように調整することができる。従って、検出対象の微小変位(あるいはステップ30の計測値(原初的位置検出データ)が示す微小変位)を大きなダイナミックレンジの位置データLdとして検出することができ、かつ、検出装置の構造そのものが小型化に適している(1つのコイル11を自励発振回路13に組み込んだ簡素な構造)ので、微小変位検出に適したあるいは小型化に適した変位検出装置を提供することができる。なお、前記ステップ31で行う差分演算の時間差の設定を、ユーザが可変調整できるように構成してもよいし、あるいは、変位検出装置の応用目的に応じてファクトリーセットで予め調整するようにしてもよい。
図4は、演算部14において更に加速度データを求めることができるようにした実施例を示す。ステップ33では、前記ステップ31で求めた速度データVdを更に微分(差分演算)することにより加速度データAdを算出する。ステップ33で行う差分演算の時間差は、前記ステップ31で行う差分演算の時間差と同様に設定してよい。図3(c)は、図3(a)に示す速度データVdに対応してステップ33で得られる加速度データAdの一例を示す。図3(a)で破線F2、一点鎖線F3、二点鎖線F4で示した各速度データVdの微分値(加速度データAd)は、それぞれ図3(c)で破線F2a、一点鎖線F3a、二点鎖線F4aで示すような特性を示すものとなる。図3(c)の縦軸は、図3(a)の縦軸のスケールよりも幾分縮小して示してある。図3(c)において、破線F2aで示される加速度データAdは時間差「1」で破線F2の速度データVdを差分演算することによって得られ、一点鎖線F3aで示される加速度データAdはその5倍の時間差「5」で一点鎖線F3の速度データVdを差分演算することによって得られ、二点鎖線F4aで示される加速度データAdはその10倍の時間差「10」で二点鎖線F4の速度データVdを差分演算することによって得られる。
このように、前記ステップ31で行う差分演算の時間差に合わせて前記ステップ33で行う差分演算の時間差を適宜に設定することにより、前記ステップ33で得られる加速度データAdのダイナミックレンジを更に拡大するように調整することができる。従って、検出対象の微小変位(あるいはステップ30の計測値(原初的位置検出データ)が示す微小変位)を大きなダイナミックレンジの加速度データAdとして検出することができ、かつ、検出装置の構造そのものが小型化に適している(1つのコイル11を自励発振回路13に組み込んだ簡素な構造)ので、微小変位に基づく加速度検出に適したあるいは小型化に適した位置(加速度)検出装置を提供することができる。
図4に示されるように、更にステップ34を設け、前記ステップ33で求めた加速度データAdを積分することにより速度データVd’を算出するようにしてもよい。これにより、前記ステップ31で求めた速度データVdよりもダイナミックレンジ(スケール)の大きな速度データVd’をステップ34で算出することができる。一例として、図3(d)に示す二点鎖線F4aiは、図3(b)に示す二点鎖線F4aの加速度データAdを積分することにより得られる速度データVd’を示す。図3(d)の縦軸は、図3(c)の縦軸のスケールよりも更に縮小して示してある。
以上のような基本原理からなる本発明に係る位置検出装置は、位置検出、速度検出、加速度検出は勿論のこと、その他の種々の用途に応用することができる。
図5は、本発明に係る位置検出装置を振動センサ(又は衝撃センサ)に応用した一例を示し、(a)は、振動センサ(又は衝撃センサ)としての前記コイル11と磁気応答部材12の組み合わせの一例を示す斜視図である。図5(a)の例においては、フラットコイルからなるコイル11が固定部15に固定され、磁性材質又は非磁性かつ導電材質からなる板バネ状の可動部16が磁気応答部材12として機能する。検出対象である機械的振動(変位)に応じて板バネ状の可動部16が振動(変位)し、コイル11と該可動部16とのギャップが変化することにより、該機械的振動(変位)に応じたインダクタンス変化がコイル11に生じる。この場合、例えば、前記演算部14で得た位置データLdを振動検出信号として適宜の振動判定回路(図示せず)に供給し、該振動判定回路において該振動検出信号が所定閾値より大きいと判定したとき、該所定閾値以上の振動又は衝撃が生じことを検出するように構成するとよい。あるいは、前記演算部14で得た速度データVd、加速度データAd又は速度データVd’を適宜の判定回路(図示せず)に供給し、該判定回路において該データが所定閾値より大きいと判定したとき、該所定閾値以上の振動又は衝撃が生じことを検出するように構成してもよい。
図5(b)は、振動センサ(又は衝撃センサ)としての前記コイル11と磁気応答部材12の組み合わせの別の一例を示す側面図である。図5(b)の例においては、フラットコイルからなるコイル11が固定部15に固定され、フラットコイルの一面に対向して磁性材質からなる板バネ状の第1可動部17が配置され、該フラットコイルの他面に対向して非磁性かつ導電材質からなる板バネ状の第2可動部18が配置され、両可動部17及び18が磁気応答部材12として機能する。この場合も、検出対象である機械的振動(変位)に応じて板バネ状の第1及び第2可動部17、18が振動(変位)し、コイル11と該第1及び第2可動部17、18とのギャップが変化することにより、該機械的振動(変位)に応じたインダクタンス変化がコイル11に生じる。なお、この構成においては、検出対象である機械的振動(変位)に応じて一方の磁性可動部17がコイル11に近づくとき他方の非磁性可動部18がコイル11から遠ざかる、というようにプッシュプルで変位することにより、コイル11に生じるインダクタンスが相加的に変化し、検出精度が向上する。振動又は衝撃の判定の仕方は、上述と同様に行うようにしてよい。
