JP2567068B2 - Electron microscope sample preparation method and electron microscope sample preparation instrument - Google Patents

Electron microscope sample preparation method and electron microscope sample preparation instrument

Info

Publication number
JP2567068B2
JP2567068B2 JP63272106A JP27210688A JP2567068B2 JP 2567068 B2 JP2567068 B2 JP 2567068B2 JP 63272106 A JP63272106 A JP 63272106A JP 27210688 A JP27210688 A JP 27210688A JP 2567068 B2 JP2567068 B2 JP 2567068B2
Authority
JP
Japan
Prior art keywords
electron microscope
specimen
sample
mesh
magnetically labeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63272106A
Other languages
Japanese (ja)
Other versions
JPH02118431A (en
Inventor
幸一 藤原
裕迪 水谷
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63272106A priority Critical patent/JP2567068B2/en
Priority to DE68916843T priority patent/DE68916843T2/en
Priority to EP89304171A priority patent/EP0339980B1/en
Publication of JPH02118431A publication Critical patent/JPH02118431A/en
Priority to US07/991,507 priority patent/US5340749A/en
Priority to US08/249,152 priority patent/US5498550A/en
Application granted granted Critical
Publication of JP2567068B2 publication Critical patent/JP2567068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抗原抗体反応を利用した、ウイルス学や免
疫学並びに細胞工学等のバイオテクノロジーの技法に関
するものである。
TECHNICAL FIELD The present invention relates to a biotechnology technique such as virology, immunology, and cell engineering, which utilizes an antigen-antibody reaction.

〔従来技術とその課題〕[Conventional technology and its problems]

近年、後天性免疫不全症候群、成人T細胞白血病、非
A非Bウイルス性肝炎等のような新型ウイルス性疾病に
より人類の健康は冒されており、さらに輸血が原因で新
たな感染の危険にさらされている。これら感染症の早期
診断法が世界的規模で開発されている。従来の感染症の
診断は抗体検査が主であった。その理由は感染直後では
ウイルス粒子の数がきわめてすくないため、従来の検査
法では検出できないからである。例えば、ウイルスを直
接検出する方法として、従来より血球凝集法等が知られ
ている。しかしながら、この方法では、検出感度が不足
するため、ウイルスを培養して1千万個以上に増殖する
必要があった。一方、ウイルスの存在確認のため形態観
察は電子顕微鏡が唯一の手段である。形態観察によって
ウイルス郡の判定が可能になり、新しいウイルスを発見
した場合も最終的には電子顕微鏡下でのウイルスの確認
が不可欠である。しかしながら、ウイルスは大きさが20
〜200nm程度であるため、超高倍率でなければ観察でき
ない。μm台の極めて狭い領域を観察することになるか
ら、ウイルスが高濃度に存在していなければ観察は困難
を極める。このような理由から、従来は1ml当りウイル
ス粒子が一億ないし十億個無ければ電子顕微鏡観察は事
実上不可能であった。
In recent years, human health has been affected by new types of viral diseases such as acquired immunodeficiency syndrome, adult T-cell leukemia, non-A non-B viral hepatitis, etc., and there is a risk of new infection due to blood transfusion. Has been done. Early diagnostics for these infectious diseases are being developed worldwide. The conventional diagnosis of infectious diseases was mainly antibody testing. The reason is that the number of virus particles is very small immediately after infection, and it cannot be detected by the conventional test method. For example, a hemagglutination method or the like has been conventionally known as a method for directly detecting a virus. However, in this method, since the detection sensitivity is insufficient, it was necessary to culture the virus and grow it to 10 million or more. On the other hand, electron microscopy is the only means for morphological observation to confirm the presence of viruses. Morphological observation makes it possible to determine the virus group, and when a new virus is discovered, it is essential to finally confirm the virus under an electron microscope. However, the virus is 20
Since it is about 200 nm, it can be observed only at ultra-high magnification. Since an extremely narrow region on the order of μm will be observed, the observation will be extremely difficult unless the virus is present at a high concentration. For this reason, conventionally, electron microscope observation was virtually impossible unless there were 100 to 1 billion virus particles per ml.

従って、ウイルスを直接検出する従来の方法はまずウ
イルスを培養する技術を確立することが重要であった。
しかし、ウイルス培養に当たって、ウイルス毎に宿主が
異なるため、ウイルス培養に適した感受性細胞を見つけ
る必要があった。しかも、その感受性細胞の検索に当た
っては、動物の細胞を使って人に感染するウイルスを培
養することは出来ないため、困難を極めている。このよ
うな事情のため、人に感染するウイルス学の研究は動物
の場合に比べると非常に遅れている。例えば、ウイルス
性肝炎は感染力が強いため、現在、医療従事者が患者か
ら感染する事故が多発し、社会問題となっている。ウイ
ルス性肝炎としては、A型肝炎ウイルス、B型肝炎ウイ
ルスが知られていて、ワクチンも製造されている。しか
し、非A、非Bのウイルス性肝炎が以前から予想されて
いるにも関わらず、ウイルスの存在が確認されていない
ため、的確な治療法が無い事情にある。
Therefore, in the conventional method for directly detecting the virus, it was important to first establish a technique for culturing the virus.
However, in virus culture, different hosts are used for each virus, so it was necessary to find susceptible cells suitable for virus culture. Moreover, it is extremely difficult to search for the susceptible cells because it is not possible to culture the virus that infects humans using animal cells. Due to these circumstances, research on virology that infects humans is far behind that of animals. For example, since viral hepatitis is highly infectious, at present, there are many accidents in which medical personnel are infected by patients, which has become a social problem. As viral hepatitis, hepatitis A virus and hepatitis B virus are known, and vaccines are also manufactured. However, despite the fact that non-A and non-B viral hepatitis has been predicted for a long time, the existence of the virus has not been confirmed, so that there is no appropriate treatment method.

癌は最初1つの細胞が癌化し、長い年月を経て発症に
いたる。現在の診断法は内視鏡、CT、病理検査等ほとん
どが医師の目で行われている。そのため、癌と診断され
た時点では、目で診断できない癌が方々に転移していて
手術しても再発することが多い。転移の無い時期に細胞
レベルで診断できれば再発はなくなり、手術無しに免疫
療法だけで癌を治癒させることも可能になる。現在、腫
傷マーカ等の癌免疫診断法が研究開発されているが、実
用されているものは少ない。
Cancer initially develops in one cell and develops over a long period of time. Most of the current diagnostic methods such as endoscopy, CT, and pathological examination are performed by the eyes of a doctor. Therefore, at the time when a cancer is diagnosed, cancer that cannot be visually diagnosed has metastasized to many people and often recurs even after surgery. If it can be diagnosed at the cellular level when there is no metastasis, recurrence will disappear, and it will be possible to cure cancer by immunotherapy alone without surgery. Currently, cancer immunodiagnostic methods such as tumor markers are being researched and developed, but few are in practical use.

本発明者らは、ウイルス抗原や細胞を極めて高い感度
で検出できるレーザ磁気免疫測定法等の研究を行い、そ
の成果を先に特願昭61−224567号、同61−252427号、同
61−254164号、同62−22063号、同62−152791号、同62
−152792号、同62−184902号、同62−264319号、同62−
267481号、同63−6050号として特許出願している。これ
らの新しい免疫測定法は抗原抗体反応の有無の検出にレ
ーザ光を利用し、標識材料として磁性微粒子を用いる点
に特徴があり、ピコグラムの超微量検出が出来る。
The present inventors have conducted research on a laser magnetic immunoassay method or the like capable of detecting viral antigens and cells with extremely high sensitivity, and the results thereof were first described in Japanese Patent Application Nos. 61-224567, 61-252427, and 61-252427.
61-254164, 62-22063, 62-152791, 62
-152792, 62-184902, 62-264319, 62-
Patent applications have been filed as 267481 and 63-6050. These new immunoassays are characterized in that laser light is used to detect the presence or absence of an antigen-antibody reaction, and that magnetic fine particles are used as a labeling material, which enables ultratrace detection of picograms.

