JP6922565B2 - Method for manufacturing resin-embedded sample and transmission electron microscope sample - Google Patents

Method for manufacturing resin-embedded sample and transmission electron microscope sample Download PDF

Info

Publication number
JP6922565B2
JP6922565B2 JP2017170269A JP2017170269A JP6922565B2 JP 6922565 B2 JP6922565 B2 JP 6922565B2 JP 2017170269 A JP2017170269 A JP 2017170269A JP 2017170269 A JP2017170269 A JP 2017170269A JP 6922565 B2 JP6922565 B2 JP 6922565B2
Authority
JP
Japan
Prior art keywords
resin
sample
powder sample
coating layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170269A
Other languages
Japanese (ja)
Other versions
JP2018136295A (en
Inventor
健寿 森本
健寿 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2018136295A publication Critical patent/JP2018136295A/en
Application granted granted Critical
Publication of JP6922565B2 publication Critical patent/JP6922565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、樹脂包埋試料およびその製造方法、並びに透過型電子顕微鏡用試料およびその製造方法に関する。 The present invention relates to a resin-embedded sample and a method for producing the same, and a sample for a transmission electron microscope and a method for producing the same.

粉末状の原材料(粉体材料)を用いて製造される製品が数多く知られており、例えば、塗料は顔料を、磁石は磁性体を、導電ペーストは導電体を、それぞれ用いて製造されている。これら製品の特性は、使用する粉体材料の特性、例えば粉体の形状、表面状態、組成および化学状態などの影響を受けることから、製品の特性を向上させるうえで粉体材料の特性についての評価・解析が重要となっている。 Many products manufactured using powdered raw materials (powder materials) are known. For example, paints are manufactured using pigments, magnets are manufactured using magnetic materials, and conductive pastes are manufactured using conductors. .. Since the characteristics of these products are affected by the characteristics of the powder material used, such as the shape, surface condition, composition and chemical condition of the powder, the characteristics of the powder material can be used to improve the characteristics of the product. Evaluation and analysis are important.

粉体材料の特性を評価・解析する手法の1つに透過型電子顕微鏡(Transmission Electron Microscope:TEM)がある。粉体材料を粉末試料としてTEMで解析する場合、粉末試料が飛散しないように固定・担持する必要がある。そこで、例えば、粉末試料を液状樹脂に混合し硬化させて樹脂包埋試料を作製する方法が採用される。樹脂包埋試料は、例えば収束イオンビーム(Forcused Ion Beam:FIB)装置を用いて薄片化されてTEMで分析される(例えば、特許文献1を参照)。 One of the methods for evaluating and analyzing the characteristics of powder materials is a transmission electron microscope (TEM). When a powder material is analyzed by TEM as a powder sample, it is necessary to fix and support the powder sample so as not to scatter. Therefore, for example, a method of mixing a powder sample with a liquid resin and curing it to prepare a resin-embedded sample is adopted. The resin-embedded sample is sliced using, for example, a focused ion beam (FIB) device and analyzed by TEM (see, for example, Patent Document 1).

特開2000−214056号公報Japanese Unexamined Patent Publication No. 2000-21405

ところで、TEMによる観察時に観察領域中に粉末試料が少なかったり存在しなかったりすると、観察自体が無駄となるばかりか、TEMに供するためにFIB装置で樹脂包埋試料からサンプリングすること自体も無駄となることがある。これらの無駄を極力低減するため、樹脂包埋試料には粉末試料の充填量を増やして数密度を高くすることが求められている。 By the way, if the powder sample is small or absent in the observation area during the observation by TEM, not only the observation itself is wasted, but also sampling from the resin-embedded sample by the FIB device for TEM is wasteful. May become. In order to reduce these wastes as much as possible, the resin-embedded sample is required to increase the filling amount of the powder sample to increase the number density.

しかしながら、数密度を高くすべく粉末試料の充填量を増やすと、粉末試料の増量にともなって液状樹脂の粘度が増加し、混合するための応力が高くなるため、混合治具や粉末試料同士の摩擦・衝突により粉末試料が破損などして変質してしまうことがある。 However, if the filling amount of the powder sample is increased in order to increase the number density, the viscosity of the liquid resin increases as the amount of the powder sample increases, and the stress for mixing increases. The powder sample may be damaged and deteriorated due to friction or collision.

一方、粉末試料の変質を抑制するために混合する力を弱めることが考えられるが、この場合、多量の粉末試料が凝集体を形成したまま、粉末粒子の界面に樹脂が行き渡らないことがある。こうなると、凝集体中に空隙が形成されることとなり、この空隙によってTEMで分析するときの分析精度が低下してしまうことがある。 On the other hand, it is conceivable to weaken the mixing force in order to suppress the deterioration of the powder sample, but in this case, the resin may not spread to the interface of the powder particles while a large amount of the powder sample forms an agglomerate. In this case, voids are formed in the aggregate, and the voids may reduce the analysis accuracy when analyzing by TEM.

本発明は、上記課題に鑑みてなされたものであり、樹脂包埋試料において粉末試料の数密度を高くしつつ、粉末試料の変質および凝集を抑制する技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for suppressing deterioration and aggregation of a powder sample while increasing the number density of the powder sample in a resin-embedded sample.

本発明者は、粉末試料を増量したときでも、その変質および凝集を抑制する方法について検討し、液状樹脂を塗布した塗布層上に粉末試料を散布し沈降させる方法に着目した。沈降によれば、粉末試料を添加して混合する場合のように外部応力を加えないので、粉末試料を変質させることがない。しかも、沈降過程で粉末試料同士の界面に液状樹脂を行き渡らせることで粉末試料と樹脂とを接触させて、粉末試料の凝集およびそれに伴う空隙の形成を抑制することができる。そして、沈降後に液状樹脂を硬化させることで、樹脂層の一方の面側に粉末試料が偏在する樹脂包埋試料が得られる。この樹脂層によれば、例えば、粉末試料が多く存在する領域からTEM用に薄片試料を作製することで、TEMでの観察効率を向上させることが可能となる。本発明はこれらの知見に基づいて成されたものである。 The present inventor investigated a method of suppressing deterioration and aggregation of the powder sample even when the amount of the powder sample was increased, and focused on a method of spraying the powder sample on a coating layer coated with a liquid resin and precipitating the powder sample. According to the sedimentation, no external stress is applied as in the case of adding and mixing the powder sample, so that the powder sample is not deteriorated. Moreover, by spreading the liquid resin at the interface between the powder samples in the settling process, the powder samples and the resin can be brought into contact with each other, and the aggregation of the powder samples and the formation of voids accompanying the contact can be suppressed. Then, by curing the liquid resin after sedimentation, a resin-embedded sample in which the powder sample is unevenly distributed on one surface side of the resin layer can be obtained. According to this resin layer, for example, by preparing a flaky sample for TEM from a region where a large amount of powder sample exists, it is possible to improve the observation efficiency in TEM. The present invention has been made based on these findings.