図6は、本発明に係る位置検出装置を傾斜センサに応用した一例を示す正面略図である。この例においては、フラットコイルからなるコイル11が固定部21に固定され、磁性材質又は非磁性かつ導電材質からなる揺動部20が前記磁気応答部材12として機能する。揺動部20は、枢動軸20aの回りで揺動可能に取り付けられている。検出対象の傾きに応じて揺動部20がコイル11に対して変位し、これに応じた位置データLdが前記演算部14から得られる。この場合、得られた位置データLdに基づき検出対象の傾斜量を示す情報を生成するようにしてもよいし、あるいは得られた位置データLdを適宜の判定回路(図示せず)に供給し、該判定回路において該位置データLdが所定閾値より大きいと判定したとき、該所定閾値以上の傾斜が生じことを検出するように構成してもよい。
図7は、本発明に係る位置検出装置を2次元センサに応用した一例を示す平面略図である。この例においては、フラットコイルからなる複数のコイル11−1,11−2.11−3,・・・が固定面22上に2次元的に配置され、磁性材質又は非磁性かつ導電材質からなる磁気応答部材12が固定面22上に配置されたコイル11−1,11−2.11−3,・・・に対して非接触的に近接配置され、磁気応答部材12が該コイル11−1,11−2.11−3,・・・に対して2次元的に変位する。各コイル11−1,11−2.11−3,・・・毎に前記自励発振回路13と前記演算部14が設けられ、各コイル11−1,11−2.11−3,・・・のインダクタンスに応じた位置データLdがそれぞれに対応する前記演算部14から得られる。これら各演算部14から得られるコイル毎の位置データLdの組合せによって、検出対象の2次元位置が特定される。なお、各コイル11−1,11−2.11−3,・・・毎に前記自励発振回路13と前記演算部14を設けることなく、1つの自励発振回路13内に複数のコイル11−1,11−2.11−3,・・・を組み込み、かつコイル切り替え回路を付加して設け、該コイル切り替え回路によって該自励発振回路13において使用するコイルをいずれか1つに時分割的に選択接続するように構成してもよい。その場合、演算部14も、自励発振回路13におけるコイルの時分割的選択に同期して複数チャンネル(各コイル11−1,11−2.11−3,・・・毎のチャンネル)で時分割動作するように構成すればよい。
図8は、本発明に係る位置検出装置を適用した別の2次元センサの略図である。この場合、磁気応答部材12は円筒状の可動部材として構成され、その周囲において複数のコイル11−1,11−2.11−3,・・・が固定的に配置される。円筒状の磁気応答部材12の軸線に垂直な面に沿う2次元的変位に応じて、各コイル11−1,11−2.11−3,・・・のインダクタンスが変化する。上述と同様に、各コイル11−1,11−2.11−3,・・・毎に前記自励発振回路13と前記演算部14が設けられ(又はコイル切り替え回路を付加して1つの自励発振回路13と前記演算部14を複数チャンネルで時分割的に使用し)、各コイル11−1,11−2.11−3,・・・のインダクタンスに応じた位置データLdがそれぞれに対応する前記演算部14から得られる。これら各演算部14から得られるコイル毎の位置データLdの組合せによって、検出対象の2次元位置が特定される。
図9は、本発明に係る位置検出装置を圧力センサに応用した一例を示す側面略図である。この例においては、フラットコイルからなるコイル11に対して、ダイヤフラム状の磁気応答部材12が非接触的に近接配置され、コイル11に対する磁気応答部材12の距離が検出対象圧力に応じて変化するように構成される。従って、検出対象圧力に応じてコイル11のインダクタンスが変化し、演算部14から得られる位置データLdによって、検出対象圧力が特定される。なお、図9において、破線は磁気応答部材12の変位を例示している。同様の構造により、歪みセンサあるいは荷重センサを構成することもできる。
図10は、本発明に係る位置検出装置をリニアセンサに応用した一例を示す略図である。円筒状のコイル11の内部空間でロッド状の磁気応答部材12が直線変位し得るように構成され、該磁気応答部材12の直線位置に応じてコイル11のインダクタンスが変化する。従って、演算部14から得られる位置データLdによって、検出対象の直線位置が特定される。リニアセンサに限らず、本発明に係る位置検出装置を回転センサに適用することができるのは勿論である。
図11は、本発明に係る位置検出装置をトルクセンサに応用した一例を示し、(a)はトルクセンサの側断面図であり、図示の便宜上、センサ部10の半分は省略して示している。この実施形態に係るトルクセンサは、自動車のステアリングシャフトのトーションバーTに負荷されるねじれトルクを検出する。公知のように、ステアリングシャフトにおいては入力軸1と出力軸2の各磁性シャフト(例えば鉄などの磁性部材からなる)がトーションバーTを介して同軸的に連結されており、これら入力軸1及び出力軸2はトーションバーTによるねじれ変形の許す限りの限られた角度範囲で相対的に回転しうるようになっている。入力軸1に連結された第1の磁気応答部材3及び出力軸2に連結された第2の磁気応答部材4が前記磁気応答部材12として機能する。この実施例では、一方の磁気応答部材3が磁性体(例えば鉄)からなり、他方の磁気応答部材4が反磁性材質(例えばアルミニウム)からなる。
