JP6923069B2 - 燃料供給制御装置 - Google Patents

燃料供給制御装置 Download PDF

Info

Publication number
JP6923069B2
JP6923069B2 JP2020505109A JP2020505109A JP6923069B2 JP 6923069 B2 JP6923069 B2 JP 6923069B2 JP 2020505109 A JP2020505109 A JP 2020505109A JP 2020505109 A JP2020505109 A JP 2020505109A JP 6923069 B2 JP6923069 B2 JP 6923069B2
Authority
JP
Japan
Prior art keywords
fuel
fuel supply
pump
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020505109A
Other languages
English (en)
Other versions
JPWO2019172372A1 (ja
Inventor
直喜 関
直喜 関
山本 安彦
安彦 山本
亮宏 嶋村
亮宏 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2019172372A1 publication Critical patent/JPWO2019172372A1/ja
Application granted granted Critical
Publication of JP6923069B2 publication Critical patent/JP6923069B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/30Control of fuel supply characterised by variable fuel pump output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M2037/085Electric circuits therefor
    • F02M2037/087Controlling fuel pressure valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/50Control logic embodiments
    • F05D2270/52Control logic embodiments by electrical means, e.g. relays or switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本開示は、燃料供給制御装置に関する。本願は、2018年3月8日に日本に出願された日本国特願2018−042111号に基づき優先権を主張し、その内容をここに援用する。
燃料ポンプ(ギヤポンプ)の内部リーク量は、ギヤポンプの経年劣化とともに増加する。そのため、経年劣化する前と後でギヤポンプを同じ回転数で駆動している場合でも、経年劣化した後の燃料の吐出流量は、経年劣化する前の燃料の吐出流量と比較して低下する。下記特許文献1には、ギヤポンプの下流側にバルブ(加圧バルブ)を設け、当該加圧バルブでギヤポンプの吐出流量を計測することにより、ギヤポンプの経年変化に対してギヤポンプの回転数を補正して精度の高い燃料供給を実現する燃料供給システムが開示されている。また、下記特許文献2及び非特許文献1にも、燃料供給システムが開示されている。
日本国特開2012−117391号公報 米国特許7481102号公報
Seki, Naoki, Noriko Morioka, Oyori Hitoshi and Yasuhiko Yamamoto (2015)"DEVELOPMENT OF FUEL CONTROL SYSTEM FOR MORE ELECTRIC ENGINE,"GT2015-43213, Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 June 15 - 19, 2015, Montreal, Canada
ところで、上述した従来の燃料供給システムでは、加圧バルブの挙動にヒステリシスが存在するので、燃料ポンプの吐出流量の計測に関する再現性が乏しい。したがって、従来の燃料供給システムでは、燃料供給の精度が必ずしも十分ではない。
本開示は、上述した事情に鑑みてなされたものであり、燃料供給における精度を従来よりも向上させることを目的とするものである。
上記目的を達成するために、本開示では、燃料供給制御装置に係る第1の態様として、オリフィスと加圧バルブとの並列流路を燃料供給量の複合加圧バルブとして用い、差圧計で検出された複合加圧バルブの前後差圧に基づいて燃料供給ポンプを制御する燃料供給制御装置であって、燃料供給ポンプの回転数が所定のしきい値を下回る場合に、前後差圧及び前後差圧と燃料流量との相互関係から得られる第1燃料計測量に基づいて燃料供給ポンプを制御するように構成され、回転数が所定のしきい値を超える場合に、前記燃料供給ポンプの内部リーク面積を加味したポンプ容積効率とポンプ理論吐出容積とから得られる第2燃料計測量に基づいて燃料供給ポンプを制御するように構成されている燃料供給制御装置、という手段を採用する。