すなわち、本発明の第1の態様は、
液状樹脂を基板上に塗布し塗布層を形成する塗布工程と、
前記塗布層上に粉末試料を散布して前記塗布層中に沈降させる沈降工程と、
前記塗布層を硬化させて樹脂層を形成する硬化工程と、を有し、
前記粉末試料が、前記樹脂層の厚さ方向において、一方の面から他方の面に向かって数密度が増えるように偏在する、樹脂包埋試料を製造する、樹脂包埋試料の製造方法が提供される。
That is, the first aspect of the present invention is
The coating process of applying liquid resin on the substrate to form a coating layer,
A settling step in which a powder sample is sprayed on the coating layer and settled in the coating layer.
It has a curing step of curing the coating layer to form a resin layer.
Provided is a method for producing a resin-embedded sample, which produces a resin-embedded sample in which the powder sample is unevenly distributed so that the number density increases from one surface to the other surface in the thickness direction of the resin layer. Will be done.

本発明の第2の態様は、第1の態様の樹脂包埋試料の製造方法において、
前記液状樹脂が熱硬化性樹脂または光硬化性樹脂である。
A second aspect of the present invention is the method for producing a resin-embedded sample of the first aspect.
The liquid resin is a thermosetting resin or a photocurable resin.

本発明の第3の態様は、第1又は第2の態様の樹脂包埋試料の製造方法において、
前記液状樹脂が常温硬化性樹脂であって、
前記粉末試料を前記塗布層に沈降させつつ前記塗布層を硬化させて、前記沈降工程とともに前記硬化工程を行う。
A third aspect of the present invention is the method for producing a resin-embedded sample according to the first or second aspect.
The liquid resin is a room temperature curable resin,
The coating layer is cured while the powder sample is precipitated in the coating layer, and the curing step is performed together with the precipitation step.

本発明の第4の態様は、第1〜第3の態様のいずれかの樹脂包埋試料の製造方法において、
前記液状樹脂が常温硬化性のエポキシ樹脂である。
A fourth aspect of the present invention is the method for producing a resin-embedded sample according to any one of the first to third aspects.
The liquid resin is a room temperature curable epoxy resin.

本発明の第5の態様は、第1〜第4の態様のいずれかの樹脂包埋試料の製造方法において、
前記塗布工程の前に、前記基板における前記液状樹脂を塗布する面を粗化処理する粗化工程を有する。
A fifth aspect of the present invention is the method for producing a resin-embedded sample according to any one of the first to fourth aspects.
Prior to the coating step, there is a roughening step of roughening the surface of the substrate to which the liquid resin is to be coated.

本発明の第6の態様は、第1〜第5の態様のいずれかの樹脂包埋試料の製造方法において、
前記沈降工程では、前記粉末試料を散布した後に前記塗布層上に板状部材を載置し、前記粉末試料を前記塗布層中に押し込み沈降させる。
A sixth aspect of the present invention is the method for producing a resin-embedded sample according to any one of the first to fifth aspects.
In the settling step, after spraying the powder sample, a plate-shaped member is placed on the coating layer, and the powder sample is pushed into the coating layer to settle.

本発明の第7の態様は、第1〜第5の態様のいずれかの樹脂包埋試料の製造方法において、
前記沈降工程では、前記粉末試料に、基板方向への遠心力を作用させ、前記塗布層中に沈降させる。
A seventh aspect of the present invention is the method for producing a resin-embedded sample according to any one of the first to fifth aspects.
In the sedimentation step, a centrifugal force is applied to the powder sample in the direction of the substrate to cause the powder sample to settle in the coating layer.

本発明の第8の態様は、第1〜第5の態様のいずれかの樹脂包埋試料の製造方法において、
前記粉末試料が磁性粒子であり、
前記沈降工程では、前記粉末試料に、基板方向への磁力を作用させ、前記塗布層中に沈降させる。
An eighth aspect of the present invention is the method for producing a resin-embedded sample according to any one of the first to fifth aspects.
The powder sample is a magnetic particle,
In the settling step, a magnetic force is applied to the powder sample in the direction of the substrate to cause the powder sample to settle in the coating layer.

本発明の第9の態様は、第1〜第8の態様のいずれかの製造方法により得られる樹脂包埋試料における前記粉末試料が偏在して数密度が高い面側の領域から試料片を採取して薄片化する、透過型電子顕微鏡用試料の製造方法が提供される。 In the ninth aspect of the present invention, the sample piece is collected from the surface side region where the powder sample is unevenly distributed and the number density is high in the resin-embedded sample obtained by the production method according to any one of the first to eighth aspects. A method for producing a sample for a transmission electron microscope is provided.

本発明の第10の態様は、
液状樹脂を硬化させた硬化物から形成される樹脂層と、
前記樹脂層中に包埋される粉末試料と、を備え、
前記粉末試料が、前記樹脂層の厚さ方向において、一方の面から他方の面に向かって数密度が増えるように偏在している、樹脂包埋試料が提供される。
A tenth aspect of the present invention is
A resin layer formed from a cured product obtained by curing a liquid resin,
A powder sample embedded in the resin layer is provided.
A resin-embedded sample is provided in which the powder sample is unevenly distributed so that the number density increases from one surface to the other in the thickness direction of the resin layer.

本発明の第11の態様は、第10の態様の樹脂包埋試料における前記粉末試料が偏在して数密度が高い面側の領域から採取される、透過型電子顕微鏡用試料が提供される。 An eleventh aspect of the present invention provides a transmission electron microscope sample in which the powder sample in the resin-embedded sample of the tenth aspect is unevenly distributed and collected from a region on the surface side having a high number density.

