JP2013167525A - Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample - Google Patents

Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample Download PDF

Info

Publication number
JP2013167525A
JP2013167525A JP2012030697A JP2012030697A JP2013167525A JP 2013167525 A JP2013167525 A JP 2013167525A JP 2012030697 A JP2012030697 A JP 2012030697A JP 2012030697 A JP2012030697 A JP 2012030697A JP 2013167525 A JP2013167525 A JP 2013167525A
Authority
JP
Japan
Prior art keywords
resin
mold
sample
electron microscope
microscope observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012030697A
Other languages
Japanese (ja)
Inventor
Shinko Yamakawa
真弘 山川
Kuniyasu Kawada
国安 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012030697A priority Critical patent/JP2013167525A/en
Publication of JP2013167525A publication Critical patent/JP2013167525A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resin embedding mold for an electron microscope observation sample, which can efficiently prepare a sample on which cross section polishing (CP) or ion milling (IM) is performed with the density of powder increased and bubbles reduced.SOLUTION: In a mold 50 for preparing a resin sample including powder, through-holes 3 having a rectangular cross section are provided at a mold block having an upper surface and an under surface. The through-holes 3 are tapered off in a manner to become larger from the under surface toward the upper surface.

Description

本発明は、電子顕微鏡観察用試料を作製するための、断面研磨前の段階において樹脂埋め込み試料を作製する鋳型および電子顕微鏡観察用試料の作製方法に関し、とくに粉末試料を電子顕微鏡観察するのに適した樹脂埋め込み試料を作製することができる、電子顕微鏡観察試料用の樹脂埋め込み鋳型、および電子顕微鏡観察用試料の作製方法に関するものである。   The present invention relates to a mold for preparing a resin-embedded sample in the stage before cross-sectional polishing, and a method for preparing a sample for electron microscope observation, for producing a sample for electron microscope observation, and particularly suitable for observing a powder sample with an electron microscope. The present invention relates to a resin-embedded mold for an electron microscope observation sample and a method for producing an electron microscope observation sample.

粉体は、酸化物、窒化物、フッ化物などが混合した微小な材料であるが、電気化学、通信光学、磁性、摩擦機械工学などの分野で、キーとなる材料を形成するのに用いられる。このため、走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)等によって、微小な構造のレベルまで研究がなされている。電子顕微鏡観察をするためには、粉体を電子顕微鏡観察用の試料にしなければならない。粉末を観察するための従来の方法を図5に示す。まず、図5(a)に示すように、受け皿150bに円筒状容器150aを配置して、たとえば、脱泡処理した流動状の樹脂107を注ぎその後試験体である粉末105を投入する。粉末105を投入した状態で、真空引きによる脱泡処理をする。このとき、樹脂107中で粉末105が撹拌されるという問題がある。その後、十数時間かけて固まるようにする。樹脂が固まったあと、図5(b)に示すように、粉末105を含む樹脂107を取り出し、湾曲状の上面を平行面112まで平行研磨する。これによって、粉末105を含む樹脂107は、ほぼ完全な円柱になる。次いで図5(c)に示すように、切断回数が最少になる切断手順によって、バンドソーによる4回の切断<1>〜<4>を経て、板状の直方体110に仕上げられる。この板状の直方体110の形状に加工されることで、はじめてクロスセクションポリッシング(CP)やイオンミリング(IM)などの研磨装置に装着することができる。   Powder is a fine material mixed with oxides, nitrides, fluorides, etc., but is used to form key materials in fields such as electrochemistry, communication optics, magnetism, and friction mechanical engineering. . For this reason, research has been made to the level of a minute structure by a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. In order to perform electron microscope observation, the powder must be used as a sample for electron microscope observation. A conventional method for observing the powder is shown in FIG. First, as shown in FIG. 5 (a), a cylindrical container 150a is arranged on a receiving tray 150b, and for example, a defoamed fluid resin 107 is poured, and then a powder 105 as a test specimen is introduced. In a state where the powder 105 is charged, defoaming is performed by evacuation. At this time, there is a problem that the powder 105 is stirred in the resin 107. After that, let it solidify over a dozen hours. After the resin hardens, as shown in FIG. 5B, the resin 107 containing the powder 105 is taken out, and the curved upper surface is parallel-polished to the parallel surface 112. As a result, the resin 107 containing the powder 105 becomes a substantially complete cylinder. Next, as shown in FIG. 5C, a plate-shaped rectangular parallelepiped 110 is finished through four cuttings <1> to <4> by a band saw by a cutting procedure in which the number of cuttings is minimized. By processing into the shape of this plate-shaped rectangular parallelepiped 110, it can be mounted on a polishing apparatus such as cross section polishing (CP) or ion milling (IM) for the first time.