ところが、ウイルス、癌細胞あるいはリンパ球などの
検体を電子顕微鏡で効率よく観察する技術は、検体を濃
縮・精製する方法の技術革新が今日までなく、従来の遠
心沈降法に頼らざるを得ないのが現状である。そのた
め、検体調整に多くの労力がかかり、極めて効率が悪か
った。本発明者らは、磁性微粒子をウイルス、癌細胞あ
るいはリンパ球などの検体に標識することによって、ウ
イルスや細胞の捕捉・分離方法を研究し、その成果を先
に特願昭63−102916号、同63−102919号として特許出願
している。これらの特許は効率的にウイルスや細胞を補
集したり分離することが出来る。また、細胞融合技術に
よって得たハイブリドーマ細胞のスクリーニングの際
に、磁性微粒子を目的のモノクローナル抗体を産生する
ハイブリドーマに標識し、これを外部磁力によって選択
的に回収する新しいスクリーニング方法についても特許
出願中である。しかしながら、補集した検体を電子顕微
鏡で効率よく観察するためには、技術の改良が必要であ
った。
However, technology for efficiently observing specimens such as viruses, cancer cells, or lymphocytes with an electron microscope has no technological innovation in the method of concentrating and purifying specimens, and it is necessary to rely on the conventional centrifugal sedimentation method. Is the current situation. Therefore, a lot of labor is required for the sample adjustment, and the efficiency is extremely low. The present inventors have studied a method for capturing and separating viruses and cells by labeling magnetic fine particles with a specimen such as virus, cancer cells or lymphocytes, and the results of the study were previously published in Japanese Patent Application No. 63-102916, A patent application has been filed as No. 63-102919. These patents can efficiently collect and separate viruses and cells. Also, when screening hybridoma cells obtained by the cell fusion technology, a new screening method in which magnetic microparticles are labeled with hybridomas that produce the desired monoclonal antibody and this is selectively recovered by external magnetic force is also pending. is there. However, in order to efficiently observe the collected specimen with an electron microscope, it was necessary to improve the technique.

本発明は、上記の事情に鑑みてなされたもので、その
目的はウイルス、癌細胞、エイズやEBウイルスに感染し
たリンパ球は勿論のこと、モノクローナル抗体を産生す
るハイブリドーマ等の各種細胞の観察のための、検出感
度が高く、観察効率のよい電子顕微鏡検体調整法及び電
子顕微鏡検体調整器具を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to observe various cells such as viruses, cancer cells, lymphocytes infected with AIDS and EB virus, and hybridomas producing monoclonal antibodies. Therefore, an object of the present invention is to provide an electron microscope sample adjusting method and an electron microscope sample adjusting instrument having high detection sensitivity and high observation efficiency.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の第1の発明に従うと、検体に磁気標識する第
1の工程と、前記第1工程で磁気標識された検体に傾斜
磁界を作用させて該検体を電子顕微鏡観察用メッシュ表
面上に誘導・固着する第2の工程と、前記第2工程で固
着された磁気標識検体を前記傾斜磁界中でネガティブ染
色する第3の工程とを少なくとも含むことを特徴とする
電子顕微鏡検体調整法が提供される。
According to the first aspect of the present invention, a first step of magnetically labeling a specimen and a gradient magnetic field are applied to the specimen magnetically labeled in the first step to guide the specimen onto a mesh surface for electron microscope observation. An electron microscope sample preparation method is provided, which comprises at least a second step of fixing and a third step of negatively staining the magnetically labeled sample fixed in the second step in the gradient magnetic field. It

検体検察を容易にする方法として、予め、検体と特異的
に反応する抗体を該検体を含む検体浮遊液に加え、該検
体を凝集させた後、該検体を磁気標識すれば電子顕微鏡
観察が非常に容易になる。
As a method for facilitating specimen inspection, if an antibody that specifically reacts with the specimen is added to the specimen suspension containing the specimen in advance, the specimen is aggregated, and the specimen is magnetically labeled, electron microscope observation is very easy. To be easier.

検体の濃縮・精製を特に必要とする場合は、第1の発
明の第1工程後の磁気標識された検体を含む検体浮遊液
に傾斜磁界を作用させて該磁気標識検体のみを水面上に
局部濃縮した後、該局部濃縮点に細管を挿入して、該磁
気標識検体を回収する検体濃縮工程を実施した後、前記
第2工程以下の工程がなされることが好ましい。
When the concentration / purification of the sample is particularly required, a gradient magnetic field is applied to the sample suspension containing the magnetically labeled sample after the first step of the first aspect of the invention so that only the magnetically labeled sample is locally applied on the water surface. It is preferable that after the concentration, a thin tube is inserted into the local concentration point and a sample concentration step of collecting the magnetically labeled sample is performed, and then the steps from the second step onward are performed.

また、第1の発明の第2工程において、電子顕微鏡観
察用メッシュが着脱可能なフィルム上に保持され、該フ
ィルム裏面から、電子顕微鏡観察用メッシュ部の磁界が
最も高くなるような傾斜磁界を検体に作用させることに
よって該検体を電子顕微鏡観察用メッシュ表面上に誘導
・固着することが好ましい。
Further, in the second step of the first invention, the electron microscope observation mesh is held on a detachable film, and a gradient magnetic field from the back surface of the film is applied so that the magnetic field of the electron microscope observation mesh portion is the highest. It is preferable to induce and fix the sample on the surface of the mesh for electron microscope observation by acting on.

さらに、第2の発明に従うと、容器水面上への磁気標
識検体の局部濃縮機構と、該検体の回収機構と、電子顕
微鏡監察用メッシュの保持機構と、該電子顕微鏡観察用
メッシュ表面上への該検体の誘導・固着機構を少なくと
も具備することを特徴とする電子顕微鏡検体調整器具が
提供される。
Furthermore, according to the second invention, a mechanism for locally concentrating the magnetically labeled specimen on the water surface of the container, a mechanism for collecting the specimen, a mechanism for holding an electron microscope inspection mesh, and a mechanism for retaining the electron microscope observation mesh surface are provided. There is provided an electron microscope sample adjusting device comprising at least a sample guiding / fixing mechanism.

〔作用〕[Action]