本発明によれば、樹脂包埋試料において粉末試料の数密度を高くしつつ、粉末試料の変質および凝集を抑制することができる。 According to the present invention, it is possible to suppress alteration and aggregation of the powder sample while increasing the number density of the powder sample in the resin-embedded sample.

図1は、本発明の一実施形態にかかる透過型電子顕微鏡用試料の製造方法における製造工程図である。FIG. 1 is a manufacturing process diagram in a method for manufacturing a sample for a transmission electron microscope according to an embodiment of the present invention. 図2(a)は、基板の研磨を説明するための図であり、図2(b)は、(a)のA−A断面図である。FIG. 2A is a diagram for explaining polishing of the substrate, and FIG. 2B is a cross-sectional view taken along the line AA of FIG. 2A. 図3は、塗布層上に板状部材を載置したときを説明するための図である。FIG. 3 is a diagram for explaining the case where the plate-shaped member is placed on the coating layer.

<本発明の一実施形態>
以下、本発明の一実施形態について、樹脂包埋試料から透過型電子顕微鏡用試料を製造する場合を例として説明する。図1は、本発明の一実施形態にかかる透過型電子顕微鏡用試料の製造方法における製造工程図である。
<One Embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described as an example in which a sample for a transmission electron microscope is produced from a resin-embedded sample. FIG. 1 is a manufacturing process diagram in a method for manufacturing a sample for a transmission electron microscope according to an embodiment of the present invention.

本実施形態の透過型電子顕微鏡用試料(TEM用試料)の製造方法は、準備工程、粗化工程、塗布工程、沈降工程、硬化工程、剥離工程および加工工程を有する。以下、各工程について詳述する。 The method for producing a transmission type electron microscope sample (TEM sample) of the present embodiment includes a preparation step, a roughening step, a coating step, a settling step, a curing step, a peeling step, and a processing step. Hereinafter, each step will be described in detail.

(準備工程)
まず、粉末試料13を準備する。粉末試料13としては、例えば金属、金属化合物もしくは無機化合物を含む微粒子が挙げられる。粉末試料13の粒子径は例えば1μm〜10μm程度である。
(Preparation process)
First, the powder sample 13 is prepared. Examples of the powder sample 13 include fine particles containing a metal, a metal compound, or an inorganic compound. The particle size of the powder sample 13 is, for example, about 1 μm to 10 μm.

また、樹脂包埋試料10を作製するための作業板として基板11を準備する。基板11としては特に限定されないが、後述の粗化工程を施しやすい材質から形成されるとよく、またTEMなどの分析を阻害しないような材質から形成されるとよい。基板11としては樹脂フィルムが好ましく、例えばポリイミドフィルムを用いることができる。 In addition, the substrate 11 is prepared as a working plate for preparing the resin-embedded sample 10. The substrate 11 is not particularly limited, but may be formed of a material that is easily subjected to the roughening step described later, and may be formed of a material that does not interfere with analysis such as TEM. A resin film is preferable as the substrate 11, and for example, a polyimide film can be used.

(粗化工程)
続いて、塗布工程の前に予め、基板11における液状樹脂を塗布する面を粗化する。液状樹脂は表面張力が大きく基板11上に塗布したときに球状に丸まろうとするため、塗布層12の厚さが厚くなることがある。塗布層12が厚くなると、後述の沈降工程にて粉末試料13が沈降する距離が長くなり、粉末試料13を沈降させる時間が長くなるため、樹脂包埋試料10の生産性が低下するおそれがある。一方、粗化工程によれば、基板11の表面を傷つけて液状樹脂の表面張力を低減できるので、液状樹脂を薄く展延させることで塗布層12を薄く形成でき、樹脂包埋試料10の生産性を向上させることができる。なお、研磨材としては、サンドペーパなど公知のものを用いることができる。
(Roughening process)
Subsequently, before the coating step, the surface of the substrate 11 to which the liquid resin is applied is roughened in advance. Since the liquid resin has a large surface tension and tends to curl into a spherical shape when applied onto the substrate 11, the thickness of the coating layer 12 may increase. When the coating layer 12 becomes thick, the distance for the powder sample 13 to settle in the settling step described later becomes long, and the time for the powder sample 13 to settle becomes long, so that the productivity of the resin-embedded sample 10 may decrease. .. On the other hand, according to the roughening step, since the surface of the substrate 11 can be damaged and the surface tension of the liquid resin can be reduced, the coating layer 12 can be formed thinly by spreading the liquid resin thinly, and the resin-embedded sample 10 can be produced. The sex can be improved. As the abrasive, a known material such as sandpaper can be used.

(塗布工程)
続いて、基板11の粗化した表面(粗化面)に液状樹脂を塗布し塗布層12を形成する。本実施形態では、基板11の粗化面に液状樹脂を塗布することで塗布層12を薄く形成する。これにより、塗布層12の厚さを例えば100μm〜1000μmとすることができる。
(Applying process)
Subsequently, a liquid resin is applied to the roughened surface (roughened surface) of the substrate 11 to form the coating layer 12. In the present embodiment, the coating layer 12 is formed thin by applying a liquid resin to the roughened surface of the substrate 11. Thereby, the thickness of the coating layer 12 can be set to, for example, 100 μm to 1000 μm.

液状樹脂としては、粉末試料13を沈降させることができ、かつ沈降後に硬化可能なものであれば特に限定されない。例えば、熱硬化性樹脂または光硬化性樹脂を用いることができる。
熱硬化性樹脂としては、常温硬化性もしくは加熱硬化性いずれの樹脂でも使用することができるが、常温硬化性樹脂が好ましい。常温硬化性樹脂によれば、加熱の必要がなく、また後述の沈降工程にて粉末試料13を塗布層12に沈降させている間に塗布層12を徐々に硬化させることができるので、工程数を減らして製造を簡略化することができる。TEM用試料20を分析する際の取り扱いやすさと使用実績が多いことから、熱硬化性樹脂としては常温硬化性のエポキシ樹脂が好ましい。
光硬化性樹脂としては、アクリル樹脂やエポキシアクリレート樹脂などを用いることができる。
The liquid resin is not particularly limited as long as the powder sample 13 can be precipitated and can be cured after sedimentation. For example, a thermosetting resin or a photocurable resin can be used.
As the thermosetting resin, either a room temperature curable resin or a heat curable resin can be used, but a room temperature curable resin is preferable. According to the room temperature curable resin, heating is not required, and the coating layer 12 can be gradually cured while the powder sample 13 is precipitated in the coating layer 12 in the sedimentation step described later, so that the number of steps is large. Can be reduced to simplify manufacturing. A room temperature curable epoxy resin is preferable as the thermosetting resin because it is easy to handle when analyzing the TEM sample 20 and has been used in many cases.
As the photocurable resin, an acrylic resin, an epoxy acrylate resin, or the like can be used.