上記のプロセスによれば、次の問題がある。
(1)観察対象の粉末は小さいにも拘わらず、広く分散しており、効率よく粉末(試験体本体)を観察することが難しい。
(2)気泡が抜けにくく、CPなどによって傷が入り、観察画像を劣化させる。脱泡処理(真空引き)をすると粉末が撹拌される問題もある。
(3)円柱状樹脂から偏平直方体に切り出す工数が多い。
(4)不要な樹脂の量が多い。
上記の問題のうち、観察対象の密度を高めるために(上記(1)を解決するために)、粉末と流動樹脂との混合物をつくり、それに圧力をかけて薄片化する方法が提案された(特許文献1)。この方法によれば、樹脂に対する粉体の体積比を2以上に高めることができる。
また、偏平な直方体を作製するまで能率を向上させるために、シートメッシュの孔に粉末と流動樹脂との混合物を充填し、固化し、断面を出すように半分に切断して、イオンミリングする方法が提案されている。この方法によれば、一度に多くの粉末試料を短時間に加工することができる。
The above process has the following problems.
(1) Although the observation target powder is small, it is widely dispersed and it is difficult to efficiently observe the powder (test body).
(2) It is difficult for bubbles to escape and scratches are caused by CP or the like to deteriorate the observed image. There is also a problem that the powder is stirred when defoaming (evacuation) is performed.
(3) There are many man-hours to cut out from a cylindrical resin into a flat rectangular parallelepiped.
(4) The amount of unnecessary resin is large.
Among the above problems, in order to increase the density of the observation object (to solve the above (1)), a method of making a mixture of powder and fluidized resin and applying pressure to the mixture was proposed ( Patent Document 1). According to this method, the volume ratio of the powder to the resin can be increased to 2 or more.
In addition, in order to improve efficiency until a flat rectangular parallelepiped is produced, a method of performing ion milling by filling a hole of a sheet mesh with a mixture of a powder and a fluid resin, solidifying, cutting in half so as to give a cross section Has been proposed. According to this method, many powder samples can be processed in a short time at a time.

特開2003−294594号公報JP 2003-294594 A 特開2007−47053号公報JP 2007-47053 A

しかしながら、上記の圧力をかける方法では、ただでさえ脆いセラミックス等の粉末の場合、破損してしまい、正常な形態での粉末を観察することができない。また、シートメッシュ等を用いると気泡が高密度で残留して、良好な試料に仕上げることが困難である。やはり従来のように、鋳型内に粉末を樹脂とともに投入して樹脂中に固定する手順に従うのが、粉末に及ぼす圧力、気泡等の影響が少なく、好ましい。   However, with the above-described method of applying pressure, in the case of powders such as brittle ceramics, they are broken and cannot be observed in normal form. Further, when a sheet mesh or the like is used, bubbles remain at a high density, and it is difficult to finish a good sample. As in the prior art, it is preferable to follow the procedure in which the powder is put into the mold together with the resin and fixed in the resin because the influence of pressure, bubbles, etc. on the powder is small.

本発明は、圧力等をかけることなく、試料中の粉末の密度を高め、かつ気泡を減らし、能率よくCPやIMにかける試料を作製することができる、電子顕微鏡観察試料用の樹脂埋め込み鋳型、および電子顕微鏡観察用試料の作製方法を提供することを目的とする。   The present invention is a resin-embedded mold for an electron microscope observation sample that can increase the density of the powder in the sample without reducing pressure, reduce the bubbles, and efficiently prepare the sample to be subjected to CP or IM, And it aims at providing the preparation method of the sample for electron microscope observation.

本発明の電子顕微鏡観察試料用の樹脂埋め込み鋳型(以下、樹脂埋め込み鋳型、または鋳型、と記す)は、電子顕微鏡観察のために精密研磨装置にかける、粉体等の観察対象を含む樹脂試料を作製するための鋳型である。この鋳型は、上面および下面を有する鋳型ブロックに、長方形断面の貫通孔が設けられ、貫通孔に、下面から上面にかけて該貫通孔が拡がるようにテーパが付されていることを特徴とする。   The resin-embedded mold for an electron microscope observation sample of the present invention (hereinafter referred to as a resin-embedded mold or a mold) is a resin sample containing an observation object such as powder, which is subjected to a precision polishing apparatus for electron microscope observation. It is a mold for manufacturing. This mold is characterized in that a mold block having an upper surface and a lower surface is provided with a through hole having a rectangular cross section, and the through hole is tapered so as to expand from the lower surface to the upper surface.

これによって、下面における長方形断面は小さくでき、観察対象である粉体等は、樹脂鋳込みのとき下面に向かって沈みやすく、かつ縮小された長方形の部分に集積される。この結果、粉体は広い範囲に分散しないで、樹脂内で、下面付近に高い密度で配置される。
また、粉体を含めて樹脂鋳込みしたあと、鋳型ブロックごと真空引きされる空間に移動して真空引きすれば、貫通孔には上広のテーパが付いているので、気泡を抜き出しやすい。
さらに断面が長方形なので、CPやIMにかけるための偏平な直方体の精密研磨用試料を作製しやすい。
As a result, the rectangular cross section on the lower surface can be reduced, and the powder or the like to be observed is likely to sink toward the lower surface during resin casting and is accumulated in a reduced rectangular portion. As a result, the powder is not dispersed in a wide range, but is disposed in the resin at a high density near the lower surface.
If the resin is cast including the powder and then moved to the space where the entire mold block is evacuated and evacuated, the through-hole has a wide taper, so that bubbles can be easily extracted.
Furthermore, since the cross section is rectangular, it is easy to produce a flat, rectangular parallelepiped precision polishing sample to be subjected to CP or IM.