図11(b)は、各磁気応答部材3,4の分解斜視図である。各磁気応答部材3,4はそれぞれ円周方向に複数の窓パターンを備えた面板の形状(円板状、詳しくはリング円板状)をなしており、ぞれぞれの面板が密接に近接して前記窓パターンが対向するように配置されている。トルクセンサでは公知のように、窓パターンとは、パターン化された窓を意味し、窓とは、各磁気応答部材3,4の持つ前記所定の磁気応答性能が失われる(若しくは変化する)部分である。本実施例では、この窓パターンは、内周寄りの開口窓3a,4aのパターンと、外周寄りの開口窓3b,4bのパターンの、2系列のパターンからなっている。公知のように、2つの磁気応答部材3,4の窓の重なりの変化が磁性的なシャッターの役割を果たす。
図11(a)において、センサ基板部20は、面板状の第1及び第2の磁気応答部材3、4と同様に、全体的に円板状(詳しくはリング状)を成しており、入力軸1及び出力軸2からなる軸部分に嵌挿され、第1及び第2の磁気応答部材3、4に近接した配置で、ベース部5に固定されている。出力軸2は軸受6を介して回転自在にベース部5に固定されている。センサ基板部20においては、図11(c)に示すように、内周寄りのフラットコイル11aと外周寄りのフラットコイル11bの2つのコイルが設けられる。これらのフラットコイル11a,11bが前記コイル11としてそれぞれ機能する。内周寄りのフラットコイル11aは内周寄りの開口窓3a,4aのパターンに対応し、外周寄りのフラットコイル11bは、外周寄りの開口窓3b,4bのパターンに対応するように設けられる。
公知のように、各系列における開口窓3a,4a,3b,4bの重なり具合の変化は互いに逆特性となるように、開口窓の配置を適切にずらして設定している。例えば、第2の磁気応答部材4においては、開口窓4aの系列(第1の系列)と、開口窓4bの系列(第2の系列)とは、開口窓の繰り返しサイクルに関して、丁度の1/2サイクルの位相ずれを持つように開口窓を形成(配置)する。その場合、第1の磁気応答部材3においては、開口窓3aの系列(第1の系列)と、開口窓3bの系列(第2の系列)とは、開口窓の繰り返しサイクルに関して、丁度、同相となるように開口窓列を形成(配置)する。また、トーションバーTのねじれ角が0の状態において、第1の列における開口窓3a,4aの重なり具合は丁度半分となり、第2の系列における開口窓3b,4bの重なり具合も丁度半分となるように、各開口窓列を形成(配置)する。ねじれ角が0の状態から、時計方向にねじれ角が生じると、例えば、第1の系列における開口窓3a,4aの重なり具合が減少してそれに対応する第1のコイル11aのインダクタンスが増加するのに対して、第2の系列における開口窓3b,4bの重なり具合が増加してそれに対応する第2のコイル11bのインダクタンスが減少する。また、ねじれ角が0の状態から、反時計方向にねじれ角が生じると、第1の系列における開口窓3a,4aの重なり具合が増加してそれに対応する第1のコイル11aのインダクタンスが減少するのに対して、第2の系列における開口窓3b,4bの重なり具合が減少してそれに対応する第2のコイル11bのインダクタンスが増加する。
このように、トルクセンサのセンサ部10においては、入出力軸(第1及び第2の回転軸)1,2の相対的回転位置(ねじれ角)に応答して互いに逆特性のインダクタンス変化を該第1及び第2のコイル11a,11bに生じさせるように、第1及び第2の磁気応答部材3,4を構成しかつ該第1及び第2のコイル11a,11bを配置している。そして、本発明の適用にあたっては、第1の系列をなす開口窓3a,4aに関連する磁気応答部材3,4の部分と第1のコイル11aとの組合せが、図1に示す磁気応答部材12とコイル11からなる1つの組合せに相当し、この1つの組合せに対応して、前記自励発振回路13と演算部14が設けられる。また、第2の系列をなす開口窓3b,4bに関連する磁気応答部材3,4の部分と第2のコイル11bとの組合せが、図1に示す磁気応答部材12とコイル11からなるもう1つの組合せに相当し、このもう1つの組合せに対応して、前記自励発振回路13と演算部14が設けられる。各系列の演算部14から得られる位置データLdが、それぞれの系列のトルク検出データである。すなわち、トルクセンサに対する応用にあたっては、図1に示すコイル11、磁気応答部材12、自励発振回路13、演算部14からなる位置検出装置が2系列設けられることとなり、互いに逆特性の2つの位置データLdが両系列から得られ、2系列のトルク検出データとして出力される。
なお、図11の例では、入力軸1に設けた磁気応答部材3と出力軸2に設けた磁気応答部材4とがスラスト方向に対向する(開口窓がスラスト方向に重なる)ように配置されているが、これに限らず、入力軸1及び出力軸2に設ける磁気応答部材をそれぞれ円筒形に形成して、両者の開口窓がラジアル方向に重なるように配置したトルクセンサにおいても本発明の位置検出装置を適用することができるのは勿論である。
なお、演算部14の機能は、マイクロコンピュータと各ステップの処理を実現するためのソフトウェアプログラムを記憶したメモリとの組み合わせで実現することができるが、それに限らず、カスタムICなど専用のデジタル回路で実現してもよい。