本開示では、燃料供給制御装置に係る第2の態様として、上記第1の態様において、第1燃料計測量及び第2燃料計測量を演算する流量演算部と、燃料供給ポンプの回転数を所定のしきい値と比較することにより切替信号を生成する切替ロジック回路と、切替信号に基づいて第1燃料計測量あるいは第2燃料計測量を択一的に選択する流量選択スイッチと、流量選択スイッチの出力と制御目標値との偏差を演算する減算器と、偏差に所定の制御演算処理を施すことにより燃料供給ポンプの操作量を生成する制御演算部とを備える燃料供給制御装置、という手段を採用する。
本開示では、燃料供給制御装置に係る第3の態様として、上記第1または第2の態様において、燃料供給ポンプの回転数が所定のしきい値を下回る状態において内部リーク面積を取得するように構成されている燃料供給制御装置、という手段を採用する。
本開示では、燃料供給制御装置に係る第4の態様として、上記第1〜第3のいずれかの態様において、内部リーク面積は、第1燃料計測量、回転数、ポンプ理論吐出容積、燃料供給ポンプの流入口における燃料温度、燃料供給ポンプの前後差圧、及び燃料供給ポンプの流量係数から得られる燃料供給制御装置、という手段を採用する。
本開示では、燃料供給制御装置に係る第5の態様として、上記第1〜第4のいずれかの態様において、ポンプ容積効率は、内部リーク面積、回転数、燃料供給ポンプの流入口における燃料温度、燃料供給ポンプの前後差圧、及び燃料供給ポンプの流量係数から得られる燃料供給制御装置、という手段を採用する。
本開示によれば、燃料ポンプから吐出される燃料の計測再現性を従来よりも向上させることができる。
本開示における燃料供給装置のシステム構成を示すブロック図である。 本開示の一実施形態に係る燃料供給制御装置の機能構成を示すブロック図である。 本開示の一実施形態における流量演算部の機能構成を示すブロック図である。 本開示の一実施形態の変形例における流量演算部の機能構成を示すブロック図である。 本開示の一実施形態の変形例に係る燃料供給装置のシステム構成を示すブロック図である。
以下、図面を参照して、本開示の一実施形態について説明する。最初に、図1を参照して本実施形態における燃料供給装置Fについて説明する。この燃料供給装置Fは、所定の燃料をガスタービンGに供給する装置であり、より詳しくは、ガスタービンGの燃焼器に備えられた複数の燃料ノズルZに所定量の燃料を供給する装置である。
なお、ガスタービンGは、飛行のための推力源として航空機に備えられる内燃機関であり、燃焼器で得られる燃焼排ガスを後方に噴射することによって推力を得るジェットエンジンである。すなわち、本実施形態における燃料供給装置Fは、航空機に備えられる装置である。
このような燃料供給装置Fは、図1に示すように、燃料タンク1から供給された燃料をガスタービンGに供給する装置であり、低圧ポンプ2、高圧ポンプ3、電気モータ4、温度計5、ポンプ差圧計6、加圧バルブ7、オリフィス8、バルブ差圧計9、及び燃料供給制御装置10を備える。
燃料タンク1は、所定量の燃料を貯留する容器であり、低圧ポンプ2に燃料を供給する。低圧ポンプ2は、燃料を上記燃料タンク1から汲み出して所定の圧力になるように昇圧して低圧燃料とし、その低圧燃料を高圧ポンプ3に向けて吐出する遠心ポンプ(非容積型ポンプ)である。なお、上記燃料タンク1は、機体燃料ポンプ(遠心ポンプ)を備えていてもよい。このような場合は、機体燃料ポンプから低圧ポンプ2に燃料が供給される。
高圧ポンプ3は、上記低圧ポンプ2から供給された低圧燃料を所定の圧力になるように昇圧して高圧燃料とし、その高圧燃料を複数の燃料ノズルZの各々に向けて吐出するギヤポンプ(容積型ポンプ)である。この高圧ポンプ3は、燃料供給装置FからガスタービンG(燃料ノズルZ)に供給する燃料の供給量(燃料供給量)を最終的に設定するものであり、本実施形態における燃料供給ポンプである。
電気モータ4は、低圧ポンプ2及び高圧ポンプ3を回転駆動する動力源である。この電気モータ4の出力軸(駆動軸)は、所定の連結機(図示略)を介して低圧ポンプ2の回転軸(従動軸)及び高圧ポンプ3の回転軸(従動軸)に軸結合されている。すなわち、電気モータ4の回転数(モータ回転数)と、低圧ポンプ2の回転数及び高圧ポンプ3の回転数との間には、一定の相関関係が成立する。
また、この電気モータ4は、自らの回転数であるモータ回転数を燃料供給制御装置8に出力する。本実施形態では、便宜上、上記モータ回転数を燃料供給ポンプの回転数Nとして取り扱う。なお、低圧ポンプ2と高圧ポンプ3とを軸結合させるのではなく、低圧ポンプ2及び高圧ポンプ3に対して個別に設けた電気モータによって低圧ポンプ2及び高圧ポンプ3を個別に回転駆動してもよい。すなわち、2台の電気モータを設けてもよい。
温度計5は、高圧ポンプ3に入流する低圧燃料の温度を燃料温度Tとして検出する温度検出器である。この温度計5は、上記燃料温度Tを燃料供給制御装置10に出力する。ポンプ差圧計6は、高圧ポンプ3の入口(上流側、流入口側)と出口(下流側、流出口側)との差圧、つまり低圧燃料の流入圧と高圧燃料の吐出圧との差圧を高圧ポンプ前後差圧ΔHPとして検出する差圧伝送器である。このポンプ差圧計6は、上記高圧ポンプ前後差圧ΔHPを燃料供給制御装置10に出力する。