長方形断面の少なくとも短辺が下面から上面へと大きくなるテーパが付されているようにできる。
これによって、下面における長方形断面の短辺を短くでき、粉体等を、樹脂鋳込みのとき下面に向かって落とし込みやすく、短辺を縮小された長方形の部分に集積しやすい。この結果、粉体は細長い長方形部分に集められ、容易に粉体等を視野に入れることができ、電子顕微鏡観察が容易となる。
A taper in which at least a short side of the rectangular cross section increases from the lower surface to the upper surface can be provided.
Accordingly, the short side of the rectangular cross section on the lower surface can be shortened, and powder or the like can be easily dropped toward the lower surface during resin casting, and can be easily accumulated in the rectangular portion with the shorter side reduced. As a result, the powder is collected in an elongated rectangular portion, and the powder or the like can be easily put into the field of view, and observation with an electron microscope is facilitated.

下面における短辺の長さを1mm以上4mm以下とすることができる。
これによって、樹脂内を沈む粉体を、高い密度で底部に集積することができる。下面の短辺の長さが4mmを超えると粉末の密度が小さくなり、粉末(試験体)の量が少ない場合、能率よく電子顕微鏡観察することが難しい。また、1mm未満の場合、クロスセクションポリッシング(CP)やイオンミリング(IM)の装置への装着の取り扱いが難しくなる。
The length of the short side on the lower surface can be 1 mm or more and 4 mm or less.
As a result, the powder sinking in the resin can be accumulated at the bottom with high density. When the length of the short side of the lower surface exceeds 4 mm, the density of the powder becomes small, and when the amount of the powder (test body) is small, it is difficult to efficiently observe with an electron microscope. Moreover, when it is less than 1 mm, it becomes difficult to handle the mounting of the cross section polishing (CP) or ion milling (IM) on the apparatus.

貫通孔の、長方形断面の長辺×高さのなす、対面する2面のうち一方が、上面および下面に直交する構成をとるようにできる。
これによって、一方の面(第1の長辺×高さ=直立面)はそのまま残して、切り出しを省略し、他方の面(第2の長辺×高さ=斜行面)の側を削除するような加工を施して、板状の直方体でなければならないCPなど精密研磨用試料を準備することができる。この結果、加工工程を簡単かすることができる。
One of the two opposing faces formed by the long side of the rectangular cross section × height of the through-hole can be configured to be orthogonal to the upper surface and the lower surface.
As a result, one surface (first long side × height = upright surface) is left as it is, cut-out is omitted, and the other surface (second long side × height = oblique surface) side is deleted. Thus, it is possible to prepare a sample for precise polishing such as CP which must be a plate-shaped rectangular parallelepiped. As a result, the machining process can be simplified.

少なくとも貫通孔の壁面が、ポリテトラフルオロエチレン、または、該ポリテトラフルオロエチレンと同等もしくはそれより小さい摩擦係数を有する表面コーティング材料で形成されるようにするのがよい。
これによって、真空引きによって気泡等を離脱させやすくなる。また、平滑な直立面ができるので、その直立面に関して加工省略または切り出し省略が可能になる。さらに、鋳込んだ樹脂成形体が取り出しやすくなる。
It is preferable that at least the wall surface of the through hole be formed of polytetrafluoroethylene or a surface coating material having a friction coefficient equal to or smaller than that of the polytetrafluoroethylene.
This makes it easier to remove bubbles and the like by evacuation. In addition, since a smooth upright surface can be formed, it is possible to omit processing or cut out the upright surface. Furthermore, it becomes easy to take out the cast resin molded body.

本発明の電子顕微鏡観察用試料の作製方法は、クロスセクションポリッシングなどの精密研磨装置にかけて粉体等を含む樹脂試料からなる電子顕微鏡観察用試料を作製する方法である。この作製方法は、上面および下面を有する鋳型ブロックに、長方形断面の貫通孔を設け、該貫通孔が、前記下面から上面にかけて拡がるようにテーパを付した鋳型を準備する工程と、鋳型を用いて、粉末等を含む樹脂試料を作製し、鋳型から取り出す工程と、樹脂試料を切り出して精密研磨装置に装着する装着試料を作製する工程とを備え、鋳型の準備工程では、長方形断面の長辺×高さの相対向する2面の一方を上下面に直交させるようにして、装着試料の作製工程では、鋳型から取り出したままの樹脂試料の、上下面に直交する長辺×高さの面をそのまま残すことを特徴とする。   The method for producing an electron microscope observation sample of the present invention is a method for producing an electron microscope observation sample comprising a resin sample containing powder or the like by applying to a precision polishing apparatus such as cross section polishing. In this method, a mold block having an upper surface and a lower surface is provided with a through hole having a rectangular cross section, and a taper mold is prepared so that the through hole extends from the lower surface to the upper surface. A step of preparing a resin sample containing powder and taking it out of the mold, and a step of cutting out the resin sample and preparing a mounting sample to be mounted on the precision polishing apparatus. In the mold preparation step, the long side of the rectangular cross section × In the process of preparing the mounting sample, one of the two surfaces facing each other is perpendicular to the top and bottom surfaces, and in the process of preparing the mounting sample, the long side × height surface perpendicular to the top and bottom surfaces of the resin sample taken out of the mold is It is characterized by leaving it as it is.