なお、液状樹脂の粘度は、高すぎると沈降工程にて粉末試料13を沈降させにくくなる一方、低すぎると低分子量成分の比率が増え、塗布層12(樹脂層14)を所定の厚みを維持して形成しにくくなるおそれがある。そのため、液状樹脂の粘度は、粉末試料13を沈降させやすく、かつ塗布層12(樹脂層14)を所定の厚さに維持して形成できるような範囲に調整するとよい。 If the viscosity of the liquid resin is too high, it becomes difficult to settle the powder sample 13 in the settling step, while if it is too low, the ratio of low molecular weight components increases, and the coating layer 12 (resin layer 14) maintains a predetermined thickness. It may be difficult to form. Therefore, the viscosity of the liquid resin may be adjusted within a range in which the powder sample 13 can be easily settled and the coating layer 12 (resin layer 14) can be maintained at a predetermined thickness.

(沈降工程)
続いて、図1(a)に示すように、液状樹脂からなる塗布層12の上に粉末試料13を散布する。本実施形態では、粉末試料13を散布した後、静置する。散布された粉末試料13は自重により塗布層12に沈降することになる。そのため、粉末試料13は外部応力によって変質することなく、かつ液状樹脂と接触して粉末試料13同士で凝集することがない。そして、図1(b)に示すように、粉末試料13は、所定時間の経過により塗布層12の基板11側に沈降することで、塗布層12の基板11側に向かって数密度が増えるように偏在することになる。なお、沈降させる時間は、液状樹脂の粘度や粉末試料13の密度によって異なるため、液状樹脂や粉末試料13の種類に応じて適宜変更するとよい。
(Settlement process)
Subsequently, as shown in FIG. 1A, the powder sample 13 is sprayed on the coating layer 12 made of a liquid resin. In the present embodiment, the powder sample 13 is sprayed and then allowed to stand. The sprayed powder sample 13 will settle in the coating layer 12 due to its own weight. Therefore, the powder sample 13 does not deteriorate due to external stress and does not come into contact with the liquid resin and aggregate with each other. Then, as shown in FIG. 1B, the powder sample 13 settles on the substrate 11 side of the coating layer 12 with the lapse of a predetermined time, so that the number density increases toward the substrate 11 side of the coating layer 12. Will be unevenly distributed in. Since the settling time varies depending on the viscosity of the liquid resin and the density of the powder sample 13, it may be appropriately changed according to the type of the liquid resin or the powder sample 13.

散布する粉末試料13の量(充填量)は、特に限定されない。本実施形態では粉末試料13を沈降させるため、従来の液状樹脂に粉末試料13を添加して混合する場合よりも充填量を増やすこともできる。 The amount (filling amount) of the powder sample 13 to be sprayed is not particularly limited. In this embodiment, since the powder sample 13 is precipitated, the filling amount can be increased as compared with the case where the powder sample 13 is added to the conventional liquid resin and mixed.

(硬化工程)
続いて、図1(b)に示すように、粉末試料13を沈降させた後、液状樹脂からなる塗布層12を硬化させて樹脂層14とする。樹脂層14は、液状樹脂の硬化物から形成されることになる。これにより粉末試料13は樹脂層14の基板11側に偏在した状態で固定・担持され、粉末試料13が樹脂層14に包埋されるとともに基板11側に向かって数密度が増えるように樹脂層14中に偏在する樹脂包埋試料10を形成する。
(Curing process)
Subsequently, as shown in FIG. 1 (b), after the powder sample 13 is settled, the coating layer 12 made of liquid resin is cured to form the resin layer 14. The resin layer 14 will be formed from a cured product of a liquid resin. As a result, the powder sample 13 is fixed and supported in a state of being unevenly distributed on the substrate 11 side of the resin layer 14, and the powder sample 13 is embedded in the resin layer 14 and the resin layer is increased in number density toward the substrate 11 side. A resin-embedded sample 10 unevenly distributed in 14 is formed.

硬化工程での硬化方法は、液状樹脂の種類に応じて適宜変更するとよい。液状樹脂が常温硬化性樹脂であれば、上述の沈降工程からそのままの状態で静置すればよく、加熱硬化性樹脂であれば粉末試料13の沈降後に所定の温度で加熱すればよい。また液状樹脂が光硬化性樹脂であれば、塗布層12に光を照射するとよい。 The curing method in the curing step may be appropriately changed according to the type of the liquid resin. If the liquid resin is a room temperature curable resin, it may be allowed to stand as it is from the above-mentioned sedimentation step, and if it is a thermosetting resin, it may be heated at a predetermined temperature after the powder sample 13 is precipitated. If the liquid resin is a photocurable resin, the coating layer 12 may be irradiated with light.

(剥離工程)
続いて、図1(c)に示すように、樹脂層14から基板11を取り除いて、樹脂包埋試料10を取り出す。図1(c)は、粉末試料13が偏在する面が上向きとなるように樹脂包埋試料10を配置した場合を示す。樹脂包埋試料10は、液状樹脂を硬化させた硬化物から形成される樹脂層14と、樹脂層14中に充填される粉末試料13と、を備え、粉末試料13が樹脂層14に包埋されるとともに一方の面側に向かって数密度が増えるように樹脂層14中に偏在して構成されている。
(Peeling process)
Subsequently, as shown in FIG. 1C, the substrate 11 is removed from the resin layer 14, and the resin-embedded sample 10 is taken out. FIG. 1C shows a case where the resin-embedded sample 10 is arranged so that the surface on which the powder sample 13 is unevenly distributed faces upward. The resin-embedded sample 10 includes a resin layer 14 formed from a cured product obtained by curing a liquid resin and a powder sample 13 filled in the resin layer 14, and the powder sample 13 is embedded in the resin layer 14. It is configured to be unevenly distributed in the resin layer 14 so that the number density increases toward one surface side.