加圧バルブ7は、高圧ポンプ3の吐出口と燃料ノズルZの流入口とを接続する燃料配管の途中部位に設けられている。加圧バルブ7は、高圧ポンプ3の吐出量が比較的低い場合に閉弁し、高圧ポンプ3の吐出量が所定値を超える場合に開弁する。オリフィス8は、このような加圧バルブ7と同様に、高圧ポンプ3の吐出口と燃料ノズルZの流入口とを接続する燃料配管の途中部位に設けられている。
これら加圧バルブ7及びオリフィス8は、図示するように、燃料配管を介して並列流路を形成している。すなわち、加圧バルブ7の流入口とオリフィス8の流入口は何れも、燃料配管を介して高圧ポンプ3の吐出口に接続され、加圧バルブ7の流出口とオリフィス8の流出口は何れも、燃料配管を介して燃料ノズルZの流入口に接続されている。このような加圧バルブ7及びオリフィス8は、高圧ポンプ3から燃料ノズルZに供給される高圧燃料の流量(燃料供給量)を検出する複合加圧バルブを構成している。
バルブ差圧計9は、加圧バルブ7及びオリフィス8の上流側(流入口側)と下流側(流出口側)との差圧をバルブ前後差圧ΔPとして検出する差圧伝送器である。このバルブ前後差圧ΔPは、燃料流量、つまりモータ回転数に応じて変化する圧力量、つまり燃料流量に対応する物理量である。このバルブ差圧計9は、バルブ前後差圧ΔPを燃料供給制御装置10に出力する。
燃料供給制御装置10は、上述した燃料温度T、回転数N、高圧ポンプ前後差圧ΔHP、及びバルブ前後差圧ΔP、並びに上位制御系から入力される制御目標値Rとに基づいて電気モータ4を制御することにより、燃料供給装置FからガスタービンG(燃料ノズルZ)に供給される高圧燃料の流量を制御する。この燃料供給制御装置10は、所定の制御プログラムを所定のハードウエアで実行することにより電気モータ4の操作量を生成するソフトウエア制御装置である。なお、上記所定のハードウエアは、制御プログラム等を記憶する記憶装置(Random Access Memory、Read Only Memory、Hard Disk Driveなど)、制御プログラムを直接実行するCPU(Central Processing Unit)、CPUと電気モータ4との間及びCPUと各種検出器(温度計5、ポンプ差圧計6及びバルブ差圧計9)との間に介在して各種信号の授受を行うインタフェース回路、等である。
このような燃料供給制御装置10は、制御プログラム(ソフトウエア)とハードウエアとの協働によって実現される機能構成要素として、図2に示す流量演算部10a、流量選択スイッチ10b、切替ロジック回路10c、減算器10d、及び制御演算部10eを備えている。
流量演算部10aは、上述した燃料温度T、回転数N、高圧ポンプ前後差圧ΔHP、及びバルブ前後差圧ΔPに基づいて、ガスタービンGの始動時における高圧燃料の流量(第1燃料計測量Q1)と、ガスタービンGの始動時以外の時期における高圧燃料の流量(第2燃料計測量Q2)とを演算する。すなわち、この流量演算部10aは、予め記憶された所定の流量計測プログラムに基づいて4つの計測量(燃料温度T、回転数N、高圧ポンプ前後差圧ΔHP、及びバルブ前後差圧ΔP)に情報処理を施すことにより、第1燃料計測量Q1及び第2燃料計測量Q2を推定演算する演算装置である。流量演算部10aは、第1燃料計測量Q1及び第2燃料計測量Q2を流量選択スイッチ10bに出力する。
流量選択スイッチ10bは、切替ロジック回路10cから入力される切替信号Cに基づいて第1燃料計測量Q1あるいは第2燃料計測量Q2のいずれか一方を択一的に選択する。この流量選択スイッチ10bは、自らが選択した燃料流量(第1燃料計測量Q1あるいは第2燃料計測量Q2)を減算器10dに出力する。なお、第1燃料計測量Q1と第2燃料計測量Q2との切替時に生じる急激な流量変化を抑制するために、第1燃料計測量Q1と第2燃料計測量Q2との平均値を経由させて両者を切り替えたり、あるいは第1燃料計測量Q1と第2燃料計測量Q2を傾斜補間して滑らかな流量変化となるように両者を切り替えてもよい。
切替ロジック回路10cは、上述した回転数Nに基づいて切替信号Cを生成するロジック回路である。すなわち、この切替ロジック回路10cは、回転数Nが所定の切替しきい値以下である場合に、第1燃料計測量Q1を流量選択スイッチ10bに選択させる切替信号Cを生成し、回転数Nが上記所定の切替しきい値を超える場合に、第1燃料計測量Q1に代えて第2燃料計測量Q2を流量選択スイッチ10bに選択させる切替信号Cを生成する。
減算器10dは、FADEC(Full Authority Digital Engine Control)から入力された制御目標値R(燃料流量の制御目標値)に対する流量選択スイッチ10bの出力の偏差(燃料流量偏差)を演算し、当該燃料流量偏差を制御演算部10eに出力する。
制御演算部10eは、減算器10dから入力される燃料流量偏差に所定の制御演算処理(PID演算処理)を施すことにより電気モータ4の操作量を生成する。ここで、高圧ポンプ3は電気モータ4によって回転駆動されるので、制御演算部10eが生成する操作量は、電気モータ4の操作量であると共に高圧ポンプ3の操作量でもある。
ここで、上述した流量演算部10aの詳細な構成について、図3を参照して説明する。この流量演算部10aは、図示するように差圧/流量変換テーブル10f、燃料密度演算部10g、リーク面積演算部10h、容積効率演算部10i、及び乗算器10jを備えている。
