JP6929535B2 - 鉄鋼成品の表面処理方法 - Google Patents

鉄鋼成品の表面処理方法 Download PDF

Info

Publication number
JP6929535B2
JP6929535B2 JP2017103827A JP2017103827A JP6929535B2 JP 6929535 B2 JP6929535 B2 JP 6929535B2 JP 2017103827 A JP2017103827 A JP 2017103827A JP 2017103827 A JP2017103827 A JP 2017103827A JP 6929535 B2 JP6929535 B2 JP 6929535B2
Authority
JP
Japan
Prior art keywords
carbides
steel
voids
surface treatment
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103827A
Other languages
English (en)
Other versions
JP2018199843A (ja
Inventor
間瀬 恵二
恵二 間瀬
正三 石橋
正三 石橋
祐介 近藤
祐介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP2017103827A priority Critical patent/JP6929535B2/ja
Publication of JP2018199843A publication Critical patent/JP2018199843A/ja
Application granted granted Critical
Publication of JP6929535B2 publication Critical patent/JP6929535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は,鉄鋼材料から成る成品(本明細書において「鉄鋼成品」という。)の表面処理方法に関し,より詳細には,金型,切削工具,摺動部品等の鉄鋼成品の表面特性,例えば表面強度,耐摩耗性や耐食性等を改善するための表面処理方法に関する。
鉄鋼材料の組織は,基地と,炭化物や非金属介在物から構成され,これらの各構成要素の状態によって鉄鋼材料の性質が変化する。
〔基地の状態に基づく鉄鋼材料の性質〕
基地の状態に関する特性としては,金属材料の強度が結晶粒径の平方根の逆数に比例して増大することがホールペッチ(Hall-Petch)の関係として知られており,このような効果をもたらす結晶粒径の微細化は,金属成品の表面強化において利用されている。
このような結晶粒の微細化による強化方法として,冷間加工により組織を微細化する方法や,熱処理により組織を微細化することが以前から広く行われており,後掲の非特許文献1では,大型プレスを用いた鍛造後,粗大化したγ粒を熱処理工程での逆変態を利用して微細化することが記載されている。
また,近年,表面付近の結晶粒径をナノレベルにまで微細化した金属成品では,表面硬度が飛躍的に上昇するだけでなく,耐摩耗性や耐食性の向上が得られるとの報告もされている。
このような表面強化を可能とする金属成品のナノ結晶化方法として,ボールミリング,落錘加工,粒子衝突加工,ショットピーニングによる成功例が報告されており,特にショットピーニングによるナノ結晶化は,低コストかつ簡易な方法として注目されている。
なお,ショットピーニングによるナノ結晶組織の生成原理については依然として十分な解明が成されていないが,後掲の特許文献1及び非特許文献2には,軟質材料であるSS400鋼〔HV1.20GPa〕の表面に対し平均粒子径45μmの高速度鋼(SKH59)製ショットを噴射圧力0.5MPaにて30sec噴射して衝突させた表面処理と,硬質材料であるSCr420浸炭焼入鋼〔初期硬さHV7.55GPa〕の表面に対し同一条件でショットピーニングを行った表面処理によるナノ結晶組織の生成例が紹介されている(特許文献1,非特許文献2)。
また,後掲の非特許文献3には,粒径0.05〜0.8mm(50〜800μm)の鋼球を100〜190m/sの速度で噴射したショットピーニングにより,鉄鋼成品の表面をナノ結晶化させた事例が報告されている。
なお,上記ショットピーニングによる表面ナノ結晶化を鉄鋼材料に対して行った場合の特徴の1つとして,ナノ結晶領域では炭化物(セメンタイト)が消失して観察されなくなることが挙げられている(特許文献1[0018]欄,非特許文献2の「2.微粒子ピーニング処理によるナノ結晶組織の形態」欄,非特許文献3の「3.実験結果」中の「3.1ショットピーニングによるナノ結晶化に対する被加工材の組成と組織の影響」欄)。
〔炭化物の析出状態と鉄鋼材料の性質〕
鉄鋼材料の基地中には,前述したように炭化物や非金属介在物が存在するところ,このうちの炭化物は基地よりも高硬度であることから,このような炭化物の存在は,鉄鋼材料の耐摩耗性向上に貢献することが知られている。
その一方で,炭化物の増加は鉄鋼成品の靭性を低下させて,鉄鋼成品の疲労寿命を低下させる原因となることもまた知られている。
この炭化物は,比較的粒径の大きい一次炭化物と,微細な二次炭化物によって構成されており,一次炭化物は熱処理により変化せず鉄鋼材料の基礎特性を形成する一方,二次炭化物は熱処理状態により基地に溶け込んだり析出したりすることで,鉄鋼材料の特性を変化させる。