(加工工程)
続いて、樹脂包埋試料10をTEMに適した形状に加工する。具体的には、例えばFIB装置を用いて、図1(c)の破線領域に示すように、樹脂包埋試料10の粉末試料13が偏在している面側の領域から一部を試料片として切り出し薄片化することにより、図1(e)に示すTEM用試料20を得る。
(Processing process)
Subsequently, the resin-embedded sample 10 is processed into a shape suitable for TEM. Specifically, for example, using a FIB device, as shown in the broken line region of FIG. 1 (c), a part of the powder sample 13 of the resin-embedded sample 10 is used as a sample piece from the region on the surface side where the powder sample 13 is unevenly distributed. By cutting and slicing, the TEM sample 20 shown in FIG. 1 (e) is obtained.

以上により、TEM用試料20が作製される。 As described above, the TEM sample 20 is prepared.

<本実施形態に係る効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effect of this embodiment>
According to this embodiment, one or more of the following effects are exhibited.

本実施形態では、液状樹脂からなる塗布層12上に粉末試料13を散布して自重により塗布層12中に沈降させているので、粉末試料13の充填量を増やした場合であっても、粉末試料13を液状樹脂に添加して混合するときのように粉末試料13が損傷して変質してしまうことを抑制できる。しかも、沈降過程で粉末試料13同士の界面に液状樹脂を行き渡らせることで、粉末試料13の凝集による空隙の形成を抑制できる。そして、沈降させた後、塗布層12の一方の面側に粉末試料13を偏在させた状態で液状樹脂を硬化させることで、一方の面側に向かって数密度が高くなるような樹脂包埋試料10を作製することができる。この樹脂包埋試料10によれば、粉末試料13の偏在している面側から試料片を採取することにより、粉末試料13の数密度が高く、分析効率に優れたTEM用試料20を作製することができる。したがって、本実施形態によれば、粉末試料13の変質および凝集を抑制しつつ、その数密度を高めることができ、TEMによる分析効率および分析精度を向上させることができる。 In the present embodiment, the powder sample 13 is sprayed on the coating layer 12 made of a liquid resin and settled in the coating layer 12 by its own weight. Therefore, even when the filling amount of the powder sample 13 is increased, the powder is powdered. It is possible to prevent the powder sample 13 from being damaged and deteriorated as in the case where the sample 13 is added to the liquid resin and mixed. Moreover, by spreading the liquid resin at the interface between the powder samples 13 in the sedimentation process, the formation of voids due to the aggregation of the powder samples 13 can be suppressed. Then, after sedimentation, the liquid resin is cured in a state where the powder sample 13 is unevenly distributed on one surface side of the coating layer 12, so that the resin embedding has a higher number density toward one surface side. Sample 10 can be prepared. According to this resin-embedded sample 10, by collecting a sample piece from the unevenly distributed surface side of the powder sample 13, a TEM sample 20 having a high number density of the powder sample 13 and excellent analysis efficiency is produced. be able to. Therefore, according to the present embodiment, it is possible to increase the number density of the powder sample 13 while suppressing alteration and aggregation of the powder sample 13, and to improve the analysis efficiency and analysis accuracy by the TEM.

液状樹脂として熱硬化性樹脂または光硬化性樹脂を用いることが好ましい。このような樹脂によれば、塗布層12として形成して粉末試料13を沈降させた後に硬化させることで、粉末試料13を樹脂層14の沈降方向に偏在するようにすることができる。 It is preferable to use a thermosetting resin or a photocurable resin as the liquid resin. According to such a resin, the powder sample 13 can be unevenly distributed in the sedimentation direction of the resin layer 14 by forming the coating layer 12 and precipitating the powder sample 13 and then curing the powder sample 13.

また、液状樹脂として常温硬化性樹脂を用いることが好ましく、その中でも常温硬化性のエポキシ樹脂がより好ましい。常温硬化性樹脂によれば、加熱の必要がなく、沈降工程にて粉末試料13を塗布層12に沈降させている間に塗布層12を徐々に硬化させることができるので、工程を短縮させて樹脂包埋試料10の製造を簡略化することができる。 Further, it is preferable to use a room temperature curable resin as the liquid resin, and among them, a room temperature curable epoxy resin is more preferable. According to the room temperature curable resin, heating is not required, and the coating layer 12 can be gradually cured while the powder sample 13 is settled on the coating layer 12 in the sedimentation step, so that the step can be shortened. The production of the resin-embedded sample 10 can be simplified.

また、基板11における液状樹脂を塗布する面を粗化することが好ましい。これにより、基板11に塗布する液状樹脂の表面張力を低減することができる。その結果、塗布層12を薄く形成して、粉末試料13を塗布層12に沈降させる時間を短縮し、樹脂包埋試料10を生産性よく形成することができる。 Further, it is preferable to roughen the surface of the substrate 11 to which the liquid resin is applied. As a result, the surface tension of the liquid resin applied to the substrate 11 can be reduced. As a result, the coating layer 12 can be formed thinly, the time for the powder sample 13 to settle in the coating layer 12 can be shortened, and the resin-embedded sample 10 can be formed with high productivity.

<他の実施形態>
以上、本発明の一実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
<Other Embodiments>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the gist thereof.

上述の実施形態では、樹脂包埋試料10からTEM用試料20を作製する場合について説明したが、本発明はこれに限定されず、他の分析方法に適した形状に適宜変更することができる。例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)など、あらゆる顕微鏡分野の試料に加工することができる。 In the above-described embodiment, the case where the TEM sample 20 is prepared from the resin-embedded sample 10 has been described, but the present invention is not limited to this, and the shape can be appropriately changed to a shape suitable for other analytical methods. For example, it can be processed into a sample of any microscope field such as a scanning electron microscope (SEM) and a scanning probe microscope (SPM).