差圧/流量変換テーブル10fは、バルブ前後差圧ΔPと燃料流量Qとの相互関係を示す制御テーブルである。この差圧/流量変換テーブル10fは、複合加圧バルブの特性として予め取得されて燃料供給制御装置8の内部記憶装置に記憶されている。このような差圧/流量変換テーブル10fは、バルブ差圧計9から入力されるバルブ前後差圧ΔPに対応する燃料流量Qを、リーク面積演算部10hに出力すると共に第1燃料計測量Q1として流量選択スイッチ10bに出力する。
燃料密度演算部10gは、温度計5から入力される燃料温度Tに基づいて燃料の密度(燃料密度ρ)を取得する。すなわち、この燃料密度演算部10gは、燃料について予め得られた演算式、つまり燃料密度ρと燃料温度Tとの関係式に基づいて燃料密度ρを演算する。そして、燃料密度演算部10gは、この燃料密度ρをリーク面積演算部10h及び容積効率演算部10iに出力する。
リーク面積演算部10hは、上述した燃料流量Q(第1燃料計測量Q1)、及び燃料密度ρ、高圧ポンプ3に関する回転数N、ポンプ理論吐出容積Vth、高圧ポンプ前後差圧ΔHP、及び流量係数Cdに基づいて、高圧ポンプ3の内部リーク面積Aleakを取得する。すなわち、このリーク面積演算部10hは、内部記憶装置に予め記憶された下式(1)に、上述した燃料流量Q(第1燃料計測量Q1)、燃料密度ρ、回転数N、ポンプ理論吐出容積Vth、高圧ポンプ前後差圧ΔHP、及び流量係数Cdを代入することにより内部リーク面積Aleakを演算する。そして、リーク面積演算部10hは、この内部リーク面積Aleakを容積効率演算部10iに出力する。
Figure 0006923069
容積効率演算部10iは、このように演算された内部リーク面積Aleakと、上述した燃料密度ρ、回転数N、ポンプ理論吐出容積Vth、高圧ポンプ前後差圧ΔHP、及び流量係数Cdとに基づいて、高圧ポンプ3の容積効率ηv(ポンプ容積効率)を取得する。すなわち、この容積効率演算部10iは、内部記憶装置に予め記憶された下式(2)に、上述した内部リーク面積Aleak、燃料密度ρ、回転数N、高圧ポンプ前後差圧ΔHP、及び流量係数Cdを代入することにより容積効率ηvを演算する。そして、容積効率演算部10iは、この容積効率ηvを乗算器10jに出力する。
Figure 0006923069
乗算器10jは、このように演算された容積効率ηvと、上述したポンプ理論吐出容積Vth、及び回転数Nを乗算することにより第2燃料計測量Q2を取得する。そして、乗算器10jは、この第2燃料計測量Q2を流量選択スイッチ10bに出力する。
続いて、本実施形態に係る燃料供給制御装置10の動作について詳しく説明する。この燃料供給制御装置10は、基本的な動作として、燃料供給量が制御目標値Rと等しくなるように操作量を生成して高圧ポンプ3(燃料供給ポンプ)に出力することにより、当該高圧ポンプ3をフィードバック制御する。すなわち、燃料供給制御装置10は、減算器10dによって演算される燃料偏差が「ゼロ」となるように制御演算部10eに操作量を生成させる。
ここで、この燃料供給制御装置10では、選択スイッチ10bで選択された第1燃料計測量Q1あるいは第2燃料計測量Q2が、制御量として減算器10dに入力される。また、この選択スイッチ10bにおける制御量の選択は、切替信号Cに基づいて行われる。そして、この切替信号Cは、高圧ポンプ3の回転数Nが所定の切替しきい値を下回る場合に第1燃料計測量Q1を選択スイッチ8fに選択させ、高圧ポンプ3の回転数Nが上記所定の切替しきい値を超える場合に第1燃料計測量Q1に代えて第2燃料計測量Q2を選択スイッチ8fに選択させる。
すなわち、高圧ポンプ3の回転数Nが所定の切替しきい値を下回る場合、例えば加圧バルブ5が閉弁している状態のように燃料供給量が比較的小さな低流量領域(低流量状態)では、バルブ差圧計9で検出されたバルブ前後差圧ΔPと差圧/流量変換テーブル10fとによって生成された第1燃料計測量Q1(制御量)に基づいて、高圧ポンプ3の回転がフィードバック制御される。すなわち、例えばガスタービンGの始動時における燃料供給量の状態のような低流量領域では、第1燃料計測量Q1を制御量として用いることにより、高圧ポンプ3がフィードバック制御される。
これに対して、高圧ポンプ3の回転数Nが所定の切替しきい値を超える場合、例えば加圧バルブ5が開弁する直前の状態から開弁した状態のように燃料供給量が比較的大きな高流量領域(高流量状態)では、高圧ポンプ3の内部リーク面積Aleakを加味して生成された第2燃料計測量Q2(制御量)に基づいて、高圧ポンプ3の回転がフィードバック制御される。すなわち、例えばガスタービンGの始動時以外の時期における燃料供給量の状態のような高流量域では、第2燃料計測量Q2を制御量として用いることにより、高圧ポンプ3がフィードバック制御される。
ここで、上記内部リーク面積Aleakは、高圧ポンプ3の回転数Nが所定の切替しきい値を下回る状態において取得される。すなわち、リーク面積演算部10hは、高圧ポンプ3の内部リーク量が高圧ポンプ3の吐出量に占める割合が大きい状態つまり低流量領域のタイミングで、内部リーク面積Aleakを演算する。したがって、この内部リーク面積Aleakは、高流量領域のタイミングで取得される内部リーク面積Aleakと比較して高い精度で演算される。
このような本実施形態によれば、加圧バルブ5が閉弁している状態のような低流量領域では、第1燃料計測量Q1を制御量として高圧ポンプ3をフィードバック制御し、加圧バルブ5が開弁した後の開弁している状態のような高流量域では、高圧ポンプ3の内部リーク面積Aleakを加味して生成された第2燃料計測量Q2を制御量として高圧ポンプ3をフィードバック制御する。これにより、加圧バルブ5のヒステリシスの影響を軽減することが可能である。したがって、本実施形態によれば、燃料供給装置FからガスタービンGへの燃料供給の精度を従来よりも向上させることができる。
また、本実施形態によれば、高圧ポンプ3の回転数Nが所定の切替しきい値を下回る状態において取得した内部リーク面積Aleakを加味して第2燃料計測量Q2を生成する。これによっても、高流量域における燃料供給の精度をさらに向上させることができる。
また、本実施形態によれば、燃料流量Q(第1燃料計測量Q1)、燃料密度ρ、回転数N、ポンプ理論吐出容積Vth、高圧ポンプ前後差圧ΔHP、及び流量係数Cdに基づいて、内部リーク面積Aleakを取得する。これにより、高精度な内部リーク面積Aleakを取得することができる。したがって、本実施形態によれば、これによっても、高流量域における燃料供給の精度をさらに向上させることができる。
さらに、本実施形態によれば、内部リーク面積Aleak、燃料密度ρ、回転数N、高圧ポンプ前後差圧ΔHP、及び流量係数Cdに基づいて、高圧ポンプ3の容積効率ηvを取得する。これにより、高精度な容積効率ηvを取得することができる。したがって、本実施形態によれば、これによっても、高流量域における燃料供給の精度をさらに向上させることができる。
なお、本開示は上記実施形態に限定されるものではなく、例えば、以下に示すような変形例が考えられる。
(1)上記実施形態では、流量演算部10aを図3に示したように構成したが、図3の構成はあくまで一例であり、本開示はこれに限定されない。例えば、図4に示す流量演算部10a’を流量演算部10aに代えて採用してもよい。
すなわち、流量演算部10a’は、上述した差圧/流量変換テーブル10f、燃料密度演算部10g、リーク面積演算部10h、容積効率演算部10i、及び乗算器10jに加えて、第1の高圧ポンプ差圧演算部10k、回転数/流量変換テーブル10m、及び第2の高圧ポンプ差圧演算部10nを備えている。
第1の高圧ポンプ差圧演算部10kは、差圧/流量変換テーブル10fから入力される燃料流量Q、別途入力される、バルブ前後差圧ΔP、低圧ポンプ入口圧Pin、回転数N、燃焼器圧力Pb、及び燃焼ノズル差圧ΔPnに基づいて、高圧ポンプ前後差圧ΔHP’を演算する。すなわち、第1の高圧ポンプ差圧演算部10kは、燃料流量Qと回転数Nとに基づいて低圧ポンプ2の昇圧量(低圧ポンプ昇圧S)を演算し、この低圧ポンプ昇圧S、バルブ前後差圧ΔP、低圧ポンプ入口圧Pin、燃焼器圧力Pb及び燃焼ノズル差圧ΔPnに基づく下式(3)に基づいて高圧ポンプ前後差圧ΔHP’を演算する。
ΔHP’={Pb−ΔPn−ΔP−(Pin+S)}・・・(3)
なお、燃焼器圧力Pbについては、FADEC(燃料供給制御装置の外部に設けられている制御装置)から取得し、低圧ポンプ入口圧Pinについては、燃料供給装置に別途設けた圧力計から取得する。また、燃焼ノズル差圧ΔPnについては、事前の試験結果等に基づいて燃料流量Qとの関係を示す制御テーブルを作成し、燃料供給制御装置に予め記憶させておく。このような第1の高圧ポンプ差圧演算部10kは、高圧ポンプ前後差圧ΔHP’をリーク面積演算部10hに出力する。
回転数/流量変換テーブル10mは、高圧ポンプ3の回転数Nと燃料流量Qとの相互関係を示す制御テーブルである。この回転数/流量変換テーブル10mは、高圧ポンプ3の特性として予め取得されて内部記憶装置に記憶されている。このような回転数/流量変換テーブル10mは、電気モータ4から入力される回転数Nに対応する燃料流量Qを第2の高圧ポンプ差圧演算部10nに出力する。
第2の高圧ポンプ差圧演算部10nは、回転数/流量変換テーブル10mから入力される燃料流量Q、別途入力される、バルブ前後差圧ΔP、低圧ポンプ入口圧Pin、回転数N、燃焼器圧力Pb及び燃焼ノズル差圧ΔPnに基づいて、高圧ポンプ前後差圧ΔHP”を演算する。すなわち、第2の高圧ポンプ差圧演算部10nは、燃料流量Qと回転数Nとに基づいて低圧ポンプ2の昇圧量(低圧ポンプ昇圧S)を演算し、この低圧ポンプ昇圧S、バルブ前後差圧ΔP、低圧ポンプ入口圧Pin、燃焼器圧力Pb、及び燃焼ノズル差圧ΔPnに基づく下式(4)に基づいて高圧ポンプ前後差圧ΔHP”を演算する。このような第2の高圧ポンプ差圧演算部10nは、この高圧ポンプ前後差圧ΔHP”を容積効率演算部10iに出力する。
ΔHP”={Pb−ΔPn−ΔP−(Pin+S)}・・・(4)
すなわち、この変形例における流量演算部10a’は、計測値としてのバルブ前後差圧ΔP及び回転数Nに基づいて、内部リーク面積Aleakの演算に必要な高圧ポンプ前後差圧ΔHP’と、容積効率ηvの演算に必要な高圧ポンプ前後差圧ΔHP”とを個別に取得する。このような流量演算部10a’を採用することにより、ポンプ差圧計6を不要とすることができると共に、より精度の高い内部リーク面積Aleak及び容積効率ηvを取得することができる。
(2)上記実施形態では、図1に示したように加圧バルブ7及びオリフィス8からなる複合加圧バルブからガスタービンGに燃料を直接供給したが、本開示はこれに限定されない。例えば、図5に示すように最低圧加圧弁11を介して複合加圧バルブからガスタービンGに燃料を供給する燃料供給装置F1を採用してもよい。
この最低圧加圧弁11は、低流量領域において機体燃料ポンプの出口圧の変動に応じて加圧バルブの出口圧を調整し、高圧ポンプ3から見て機体燃料ポンプの出口圧が一定になったように振る舞う。なお、このような最低圧加圧弁11を設ける場合には、機体燃料ポンプの出口圧の入力は不要となるが、最低圧加圧弁11の設計によって定まる補正計算を第1の高圧ポンプ差圧演算部10kで燃料流量Q(第1燃料計測量Q1)に基づいて行う必要がある。
(3)高圧ポンプ3の特性は摩耗等により変化するので、出荷試験等に基づいて燃料供給制御装置に予め記憶させた特性(容積効率ηv)は、経時変化する。このような容積効率ηvの経時変化を考慮すると、回転数/流量変換テーブル10mの制御テーブルを順次更新することが考えられる。または、容積効率演算部10iと同様の演算部を回転数/流量変換テーブル10mに代えて設け、高圧ポンプ前後差圧ΔHP”として制御器の前回値を用いることが考えられる。この場合、前回値は、制御器の制御周期が例えば1msの場合であれば、1ms前(過去)の値である。さらには、回転数/流量変換テーブル10mを用いることなく、燃料流量Q(第2燃料計測量Q2)の前回値を保持しておいて第2の高圧ポンプ差圧演算部10nに出力することが考えられる。
(4)ガスタービンG(エンジン)の運転中に高圧ポンプ3(燃料供給ポンプ)の回転数Nが所定のしきい値を何度か超える場合がある。その度に第1燃料計測量Q1と第2燃料計測量Q2とを切り替えると、両者の切替時に燃料制御が不安定になる可能性がある。このような可能性を考慮すると、ガスタービンG(エンジン)の始動時において、高圧ポンプ3(燃料供給ポンプ)の回転数Nが所定のしきい値を上回るまでは第1燃料計測量Q1を用い、高圧ポンプ3の回転数Nが所定のしきい値を一度上回った後は、ガスタービンGが停止するまで第2燃料計測量Q2を用いることが考えられる。
(5)高圧ポンプ3(燃料供給ポンプ)の回転数Nと燃料流量との関係は、高圧ポンプ3が摩耗して劣化してくると、同じ回転数Nでも燃料流量が減ってくる。よって、高圧ポンプ3の回転数Nを所定のしきい値と比較すると、第1燃料計測量Q1と第2燃料計測量Q2との切替時におけるガスタービンGの動作状態が一定でなくなる可能性がある。ガスタービンGの動作状態が安定して制御されることに主眼を置いた場合、第1燃料計測量Q1と第2燃料計測量Q2との切替は一定のエンジン状態でのみ発生する方が、ガスタービンGの動作状態の制御が不安定になることを防止し易い。
すなわち、ガスタービンGの状態量(例えば、エンジン回転数、燃焼器圧力、及びそれらの計測値から演算して求められる合成値)を用い、高圧ポンプ3の回転数Nが所定のしきい値を上回るまでは第1燃料計測量Q1を用い、高圧ポンプ3の回転数が所定のしきい値を一度上回った後は、ガスタービンGが停止するまで第2燃料計測量Q2を用いることが考えられる。
(6)上記実施形態では、燃料密度演算部10gを採用することにより、燃料密度ρと燃料温度Tとの関係式に基づいて燃料密度ρを演算したが、本開示はこれに限定されない。例えば、燃料密度ρと燃料温度Tとの相互関係を予め取得して、このような相互関係を示す制御テーブル(温度/密度変換テーブル)を用いて燃料密度ρを取得してもよい。
本開示によれば、燃料ポンプから吐出される燃料の計測再現性を従来よりも向上させることができる。
F、F1 燃料供給装置
1 燃料タンク
2 低圧ポンプ
3 高圧ポンプ
4 電気モータ
5 温度計
6 ポンプ差圧計
7 加圧バルブ
8 オリフィス
9 バルブ差圧計
10 燃料供給制御装置
10a 流量演算部
10b 流量選択スイッチ
10c 切替ロジック回路
10d 減算器
10e 制御演算部
10f 差圧/流量変換テーブル
10g 燃料密度演算部
10h リーク面積演算部
10i 容積効率演算部
10j 乗算器
10k 差圧/流量変換テーブル
10m 差圧/流量変換テーブル
10n 差圧/流量変換テーブル
11 最低圧加圧弁

Claims (4)

  1. オリフィスと加圧バルブとの並列流路を燃料供給量の複合加圧バルブとして用い、差圧計で検出された前記複合加圧バルブの前後差圧に基づいて燃料供給ポンプを制御する燃料供給制御装置であって、
    前記燃料供給ポンプの回転数が所定のしきい値を下回る場合に、前記前後差圧及び前記前後差圧と燃料流量との相互関係から得られる第1燃料計測量に基づいて前記燃料供給ポンプを制御するように構成され、
    前記回転数が前記所定のしきい値を超える場合に、前記燃料供給ポンプの内部リーク面積を加味したポンプ容積効率とポンプ理論吐出容積とから得られる第2燃料計測量に基づいて前記燃料供給ポンプを制御するように構成され
    前記第1燃料計測量及び前記第2燃料計測量を演算する流量演算部と、
    前記燃料供給ポンプの前記回転数を前記所定のしきい値と比較することにより切替信号を生成する切替ロジック回路と、
    前記切替信号に基づいて前記第1燃料計測量あるいは前記第2燃料計測量を択一的に選択する流量選択スイッチと、
    前記流量選択スイッチの出力と制御目標値との偏差を演算する減算器と、
    前記偏差に所定の制御演算処理を施すことにより前記燃料供給ポンプの操作量を生成する制御演算部と、
    を備える燃料供給制御装置。
  2. 前記燃料供給ポンプの前記回転数が前記所定のしきい値を下回る状態において前記内部リーク面積を取得するように構成されている、請求項1に記載の燃料供給制御装置。
  3. 前記内部リーク面積は、前記第1燃料計測量、前記回転数、前記ポンプ理論吐出容積、前記燃料供給ポンプの流入口における燃料温度、前記燃料供給ポンプの前記前後差圧、及び前記燃料供給ポンプの流量係数から得られる、請求項1または2に記載の燃料供給制御装置。
  4. 前記ポンプ容積効率は、前記内部リーク面積、前記回転数、前記燃料供給ポンプの流入口における燃料温度、前記燃料供給ポンプの前記前後差圧、及び前記燃料供給ポンプの前記流量係数から得られる、請求項3に記載の燃料供給制御装置。
JP2020505109A 2018-03-08 2019-03-07 燃料供給制御装置 Active JP6923069B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018042111 2018-03-08
JP2018042111 2018-03-08
PCT/JP2019/009076 WO2019172372A1 (ja) 2018-03-08 2019-03-07 燃料供給制御装置

Publications (2)

Publication Number Publication Date
JPWO2019172372A1 JPWO2019172372A1 (ja) 2020-10-22
JP6923069B2 true JP6923069B2 (ja) 2021-08-18

Family

ID=67846659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020505109A Active JP6923069B2 (ja) 2018-03-08 2019-03-07 燃料供給制御装置

Country Status (5)

Country Link
US (1) US11365683B2 (ja)
EP (1) EP3763927B1 (ja)
JP (1) JP6923069B2 (ja)
CA (1) CA3093114C (ja)
WO (1) WO2019172372A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3845761A4 (en) * 2018-08-31 2022-06-01 IHI Corporation LIQUID SUPPLY SYSTEM
US11391221B2 (en) * 2020-12-16 2022-07-19 Hamilton Sundstrand Corporation Mass flow metering method and system
CN114718737B (zh) * 2022-04-11 2023-09-05 中国航发控制系统研究所 一种电动燃油泵的流量开环控制方法
WO2024023881A1 (ja) * 2022-07-25 2024-02-01 株式会社Ihi 航空機用ガスタービンエンジンの燃料供給システム及び燃料供給方法
US20240077037A1 (en) * 2022-09-06 2024-03-07 Woodward, Inc. Fuel system with reduced bypass flow

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248194A (en) * 1979-08-23 1981-02-03 Trw Inc. Method and apparatus for controlling the operation of a pump
US5020315A (en) * 1989-08-08 1991-06-04 United Technologies Corporation Multiple function fuel valve and system
US5685268A (en) * 1996-05-20 1997-11-11 Siemens Automotive Corporation Fuel leakage detector system
US6182438B1 (en) * 1999-07-08 2001-02-06 Moog Inc. Method and apparatus for starting a gas turbine engine
GB0007583D0 (en) * 2000-03-30 2000-05-17 Lucas Industries Ltd Method and apparatus for determining the extent of wear of a fuel pump forming part of a fuelling system
GB0206222D0 (en) * 2002-03-15 2002-05-01 Lucas Industries Ltd Control system
US6981359B2 (en) * 2003-06-16 2006-01-03 Woodward Governor Company Centrifugal pump fuel system and method for gas turbine engine
GB0522991D0 (en) 2005-11-11 2005-12-21 Goodrich Control Sys Ltd Fuel system
US7762080B2 (en) * 2006-11-16 2010-07-27 Honeywell International Inc. Fuel metering pump calibration method
JP5664176B2 (ja) 2010-11-29 2015-02-04 株式会社Ihi 燃料供給システム
JP2013231406A (ja) * 2012-05-01 2013-11-14 Ihi Corp ガスタービンエンジンの燃料供給装置
JP6131785B2 (ja) * 2013-08-30 2017-05-24 株式会社Ihi 航空機エンジンの燃料供給装置
GB201400153D0 (en) * 2014-01-06 2014-02-19 Rolls Royce Controls & Data Services Ltd Enfine fuel control system
US10260425B2 (en) * 2016-05-05 2019-04-16 United Technologies Corporation Leak detection, isolation and accommodation assembly for gas turbine engines
JP2018042111A (ja) 2016-09-07 2018-03-15 Necプラットフォームズ株式会社 端末、通信システム、方法及びプログラム
JP6496366B2 (ja) * 2017-08-10 2019-04-03 本田技研工業株式会社 油圧制御装置
WO2019097894A1 (ja) * 2017-11-16 2019-05-23 株式会社Ihi 燃料供給制御装置

Also Published As

Publication number Publication date
EP3763927B1 (en) 2024-03-13
JPWO2019172372A1 (ja) 2020-10-22
CA3093114C (en) 2022-12-13
US20200400074A1 (en) 2020-12-24
WO2019172372A1 (ja) 2019-09-12
US11365683B2 (en) 2022-06-21
CA3093114A1 (en) 2019-09-12
EP3763927A4 (en) 2021-11-17
EP3763927A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6923069B2 (ja) 燃料供給制御装置
US7762080B2 (en) Fuel metering pump calibration method
US8555653B2 (en) Method for starting a turbomachine
JP3949014B2 (ja) ガスタービン装置
JP2011043136A (ja) ガスタービン・エンジンの始動時燃料制御装置
US10961911B2 (en) Injection cooled cooling air system for a gas turbine engine
WO2020162076A1 (ja) 燃料供給制御装置
JPS592773B2 (ja) 燃料供給制御装置
JP6835249B2 (ja) 燃料供給制御装置
CN111757979B (zh) 控制器和方法
KR960003682B1 (ko) 덕트압력 손실보상기능을 갖는 가속제어장치
RU2754621C1 (ru) Способ управления газовой турбиной, контроллер для газовой турбины, газовая турбина и машиночитаемый носитель данных
CN114837855B (zh) 一种泵压式液体火箭发动机涡轮性能标定系统及方法
JP6436420B2 (ja) 内燃機関の制御方法、及び内燃機関
WO2024034367A1 (ja) 吸気加熱システム、吸気加熱システムの運転方法、および、ガスタービンシステム
US20230417190A1 (en) Dual fuel pump system for an aircraft
Masuda et al. Modelling and Reducing Fuel Flow Pulsation of a Fuel-Metering System by Improving Response of the Pressure Control Valve During Pump Mode Switching in a Turbofan Engine
WO2024034366A1 (ja) 吸気加熱システム、吸気加熱システムの運転方法、および、ガスタービンシステム
JP2016205374A (ja) 航空機用ガスタービン・エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6923069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151