これらの炭化物は,一次炭化物,二次炭化物のいずれとも,粒径が大きい程,疲労寿命の低下をもたらすことが報告されており(非特許文献4の「5.結論」欄,非特許文献5の「4.結語」欄参照),鉄鋼材料の組織中における炭化物の析出状態は,鉄鋼材料の性能に大きく影響を与えることから,鋼の強化等を目的として析出させる炭化物の種類,量,大きさ等を制御することが行われている。
後掲の特許文献2〜4は,このような炭化物の制御を,合金成分の調整によって行うことを提案する。
具体的には,特許文献2は,熱間金型用鋼の組成を質量%で,C:0.30〜0.50%,Si:0.10〜0.50%,Mn:0.10〜1.00%,Cr:4.00〜6.00,Mo:1.40〜2.60%,V:0.20〜0.80%,Ti:0.0030%以下,N:0.0120%以下を含有し,残部Feおよび不可避不純物とし,この熱間金型用鋼における[%Mo]と[%Cr]のバランスを質量%で0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足するものとすることで,微細なMX型炭窒化物やM2C型炭化物を析出して有する高靭性及び高強度な熱間金型用鋼が得られることを記載している。
また,特許文献3は,重量%でC:0.50〜2.50%,Si:0.5%以下,Mn:1%以下,Cr:3〜5%,2Mo+W:12〜28%,V:1.0〜2.5%,Ti:0.005〜0.2%を含有し,残部をFeとすることで,2Mo/(2Mo+W)が0〜0.7と高W系とした場合でも,炭化物の粗大化を抑制して微細な炭化物を有する高速度工具鋼を大気溶製することができることを報告する。
更に,特許文献4は,質量%でC:0.30〜0.90%,Si:0.05〜1.00%以下,Mn:0.10〜1.50%,P:0.003〜0.030%,S:0.001〜0.020%,Nb:0.10〜0.70%を含有し,必要に応じてさらに,Cr:1.50%以下,Mo:0.50%以下,V:0.50%以下,Ni:2.00%以下,Ti:0.10%以下,B:0.0050%以下の1種以上を含有し,残部Feおよび不可避的不純物からなる化学組成を有し,Nb含有炭化物が分散した調質熱処理後の金属組織を有し,粒径1.0μm以上のNb含有炭化物粒子の数が200個/mm2以上、かつ極値統計法により推定される103mm3中のNb含有炭化物粒子の最大粒径Dmaxが18.0μm以下に調整されている極疲労特性に優れる耐摩耗性鋼材を開示する。
また,後掲の特許文献5は,鉄鋼材料表面の加熱による再溶融と急速な凝固によって炭化物の微細化を行うことを提案するもので,鉄鋼成品の表層部に対するレーザ照射による急速な加熱溶融と急速な凝固によって炭化物を微細化して炭化物微細化領域を形成すると共に,この炭化物微細化領域に,回転する円柱状のツールを圧入して摩擦攪拌プロセスを施すことで母材(基地)の結晶粒を微細化した組織微細化領域を形成することで,鉄鋼材料(切削工具や刃物の刃先)の高性能化・長寿命化を低コストで行うことを提案すると共に,この処理により得られた前述の組織微細化領域では,母材(基地)の結晶粒径と,炭化物の粒径のいずれも10nm〜1μmに微細化されているとしている(特許文献5の請求項6,7)。
なお,炭化物は,塑性変形に伴う基地部材の圧縮力によって破砕され,この破砕で新たに分割されて生じた粒開にボイド(空隙)が発生し,このボイドの存在が炭化物の欠落や亀裂の発生起点となることに鑑み,後掲の非特許文献6では,低温加熱鍛造時に炭化物で生じたボイド(空隙)の埋め戻し行うことを目的とし,低温加熱鍛造後の鉄鋼成品に対し950℃×90MPa条件のHIP処理(熱間等方圧加圧処理)を行うことを提案する。
特開2007−297651号公報 特開2013− 87322号公報 特開平10−219398号公報 特開2013−136820号公報 国際公開2009/041665号
東 司,田中 泰彦,石黒 徹「Ni―Cr−Mo−V鋼の再オーステナイト化処理による結晶粒微細化と析出炭化物の役割」鉄と鋼,一般社団法人日本鉄鋼協会,第76年(1990),第5号,p.783-790 高木眞一,熊谷正夫「FPB処理による表面ナノ結晶化」,精密工学会誌,公益社団法人精密工学会,Vol.72,No.9,2006,p.1079-1082 戸高 義一,梅本 実,渡辺 幸則,土屋 浩一,「ショットピーニングによる鉄鋼表面のナノ結晶化」,日本金属学会誌,公益社団法人日本金属学会,第67巻,第12号(2003),p.690-696 尾崎 公造,「冷間工具鋼の疲労強度に及ぼす一次炭化物分布の影響」,電気製鋼,大同特殊鋼株式会社,第76巻4号,2005年11月,p.249-257 吉田 潤二,勝亦 正昭,山崎 善夫,「冷間金型鋼の疲労寿命に及ぼす二次炭化物粒径の影響」,鉄と鋼,一般社団法人日本鉄鋼協会,Vol.84(1998),No.9,p.672-677 宮下 修,田中 雅三,「特集 合金工具鋼の組織・強度改良を伴う塑性加工法」,デンソーテクニカルビュー,株式会社デンソー,Vol.11,No.2,2006,p.28-32
前述したように,基地中に含まれる炭化物は,鉄鋼成品に耐摩耗性を与える一方,その増加は鉄鋼成品の疲労強度を低下させることとなるから,耐摩耗性の付与と疲労強度の向上は,二律背反した性質となっている。
しかし,炭化物は,これを微細化することで鉄鋼成品の疲労強度の低下が緩和されることは前述した通りであり,微細な炭化物(二次炭化物)の析出量を増加させることができれば,疲労強度を維持しつつ鉄鋼成品の耐摩耗性を向上させることが可能となることが予想される。