本発明によれば、検体は、抗原抗体反応で磁性体標識
抗体と結合し、磁気標識されているから、外部磁力で確
実に電子顕微鏡観察用メッシュ上に誘導・固着すること
が出来る。検体に磁気標識する方法には2種類の方法が
ある。1つの方法は、検体と特異的に反応するモノクロ
ーナル抗体等の抗体を結合した磁性体標識抗体を直接検
体と抗原抗体反応させる方法であり、他の方法は、まず
検体と特異的に反応する1gG抗体を該検体に加えて該検
体を予め凝集させた後、1gG抗体と反応するプロテイン
Aを結合した磁性体標識抗体を抗原抗体反応させる方法
である。前者の方法は、検体中の目的とするウイルスや
細胞等の目的物体を抗原抗体反応によって選択的に磁性
体標識抗体で捕捉する方法であるから、電子顕微鏡観察
の際に、目的物体以外の混入が少なく、磁性体標識抗体
を目印に検察することによって、監察の信頼性が高い点
に特徴がある。これに対して、後者の方法は、磁性体標
識抗体に用いるプロテインAは目的物体以外の全ての1g
G抗体にも反応するから、選択性は前者の方法よりも劣
る。しかしながら、目的物体は予め1gG抗体によって凝
集しているから、目的物体がウイルスのように極微小体
である場合、磁気標識された凝集体の存在を検索すれば
よいから電子顕微鏡監察の際がきわめて効率的にでき
る。
According to the present invention, the sample is bound to the magnetic substance-labeled antibody by the antigen-antibody reaction and is magnetically labeled, so that it can be reliably guided and fixed on the electron microscope observation mesh by the external magnetic force. There are two types of methods for magnetically labeling a sample. One method is a method in which a magnetic substance-labeled antibody to which an antibody such as a monoclonal antibody that specifically reacts with a specimen is bound is directly reacted with the specimen and an antigen-antibody reaction, and the other method is that 1gG that specifically reacts with the specimen first. This is a method in which an antibody is added to the sample to agglutinate the sample in advance, and then a magnetic substance-labeled antibody bound to protein A that reacts with a 1 gG antibody is reacted with an antigen-antibody. The former method is a method of selectively capturing a target object such as a target virus or cell in a sample with a magnetic substance-labeled antibody by an antigen-antibody reaction. It is characterized by the high reliability of the inspection by probing the magnetically labeled antibody as a marker. On the other hand, in the latter method, the amount of protein A used for the magnetically labeled antibody is 1 g except for the target substance.
Since it also reacts with the G antibody, the selectivity is inferior to the former method. However, since the target object has been previously aggregated by the 1 gG antibody, if the target object is a microscopic body such as a virus, it is sufficient to search for the presence of the magnetically labeled aggregate, which is extremely useful when observing with an electron microscope. Can be efficient.

なお、磁性体標識抗体作製に用いる磁性微粒子は、マ
グネタイトのような鉄系酸化物、遷移金属あるいは希土
類元素からなる強磁性体が好ましく、これらの磁性微粒
子は生物体よりも密度が高いから、電子顕微鏡視野では
黒色に見え、極めて容易にその存在が確認できる。
The magnetic fine particles used for the preparation of the magnetic substance-labeled antibody are preferably iron-based oxides such as magnetite, ferromagnetic substances made of transition metals or rare earth elements, and since these magnetic fine particles have a higher density than organisms, It looks black in the microscope field and its existence can be confirmed very easily.

さて、検体中には目的物体よりも目的物体以外の多数
の異物体が非常に多く含まれているのが通常である。こ
れらの異物体が電子顕微鏡監察の際に妨害となるから、
電子顕微鏡の検体調整の目的の一つは目的物体を精製す
ることにある。生物体は外部磁力には反応しないから、
検体を磁気標識して、目的物体のみを分離する本発明の
方法は目的物体の精製には極めて好都合である。また、
本発明の方法では外部磁力として、水面に局部濃縮され
るように設計された傾斜磁界を磁気標識された検体を含
む検体浮遊液に作用させることによって、目的物体は該
局部濃縮点に濃縮されることになる。そして、該局部濃
縮点に細管を挿入して、前記目的物体を回収すれば、検
体の精製と濃縮が同時に達成できる。なお、水面に濃縮
する理由は目的物体以外の異物体の混入を出来るだけ少
なくするためである。例えば、容器の底面を局部濃縮点
として選んだ場合、異物や沈澱した細胞の混入が避けら
れない。
By the way, it is usual that a large number of foreign bodies other than the target object are contained in the sample much more than the target object. Since these foreign bodies interfere with the inspection of the electron microscope,
One of the purposes of specimen adjustment of an electron microscope is to purify a target object. Since organisms do not respond to external magnetic forces,
The method of the present invention in which the analyte is magnetically labeled and only the target object is separated is extremely convenient for purification of the target object. Also,
In the method of the present invention, as an external magnetic force, a gradient magnetic field designed to be locally concentrated on the water surface is applied to the sample suspension containing the magnetically labeled sample, whereby the target object is concentrated at the local concentration point. It will be. Then, by inserting a thin tube into the local concentration point and collecting the target object, purification and concentration of the sample can be achieved at the same time. The reason for concentrating on the surface of the water is to reduce contamination of foreign matter other than the target object as much as possible. For example, if the bottom of the container is chosen as the local concentration point, contamination of foreign matter and precipitated cells is unavoidable.

濃縮・精製された検体は電子顕微鏡観察のために、通
常直径3mm程度の銅メッシュの上に載せ、観察が容易な
ように染色される。従来の工程では、検体をホルムバー
ル等の支持膜がはられた銅メッシュ上に滴下して付着さ
せた後、余分の検体は、濾紙で吸い取られ、リンタング
ステン酸等の染色液を滴下して染色後、再び染色液を濾
紙で吸い取り自然乾燥した後に電子顕微鏡観察に供され
るのが一般であった。このような検体及び染色液の濾紙
等による除去工程が取られていたので、滴下された大部
分の検体は銅メッシュ上に留まらず濾紙で吸い取られて
しまっていた。前述のように、ウイルス粒子を観察する
ために必要な実用上のウイルス濃度が1ml当たり一億個
以上であることの理由の1つは、上記工程でごく一部の
検体しかメッシュ上に留まらないためである。本発明の
方法に従えば、検体をメッシュ上に滴下し、染色する工
程ではメッシュの着脱が可能なメッシュ保持フィルムの
裏面から、該メッシュ中央部の磁界が最も高くなるよう
な傾斜磁界を該検体に作用させることによって該検体は
該電子顕微鏡観察用メッシュ中央表面上に誘導・固着さ
れる。従って、余分な検体及び染色液を濾紙等で吸い取
る際に、磁気標識された検体はメッシュ上に磁気吸引さ
れているから、濾紙等に吸い取られることはない。この
ため、例えば、ウイルス粒子観察の場合、1ml当り数十
個程度の希薄な検体でも容易に電子顕微鏡観察可能であ
る。
The concentrated / purified sample is usually placed on a copper mesh with a diameter of about 3 mm for electron microscope observation, and stained for easy observation. In the conventional process, after the sample is dropped and attached on a copper mesh on which a supporting film such as formvar is attached, the excess sample is absorbed by filter paper, and a stain solution such as phosphotungstic acid is dropped to stain it. After that, the dyeing solution was sucked again with a filter paper, naturally dried, and then subjected to electron microscope observation. Since the step of removing such a sample and the staining solution with a filter paper was taken, most of the dropped sample was not retained on the copper mesh but was absorbed by the filter paper. As mentioned above, one of the reasons that the practical virus concentration required for observing virus particles is 100 million or more per ml is that only a small amount of the sample remains on the mesh in the above process. This is because. According to the method of the present invention, in the step of dropping the sample on the mesh and dyeing, the gradient magnetic field such that the magnetic field at the center of the mesh is the highest is applied from the back surface of the mesh holding film in which the mesh can be attached and detached. The sample is guided and fixed on the central surface of the electron microscope observation mesh by the action of. Therefore, when the excess sample and the staining solution are sucked with the filter paper or the like, the magnetically labeled sample is magnetically sucked onto the mesh, so that it is not sucked with the filter paper or the like. For this reason, for example, in the case of observing virus particles, it is possible to easily observe an electron microscope even with a diluted sample of about several tens per ml.

本発明の電子顕微鏡検体調整器具を用いれば、以上説
明した本発明の電子顕微鏡検体調整法が誰にでも容易に
実施できる。
By using the electron microscope sample adjusting device of the present invention, anyone can easily carry out the electron microscope sample adjusting method of the present invention described above.

以下に図面を参照して本発明をより具体的に詳述する
が、以下に示すものは本発明の一実施例に過ぎず、本発
明の範囲を何等制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to the drawings, but the following is merely an example of the present invention and does not limit the scope of the present invention.