この方法によって、CPなどに装着する試料の加工工程を大幅に簡単化することができる。その他、粉体は広い範囲に分散しないで、樹脂内で、下面付近に高い密度で配置され、また、気泡も少なく、電子顕微鏡観察の視野内に粉末をとらえやすい試料を得ることができる。   By this method, the processing process of the sample mounted on the CP or the like can be greatly simplified. In addition, it is possible to obtain a sample in which the powder is not dispersed in a wide range, is disposed at a high density near the lower surface in the resin, has few bubbles, and easily captures the powder in the field of view of an electron microscope.

本発明の鋳型によれば、圧力等をかけることなく、試料中の粉末の密度を高め、かつ気泡を減らし、能率よくCPやIMにかける試料を作製することができる。   According to the mold of the present invention, it is possible to increase the density of the powder in the sample, reduce bubbles, and efficiently apply the sample to CP or IM without applying pressure or the like.

本発明の実施の形態における樹脂埋め込み鋳型を示し、(a)は全体の斜視図、(b)はIB−IB線に沿う断面図、である。The resin embedding mold in embodiment of this invention is shown, (a) is a whole perspective view, (b) is sectional drawing which follows the IB-IB line | wire. 鋳型に流動樹脂を入れ、粉末を投入した段階の断面図である。It is sectional drawing of the stage which put the fluid resin in the casting_mold | template and put the powder. (a)は鋳型から取り出した樹脂試料を加工する手順、(b)は加工後の樹脂試料、を示す図である。(A) is a figure which shows the procedure which processes the resin sample taken out from the casting_mold | template, (b) is a figure which shows the resin sample after a process. 加工された樹脂試料をCP研磨する状態を示す図である。It is a figure which shows the state which carries out CP grinding | polishing of the processed resin sample. 従来の樹脂試料における、(a)は樹脂埋め込み、(b)は鋳型から取り出された樹脂試料を平行研磨する箇所、(c)はバンドソーで切り出す手順、を示す図である。In the conventional resin sample, (a) is a resin embedding, (b) is a part where the resin sample taken out from the mold is subjected to parallel polishing, and (c) is a diagram showing a procedure of cutting with a band saw.

図1は、本発明の実施の形態における樹脂埋め込み鋳型50を示し、(a)は鋳型50の上面50t側から見た全体の斜視図であり、(b)はIB−IB線に沿う断面図である。全体のブロックは、ポリテトラフルオロエチレン(PTFE)で形成されており、サイズはたとえば高さ(厚み)12mm×幅30mm×長さ110mm程度の直方体である。このPTFEブロックに対して、上面50tから下面50bに抜ける貫通孔3を設ける。貫通孔3において、内壁面3vは上下面50t,50bに直交し、それに対面する内壁面3sは、上広になるように少し傾くテーパが付いている。下面50bにおける短辺の長さbは、1mm以上4mm以下とする。また、貫通孔3の上面50tにおける短辺の長さtは、たとえば4mm以上7mm以下程度にするのがよい。貫通孔3の断面における長辺の長さは、下面から上面にかけて一定であり、たとえば8mm以上11mm以下程度とすることができる。貫通孔3の間の固体部50Dの長さ等は適宜、設定することができる。
1つの鋳型当たりの貫通孔3の個数は、図1では5個であるが、貫通孔3の個数は、とくに限定せず、1個以上であれば何個でもよい。また、図1では、図5に示すような受け皿は示していないが、受け皿を用いてもよい。
1A and 1B show a resin-embedded mold 50 according to an embodiment of the present invention, in which FIG. 1A is an overall perspective view seen from the upper surface 50t side of the mold 50, and FIG. 1B is a cross-sectional view taken along line IB-IB. It is. The entire block is made of polytetrafluoroethylene (PTFE), and is a rectangular parallelepiped having a size of, for example, height (thickness) 12 mm × width 30 mm × length 110 mm. The PTFE block is provided with a through hole 3 extending from the upper surface 50t to the lower surface 50b. In the through hole 3, the inner wall surface 3 v is orthogonal to the upper and lower surfaces 50 t and 50 b, and the inner wall surface 3 s facing the inner wall surface 3 v is tapered slightly so as to become wider. The length b of the short side of the lower surface 50b is 1 mm or more and 4 mm or less. The length t of the short side of the upper surface 50t of the through hole 3 is preferably about 4 mm to 7 mm, for example. The length of the long side in the cross section of the through hole 3 is constant from the lower surface to the upper surface, and can be, for example, about 8 mm to 11 mm. The length of the solid part 50D between the through holes 3 can be set as appropriate.
The number of through-holes 3 per mold is 5 in FIG. 1, but the number of through-holes 3 is not particularly limited as long as it is 1 or more. In addition, in FIG. 1, a saucer as shown in FIG. 5 is not shown, but a saucer may be used.