Claims (4)

  1. コイルと、
    検出対象位置に応じて前記コイルに対して変位するように配置された磁気応答部材と、
    前記コイルを発振要素として組み込み、該コイルに対する前記磁気応答部材の変位に応じた該コイルのインダクタンス変化に応じて発振周波数が変化する自励発振回路と、
    前記自励発振回路の発振出力信号に基づき該自励発振回路の発振周波数に対応する計測値をデジタルの原初的位置検出データとして生成し、前記原初的位置検出データの時間的差分値をデジタル的に演算することにより速度データを生成し、該速度データを積分することにより変位データを求めるように構成された、演算部と
    を備える変位検出装置。
  2. 前記演算部は、前記原初的位置検出データの時間的差分値をデジタル的に演算するための時間差可変設定するように構成されている、請求項1の位置検出装置。
  3. 前記演算部は、さらに、前記速度データの時間的差分値をデジタル的に演算することにより加速度データを生成する、請求項1又は2の位置検出装置。
  4. 前記演算部は、さらに、前記生成した加速度データを積分することにより第2の速度データを求める、請求項3の位置検出装置。
JP2017548837A 2015-11-04 2016-11-02 変位検出装置 Active JP6931487B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015216767 2015-11-04
JP2015216767 2015-11-04
PCT/JP2016/082699 WO2017078110A1 (ja) 2015-11-04 2016-11-02 変位検出装置