〔実施例1〕 第1図は本発明に従う電子顕微鏡検体調整法の一実施
例を示す工程図であって、検体を磁気標識する第1工
程、磁気標識された該検体を電子顕微鏡観察用メッシュ
上に傾斜磁界中で誘導・固着する第2工程、傾斜磁界中
でネガティブ染色する第3工程からなる。本実施例に用
いた検体は、A型インフルエンザウイルス(A/石川/7/8
2(H3N2)であって、1ml当り百万個のウイルスが存在す
ることが血球凝集反応及び血球計算板から確かめてい
る。この濃度のインフルエンザウイルスをPBS溶液で10
倍段階希釈をしていき、該ウイルスの電子顕微鏡観察限
界を調べた。まず、検体を磁気標識しない従来の方法で
電子顕微鏡観察したところ、該ウイルス粒子の存在を確
認することができなかった。
[Example 1] Fig. 1 is a process chart showing an example of an electron microscope sample preparation method according to the present invention. The first step is to magnetically label a sample, and the magnetically labeled sample is a mesh for electron microscope observation. It consists of a second step of inducing and fixing in a gradient magnetic field, and a third step of negative staining in a gradient magnetic field. The samples used in this example were influenza A viruses (A / Ishikawa / 7/8
It is 2 (H3N2), and it is confirmed from the hemagglutination reaction and the hemacytometer that 1 million viruses are present per ml. Influenza virus at this concentration was
The virus was serially diluted in two-fold and the electron microscopic observation limit of the virus was examined. First, when the specimen was observed by an electron microscope by a conventional method without magnetic labeling, the presence of the virus particles could not be confirmed.

次に本実施例の第1工程を説明する。磁気標識に用い
た抗体は該ウイルスに対するウサギ高度免疫血清を精製
して得られた1gG抗体であって、これをデキストランで
コートした平均粒径10nmのマグネタイトからなる磁性微
粒子に共有結合して、磁性体標識抗体を得た。検体の磁
気標識は該検体1mlと前記磁性体標識抗体10μlとを35
℃、2.5時間のインキュベートの条件で行なった。
Next, the first step of this example will be described. The antibody used for magnetic labeling was a 1 gG antibody obtained by purifying rabbit hyperimmune serum against the virus, which was covalently bound to magnetic fine particles composed of magnetite with an average particle size of 10 nm coated with dextran to give magnetic properties. A body labeled antibody was obtained. The magnetic label of the sample is 35 ml of 1 ml of the sample and 10 μl of the magnetic substance-labeled antibody.
It was carried out under the conditions of incubation at 2.5 ° C. for 2.5 hours.

次に第2工程を説明する。第2図は磁気標識された検
体を電子顕微鏡観察用メッシュ上に傾斜磁界中で誘導・
固着する器具の断面図であって、図中符号1は電磁石、
1aは電磁石鉄心、2は磁極片(A)、3はメッシュ載
台、4は接着フイルム、5はメッシュホルダー、6はメ
ッシュ、7は細管、8はキャップである。純鉄からなる
円錐形状の磁極片(A)2は電磁石鉄心1aの上に載せら
れ、その周りは非磁性体であるアルミ製のメッシュ載台
3でカバーされている。磁極片(A)2の先端は磁界が
過度に集中しないように切断されており、端面の直径は
2mmである。本実施例では該磁極片端面の磁界が約3KGに
なるように、電磁石1を励磁した。前記メッシュ載台3
の中央は直径4mmの貫通孔が設けられていて、該磁極片
(A)2の端面が前記貫通孔の中央に位置し、かつ、メ
ッシュ載台3の表面よりも0.5mm低くなっている。前記
貫通孔は必ずしも必要でないが、貫通孔を設けた理由
は、メッシュ6と磁極片(A)2の距離を接近させ強い
磁界を得やすいこと、メッシュ6と磁極片(A)2の中
心を合わせやすいことによる。ホルムバール支持膜がは
られた直径3mmの銅メッシュ6は接着性を有するパラフ
イルム(接着フイルム)4に着脱可能なように軽く接着
され、メッシュホルダー5で保持されている。すなわ
ち、該メッシュホルダー5は、第3図に示すように、外
径20mm、内径8mm、厚さ1mmのアクリル樹脂であって、底
面には上述の接着フイルム4がはられ、前記メッシュ6
はメッシュホルダー5の中央部の接着フィルム4に軽く
接着されている。メッシュ6は小さく、薄いためその取
扱いには従来注意が必要であったが、本実施例のような
メッシュホルダー5に入れて取り扱えば、検体調整が簡
単で、検体調整済みのメッシュ6の運搬、保管も容易で
ある。メッシュ6の取り出しの際は、裏面の接着フイル
ム4を指等で軽く押し出せば、メッシュ6は容易に接着
フイルム4からはがれ、メッシュ6をピンセットで取り
出すことができる。
Next, the second step will be described. Fig. 2 shows that a magnetically labeled sample is guided in a gradient magnetic field onto an electron microscope observation mesh.
FIG. 1 is a sectional view of a fixture to be fixed, in which reference numeral 1 is an electromagnet
1a is an electromagnet core, 2 is a magnetic pole piece (A), 3 is a mesh mount, 4 is an adhesive film, 5 is a mesh holder, 6 is a mesh, 7 is a thin tube, and 8 is a cap. A conical pole piece (A) 2 made of pure iron is placed on the electromagnet iron core 1a, and the periphery thereof is covered by a non-magnetic mesh mount 3 made of aluminum. The tip of the pole piece (A) 2 is cut so that the magnetic field is not excessively concentrated, and the diameter of the end face is
It is 2 mm. In this embodiment, the electromagnet 1 was excited so that the magnetic field at the end face of the magnetic pole piece was about 3 KG. The mesh mounting table 3
A through hole having a diameter of 4 mm is provided at the center of the mesh, the end face of the magnetic pole piece (A) 2 is located at the center of the through hole, and is 0.5 mm lower than the surface of the mesh mounting table 3. The through hole is not always necessary, but the reason for providing the through hole is that the mesh 6 and the pole piece (A) 2 can be easily brought close to each other to obtain a strong magnetic field, and the center of the mesh 6 and the pole piece (A) 2 can be easily obtained. It is easy to match. A copper mesh 6 having a diameter of 3 mm on which the formvar support film is attached is lightly removably attached to an adhesive parafilm (adhesive film) 4 and held by a mesh holder 5. That is, as shown in FIG. 3, the mesh holder 5 is an acrylic resin having an outer diameter of 20 mm, an inner diameter of 8 mm, and a thickness of 1 mm, and the adhesive film 4 described above is attached to the bottom surface of the mesh holder 5.
Is lightly adhered to the adhesive film 4 at the center of the mesh holder 5. Since the mesh 6 is small and thin, it has conventionally been necessary to handle it with care. However, if the mesh 6 as in the present embodiment is handled, the sample adjustment is easy and the mesh 6 after the sample adjustment is transported, Easy to store. When the mesh 6 is taken out, if the adhesive film 4 on the back surface is lightly pushed out with a finger or the like, the mesh 6 can be easily peeled off from the adhesive film 4 and the mesh 6 can be taken out with tweezers.