このように,微細な炭化物を得る方法としては,前掲の特許文献2〜4として紹介したように,鉄鋼材料の合金成分と添加量を調整することによって炭化物の析出状態を制御するのが一般的である。
しかし,この方法では,材料の特性によって成品全体にわたって炭化物の析出状態が一律に決まってしまうため,例えば切削工具の他の部分の性質はそのまま維持しつつ,刃先部分のみを強化したい場合のように,鉄鋼成品の一部分に対する局部的な特性の改善に適用することができない。
また,前述した方法では,事後的に生じた組織の変化に対し対応することができず,例えば,得られた鉄鋼材料に対し切削加工や塑性加工等を施して最終成品を得た場合,加工時の塑性変形領域で炭化物が破砕し,破砕によって新たに生じた粒界にボイド(空隙)が生じた場合,事後的にこれを除去するための処理が別途必要となる。
このような処理として,前掲の非特許文献6では,低温加熱鍛造後の鉄鋼成品に対し950℃×90MPa条件のHIP処理(熱間等方圧加圧処理)を行うことを提案する。
しかし,このHIP処理を行うためには,大型の処理装置が必要であり,多大な初期投資が必要となるためコストが嵩むと共に,HIP処理では,表面部分のみならず成品の全体を均一に加圧してボイドの埋め戻しが行われることから,成品の体積が減少して寸法に狂いが生じる場合がある。
なお,炭化物のみならず,この炭化物を含む基地の結晶粒についてもこれを微細化することで鉄鋼成品の強度が向上することから,炭化物の微細化のみならず,基地についても熱処理等の方法で微細化が図られる場合もある。
しかし,合金成分の調整によって析出される炭化物の制御を行う場合,合金成分の種類や添加量によっては熱処理による結晶粒の微細化ができなくなる場合もあり(非特許文献1の「5.まとめ」では,Vの含有量の増加が結晶粒の微細化を妨げることを報告),炭化物の微細化と同時に基地の結晶粒の微細化も得ようとした場合,添加する成分の調整は更に複雑となる。
従って,合金成分の調整等によらず,事後的に,微細な二次炭化物の増加と,表面付近に生じているボイドの埋め戻し,及び基地結晶粒の微細化をいずれも行うことができれば便利である。
前掲の特許文献5には,鉄鋼材料の表層部に対するレーザ照射による急速な加熱溶融と急速な凝固,及び,回転する円柱状のツールを圧入して行う摩擦攪拌プロセスの組み合わせによって,金属母材(基地)の結晶粒と,この基地中に存在する炭化物のいずれも粒径10nm〜1μmに微細化された組織微細化領域が得られることを記載する。
しかし,前掲の特許文献5に記載されている処理では,ボイドの埋め戻しについて一切の言及がされていない。
しかも,特許文献5に記載の処理では,炭化物を微細化する処理と,母材(基地)の結晶粒を微細化する処理をそれぞれ別工程として行う必要があるために,2工程の処理を必要とし,しかも,高価なレーザ照射装置が必要となることから,処理に長時間を要すると共に,処理装置の導入に際し多大な初期投資が必要となる。
更に,特許文献5に記載の処理は,平面に対し行うことはできても,複雑な立体形状を有する成品に対する適用が困難であり,特に,微細な孔の内面等に対し適用することができない。
そのため,より簡単かつ,廉価な処理装置を使用した事後的な処理によって,しかも1工程の処理によって微細な炭化物(二次炭化物)を増加させることができ,好ましくは成品の表面付近に生じているボイドについても同時に埋め戻すことができ,より好ましくは,基地の結晶粒についても同時に微細化することができる表面処理方法があれば便利である。
なお,金属成品の表面付近の結晶粒を微細化させる表面処理方法として,ショットピーニングは公知であり,このショットピーニングを行うことで,金属成品の表面付近の結晶粒をナノレベルにまで微細化できることが報告されている(特許文献1,非特許文献2及び3)。
しかし,このようなショットピーニングによるナノ結晶化を鉄鋼材料に適用した場合,ナノ結晶組織に変化した領域内では炭化物が消失して観察できなくなることがその特徴の一つとされており(特許文献1[0018]欄,非特許文献2の「2.微粒子ピーニング処理によるナノ結晶組織の形態」欄,非特許文献3の「3.実験結果」中の「3.1ショットピーニングによるナノ結晶化に対する被加工材の組成と組織の影響」欄),ショットピーニングでは表面付近における炭化物の析出状態を制御する〔二次炭化物の増加,炭化物に生じたボイド(空隙)の減少や消滅等させる〕ことはできないというのが,本発明の発明者らを含めた当業者における認識であったと考えられる。
しかし,本発明の発明者らによる鋭意研究の結果,ショットピーニングにおける加工条件を調整することにより,ショットピーニングにより基地の結晶粒をナノレベルに微細化しつつ,析出炭化物を消滅させることなく,微細な炭化物(二次炭化物)の増加や,切削加工や塑性加工等によって破砕した炭化物の粒界に生じたボイドの減少や消滅等の析出炭化物の状態を事後的に変化させることができることが確認された。
本発明は,本発明の発明者らによる鋭意研究の結果得られた上記の知見に基づき成されたものであり,鉄鋼成品の表面付近における微細な炭化物(二次炭化物)の増加や,ボイドの埋め戻し等の析出炭化物の状態変化を,比較的簡単な方法で事後的に行うことができる鉄鋼成品の表面処理方法を提供し,疲労強度を維持又は向上させつつ,耐摩耗性が向上した鉄鋼成品を提供することを目的とする。
上記目的を達成するための,本発明の鉄鋼成品の表面処理方法は,
Cr系炭化物を含有する鉄鋼成品の表面のうち,表面処理を行う領域である処理領域に対し,アルミナであってメディアン径d50が1〜20μmの略球状の噴射粒体を,0.5MPaの噴射圧力の圧縮気体と共に噴射して,前記処理領域に対するカバレージが100%となるようショットピーニングを行うことにより,前記鉄鋼成品の表面付近における二次炭化物の析出量を増加させ,及び,炭化物の破砕により生じたボイド(空隙)を減少又は消滅させることを特徴とする(請求項1)。
ここで「メディアン径d50」とは,累積質量50%径,すなわち,粒子群をある粒子径から2つに分けたとき,大きい側の粒子群の積算粒子量と,小さい側の粒子群の積算粒子量が等量となる径をいい,JIS R 6001(1987)における「累積高さ50%点の粒子径」と同義である。
また,処理領域の面積をA,Aに含まれる圧痕(ディンプル)面積の総和をBとしたとき,カバレージCは,C=B/A×100(%)で定義される。
上記表面処理方法における前記ショットピーニングにより,前記鉄鋼成品の表面付近における基地の結晶粒をナノ結晶組織に微細化させるものとしても良い(請求項2)。
以上で説明した本発明の構成により,本発明の方法では,以下の顕著な効果を得ることができた。
既存のブラスト加工装置を使用して,所定粒径の噴射粒体を,所定の噴射圧力の圧縮気体と共に鉄鋼成品の表面に対し噴射するショットピーニングを行うという比較的簡単な処理により,鉄鋼成品の表面付近における析出炭化物の状態を変化させることで,事後的に鉄鋼成品の特性を比較的容易に変化させることができた。
前記析出炭化物の状態変化が,鉄鋼成品の表面付近における二次炭化物を増加である場合には,鉄鋼成品の疲労強度の維持又は向上と,鉄鋼成品の耐摩耗性の向上を両立させることができた。
また,前記析出炭化物の状態変化が,鉄鋼成品の表面付近における炭化物の粒界におけるボイド(空隙)の減少又は消滅である場合,ボイドを起点とした炭化物の脱落やボイドを起点とした亀裂,腐食の発生等についても好適に防止することができ,鉄鋼成品の疲労強度の向上,耐食性の向上,表面に形成した機能性膜の密着性の向上等を図ることができた。
更に,前記鉄鋼成品の表面付近における結晶粒径が平均結晶粒径300nm以下のナノ結晶組織に微細化することで,結晶粒の微細化に伴う表面強化についても併せて得ることができた。
表面処理前後における試験片の同一位置(観察箇所1)に存在するボイド(空隙)を撮影した電子顕微鏡写真であり,(A)は未処理(比較例),(B)は本願の表面処理後(実施例)を示す。 表面処理前後における試験片の同一位置(観察箇所2)に存在するボイド(空隙)を撮影した電子顕微鏡写真であり,(A)は未処理(比較例),(B)は本願の表面処理後(実施例)を示す。 表面処理前後における試験片の同一位置における二次炭化物を撮影した電子顕微鏡写真であり(A)は未処理(比較例),(B)は本願の表面処理後(実施例)を示す。
次に,本発明の実施形態につき添付図面を参照しながら以下説明する。
〔処理対象〕
本発明の表面処理方法で処理対象とする成品は,基地中に炭化物が析出され得る組成の鉄鋼材料によって製造されたものであれば如何なるものも対象とすることができ,一例としてSKD11,SKD61,SKH51,SUJ2はいずれも本願の処理対象である。
処理対象とする鉄鋼成品の用途についても特に限定されず,表面強化が必要な各種用途の鉄鋼成品に対し適用可能であり,また,本発明の表面処理は,鉄鋼成品の一部分に対し行うことも可能である。
例えば,本発明の表面処理は,切削工具等の機械加工工具の刃先及びその近傍に対してのみ適用することも可能であり,また,ベアリング,シャフト,歯車などの他部材と摺接させて使用する摺動部材に対し適用する場合には,摺動部材のうち,他部材との摺動部のみを処理対象とするものとしても良い。
なお,処理対象とする鉄鋼成品の表面は,バリが付着した状態や,ツールマークなどの加工痕が形成されたままの状態のものであっても良いが,好ましくは算術平均粗さ(Ra)で1.5μm以下,好ましくはRa0.5μm以下の状態で処理を開始することが好ましい。
噴射粒体との衝突によって,鉄鋼成品の表面には油溜まり等となって摺動性の向上に役立つディンプルが形成されるが,算術平均粗さ(Ra)で1.5μmを超える粗さの状態から処理を開始する場合,この表面の凹凸内にディンプルが形成されてしまうために摺動性の向上が発揮され難く,一方,Ra0.5μm以下の粗さで処理を開始する場合には,前述したディンプルの形成によって表面の摺動性等をより向上させることができる。
〔表面処理〕
前述した金属成品の表面のうち,表面処理を行う領域である処理領域に対し,略球状の噴射粒体を圧縮気体と共に噴射して,前述した領域に衝突させる,所謂「ショットピーニング」を行う。
この表面処理に使用する噴射粒体,噴射装置,噴射条件を一例として以下に示す。
(1)噴射粒体
本発明の表面処理方法で使用する略球状の噴射粒体における「略球状」とは,厳密に「球」である必要はなく,一般に「ショット」として使用される,角のない形状の粒体であれば,例えば楕円形や俵型等の形状のものであっても本発明で使用する「略球状の噴射粒体」に含まれる。
噴射粒体の材質としては,金属系,セラミックス系のいずれのものも使用可能であり,一例として,金属系の噴射粒体の材質としては,スチール,高速度工具鋼(ハイス鋼),ステンレス鋼,クロムボロン鋼(FeCrB)等を挙げることができ,また,セラミックス系の噴射粒体の材質としては,アルミナ(Al),ジルコニア(ZrO),ジルコン(ZrSiO),炭化ケイ素(SiC),硬質ガラス等を挙げることができる。
使用する噴射粒体の粒径は,メディアン径(d50)で1〜20μmの範囲のものが使用可能である。
なお,使用する噴射粒体は,処理対象とする鉄鋼成品と同等以上の硬度を有する材質のものを使用することが好ましい。
(2)噴射装置
前述した噴射粒体を鉄鋼成品の表面に向けて噴射する噴射装置としては,圧縮気体(空気,アルゴン,窒素等)と共に研磨材の噴射を行う既知のブラスト加工装置を使用することができる。
このようなブラスト加工装置としては,圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し,別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置,及び,上記直圧式の圧縮気体流を,ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
(3)処理条件
以上で説明した鉄鋼成品に対し,前述した材質等からなるメディアン径d50が1〜20μmの略球状の噴射粒体を,0.01MPa以上,0.7MPa以下の噴射圧力の圧縮気体と共に噴射することにより行う。
噴射粒体の噴射は,カバレージが50%以上となるまで行う。
本発明の表面処理方法に関し,以下の評価試験を行った。
〔ボイド(空隙)の変化状態の確認〕
(1)試験の目的
本発明の表面処理により,炭化物に生じているボイド(空隙)が減少又は消滅することを確認する。
(2)試験方法
未処理のSKD11製の試験片と,本発明の表面処理を行った後の同一試験片に基づいて,ボイドの変化状態を観察した。
試験片の処理条件を以下の表1に示す。
Figure 0006929535
観察は,未処理の試験片(比較例)を撮影して得た電子顕微鏡像と,本発明の表面処理後の試験片(実施例)を撮影して得た電子顕微鏡像を比較して行い,処理前後におけるボイド(空隙)の変化の状態を観察した。
また,電子顕微鏡像中の任意2箇所(観察箇所1,観察箇所2)に存在するボイド(空隙)の,表面処理前の投影面積Aと,表面処理後の投影面積Bを測定し,両ボイド(空隙)の投影面積が表面処理の前後においてどの程度減少しているかを減少率〔(A−B)/A×100(%)〕として評価した。
撮影は走査電子顕微鏡(日立ハイテクノロジーズ製S-3400N)を使用して,加速電圧10kv,測定モード:反射電子像,測定倍率3000倍で行い,各ボイド(空隙)の投影面積は,ボイド(空隙)の長径と端径を掛けた矩形の面積として求めた。
なお,表面処理後の試験片では,表面に形成されたディンプル(圧痕)が観察の妨げとなることから,ダイヤモンドペーストを使用して表面粗さがRa0.1μm以下となるまで手磨きにより研磨しているが,この研磨は,炭化物の析出状態の観察に影響を与えるものではない。
(3)試験結果
本発明の表面処理を行う前後の試験片を撮影した電子顕微鏡像を図1(観察箇所1)及び図2(観察箇所2)に示す。
また,表面処理前後におけるボイドの投影面積とその減少率を下記の表2に示す。
Figure 0006929535
図1及び図2中,濃いグレーの部分が炭化物であり,前掲の特許文献1及び非特許文献2,3より予想される結果に反し,本発明の表面処理方法では,ショットピーニング後においても鉄鋼成品の表面付近の炭化物は消滅することなく残っていることが確認された。
また,図1及び図2中,黒く表れている部分がボイドであり,矢印で示したボイドのみならず,その他のボイドを観察しても,本発明の表面処理を行うことで,ボイドの明確な減少や消滅が確認できることから,本発明の方法では,処理の前後において,析出炭化物の状態が変化していることが判る。
また,矢印で示したボイドの投影面積についても,観察箇所1で52%の減少,観察箇所2では100%の減少(ボイドの消滅)が確認されており,本発明の表面処理を行うことで,炭化物に生じているボイドが減少,又は消滅することが確認された。
(4)考察
前述したボイド(空隙)の減少や消滅が生じた原因は必ずしも明らかではないが,本発明では噴射粒体が鉄鋼成品に衝突したことによる金属表層の急熱急冷と強加工が生じ,この強加工により結晶に転移が蓄積されるため,結晶が歪む一方,歪むのは最表層のみであるために,その下の基地は歪ませないよう力が働く結果,最表層に圧縮応力が働くことで,炭化物の粒界に生じたボイドも圧縮されて減少あるいは消滅したものと考えられる。
また,急熱急冷効果によって炭化物の周囲にある残留オーステナイトがマルテンサイト変態して体積膨張することで,炭化物に対してはこれを圧縮する方向の力が作用する点も,ボイド(空隙)の減少あるいは消滅に寄与していると考えられる。
このように,本発明の表面処理方法で処理された鉄鋼成品では,表面付近におけるボイドを減少あるいは消滅させることができたことで,後述する耐摩耗性の向上,耐久性(疲労強度)の向上が得られる他,耐食性の向上や,硬質被膜等の機能性膜の密着強度を向上させることも可能となる。
すなわち,表面に存在するボイドは,腐食進行の起点となり易いが,本発明の方法で表面処理を行うことで,表面付近のボイドの面積が減少し又は消滅することで鉄鋼成品の耐食性が向上する。
また,炭化物にボイドが生じた状態で鉄鋼成品の表面に機能性膜(TiAlN,TiN,CrN,DLCなど)をCVD,PVD法等で成膜した場合,ボイドが剥離の起点となり易く,また,ボイドが存在することで炭化物の脱落が生じ易く,この脱落に伴って前述の機能性被膜の剥離も生じ易くなることから,本発明の表面処理方法は,このような機能性膜の密着性を向上させるための下地処理としても有効に機能するものと考えられる。
〔二次炭化物の発生状態の確認〕
(1)試験の目的
本発明の表面処理により鉄鋼成品の表面付近における二次炭化物の発生状態が変化していること(特に,二次炭化物の増加)を確認する。
(2)試験方法
前述した〔ボイド(空隙)の変化状態の確認〕に使用したと同一の電子顕微鏡像を使用して,本発明の表面処理の前後において試料の同一箇所で二次炭化物の発生状態がどのように変化しているかを確認した。
観察は,図3中に枠線で示した観察領域(380μm2)において行った。
(3)試験結果
表面処理前後の試料を撮影した電子顕微鏡像を図3に示す。
図3から明らかなように,未処理の試料を撮影した電子顕微鏡像〔図3(A)〕に表れている二次炭化物と,処理後の試料を撮影した電子顕微鏡像〔図3(B)〕に表れている二次炭化物では,二次炭化物が表れている位置,二次炭化物の形状,個数がいずれも異なるものとなっており,本発明の方法で表面処理を行ったことで,未処理の状態で撮影されていた二次炭化物は一つとして残っておらず,元の二次炭化物が一旦消滅した後,新たな二次炭化物が再析出されていることが判る。
なお,前掲の非特許文献5に倣い,粒径4μm以下のもの(本実施例では長径又は短径のいずれか若しくは双方が4μm以下のもの)を「二次炭化物」として,未処理時における観察領域(380μm2)内の二次炭化物が占める面積A及び密度(A/380)と,処理後における観察領域内の二次炭化物が占める面積B及び密度(B/380)をそれぞれ測定すると共に,面積の増加率〔(B−A)/A×100(%)〕を算出した結果を下記の表3に示す。なお,二次炭化物の占有面積は,各二次炭化物の長径と端径を掛けて得た矩形の面積を各二次炭化物の面積とし,これらを合計することにより計算した。
上記計算の結果からも,処理前に比較して本発明の表面処理方法を適用した後の方が,二次炭化物が増加していることが確認された。
Figure 0006929535
(4)考察
本発明の表面処理方法で二次炭化物を増加させることができた理由は明らかではないが,敢えて理由を付けるとすれば,以下のような理由が考えられる。
なお,試験片であるSKD11はCr系の炭化物が多くを占めていることで知られているため,ここではCr系炭化物に焦点をおいて検討する。
ショットピーニングにより表面付近の結晶粒が微細化する原理は明らかにされていないが,噴射粒体との衝突によって鉄鋼成品の表面のうち噴射粒体が衝突した部分で局部的かつ瞬間的な温度上昇と急冷が生じることによるマルテンサイト変態によって微細化が生じていると考えられており,これによれば,噴射粒体との衝突部は瞬間的にオーステナイト化温度(Ac3)以上に達していることになる。
ここで,前掲の非特許文献1の記載によれば,Cr系炭化物はAc3温度でほぼ固溶するとされていることから,鉄鋼成品の表面中,噴射粒体と衝突した部分のCr系炭化物は固溶を開始していると考えることができる。
しかし,特許文献1や非特許文献2で紹介したショットピーニングで使用している噴射粒体(平均粒径45μm),非特許文献3で紹介したショットピーニングで使用している噴射粒体(粒径50〜800μm)に比較して,本願の表面処理方法ではメディアン径(d50)で1〜20μmと更に微小な噴射粒体を使用していることから,噴射粒体との衝突によって鉄鋼成品の表面で生じる温度上昇も,より一層局部的かつ瞬間的なものとなっていると考えることができる。
その結果,炭化物は基地中に溶け込む前に冷却されることで,本願の表面処理方法ではショットピーニングによるナノ結晶化の特徴と考えられている炭化物の消失が生じずに,炭化物が残存したものと考えることができる。
また,温度上昇がより局部的であることから,個々の炭化物の粒子単位においても,その中に基地と固溶している部分,固溶途中の部分,未固溶の部分が混在することで,再析出の時期がそれぞれの部分で相違することで,より微細な二次炭化物が再析出され,微細な二次炭化物の数が増加したものと考えられる。
〔耐摩耗試験〕
(1)試験の目的
本発明の表面処理方法を実施した鉄鋼成品の耐摩耗性が向上していることを確認する。
(2)試験方法
未処理のSKD11製試験片(HRC60)と,本発明の表面処理を行ったSKD11製試験片に対し,ボールオンディスク式摩擦摩耗試験機を用いて耐摩耗性の試験を行った。試験条件を表4に示す。
Figure 0006929535
摩擦摩耗試験後の試験片の表面に対する形状解析を行い,摩擦摩耗試験によって試験片の表面に生じた凹部の体積を算出し,これを摩耗量として評価した。
(3)試験結果
摩擦摩耗試験の結果を,下記の表5に示す。
Figure 0006929535
以上の結果から,本発明の表面処理方法を行うことで,50min-1の場合では4割近くも,200min-1場合でも3割近くの摩耗量が減少しており,耐摩耗性の大幅な向上が確認された。
(4)考察
炭化物の増加が耐摩耗性の向上に有効であることは公知であり,前述したように二次炭化物を増加させる効果のある本発明の表面処理を行った試験片では,二次炭化物の増加による耐摩耗性の向上が得られていると考えられる。
また,表面付近の結晶粒径をナノレベルにまで微細化した金属成品の耐摩耗性が得られるとの報告もされており,本発明の表面処理方法では,このようなナノ結晶化によっても耐摩耗性の向上が得られているものと考えられる。
しかも,本発明の方法で表面処理を行った試験片では,前述したようにボイド(空隙)の減少や消滅が生じたことも,耐摩耗性の向上に寄与しているものと考えられる。
すなわち,炭化物に生じていたボイド(空隙)が減少あるいは消失することで,このボイドを起点とした炭化物の脱落発生を抑制でき,脱落した炭化物が摩擦面に介在する異物となって表面を削り取るアブレーシブ摩耗の発生や,炭化物が脱落して生じた凹部を起点とした剥離の発生等の減少によっても,耐摩耗性の向上が得られたものと考えられ,これらの相乗効果によって前述したように大幅な耐摩耗性の向上が得られたものと考えられる。
〔耐久試験〕
(1)試験の目的
本発明の方法で表面処理を行うことで,鉄鋼成品の耐久性(疲労強度)が維持又は向上していることを確認する。
(2)試験方法
未処理のSKD11製プレス用ダイ(比較例)と,前掲の表1に示したと同一条件で表面処理を行ったSKD11製のプレス用ダイ(実施例)を使用して,SUS304材のU曲げ加工を行った。
耐久性の評価は,継続的に成形を行い,金型に傷が発生したときのショット数で評価した。
(3)試験結果
試験結果を,表6に示す。
Figure 0006929535
以上の結果から,本発明の表面処理方法で処理した金型では,大幅な耐久性の向上(80倍)が得られていることが確認された。
(4)考察
前述したように,炭化物の増加は,一般に,耐摩耗性を向上させる効果がある一方で,耐久性(疲労強度)を低下させるものであるにも拘わらず,本発明の方法で表面処理を行ったプレス用ダイでは,耐久性の大幅な向上が確認された。
このような効果は,ボイド(空隙)の減少や消失,及び,微細な二次炭化物の増加により得られたものと考えられる。
すなわち,前述したボイド(空隙)は,鉄鋼成品の最表面を起点とする亀裂の発生原因となることから,本発明の表面処理方法でボイド(空隙)が減少し消失したことが疲労破壊の抑制に貢献しているものと考えられる。
また,非特許文献4では,炭化物が疲労破壊の起点部となり,炭化物で発生したクラックが伝播して疲労クラックに進展するとしていると共に,起点炭化物のサイズが大きくなるにつれ疲労寿命の低下が生じることを報告しており,同様の報告は,非特許文献5にも「引張−圧縮疲労寿命は二次炭化物粒径が小さいほど長くなる」と記載されている。
よって,本発明の表面処理方法では,前述したボイド(空隙)の減少及び消滅に加え,微細な二次炭化物を増加させることができていることも鉄鋼成品の耐久性(疲労強度)が向上している原因の一つと考えられる。
また,本発明の方法で表面処理を行った鉄鋼成品では,結晶粒の微細化(ナノ結晶化)に伴う強度向上も耐久性を向上させている要因の1つであると考えられ,これらの効果が複合的に組み合わされることで,未処理の場合に比較して80倍という,極めて高い耐久性の向上が得られたものと考えられる。

Claims (2)

  1. Cr系炭化物を含有する鉄鋼成品の表面のうち,表面処理を行う領域である処理領域に対し,アルミナであってメディアン径d50が1〜20μmの略球状の噴射粒体を,0.5MPaの噴射圧力の圧縮気体と共に噴射して,前記処理領域に対するカバレージが100%となるようショットピーニングを行うことにより,前記鉄鋼成品の表面付近における二次炭化物の析出量を増加させ,及び,炭化物の破砕により生じたボイドを減少又は消滅させることを特徴とする鉄鋼成品の表面処理方法。
  2. 前記ショットピーニングにより,前記鉄鋼成品の表面付近における結晶粒をナノ結晶組織に微細化させることを特徴とする請求項1記載の鉄鋼成品の表面処理方法。
JP2017103827A 2017-05-25 2017-05-25 鉄鋼成品の表面処理方法 Active JP6929535B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103827A JP6929535B2 (ja) 2017-05-25 2017-05-25 鉄鋼成品の表面処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103827A JP6929535B2 (ja) 2017-05-25 2017-05-25 鉄鋼成品の表面処理方法

Publications (2)

Publication Number Publication Date
JP2018199843A JP2018199843A (ja) 2018-12-20
JP6929535B2 true JP6929535B2 (ja) 2021-09-01

Family

ID=64667260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103827A Active JP6929535B2 (ja) 2017-05-25 2017-05-25 鉄鋼成品の表面処理方法

Country Status (1)

Country Link
JP (1) JP6929535B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236077B2 (ja) * 2019-09-05 2023-03-09 株式会社サーフテクノロジー 医療機器用部品もしくは部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699264B2 (ja) * 2006-04-03 2011-06-08 三菱重工業株式会社 金属部材の製造方法及び構造部材