Publications (2)

Publication Number Publication Date
JPWO2017078110A1 JPWO2017078110A1 (ja) 2018-08-23
JP6931487B2 true JP6931487B2 (ja) 2021-09-08

Family

ID=58662058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548837A Active JP6931487B2 (ja) 2015-11-04 2016-11-02 変位検出装置

Country Status (5)

Country Link
US (1) US10775198B2 (ja)
EP (1) EP3372952B1 (ja)
JP (1) JP6931487B2 (ja)
CN (1) CN108351195B (ja)
WO (1) WO2017078110A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462146B (zh) * 2017-09-04 2023-07-25 中国计量大学 基于多互感机理的地下三维位移测量系统与方法
KR102059818B1 (ko) 2017-09-28 2019-12-27 삼성전기주식회사 회전체 감지 장치
EP3514502B1 (en) * 2018-01-22 2021-07-14 Melexis Technologies SA Inductive position sensor
US11525701B2 (en) 2018-01-22 2022-12-13 Melexis Technologies Sa Inductive position sensor
KR102115525B1 (ko) * 2018-09-14 2020-05-26 삼성전기주식회사 회전체 감지 장치
US11204258B2 (en) * 2018-09-14 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Apparatus for sensing rotating device
US10921160B2 (en) * 2018-11-22 2021-02-16 Samsung Electro-Mechanics Co., Ltd. Sensing circuit of moving body and moving body sensing device
US20210388890A1 (en) * 2020-06-16 2021-12-16 American Axle & Manufacturing, Inc. Vehicle driveline component having a sensor-less electromagnetic actuator system
CN112284230B (zh) * 2020-10-09 2021-11-16 珠海格力电器股份有限公司 位移检测装置、位移监控方法及压缩机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002308B2 (ja) 1995-08-10 2007-10-31 株式会社アミテック 誘導型回転位置検出装置
JP4047947B2 (ja) 1996-03-16 2008-02-13 株式会社アミテック 誘導型直線位置検出装置
JPH10173437A (ja) 1996-12-09 1998-06-26 Omron Corp Lc発振回路及びこれを用いた近接センサ
JPH10252549A (ja) 1997-03-07 1998-09-22 Mitsubishi Electric Corp 回転数検出装置及び回転機械の制御装置
JP2000329510A (ja) 1999-05-24 2000-11-30 Hitachi Ltd 紙葉類の厚さ検出装置
KR100794976B1 (ko) * 2000-11-30 2008-01-16 아실럼 리서치 코포레이션 고정밀 위치 측정을 위한 개량형 선형 가변 차동 변환기
JP4574893B2 (ja) 2001-05-02 2010-11-04 株式会社エスジー 導体検出装置
DE102005007265A1 (de) * 2004-09-21 2006-04-06 Micro-Epsilon Messtechnik Gmbh & Co Kg Vorrichtung und Verfahren zur Erfassung der Position und der Geschwindigkeit eines Messobjekts
CN100492872C (zh) * 2007-07-19 2009-05-27 清华大学 基于非线性鲁棒电力系统稳定器的大扰动实时仿真系统
JP5347446B2 (ja) 2008-11-18 2013-11-20 株式会社ジェイテクト 基板形複層コイル及び変位センサ装置
US8278915B2 (en) * 2008-12-15 2012-10-02 Chun Soo Park Minimizing magnetic interference in a variable reluctance resolver
US8102637B2 (en) * 2009-07-22 2012-01-24 Analog Devices, Inc. Control techniques for electrostatic microelectromechanical (MEM) structure
CN102032012A (zh) * 2010-05-05 2011-04-27 天津蹊径动力技术有限公司 辐向永磁直线电机式电磁气门驱动系统
US9683829B2 (en) * 2011-12-13 2017-06-20 Amiteq Co., Ltd. Position detection device
EP2853861B1 (en) * 2012-05-14 2017-10-18 Amiteq Co., Ltd. Position detection device