さて、メッシュホルダー5を前記メッシュ載台3中央
に載せ、電磁石1を励磁した状態で毛細管7中の磁気標
識された検体をキャップ8を圧縮して数μlをメッシュ
6上に滴下すると、磁界は前記磁極片(A)2によって
メッシュ中央部が最も高くなるような傾斜磁界が発生す
るため、磁気標識された検体は確実に、メッシュ6中央
部に誘導・磁気吸引される。検体滴下約1分後、電磁石
1を励磁したままで余分の検体を濾紙で吸い取る。以上
の処理で、磁気標識された検体のみがメッシュ6上に固
着されることになる。
Now, when the mesh holder 5 is placed on the center of the mesh table 3 and the electromagnet 1 is excited, the magnetically labeled sample in the capillary tube 7 is compressed by the cap 8 and a few μl is dropped on the mesh 6. A gradient magnetic field is generated by the magnetic pole piece (A) 2 so that the central portion of the mesh becomes the highest, so that the magnetically labeled sample is reliably guided and magnetically attracted to the central portion of the mesh 6. Approximately 1 minute after the dropping of the sample, the excess sample is sucked with a filter paper while the electromagnet 1 is excited. By the above processing, only the magnetically labeled sample is fixed on the mesh 6.

次に第3工程は、電磁石1を励磁したままで、pH7の
1%リンタングステン酸からなるネガティブ染色液を数
μlメッシュ6の上に滴下し、30秒後濾紙で余分の該染
色液を吸い取り自然乾燥する。
Next, in the third step, with the electromagnet 1 still energized, a negative staining solution consisting of 1% phosphotungstic acid having a pH of 7 is dropped onto a few μl mesh 6, and after 30 seconds, the excess staining solution is absorbed with a filter paper. Allow to air dry.

以上説明した電子顕微鏡検体調整法を上述のインフル
エンザウイルスに適用して検出限界を調べた結果、ウイ
ルス濃度1万個/ml程度でも倍率5万倍の電子顕微鏡視
野で非常に簡単にウイルスの検索ができた。写真1は磁
気標識されたインフルエンザウイルスの電子顕微鏡写真
である。該ウイルス粒子の直径は100nmであって、写真
1から明らかなように、黒く見える磁性体標識抗体がウ
イルスの周りに結合しているのが分かる。
As a result of applying the above-mentioned electron microscope sample preparation method to the above-mentioned influenza virus and examining the detection limit, it was possible to very easily search for viruses with a magnification of 50,000 times even at a virus concentration of about 10,000 cells / ml. did it. Photo 1 is an electron micrograph of influenza virus that was magnetically labeled. The diameter of the virus particle is 100 nm, and as is clear from Photo 1, it can be seen that the magnetic substance-labeled antibody appearing black is bound around the virus.

〔実施例2〕 実施例1で説明した検体を磁気標識する第1工程の前
に、ウイルスを凝集させる工程を実施した。即ち、実施
例1で用いた検体1mlに、同じく実施例1で用いた1gG抗
体を20μl加え、35℃、2.5時間、引き続き、4℃l晩
のインキュベーションによって、該ウイルス同士を凝集
させた。この工程の後、実施例1と同じ工程の検体調整
を行った。実施例1と異なるところは、検体を磁気標識
するのに用いた磁性体標識抗体のみである。すなわち、
本実施例ではデキストランコート磁性微粒子にプロテイ
ンAを結合させた。プロテインAはIgG抗体のみに結合
するから、前記IgG抗体によって凝集した該ウイルスが
磁気標識されることになる。このように、予め、ウイル
ス同士を凝集させる前処理を施すことによって電子顕微
鏡の観察がいっそう容易になり、ウイルス濃度数千個/m
l程度でも簡単に検索できた。写真2は凝集したインフ
ルエンザウイルスに磁気標識した電子顕微鏡写真であ
る。十数個のウイルス粒子が凝集し、黒く見える磁性体
標識抗体が該ウイルスの周りに結合していることが一見
して分かる。
[Example 2] Before the first step of magnetically labeling the sample described in Example 1, a step of aggregating the virus was performed. That is, 20 μl of the 1 gG antibody also used in Example 1 was added to 1 ml of the sample used in Example 1, and the viruses were aggregated by incubation at 35 ° C. for 2.5 hours and then at 4 ° C. overnight. After this step, sample preparation was performed in the same step as in Example 1. The difference from Example 1 is only the magnetic substance-labeled antibody used for magnetically labeling the sample. That is,
In this example, protein A was bound to dextran-coated magnetic particles. Since protein A binds only to the IgG antibody, the virus aggregated by the IgG antibody is magnetically labeled. In this way, pre-treatment for agglutinating the viruses with each other makes it easier to observe with an electron microscope.
I was able to easily search even about l. Photo 2 is an electron micrograph of the aggregated influenza virus magnetically labeled. It can be seen at a glance that dozens of virus particles are aggregated and the magnetic substance-labeled antibody that looks black is bound around the virus.

本実施例のように予め検体を凝集させ電子顕微鏡の観
察を容易にする方法は従来から免疫電子顕微鏡法として
公知であるが、検体を磁気標識する方法は、本発明が初
めてである。従来の免疫電子顕微鏡法よりも検出感度が
5桁以上改善された。
The method of aggregating a sample in advance to facilitate observation with an electron microscope as in this example is conventionally known as immunoelectron microscopy, but the present invention is the first method of magnetically labeling a sample. The detection sensitivity was improved by 5 orders of magnitude or more as compared with the conventional immunoelectron microscopy.

〔実施例3〕 実施例2で説明したウイルス凝集工程、検体を磁気標
識する第1工程の後に、検体の濃縮・精製工程を実施
し、しかる後に実施例2の第2工程、第3工程の検体調
整を行った。次に、検体濃縮・精製工程を詳しく説明す
る。
[Example 3] After the virus aggregation step and the first step of magnetically labeling the sample described in Example 2, the sample concentration / purification step is performed, and then the second step and the third step of Example 2 are performed. Sample preparation was performed. Next, the sample concentration / purification process will be described in detail.

第4図は検体濃縮・精製工程を説明する図であって、
(a)は濃縮・精製工程、(b)は回収工程を示すもの
である。図中符号10は容器、11は磁気標識された検体、
11−1は回収された検体、12は磁極片(B)である。電
磁石1からでた磁束は磁極片(B)12に集まるように磁
気回路が形成されているので、磁極片(B)12の真下の
水面の磁界が最も高くなるような傾斜磁界が発生する。
本実施例では最大磁界は8KGであった。なお、磁極片
(B)12の中心は中空であって、毛細管7が挿入できる
ようになっている。容器10には第1工程後の磁気標識さ
れた検体11を含む検体浮遊液1mlが入っている。
FIG. 4 is a diagram for explaining the sample concentration / purification process,
(A) shows the concentration / purification process, and (b) shows the recovery process. In the figure, reference numeral 10 is a container, 11 is a magnetically labeled specimen,
11-1 is the collected specimen, and 12 is the magnetic pole piece (B). Since the magnetic circuit is formed so that the magnetic flux generated from the electromagnet 1 collects on the magnetic pole piece (B) 12, a gradient magnetic field is generated so that the magnetic field on the water surface directly below the magnetic pole piece (B) 12 is the highest.
In this example, the maximum magnetic field was 8KG. The pole piece (B) 12 has a hollow center so that the capillary tube 7 can be inserted therein. The container 10 contains 1 ml of a sample suspension containing the magnetically labeled sample 11 after the first step.

濃縮・精製工程(a)においては、前記電磁石1と磁
極片(B)12の間に容器10を挿入し、電磁石1を励磁す
ると、磁気標識された検体11は磁極片(B)12の真下の
水面に誘導され濃縮される。この時、検体浮遊液中の各
種混入物は磁力に反応しないから、前記濃縮点には磁気
標識された検体11のみが存在することになって、検体11
の濃縮と精製が同時に行なわれることになる。
In the concentration / purification step (a), when the container 10 is inserted between the electromagnet 1 and the magnetic pole piece (B) 12 and the electromagnet 1 is excited, the magnetically labeled specimen 11 is directly below the magnetic pole piece (B) 12. It is induced and concentrated on the water surface of. At this time, since various contaminants in the sample suspension do not react to the magnetic force, only the magnetically labeled sample 11 is present at the concentration point.
Will be simultaneously concentrated and purified.