また、粗化工程では、基板11に適度な表面粗さを付与できれば、その粗化方法は特に限定されないが、図2(a)に示すように、研磨材を基板11の表面に対して一方向(図中の矢印の方向)に移動させて粗化することが好ましい。このように粗化することにより、基板11の表面に筋状の溝15を形成することができ、樹脂包埋試料10からTEM用試料20を効率よく作製することができる。具体的に説明すると、基板11の表面形状は、図2(b)に示すように、樹脂包埋試料10における粉末試料13が偏在する面に転写される。樹脂包埋試料10からTEM用試料20を作製する場合、樹脂包埋試料10における粉末試料13が偏在する面側から平滑な領域を採取する必要があるが、基板11を一方向に研磨する場合、ランダムな方向に研磨する場合と比べて、平滑な領域を多く残すことができるので、TEM用試料20を効率よく作製することができる。 Further, in the roughening step, as long as an appropriate surface roughness can be imparted to the substrate 11, the roughening method is not particularly limited, but as shown in FIG. 2A, one abrasive material is applied to the surface of the substrate 11. It is preferable to move it in the direction (the direction of the arrow in the figure) to roughen it. By roughening in this way, a streak-like groove 15 can be formed on the surface of the substrate 11, and the TEM sample 20 can be efficiently produced from the resin-embedded sample 10. Specifically, as shown in FIG. 2B, the surface shape of the substrate 11 is transferred to the unevenly distributed surface of the powder sample 13 in the resin-embedded sample 10. When the TEM sample 20 is prepared from the resin-embedded sample 10, it is necessary to collect a smooth region from the surface side where the powder sample 13 is unevenly distributed in the resin-embedded sample 10, but when the substrate 11 is polished in one direction. Since a large amount of smooth region can be left as compared with the case of polishing in a random direction, the TEM sample 20 can be efficiently prepared.

また、上述の実施形態では、塗布層12上に粉末試料13を散布して静置することで粉末試料13の自重により自然に沈降させる場合について説明したが、本発明はこれに限定されない。本発明では、上述した効果を得るとともに粉末試料13の沈降を促進させて沈降するまでの時間を短縮する観点から、以下に示すように、粉末試料13に外的な力を加えて強制的に沈降させることもできる。 Further, in the above-described embodiment, the case where the powder sample 13 is sprayed on the coating layer 12 and allowed to stand to naturally settle due to the weight of the powder sample 13 has been described, but the present invention is not limited to this. In the present invention, from the viewpoint of obtaining the above-mentioned effects and promoting the sedimentation of the powder sample 13 to shorten the time until the powder sample 13 is settled, an external force is applied to the powder sample 13 forcibly as shown below. It can also be settled.

例えば、図3に示すように、塗布層12上に粉末試料13を散布した後、板状部材30を載置するとよい。板状部材30によれば、粉末試料13を塗布層12中に押し込むことで、粉末試料13が塗布層12中に沈降し始めるまでの時間を短縮することができる。これにより、樹脂包埋試料10の作製効率を高めることができる。なお、板状部材30としては、塗布層12を大きく変形させなければよく、例えば樹脂フィルムやアルミニウム箔などの金属箔を用いることができる。 For example, as shown in FIG. 3, it is preferable to spray the powder sample 13 on the coating layer 12 and then place the plate-shaped member 30 on the coating layer 12. According to the plate-shaped member 30, by pushing the powder sample 13 into the coating layer 12, the time until the powder sample 13 starts to settle in the coating layer 12 can be shortened. Thereby, the production efficiency of the resin-embedded sample 10 can be improved. As the plate-shaped member 30, the coating layer 12 does not have to be significantly deformed, and for example, a metal foil such as a resin film or an aluminum foil can be used.

また例えば、塗布層12上に粉末試料13を散布した後、粉末試料13に、基板10方向への遠心力を作用させてもよい。具体的には、塗布層12上に粉末試料13を散布した基板10を例えば遠心分離装置に載置して回転させるとよい。遠心力によれば、粉末試料13を沈降させるまでの時間を大幅に短縮することができ、樹脂包埋試料10の作製効率をより高めることができる。しかも、粉末試料13を強制的に沈降させることができるので、塗布層12を構成する液状樹脂として、比較的高い粘度を有する樹脂を使用することができる。また、塗布層12への粉末試料13の充填量が制限されず、適宜変更することが可能となる。すなわち、遠心力によれば、液状樹脂の粘度にかかわらず粉末試料13を強制的に沈降できるので、粉末試料13の充填量を増やすことができる。一方、遠心力によれば、粉末試料13を塗布層12中でより偏在させることができるので、粉末試料13の充填量を減らした場合であっても、所望の高い数密度を維持することができる。 Further, for example, after spraying the powder sample 13 on the coating layer 12, a centrifugal force in the direction of the substrate 10 may be applied to the powder sample 13. Specifically, the substrate 10 on which the powder sample 13 is sprayed on the coating layer 12 may be placed on, for example, a centrifuge and rotated. According to the centrifugal force, the time until the powder sample 13 is settled can be significantly shortened, and the production efficiency of the resin-embedded sample 10 can be further improved. Moreover, since the powder sample 13 can be forcibly settled, a resin having a relatively high viscosity can be used as the liquid resin constituting the coating layer 12. Further, the filling amount of the powder sample 13 in the coating layer 12 is not limited and can be changed as appropriate. That is, according to the centrifugal force, the powder sample 13 can be forcibly settled regardless of the viscosity of the liquid resin, so that the filling amount of the powder sample 13 can be increased. On the other hand, according to the centrifugal force, the powder sample 13 can be more unevenly distributed in the coating layer 12, so that the desired high number density can be maintained even when the filling amount of the powder sample 13 is reduced. can.

また例えば、粉末試料13が磁性粒子である場合、塗布層12上に粉末試料13を散布した後、粉末試料13に基板10方向への磁力を作用させてもよい。具体的には、塗布層12上に粉末試料13を散布した後、基板10の外側に磁石を配置するとよい。磁力によれば、粉末試料13を沈降させるまでの時間を短縮することができ、樹脂包埋試料10の作製効率を高めることができる。 Further, for example, when the powder sample 13 is a magnetic particle, the powder sample 13 may be sprayed on the coating layer 12 and then a magnetic force may be applied to the powder sample 13 in the direction of the substrate 10. Specifically, after spraying the powder sample 13 on the coating layer 12, a magnet may be arranged on the outside of the substrate 10. According to the magnetic force, the time until the powder sample 13 is settled can be shortened, and the production efficiency of the resin-embedded sample 10 can be improved.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

(実施例1)
基板としてポリイミドフィルムを準備し、その一方の面に対して紙ヤスリ(メッシュ:1000番)を一方向に移動させて粗化処理を施して傷を付けた。次に、液状樹脂としてエポキシ樹脂(PRESI社製「MA2+」、硬化温度:常温、硬化時間:8時間)を準備し、ポリイミドフィルムの粗化面に塗布して所定厚さの塗布層を形成した。次に、塗布層上に粉末試料として電池正極活物質を散布した。散布後、粉末試料の液状樹脂への沈降を促すために、板状部材として傷を付けていないポリイミドフィルムを塗布層上に載置し、そのままエポキシ樹脂が硬化するまで静置した。硬化後、基板を取り除き、一方の面側に粉末試料が偏在する樹脂包埋試料を得た。
(Example 1)
A polyimide film was prepared as a substrate, and a paper scraper (mesh: No. 1000) was moved in one direction to roughen one surface to scratch it. Next, an epoxy resin (“MA2 +” manufactured by PRESI, curing temperature: normal temperature, curing time: 8 hours) was prepared as a liquid resin and applied to the roughened surface of the polyimide film to form a coating layer having a predetermined thickness. .. Next, the battery positive electrode active material was sprayed on the coating layer as a powder sample. After spraying, an intact polyimide film as a plate-like member was placed on the coating layer and allowed to stand as it was until the epoxy resin was cured in order to promote the sedimentation of the powder sample on the liquid resin. After curing, the substrate was removed to obtain a resin-embedded sample in which powder samples were unevenly distributed on one side.

実施例1の樹脂包埋試料によれば、FIB装置を用いて、試料粉末が偏在する側の面から試料片をマイクロサンプリングするときに、粉末試料を直ぐに特定できることが確認された。また、マイクロサンプリングにより得られた試料片は、粉末試料が多く存在しており、TEMで観察するときの有効な範囲が広く、観察するときの時間的効率に優れることが確認された。 According to the resin-embedded sample of Example 1, it was confirmed that the powder sample can be immediately identified when the sample piece is microsampled from the surface on the side where the sample powder is unevenly distributed using the FIB device. Further, it was confirmed that the sample piece obtained by microsampling contains many powder samples, has a wide effective range when observing by TEM, and is excellent in time efficiency when observing.

(比較例1)
比較例1では、エポキシ樹脂に電池正極活物質を添加して爪楊枝で混合した後に硬化させた以外は、実施例1と同様に樹脂包埋試料を作製した。比較例1の樹脂包埋試料をFIB装置によりマイクロサンプリングしたところ、粉末試料の数密度が少なく、サンプリングする箇所の決定に時間を要するため、TEMでの観察効率が低いことが確認された。
(Comparative Example 1)
In Comparative Example 1, a resin-embedded sample was prepared in the same manner as in Example 1 except that the positive battery active material was added to the epoxy resin, mixed with a nail tooth branch, and then cured. When the resin-embedded sample of Comparative Example 1 was microsampled by the FIB apparatus, it was confirmed that the observation efficiency by TEM was low because the number density of the powder sample was low and it took time to determine the sampling location.

(比較例2)
比較例2では、粉末試料として電池正極活物質の代わりに被覆処理された金属粉を用いるとともに、数密度を高めるために実施例1よりも多くの粉末試料を液状樹脂に混合した以外は、比較例1と同様に樹脂包埋試料を作製した。この樹脂包埋試料を用いてTEM観察を実施した結果、混合時の応力で粉末粒子表面の被覆材が剥がれてしまい、試料本来の形状を捉えることができないことが確認された。
(Comparative Example 2)
In Comparative Example 2, a coated metal powder was used instead of the battery positive electrode active material as the powder sample, and more powder samples than in Example 1 were mixed with the liquid resin in order to increase the number density. A resin-embedded sample was prepared in the same manner as in Example 1. As a result of TEM observation using this resin-embedded sample, it was confirmed that the coating material on the surface of the powder particles was peeled off due to the stress during mixing, and the original shape of the sample could not be captured.

以上説明したように、液状樹脂の塗布層に粉末試料を沈降させた後に硬化させて樹脂包埋試料を作製することで、粉末試料の数密度を高くして分析効率を向上させつつ、粉末試料の凝集と変質とを抑制できることが確認された。 As described above, by precipitating the powder sample in the coating layer of the liquid resin and then curing it to prepare a resin-embedded sample, the number density of the powder sample is increased to improve the analysis efficiency, and the powder sample is improved. It was confirmed that the aggregation and alteration of the sample can be suppressed.

10 樹脂包埋試料
11 基板
12 塗布層
13 粉末試料
14 樹脂層
15 筋状の溝
20 TEM用試料
30 板状部材
10 Resin-embedded sample 11 Substrate 12 Coating layer 13 Powder sample 14 Resin layer 15 Streaky groove 20 TEM sample 30 Plate-shaped member

Claims (8)