JP2007297651A (ja) * 2006-04-27 2007-11-15 Fuji Wpc:Kk 硬質金属表面における結晶粒微細化方法
JP6301694B2 (ja) * 2014-03-24 2018-03-28 株式会社神戸製鋼所 真空浸炭用鋼材及びその製造方法
US20180222089A1 (en) * 2015-08-11 2018-08-09 Fuji Manufacturing Co., Ltd. Surface treatment method for transparent resin forming mold, transparent resin forming mold, and transparent resin formed article
JP6556845B2 (ja) * 2015-08-11 2019-08-07 株式会社不二製作所 金型の表面処理方法及び前記方法で処理された金型

Also Published As

Publication number Publication date
JP2018199843A (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
JP5341971B2 (ja) 金属成品の瞬間熱処理法
JPH11347944A (ja) 金属成品の表面処理方法
Shim et al. Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition
TW201029776A (en) Steel material and a method for its manufacture
Sun et al. Effect of different heat-treatment temperatures on the laser cladded M3: 2 high-speed steel
CN1095421A (zh) 具优异的耐滚动疲劳损伤性的贝氏体系高强度钢轨的制造方法
JP2004292945A (ja) 転動部材およびその製造方法
Uematsu et al. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure
Wang et al. Tensile property of a hot work tool steel prepared by biomimetic coupled laser remelting process with different laser input energies
JP6929535B2 (ja) 鉄鋼成品の表面処理方法
Huth et al. Development of wear and corrosion resistant cold-work tool steels produced by diffusion alloying
Azis et al. Improving surface properties and wear behaviors of duplex stainless steel via pressure carburizing
Sharma et al. Tribological characteristics of friction stir processed graphite and tin/LM24 surface composites
Liu et al. Microstructure and wear behavior of laser-textured and micro-alloyed Co-based WC and TiC composite sintered-carbide coating
CN109487262B (zh) 一种FeNi基激光熔覆掺杂碳化钨/碳化铬复合强化抗高温耐磨涂层及其制备方法
Leiro Microstructure analysis of wear and fatigue in austempered high-Si steels
JP6765551B2 (ja) はだ焼鋼の鍛造熱処理品
JP6658772B2 (ja) 鋳鋼製投射材
JP2017066468A (ja) 軸受部品
Grabnar et al. The influence of Nb, Ta and Ti modification on hot-work tool-steel grain growth during austenitization
Michael The effects of tool texture on tool wear in friction stir welding of X-70 steel
JP3999727B2 (ja) 過共析鋼
JP2004124227A (ja) 金属製品の表面硬化方法
JP3508943B2 (ja) アルミ鍛造金型用鋼
JP4398831B2 (ja) チタンあるいはチタン合金からなる金属材料の表面処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210621

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6929535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250