検体回収工程(b)においては、前記電磁石1を励磁
したままで、前記磁極片(B)12の貫通穴に毛細管7を
挿入して、前記濃縮点水面に接触させると、検体浮遊液
は毛細管現象で、また、磁気標識された検体は磁気吸引
力によって該細管の中に回収される。本実施例では、毛
細管7として外径1.1mm、内径0.5mmの毛細管を用いた。
毛細管7の中には毛細管現象によって、約5μlの溶液
が自然吸引された。なお、キャップ8は回収した検体を
メッシュ上に滴下する次の工程の際に用いるものであ
る。
In the sample collecting step (b), when the electromagnet 1 is kept excited, the capillary tube 7 is inserted into the through hole of the magnetic pole piece (B) 12 and brought into contact with the water surface at the concentration point. Phenomenon, and magnetically labeled analytes are collected in the capillaries by magnetic attraction. In this example, a capillary tube having an outer diameter of 1.1 mm and an inner diameter of 0.5 mm was used as the capillary tube 7.
About 5 μl of the solution was naturally sucked into the capillary tube 7 due to the capillary phenomenon. The cap 8 is used in the next step of dropping the collected sample on the mesh.

従来、電子顕微鏡検体調整において、検体の精製が充
分でないと電子顕微鏡観察に著しい支障をきたしていた
が、本実施例の精製効果によって電子顕微鏡観察が非常
に容易になるとともに、濃縮効果によって検出感度が向
上し、ウイルス濃度数百個/ml以下でも短時間で検索す
ることが可能になった。
Conventionally, in the electron microscope sample preparation, if the sample was not sufficiently purified, the electron microscope observation was significantly hindered.However, the purification effect of the present example makes the electron microscope observation very easy, and the concentration effect causes detection sensitivity. It became possible to search in a short time even when the virus concentration was several hundreds / ml or less.

以上説明した検体調整法は、次に説明する検体調整器
具を使用することによって、誰でも簡単に効率よく実施
することができる。
The sample adjusting method described above can be easily and efficiently performed by anyone by using the sample adjusting device described below.

第5図、第6図は電子顕微鏡検体調整器具の構成を示
す図であって、図中符号13は磁極片(B)12を保持する
継鉄(A)、14は継鉄(B)である。継鉄(A)13は継
鉄クランプねじ15によって継鉄(B)14と連結され、第
6図に示すように、任意の方向に固定できる。電磁石1
からでた磁束は容器10を貫通した後、磁極片(B)12で
集束され、継鉄(A)13と継鉄(B)14を通って再び電
磁石1に戻るように磁気回路が形成される。電磁石1と
磁極片(B)12の距離が11mmのとき、電磁石1に1Aの電
流を流すと磁極片(B)12直下0.5mmの位置での磁界は8
KGであった。容器10は容器支持台16に設けられた容器案
内面17にセットされ、容器支持台クランプネジ18によっ
て高さ調節ステージ19に取り付けられている。容器支持
台16は高さ調節ステージ19によって、任意の高さに調節
可能であり、また、第6図に示すように、任意の方向に
固定できる。
FIGS. 5 and 6 are views showing the structure of the electron microscope specimen adjusting device, in which reference numeral 13 is a yoke (A) holding the pole piece (B) 12, and 14 is a yoke (B). is there. The yoke (A) 13 is connected to the yoke (B) 14 by a yoke clamp screw 15 and can be fixed in any direction as shown in FIG. Electromagnet 1
After passing through the container 10, the generated magnetic flux is focused by the magnetic pole piece (B) 12 and a magnetic circuit is formed so as to return to the electromagnet 1 through the yoke (A) 13 and the yoke (B) 14. It When the distance between the electromagnet 1 and the pole piece (B) 12 is 11 mm, and a current of 1 A is applied to the electromagnet 1, the magnetic field at a position 0.5 mm directly below the pole piece (B) 12 is 8 mm.
It was KG. The container 10 is set on a container guide surface 17 provided on the container support 16 and attached to a height adjusting stage 19 by a container support clamp screw 18. The container support 16 can be adjusted to any height by the height adjustment stage 19, and can be fixed in any direction as shown in FIG.

さて、上述した本実施例の検体精製・濃縮工程は、本
調整器具を第5図に示すように組み立てて行なう。ま
ず、磁極方片(B)12から毛細管12を外した状態で、検
体を入れた容器10を容器案内面17に載せ、磁極片(B)
12と容器10の水面の距離が5mmになるように、高さ調節
ステージ19によつて調節する。次に、電磁石に1Aを通電
し、磁気標識された検体を磁極片(B)12の真下の水面
に誘導・濃縮する。約1分後、毛細管7を磁極片(B)
12の貫通孔に差し込み、高さ調節ステージによって容器
10を上に持ち上げ、毛細管7を容器10の水面に接触させ
ると、瞬間的に磁気標識された検体は検体浮遊液ととも
に毛細管7の中に磁気吸引力によって吸い込まれる。検
体の回収を確実にするために、毛細管7を水面に接触さ
せる操作を繰り返すことが好ましい。何故ならば、検体
は水面に濃縮されているので、毛細管7が水面に接触す
る瞬間が最も回収されやすく、毛細管7を水面の中に入
れすぎると回収困難になるからである。電磁石1の通電
を停止した後に、磁極片(B)12から毛細管7を取り出
せば検体は毛細管7の中に回収される。
Now, the sample purification / concentration step of the present embodiment described above is performed by assembling the present adjusting device as shown in FIG. First, with the capillary tube 12 removed from the magnetic pole piece (B) 12, the container 10 containing the sample is placed on the container guide surface 17, and the magnetic pole piece (B) is placed.
The height adjustment stage 19 adjusts the distance between the water surface of the container 12 and the water surface of the container 10 to be 5 mm. Next, the electromagnet is energized at 1 A to induce and concentrate the magnetically labeled specimen on the water surface directly below the magnetic pole piece (B) 12. After about 1 minute, set the capillary tube 7 to the magnetic pole piece (B).
Insert into the 12 through holes and use the height adjustment stage to
When 10 is lifted up and the capillary 7 is brought into contact with the water surface of the container 10, the magnetically labeled sample is instantaneously sucked into the capillary 7 together with the sample suspension liquid by magnetic attraction. In order to ensure the recovery of the sample, it is preferable to repeat the operation of bringing the capillary tube 7 into contact with the water surface. This is because the sample is concentrated on the water surface, so that the moment the capillary tube 7 comes into contact with the water surface is most easily collected, and if the capillary tube 7 is put too much into the water surface, it becomes difficult to collect the sample. If the capillary tube 7 is taken out from the magnetic pole piece (B) 12 after the energization of the electromagnet 1 is stopped, the sample is collected in the capillary tube 7.