図2は、図1に示す貫通孔3に、脱泡処理した流動状態の樹脂7を注ぎ、次いで樹脂7中に粉末5を投入したあとの状態を示す図である。樹脂試料は、内壁面3vに接する箇所では直交面3vまたは直立面3vが形成され、内壁面3sに接する箇所では斜行面7sが形成される。樹脂試料の頂面7tは、樹脂を鋳型50の開口一杯まで注ぐことは希であり、通常は、それより下面50tに近い位置にある。底面7bは、鋳型の下面50bに一致する。
貫通孔3には下方ほど短辺が小さくなるテーパが付いているため、粉末5は、樹脂7中を下方に沈みやすく、一方、気泡は真空引きによって抜かれやすい。また、粉末5は、断面積が小さい底部に高密度で集積する。粉末5は、相互に絡み合って狭い空間に閉じこめられるので、たとえば真空引きによって脱泡処理しても、粉末5が撹拌されることは殆どないか、もしくは撹拌される範囲は限定的になる。すなわち、撹拌されるとしてもその範囲は限られ、樹脂成形体の全体にわたって撹拌されるおそれはなくなる。
FIG. 2 is a view showing a state after pouring the defoamed resin 7 in a fluid state into the through-hole 3 shown in FIG. 1 and then pouring the powder 5 into the resin 7. In the resin sample, an orthogonal surface 3v or an upright surface 3v is formed at a location in contact with the inner wall surface 3v, and an oblique surface 7s is formed at a location in contact with the inner wall surface 3s. The top surface 7t of the resin sample rarely pours resin to the full opening of the mold 50, and is usually at a position closer to the lower surface 50t. The bottom surface 7b coincides with the lower surface 50b of the mold.
Since the through-hole 3 has a taper in which the shorter side becomes smaller as it goes downward, the powder 5 tends to sink downward in the resin 7, while bubbles are easily extracted by evacuation. Further, the powder 5 is accumulated at a high density on the bottom having a small cross-sectional area. Since the powder 5 is entangled with each other and confined in a narrow space, even if the defoaming process is performed by, for example, vacuuming, the powder 5 is hardly stirred or the range of stirring is limited. That is, even if it stirs, the range is limited and there is no possibility of stirring over the entire resin molded body.

図3(a)は、鋳型から取り出したままの樹脂試料10、およびその樹脂試料10に対してバンドソーによってCPなどの精密研磨装置に装着する板状の直方体10aを切り出す手順を示す図である。符合<1>、<2>が加工によって現れる面の位置を表す。
図3(a)において、符合<2>の加工は、研磨で削る工程で行う。テーパの角度はそれほど大きくないので、バンドソーによって切断することは難しい。そして、粉末5が高密度で集められている下面7bの先をバンドソーによって、符合<1>に沿って切断する。貫通孔3の直立面3vに接していた樹脂試料の直立面7vは、CP試料台15に接着固定されている。この直立面7vは、加工されることはなく、鋳型50から取り出されたまま残される。図3(b)に示すように、板状の直方体に加工された樹脂試料10aがCPなどの精密研磨装置に装着することが可能な形状である。
FIG. 3A is a diagram showing a procedure for cutting out the resin sample 10 as it is taken out of the mold and the plate-shaped rectangular parallelepiped 10a to be mounted on a precision polishing apparatus such as a CP by a band saw with respect to the resin sample 10. The symbols <1> and <2> indicate the position of the surface that appears by processing.
In FIG. 3A, the process of reference numeral <2> is performed in a process of grinding by polishing. Since the taper angle is not so large, it is difficult to cut with a band saw. Then, the tip of the lower surface 7b where the powder 5 is gathered at a high density is cut along the sign <1> with a band saw. The upright surface 7v of the resin sample that has been in contact with the upright surface 3v of the through hole 3 is bonded and fixed to the CP sample table 15. The upright surface 7v is not processed and remains removed from the mold 50. As shown in FIG. 3B, the resin sample 10a processed into a plate-shaped rectangular parallelepiped has a shape that can be attached to a precision polishing apparatus such as CP.

上記の板状の直方体の樹脂試料10aは、図4に示すように、CP試料台15とともにCP装置に装着される。CP試料台15から突き出た部分に、イオンビーム13を当てられて、研磨面Sが形成される。この研磨面Sを走査電子顕微鏡によって走査しながら粉末の箇所を観察する。   As shown in FIG. 4, the plate-shaped rectangular parallelepiped resin sample 10 a is mounted on the CP apparatus together with the CP sample table 15. The ion beam 13 is applied to the portion protruding from the CP sample stage 15 to form the polished surface S. While this polished surface S is scanned with a scanning electron microscope, the location of the powder is observed.