Also Published As

Publication number Publication date
EP3372952B1 (en) 2020-09-09
US20180313665A1 (en) 2018-11-01
EP3372952A1 (en) 2018-09-12
EP3372952A4 (en) 2019-05-08
JPWO2017078110A1 (ja) 2018-08-23
CN108351195B (zh) 2020-07-14
US10775198B2 (en) 2020-09-15
WO2017078110A1 (ja) 2017-05-11
CN108351195A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6931487B2 (ja) 変位検出装置
US6812694B2 (en) Magnetic sensor adjusting method, magnetic sensor adjusting device and magnetic sensor
JP4190780B2 (ja) 回転検出装置
JP6043721B2 (ja) 改良型位置センサ
EP3742129A1 (en) Magnetic position sensor system, device, magnet and method
CN101680741A (zh) 用于测量轴的对准误差的系统和方法
JP2008145299A (ja) 回転変位補正装置、および、変位検出装置
US20090150029A1 (en) Capacitive integrated mems multi-sensor
JP2006502411A (ja) 速度検知方法及び装置
JP2017150861A (ja) 回転角度検出装置
NL8803124A (nl) Inrichting voor het detecteren van de beweging van een onderdeel.
JP2010019846A (ja) エレメントの運動を検出する方法およびセンサ装置
EP1988436A2 (en) Vibration state detecting method at machining stage of work and/or tool
US20150061655A1 (en) Magnetic sensing device using magnetism to detect position
Bernstein Sensor performance specifications
US4802364A (en) Angular rate sensor
US6631641B1 (en) Device and method for determining frequency and amplitude of an oscillating structure, especially for measuring acceleration or rotational rates
US3903747A (en) Vibrating wire attitude reference sensing system
Wang et al. Dynamic analysis of the resonator for resonant accelerometer
US10345105B2 (en) Simplified time domain switched ring/disk resonant gyroscope
Mihelj et al. Robot sensors
Papoutsidakis et al. Linear Position Sensors–A Brief Guide of Use of the Most Common Types
Liewald et al. A 100 kHz vibratory MEMS rate gyroscope with experimental verification of system model's frequency scaling
JP3134591B2 (ja) 位置検出装置
Alexander et al. Scale factor determination of micro-machined angular rate sensors without a turntable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210729

R150 Certificate of patent or registration of utility model

Ref document number: 6931487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150