次に、本調整器具を用いた、第2工程、第3工程の実
施法を説明する。第2工程、第3工程は、本調整器具を
第6図に示すように組み立てる。すなわち、電磁石1上
にあった磁極片(B)2と容器支持台16をそれぞれ継鉄
クランプねじ15、容器支持台クランプねじ18を緩め、回
転させて退避させる。電磁石1の鉄心1a上に第2図に示
したように前記磁極片(A)2、さらに該磁極片(A)
2の上に前記メッシュ載台3を載せる。該載台3の中央
上に第3図で示したメッシュホルダー5を載せる。次
に、電磁石1に0.5Aの電流を流して電磁石1を励磁した
状態で、前記毛細管7に回収した検体を滴下する。メッ
シュホルダー5裏面からは磁極片(A)2中心の磁界が
最も高くなる傾斜磁界が作用しているから、磁気標識さ
れた検体はメッシュ6中央表面上に磁気吸引され、メッ
シュ6に固着される。この際、磁界があまり強いとメッ
シュ6のホルムバール支持膜が破れることがあるので、
上述のように検体を濃縮・精製する工程よりも磁界を弱
くすることが好ましい。本検体調整器具では電磁石1に
0.5A通電した場合、メッシュ6上の磁界は約2.5KGであ
った。
Next, a method for carrying out the second step and the third step using the present adjusting instrument will be described. In the second step and the third step, the present adjusting device is assembled as shown in FIG. That is, the pole piece (B) 2 and the container support 16 which were on the electromagnet 1 are loosened by rotating the yoke clamp screw 15 and the container support clamp screw 18, respectively, and retracted. On the iron core 1a of the electromagnet 1, as shown in FIG. 2, the magnetic pole piece (A) 2 and further the magnetic pole piece (A).
The mesh mounting table 3 is placed on top of 2. The mesh holder 5 shown in FIG. 3 is placed on the center of the platform 3. Next, a current of 0.5 A is applied to the electromagnet 1 to excite the electromagnet 1, and the collected specimen is dropped into the capillary tube 7. Since the gradient magnetic field at which the magnetic field at the center of the magnetic pole piece (A) 2 is highest acts from the back surface of the mesh holder 5, the magnetically labeled sample is magnetically attracted onto the central surface of the mesh 6 and fixed to the mesh 6. . At this time, if the magnetic field is too strong, the Holmvar support film of the mesh 6 may break, so
It is preferable to weaken the magnetic field as compared with the step of concentrating and purifying the sample as described above. In this sample adjustment device, the electromagnet 1
When 0.5 A was applied, the magnetic field on the mesh 6 was about 2.5 KG.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明に従う電子顕微鏡検体調
整法によれば、検体は抗原抗体反応で磁性体標識抗体と
結合し磁気標識されているから、外部磁力で確実に電子
顕微鏡観察用メッシュ上に誘導・固着することができ、
検体の検出感度が飛躍的に向上する。また、本発明の検
体調整器具を用いることによって、一連の検体調整工程
が効率的にかつ容易に実施できる。上述した実施例で
は、検体としてインフルエンザウイルスの場合を説明し
たが、本発明の検体調整法はウイルスに限られるもので
はなく、癌細胞、リンパ球等の各種細胞の電子顕微鏡観
察にももちろん適用できる。
As described in detail above, according to the electron microscope specimen preparation method according to the present invention, the specimen is magnetically labeled by binding with the magnetic substance-labeled antibody in the antigen-antibody reaction, so that it can be reliably applied to the electron microscope observation mesh by the external magnetic force. Can be guided and fixed to
The detection sensitivity of the sample is dramatically improved. Moreover, a series of sample adjusting steps can be efficiently and easily carried out by using the sample adjusting device of the present invention. In the above-mentioned examples, the case of influenza virus was explained as a sample, but the sample preparation method of the present invention is not limited to viruses, and can be of course applied to electron microscope observation of various cells such as cancer cells and lymphocytes. .

また、メッシュ上に検体をネガティブ染色する方法の
みならず、検体を樹脂に埋め込み薄切片を透過電子顕微
鏡で観察する方法にも適用できる。すなわち、従来薄切
片を作製する場合、検体を遠心沈降する操作を繰り返し
ながら、検体を固定、脱水、埋め込みの過程を進める方
法が取られていたが、本発明の検体調整法を適用すれ
ば、遠心沈降する代わりに、傾斜磁界中で検体を局所に
誘導、保持できるから、検体の固定、アルコールによる
脱水が容易に行え、また、埋め込みの際にも検体を局所
に集中できるから、ミクロトームで切断するのが容易に
なる。
Further, not only the method of negatively staining the sample on the mesh, but also the method of embedding the sample in resin and observing the thin section with a transmission electron microscope can be applied. That is, in the case of preparing a thin slice, a method of advancing the process of fixing, dehydrating, and embedding the sample was repeated while repeating the operation of centrifuging the sample, but if the sample preparation method of the present invention is applied, Instead of centrifugation and sedimentation, the sample can be locally guided and held in a gradient magnetic field, so that the sample can be easily fixed and dehydrated with alcohol, and the sample can be concentrated locally even when it is embedded, so it can be cut with a microtome. Easy to do.