液状樹脂を基板上に塗布し塗布層を形成する塗布工程と、
前記塗布層上に粉末試料を散布して前記塗布層中に沈降させる沈降工程と、
前記塗布層を硬化させて樹脂層を形成する硬化工程と、を有し、
前記塗布工程の前に、前記基板における前記液状樹脂を塗布する面を研磨材で一方向に粗化処理する粗化工程をさらに有し、
前記粗化工程では、前記液状樹脂の表面張力を低減するような溝を、前記基板の表面において一方向に延在させて筋状に形成し、
前記粉末試料が、前記樹脂層の厚さ方向において、一方の面から他方の面に向かって数密度が増えるように偏在する、樹脂包埋試料を製造する、樹脂包埋試料の製造方法。
A coating process in which a liquid resin is applied onto a substrate to form a coating layer,
A settling step of spraying a powder sample on the coating layer and causing it to settle in the coating layer.
It has a curing step of curing the coating layer to form a resin layer.
Prior to the coating step, the surface of the substrate to which the liquid resin is to be coated is further roughened with an abrasive in one direction.
In the roughening step, grooves that reduce the surface tension of the liquid resin are formed in a streak shape by extending in one direction on the surface of the substrate.
A method for producing a resin-embedded sample, wherein the powder sample is unevenly distributed from one surface to the other surface in the thickness direction of the resin layer so that the number density increases.
前記液状樹脂が熱硬化性樹脂または光硬化性樹脂である、請求項1に記載の樹脂包埋試料の製造方法。 The method for producing a resin-embedded sample according to claim 1, wherein the liquid resin is a thermosetting resin or a photocurable resin. 前記液状樹脂が常温硬化性樹脂であって、
前記粉末試料を前記塗布層に沈降させつつ前記塗布層を硬化させて、前記沈降工程とともに前記硬化工程を行う、請求項1又は2に記載の樹脂包埋試料の製造方法。
The liquid resin is a room temperature curable resin,
The method for producing a resin-embedded sample according to claim 1 or 2, wherein the coating layer is cured while the powder sample is settled in the coating layer, and the curing step is performed together with the precipitation step.
前記液状樹脂が常温硬化性のエポキシ樹脂である、請求項1〜3のいずれか1項に記載の樹脂包埋試料の製造方法。 The method for producing a resin-embedded sample according to any one of claims 1 to 3, wherein the liquid resin is a room-temperature curable epoxy resin. 前記沈降工程では、前記粉末試料を散布した後に前記塗布層上に板状部材を載置し、前記粉末試料を前記塗布層中に押し込み沈降させる、請求項1〜4のいずれか1項に記載の樹脂包埋試料の製造方法。 Wherein in the precipitation step, placing the plate-like member on the coating layer after spraying the powder sample to sediment pushing the powder sample in the coating layer, according to any one of claims 1 to 4 Method for producing a resin-embedded sample. 前記沈降工程では、前記粉末試料に、基板方向への遠心力を作用させ、前記塗布層中に沈降させる、請求項1〜5のいずれか1項に記載の樹脂包埋試料の製造方法。 The method for producing a resin-embedded sample according to any one of claims 1 to 5 , wherein in the sedimentation step, a centrifugal force is applied to the powder sample in the direction of the substrate to cause the powder sample to settle in the coating layer. 前記粉末試料が磁性粒子であり、
前記沈降工程では、前記粉末試料に、基板方向への磁力を作用させ、前記塗布層中に沈降させる、請求項1〜6のいずれか1項に記載の樹脂包埋試料の製造方法。
The powder sample is a magnetic particle,
The method for producing a resin-embedded sample according to any one of claims 1 to 6 , wherein in the settling step, a magnetic force is applied to the powder sample in the direction of the substrate to cause the powder sample to settle in the coating layer.
請求項1〜7のいずれか1項に記載の製造方法により得られる樹脂包埋試料における前記粉末試料が偏在して数密度が高い面側の領域から試料片を採取して薄片化する、透過型電子顕微鏡用試料の製造方法。 Permeation in which the powder sample in the resin-embedded sample obtained by the production method according to any one of claims 1 to 7 is unevenly distributed and a sample piece is collected from a region on the surface side having a high number density to be thinned. A method for producing a sample for a type electron microscope.
JP2017170269A 2017-02-21 2017-09-05 Method for manufacturing resin-embedded sample and transmission electron microscope sample Active JP6922565B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030084 2017-02-21
JP2017030084 2017-02-21

Publications (2)

Publication Number Publication Date
JP2018136295A JP2018136295A (en) 2018-08-30
JP6922565B2 true JP6922565B2 (en) 2021-08-18

Family

ID=63364800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170269A Active JP6922565B2 (en) 2017-02-21 2017-09-05 Method for manufacturing resin-embedded sample and transmission electron microscope sample

Country Status (1)

Country Link
JP (1) JP6922565B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567068B2 (en) * 1988-10-28 1996-12-25 日本電信電話株式会社 Electron microscope sample preparation method and electron microscope sample preparation instrument
JP3776053B2 (en) * 2002-03-29 2006-05-17 Tdk株式会社 Thin sample preparation method, thin sample preparation device, sample preparation jig for electron microscope
JP2008292292A (en) * 2007-05-24 2008-12-04 Sumitomo Electric Ind Ltd Particulate fixing method
JP5098812B2 (en) * 2008-05-27 2012-12-12 新日鐵住金株式会社 Observation sample of inorganic porous material and method for producing the observation sample
JP2013167525A (en) * 2012-02-15 2013-08-29 Sumitomo Electric Ind Ltd Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample

Also Published As

Publication number Publication date
JP2018136295A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR101591438B1 (en) Method for treating surface of 3d printing metal products
JP5633078B2 (en) Fabrication of fragile specimen flakes by dry polishing
US9347136B2 (en) Method for applying a coating to a substrate
JP5942873B2 (en) Method for producing thin sample and method for observing sample
JP2010102829A (en) Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP6922565B2 (en) Method for manufacturing resin-embedded sample and transmission electron microscope sample
EP2305857A1 (en) Method for manufacturing mold and mold
Terlier et al. Investigation of block depth distribution in PS‐b‐PMMA block copolymer using ultra‐low‐energy cesium sputtering in ToF‐SIMS
CN105092897A (en) Method of processing powder sample for argon ion beam cutting
JP2011117826A (en) Method for preparing cross-sectional observation sample of film of cosmetic
JP5292326B2 (en) Standard sample preparation method and standard sample
JP6063076B1 (en) Resin bond saw wire and manufacturing method thereof
Kakubo et al. Degradation of a Metal–Polymer Interface Observed by Element-Specific Focused Ion Beam-Scanning Electron Microscopy
Gamero-Castaño et al. Sputtering yields of Si, SiC, and B4C under nanodroplet bombardment at normal incidence
CN108519396A (en) A kind of preparation method of ultra-thin section
WO2022210477A1 (en) Joint structure
Belonogov et al. Effect of pulsed photon treatment on the mechanical properties of semiconductor thermoelectric legs, based on Bi 2 Te 3–Bi 2 Se 3 solid solutions, and the adhesion of switching layers
JP2005055428A (en) Sample for transmission electron microscope (tem), and its preparing method
JP7005892B2 (en) Analysis method of powder sample
JP6024485B2 (en) Sample stage for electron microscope observation and cross-sectional observation method of sample
Niu et al. Cross‐section metal sample preparations for transmission electron microscopy by electro‐deposition and electropolishing
Dankházi et al. EBSD sample preparation: high energy Ar ion milling
JP6394969B2 (en) Electron microscope sample preparation method and reaction product metal-containing particle analysis method
JP2016033899A (en) Observation method and analytical method of particles
Besserer et al. Qualifying electrically conductive cold embedding-media for scanning electron microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150