<本実施の形態のポイント>
図1〜図4に示した鋳型および電子顕微鏡観察用試料の作製方法は、次のような特徴を有する。
1.観察対象の粉末は、樹脂試料10の下面7bの付近に沈む。この下面7bにおける短辺の長さbは1mm以上4mm以下である。本実施の形態において、粉末5は、従来の円柱形状の樹脂試料における直径30mm程度と比べると、格段に狭い箇所に集められる。樹脂試料10は、図3(a)に示すように、下面7bは切断されて除去されるが、除去する厚みはごく微小であり、大部分の粉末5は、加工された樹脂試料10aに残される。
この結果、図4に示すように研磨面Sが形成された場合、この研磨面Sには、粉末5が高い密度で配置されている。このため、研磨面Sに沿って視野を移動させたとき、粉末5を視野にとらえることが、非常に容易であり、電子顕微鏡観察を効率よく行うことができる。
2.貫通孔3には、図1(a)、(b)に示すように、下面から上面にかけて上広のテーパが付いている。このため、真空引きによる脱泡処理によって気泡を容易に引き抜くことができる。
また、狭い細長い下面付近に集積された粉末5は、底部に沈んでおり、脱泡処理で気泡が離脱されるときでも、大きな揺動を受けることはなく、全体にわたって撹拌などされない。
3.鋳型50は、PTFEのブロックに上広の貫通孔3を開けることで作製されている。このため、貫通孔3の壁面3v,3sは摩擦係数が小さい。摩擦係数が小さいため、粉末5を投入したとき、壁面に付着したり係留されたりすることなく、下面にまで円滑に沈むことができる。また、脱泡処理における気泡についても、気泡が貫通孔3の壁面に付着したり係留されたりすることなく、円滑に外部に放出される。
鋳型の貫通孔3の壁面に、PTFEと同等もしくはそれより摩擦係数が小さい表面コーティングが施されたものであっても、同様の効果を得ることができる。
4.鋳型50から取り出した樹脂試料10から加工成形された樹脂試料10aまで、加工量は、従来に比べると格段に少ない。従来の加工に要する時間は、45分間/個、であった。これに対して、本実施の形態では、加工時間10分間/個、である。加工時間の大幅な短縮が可能である。とくに、本実施の形態における樹脂面7vのように、鋳型から取り出したまま何の加工もしないでCP試料10aとすることが大きく効いている。
5.上記の加工工数の短縮を反映して、鋳込み時の樹脂の量を削減することができる。従来の円柱状の樹脂試料の場合、鋳込み樹脂量は、5g/個であった。これに対して、本実施の形態において同じ形状のCP試料10aを得る場合、1g/個である。樹脂量を、ほぼ1/5にすることができる。
<Points of this embodiment>
The method for producing the template and the sample for electron microscope observation shown in FIGS. 1 to 4 has the following characteristics.
1. The observation target powder sinks in the vicinity of the lower surface 7 b of the resin sample 10. The short side length b of the lower surface 7b is not less than 1 mm and not more than 4 mm. In the present embodiment, the powder 5 is collected in a much narrower area as compared with a diameter of about 30 mm in a conventional cylindrical resin sample. As shown in FIG. 3A, the lower surface 7b of the resin sample 10 is removed by cutting, but the thickness to be removed is very small, and most of the powder 5 remains in the processed resin sample 10a. It is.
As a result, when the polishing surface S is formed as shown in FIG. 4, the powder 5 is arranged on the polishing surface S with a high density. For this reason, when the visual field is moved along the polished surface S, it is very easy to capture the powder 5 in the visual field, and the electron microscope observation can be performed efficiently.
2. As shown in FIGS. 1A and 1B, the through-hole 3 has a taper that is wide from the lower surface to the upper surface. For this reason, air bubbles can be easily extracted by a defoaming process by evacuation.
Further, the powder 5 accumulated in the vicinity of the narrow and slender lower surface sinks to the bottom, and even when the bubbles are removed by the defoaming process, the powder 5 is not greatly shaken and is not stirred throughout.
3. The mold 50 is produced by opening the wide through-hole 3 in a PTFE block. For this reason, the wall surface 3v, 3s of the through-hole 3 has a small friction coefficient. Since the coefficient of friction is small, when the powder 5 is introduced, it can sink smoothly to the lower surface without being attached to or moored to the wall surface. Also, the bubbles in the defoaming process are smoothly discharged to the outside without being attached to or moored on the wall surface of the through hole 3.
The same effect can be obtained even if the wall surface of the through-hole 3 of the mold is provided with a surface coating having a friction coefficient equal to or smaller than that of PTFE.
4). The amount of processing from the resin sample 10 taken out from the mold 50 to the processed and molded resin sample 10a is much smaller than that in the past. The time required for conventional processing was 45 minutes / piece. On the other hand, in this embodiment, the processing time is 10 minutes / piece. Processing time can be greatly shortened. In particular, as in the case of the resin surface 7v in the present embodiment, the CP sample 10a is greatly effective without any processing while being taken out from the mold.
5. Reflecting the reduction in the number of processing steps, the amount of resin during casting can be reduced. In the case of a conventional cylindrical resin sample, the amount of cast resin was 5 g / piece. On the other hand, when obtaining the CP sample 10a having the same shape in the present embodiment, it is 1 g / piece. The amount of resin can be reduced to approximately 1/5.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の樹脂埋め込み鋳型等によれば、圧力等をかけることなく、試料中の粉末の密度を高め、かつ気泡を減らし、能率よくCPやIMにかける試料を作製することができる。各種のセラミックスなどの原料、調整処理過程の粉末の微小組織を、容易に観察することが可能になる。   According to the resin-embedded mold or the like of the present invention, a sample to be subjected to CP or IM efficiently can be produced without increasing the pressure or the like by increasing the density of the powder in the sample and reducing bubbles. It becomes possible to easily observe raw materials such as various ceramics and fine structures of powders in the adjustment process.

3 貫通孔、3v 直立壁面、3s 斜行壁面、5 粉末、7 樹脂、7t 樹脂上面、7b 樹脂下面、7s 樹脂斜行面、7v 樹脂直立面、10 粉末を含む樹脂試料、10a 加工された樹脂試料、13 イオンビーム、15 CP試料台、50 鋳型、50t 鋳型の上面、50b 鋳型の下面、50D 鋳型固体部、b 貫通孔の下面の短辺長さ、t 貫通孔の上面の短辺長さ、S CPによる研磨面(電子顕微鏡観察面)。
3 through hole, 3v upright wall surface, 3s slant wall surface, 5 powder, 7 resin, 7t resin top surface, 7b resin bottom surface, 7s resin slant surface, 7v resin upright surface, 10 resin sample containing powder, 10a processed resin Sample, 13 ion beam, 15 CP sample stage, 50 mold, 50t upper surface of mold, 50b lower surface of mold, 50D mold solid part, b short side length of bottom surface of through hole, short side length of top surface of t through hole , Polished surface by SCP (electron microscope observation surface).

Claims (6)

電子顕微鏡観察のためにクロスセクションポリッシング等の精密研磨装置にかける、粉体等を含む樹脂試料を作製するための鋳型であって、
上面および下面を有する鋳型ブロックに、長方形断面の貫通孔が設けられ、
前記貫通孔に、前記下面から上面にかけて該貫通孔が拡がるようにテーパが付されていることを特徴とする、電子顕微鏡観察試料用の樹脂埋め込み鋳型。
A mold for producing a resin sample containing powder or the like, which is applied to a precision polishing apparatus such as cross section polishing for electron microscope observation,
A mold block having an upper surface and a lower surface is provided with a through hole having a rectangular cross section,
A resin-embedded mold for an electron microscope observation sample, wherein the through hole is tapered so that the through hole expands from the lower surface to the upper surface.
前記長方形断面の少なくとも短辺が前記下面から上面へと大きくなるテーパが付されていることを特徴とする、請求項1に記載の電子顕微鏡観察試料用の樹脂埋め込み鋳型。   2. The resin-embedded mold for an electron microscope observation sample according to claim 1, wherein at least a short side of the rectangular cross section is tapered so as to increase from the lower surface to the upper surface. 前記下面における短辺の長さが1mm以上4mm以下であることを特徴とする、請求項1または2に記載の電子顕微鏡観察試料用の樹脂埋め込み鋳型。   The resin-embedded mold for an electron microscope observation sample according to claim 1 or 2, wherein a length of a short side on the lower surface is 1 mm or more and 4 mm or less. 前記貫通孔の、長方形断面の長辺×高さのなす、対面する2面のうち一方が、前記上面および下面に直交していることを特徴とする、請求項1〜3のいずれか1項に記載の電子顕微鏡観察試料用の樹脂埋め込み鋳型。   One of the two facing surfaces formed by the long side of the rectangular cross section x the height of the through hole is orthogonal to the upper surface and the lower surface. A resin-embedded mold for an electron microscope observation sample described in 1. 少なくとも前記貫通孔の壁面が、ポリテトラフルオロエチレン(PTFE)、または、該ポリテトラフルオロエチレンと同等もしくはそれより小さい摩擦係数を有する表面コーティング材料で形成されていることを特徴とする、請求項1〜4のいずれか1項に記載の電子顕微鏡観察試料用の樹脂埋め込み鋳型。   2. The wall surface of at least the through hole is formed of polytetrafluoroethylene (PTFE) or a surface coating material having a friction coefficient equal to or smaller than that of the polytetrafluoroethylene. The resin embedding mold for the electron microscope observation sample of any one of -4. クロスセクションポリッシングなどの精密研磨装置にかけて粉体等を含む樹脂試料からなる電子顕微鏡観察用試料を作製する方法であって、
上面および下面を有する鋳型ブロックに、長方形断面の貫通孔を設け、該貫通孔が、前記下面から上面にかけて拡がるようにテーパを付した鋳型を準備する工程と、
前記鋳型を用いて、粉末等を含む樹脂試料を作製し、前記鋳型から取り出す工程と、
前記樹脂試料を切り出して前記精密研磨装置に装着する装着試料を作製する工程とを備え、
前記鋳型の準備工程では、前記長方形断面の長辺×高さの相対向する2面の一方を前記上下面に直交させるようにして、前記装着試料の作製工程では、前記鋳型から取り出したままの樹脂試料の、前記上下面に直交する長辺×高さの面をそのまま残すことを特徴とする、電子顕微鏡観察用試料の作製方法。
A method for producing an electron microscope observation sample comprising a resin sample containing powder or the like through a precision polishing apparatus such as cross section polishing,
Providing a mold block having a rectangular cross section in a mold block having an upper surface and a lower surface, and preparing a taper mold so that the through hole extends from the lower surface to the upper surface;
Using the mold to prepare a resin sample containing powder and the like, and removing from the mold;
Cutting out the resin sample and preparing a mounting sample to be mounted on the precision polishing apparatus,
In the step of preparing the mold, one of two opposing surfaces of the long side of the rectangular cross section × height is orthogonal to the upper and lower surfaces, and in the step of preparing the mounting sample, the surface is removed from the mold. A method for producing a sample for electron microscope observation, wherein a surface of a resin sample is left as it is with a long side orthogonal to the top and bottom surfaces.
JP2012030697A 2012-02-15 2012-02-15 Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample Pending JP2013167525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030697A JP2013167525A (en) 2012-02-15 2012-02-15 Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030697A JP2013167525A (en) 2012-02-15 2012-02-15 Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample

Publications (1)

Publication Number Publication Date
JP2013167525A true JP2013167525A (en) 2013-08-29

Family

ID=49178035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030697A Pending JP2013167525A (en) 2012-02-15 2012-02-15 Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample

Country Status (1)

Country Link
JP (1) JP2013167525A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
KR20160133170A (en) * 2015-05-12 2016-11-22 대한민국(문화재청 국립문화재연구소장) Mold for manufacturing sample for compressive strength test and manufacturing method for sample for compressive strength using it
JP2017187479A (en) * 2016-03-30 2017-10-12 Jx金属株式会社 Manufacturing method of analysis sample and analysis method of particulate matter sample
JP2018136295A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Resin embedded sample and manufacturing method thereof, sample for transmission electron microscope and manufacturing method thereof
JP2019045327A (en) * 2017-09-04 2019-03-22 日本電子株式会社 Method for making packaging resin sample for electron microscopy and mold used therefor
CN110927192A (en) * 2019-12-05 2020-03-27 湖北民族大学 Casting method for preparing sphagnum sample for scanning electron microscope
JP7468318B2 (en) 2020-03-27 2024-04-16 住友金属鉱山株式会社 Analytical samples and methods for preparing them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
KR20160133170A (en) * 2015-05-12 2016-11-22 대한민국(문화재청 국립문화재연구소장) Mold for manufacturing sample for compressive strength test and manufacturing method for sample for compressive strength using it
KR101713150B1 (en) 2015-05-12 2017-03-14 대한민국 Mold for manufacturing sample for compressive strength test and manufacturing method for sample for compressive strength using it
JP2017187479A (en) * 2016-03-30 2017-10-12 Jx金属株式会社 Manufacturing method of analysis sample and analysis method of particulate matter sample
JP2018136295A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Resin embedded sample and manufacturing method thereof, sample for transmission electron microscope and manufacturing method thereof
JP2019045327A (en) * 2017-09-04 2019-03-22 日本電子株式会社 Method for making packaging resin sample for electron microscopy and mold used therefor
CN110927192A (en) * 2019-12-05 2020-03-27 湖北民族大学 Casting method for preparing sphagnum sample for scanning electron microscope
CN110927192B (en) * 2019-12-05 2022-06-24 湖北民族大学 Casting method for preparing sphagnum sample for scanning electron microscope
JP7468318B2 (en) 2020-03-27 2024-04-16 住友金属鉱山株式会社 Analytical samples and methods for preparing them

Similar Documents

Publication Publication Date Title
JP2013167525A (en) Resin embedding mold for electron microscope observation sample and method for preparing electron microscope observation sample
Holzer et al. Review of FIB-tomography
JP5277483B2 (en) Graphite material
KR102048342B1 (en) A method for analyzing pore distribution in secondary battery cathode and polymer therefor
EP1394834A3 (en) Method of obtaining an image of a sample in a particle-optical device
CN111398325B (en) TEM sample preparation method
JP7022817B2 (en) Ceramic structure
JP5687299B2 (en) Observation sample, preparation method of observation sample, and observation method
CA2685635A1 (en) A process for producing tools used in orthopedic surgeries
Tang et al. Impact factors of fractal analysis of porous structure
WO2019198558A1 (en) Glass plate, and glass plate manufacturing method and end surface inspection method
Uematsu et al. Liquid immersion technique coupled with infrared microscopy for direct observation of internal structure of ceramic powder compact, with alumina as an example
CN100565173C (en) The mould and the manufacture method thereof of preparation electron microscope detection sample
Sato et al. Structure of strength-limiting flaws in alumina ceramics made by the powder granule compaction process
JP2019078613A (en) Evaluation method of three-dimensional molding
KR102197898B1 (en) Evaluation method for dispersibility of carbon nanotube in electrode
CN109946130A (en) A kind of preparation method of micrometer level porous ceramic metallographic specimen
CN208705130U (en) A kind of device being used to prepare gypsum scanning electron microscope example
Tanaka et al. Evaluation of Internal Coarse Defects in Alumina Powder Compact and Ceramics
Dillon et al. Three-dimensional FIB-OIM of ceramic materials
Carr A method for preparing powdered specimens for transmission electron microscopy
JP2023043803A (en) sintered body
Bhuiyan Characterization of iron ore green pellets by scanning electron microscopy and X-ray microtomography
JP2006177692A (en) Mold forming die for forming sample embedded body for microscopic observation, sample embedded body for microscopic observation, and its fixing method
Günther et al. Tailoring High-Frequency ultrasonic transducers fabricated by the soft mold process