本発明によれば、培養不能の未知の極めて微量のウイ
ルスを直接検出できるので、ウイルス学に貢献するとこ
ろが非常に大きい。例えば、非A、非B、の肝炎ウイル
スの発見に寄与できる。また癌細胞等の細胞レベルの早
期診断にも有効であり、癌細胞から遊離して血液等の体
液中に移転しつつある極微量の癌細胞の観察ができる。
このように、本発明が医学・医療分野や分子生物学等の
理学分野、細胞工学、遺伝子工学等のバイオテクノロジ
ーの分野で果たす効果は計り知れない。
According to the present invention, an extremely small amount of unknown virus that cannot be cultured can be directly detected, which greatly contributes to virology. For example, it can contribute to the discovery of non-A, non-B hepatitis viruses. It is also effective for early diagnosis of the cell level of cancer cells and the like, and it is possible to observe a very small amount of cancer cells which are released from the cancer cells and are transferred to body fluids such as blood.
As described above, the effects of the present invention in the fields of medicine / medical science, science such as molecular biology, and fields of biotechnology such as cell engineering and genetic engineering are immeasurable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に従う電子顕微鏡検体調整法の一実施例
を示す工程図、第2図は磁気標識された検体を電子顕微
鏡観察用メッシュ上に傾斜磁界中で誘導・固着する器具
の断面図、第3図はメッシュホルダーの概略図、第4図
は検体濃縮・精製工程を説明する図であって、(a)は
濃縮・精製工程、(b)は回収工程、第5図、第6図は
電子顕微鏡検体調整器具の構成を示す図である。 1……電磁石、1a……電磁石鉄心、2……磁極片
(A)、3……メッシュ載台、4……接着フィルム、5
……メッシュホルダー、6……メッシュ、7……細管、
8……キャップ、10……容器、11……磁気標識された検
体、11−1……回収された検体、12……磁極片(B)、
13……継鉄(A)、14……継鉄(B)、15……継鉄クラ
ンプねじ、16……容器支持台、17……容器案内面、18…
…容器支持台クランプネジ、19……高さ調節ステージ、
20……台。
FIG. 1 is a process diagram showing an embodiment of an electron microscope specimen preparation method according to the present invention, and FIG. 2 is a sectional view of an instrument for inducing and fixing a magnetically labeled specimen on an electron microscope observing mesh in a gradient magnetic field. FIG. 3 is a schematic view of a mesh holder, FIG. 4 is a diagram for explaining a sample concentration / purification step, (a) is a concentration / purification step, (b) is a recovery step, and FIGS. The figure is a diagram showing a configuration of an electron microscope sample adjusting device. 1 ... electromagnet, 1a ... electromagnet iron core, 2 ... pole piece (A), 3 ... mesh mount, 4 ... adhesive film, 5
…… Mesh holder, 6 …… Mesh, 7 …… Small tube,
8 ... Cap, 10 ... Container, 11 ... Magnetically labeled specimen, 11-1 ... Recovered specimen, 12 ... Magnetic pole piece (B),
13 ... Yoke (A), 14 ... Yoke (B), 15 ... Yoke clamp screw, 16 ... Container support, 17 ... Container guide surface, 18 ...
… Container support clamp screws, 19… Height adjustment stage,
20 cars.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】検体に磁気標識する第1の工程と、前記第
1工程で磁気標識された検体に傾斜磁界を作用させて該
磁気標識検体を電子顕微鏡観察用メッシュ表面上に誘導
・固着する第2の工程と、前記第2工程で固着された該
磁気標識検体を前記傾斜磁界中でネガティブ染色する第
3の工程とを少なくとも含むことを特徴とする電子顕微
鏡検体調整法。
1. A first step of magnetically labeling a sample, and a gradient magnetic field is applied to the magnetically labeled sample in the first step to guide and fix the magnetically labeled sample on the surface of a mesh for electron microscope observation. An electron microscope specimen preparation method comprising at least a second step and a third step of negatively staining the magnetically labeled specimen fixed in the second step in the gradient magnetic field.
【請求項2】請求項1に記載の電子顕微鏡検体調整法に
おいて、第1の工程以前に予め、検体と特異的に反応す
る抗体を該検体を含む検体浮遊液に加え、該検体を凝集
させる工程を行ない、その後、前記第1工程以下の工程
を行なうことを特徴とする電子顕微鏡検体調整法。
2. The electron microscope specimen preparation method according to claim 1, wherein an antibody that specifically reacts with the specimen is added to the specimen suspension containing the specimen in advance before the first step to aggregate the specimen. A method for preparing an electron microscope specimen, which comprises performing steps, and then performing the steps after the first step.
【請求項3】請求項1に記載の電子顕微鏡検体調整法に
おいて、第1工程後の磁気標識された検体を含む検体浮
遊液に傾斜磁界を作用させて該磁気標識検体のみを水面
に局部濃縮した後、該局部濃縮点に細管を挿入して、該
磁気標識検体を回収する検体濃縮・精製工程を実施した
後、第2工程以下の工程がなされることを特徴とする電
子顕微鏡検体調整法。
3. The electron microscope sample preparation method according to claim 1, wherein a gradient magnetic field is applied to the sample suspension containing the magnetically labeled sample after the first step to locally concentrate only the magnetically labeled sample on the water surface. After that, a thin tube is inserted at the local concentration point, and a sample concentration / purification step of collecting the magnetically labeled sample is performed, and then the steps from the second step onward are performed. .
【請求項4】請求項1に記載の電子顕微鏡検体調整法に
おいて、第2の工程で用いる電子顕微鏡観察用メッシュ
が着脱可能なフィルム上に保持され、該フィルム裏面か
ら、該電子顕微鏡観察用メッシュ部の磁界が最も高くな
るような傾斜磁界を磁気標識検体に作用させることによ
って該検体を該電子顕微鏡観察用メッシュ表面上に誘導
・固着することを特徴とする電子顕微鏡検体調整法。
4. The electron microscope specimen adjusting method according to claim 1, wherein the electron microscope observing mesh used in the second step is held on a removable film, and the electron microscope observing mesh is held from the back surface of the film. A method for preparing an electron microscope specimen, which comprises inducing and fixing the specimen on the surface of the mesh for electron microscope observation by causing a gradient magnetic field having the highest magnetic field of the part to act on the magnetically labeled specimen.
【請求項5】容器水面上への磁気標識検体の局部濃縮機
構と、該検体の回収機構と電子顕微鏡観察用メッシュの
保持機構と、該電子顕微鏡観察用メッシュ表面上への該
検体の誘導・固着機構を少なくとも具備することを特徴
とする電子顕微鏡検体調整器具。
5. A mechanism for locally concentrating a magnetically labeled specimen on the water surface of a container, a mechanism for collecting the specimen, a mechanism for holding an electron microscope observation mesh, and a mechanism for guiding the specimen onto the surface of the electron microscope observation mesh. An electron microscope specimen adjusting device comprising at least a fixing mechanism.
JP63272106A 1988-04-26 1988-10-28 Electron microscope sample preparation method and electron microscope sample preparation instrument Expired - Fee Related JP2567068B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63272106A JP2567068B2 (en) 1988-10-28 1988-10-28 Electron microscope sample preparation method and electron microscope sample preparation instrument
DE68916843T DE68916843T2 (en) 1988-04-26 1989-04-26 Microparticles, method and apparatus for collecting samples for use in labeling immune responses and method and apparatus for preparing samples.
EP89304171A EP0339980B1 (en) 1988-04-26 1989-04-26 Magnetic micro-particles, method and apparatus for collecting specimens for use in labelling immune reactions, and method and device for preparing specimens
US07/991,507 US5340749A (en) 1988-04-26 1992-12-17 Method for collecting and preparing specimens for immune reactions
US08/249,152 US5498550A (en) 1988-04-26 1994-05-25 Device for collecting or preparing specimens using magnetic micro-particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272106A JP2567068B2 (en) 1988-10-28 1988-10-28 Electron microscope sample preparation method and electron microscope sample preparation instrument

Publications (2)

Publication Number Publication Date
JPH02118431A JPH02118431A (en) 1990-05-02
JP2567068B2 true JP2567068B2 (en) 1996-12-25

Family

ID=17509165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272106A Expired - Fee Related JP2567068B2 (en) 1988-04-26 1988-10-28 Electron microscope sample preparation method and electron microscope sample preparation instrument

Country Status (1)

Country Link
JP (1) JP2567068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186459A (en) * 2008-01-10 2009-08-20 Becton Dickinson & Co Rapid particle detection assay

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0100728D0 (en) * 2001-03-05 2001-03-05 Sidec Technologies Ab Karolins New method
JP5925039B2 (en) * 2011-05-02 2016-05-25 三菱レイヨン株式会社 Staining agent for electron microscope observation and staining method using the staining agent
JP6818346B2 (en) * 2016-04-28 2021-01-20 国立大学法人浜松医科大学 Detection kits and methods for direct identification and quantification of nanoparticles by electron microscopy
JP6922565B2 (en) * 2017-02-21 2021-08-18 住友金属鉱山株式会社 Method for manufacturing resin-embedded sample and transmission electron microscope sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186459A (en) * 2008-01-10 2009-08-20 Becton Dickinson & Co Rapid particle detection assay

Also Published As

Publication number Publication date
JPH02118431A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US5340749A (en) Method for collecting and preparing specimens for immune reactions
US6623983B1 (en) Apparatus and methods for capture and analysis of particulate entities
US5985153A (en) Magnetic separation apparatus and methods employing an internal magnetic capture gradient and an external transport force
JP2727075B2 (en) Method and apparatus for performing immunoassay test
WO1997046882A9 (en) Magnetic separation employing external and internal gradients
JP2009192539A5 (en)
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
JP2567068B2 (en) Electron microscope sample preparation method and electron microscope sample preparation instrument
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
WO2007004288A1 (en) Method for labeling/separation of cells and reagent for labeling/separation of cells
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
EP2701851B1 (en) Fluidic in-line particle immobilization and collection system and method for using the same
JPH0721442B2 (en) Electron microscope sample preparation method and electron microscope sample preparation instrument
JPS63106559A (en) Method and apparatus for laser magnetic immunoassay
JPH02118452A (en) Method for screening cellular specimen
US20220308048A1 (en) Point of care device for early and rapid disease diagnosis
Miller et al. Concerted use of immunologic and ultrastructural analyses in diagnostic medicine: Immunoelectron microscopy and correlative microscopy
JPH01273584A (en) Method for collecting detection object and apparatus therefor
KR102418963B1 (en) Apparatus and method for microparticle analysis
JPH01321363A (en) Sample adjustment for implementing laser magnetic immunological measurement
JP2020096555A (en) Method for collecting cells
JPH02118451A (en) Method for screening cellular specimen
JPH01321362A (en) Sample adjustment for implementing laser magnetic immunological measurement
Mizutani et al. Electron microscopic studies of viruses labeled with magnetite
JP2005287375A (en) Method for labeling and separating cell, and cell-labeling and separating agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees