JPH01321362A - Sample adjustment for implementing laser magnetic immunological measurement - Google Patents

Sample adjustment for implementing laser magnetic immunological measurement

Info

Publication number
JPH01321362A
JPH01321362A JP63156519A JP15651988A JPH01321362A JP H01321362 A JPH01321362 A JP H01321362A JP 63156519 A JP63156519 A JP 63156519A JP 15651988 A JP15651988 A JP 15651988A JP H01321362 A JPH01321362 A JP H01321362A
Authority
JP
Japan
Prior art keywords
antibody
antigen
magnetic
sample
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156519A
Other languages
Japanese (ja)
Inventor
Koichi Fujiwara
幸一 藤原
Hiromichi Mizutani
水谷 裕迪
Hiroko Mizutani
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63156519A priority Critical patent/JPH01321362A/en
Priority to DE68916843T priority patent/DE68916843T2/en
Priority to EP89304171A priority patent/EP0339980B1/en
Publication of JPH01321362A publication Critical patent/JPH01321362A/en
Priority to US07/991,507 priority patent/US5340749A/en
Priority to US08/249,152 priority patent/US5498550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To achieve reduction in non-specific reaction by causing an antigen- antibody reaction after a centrifugal sedimentation of a magnetically labelled antibody and a sample. CONSTITUTION:In a first process, an antigen-antibody reaction is caused between a magnetically labelled antibody wherein a magnetic fine particle is added to a specified antigen or antibody and an antigen or antibody as sample. Then, in a second process, a magnetic field is made to act on a solution containing a magnetically labelled sample composite as combination of the magnetically labelled antibody and the sample following the first process. With such an arrangement, the magnetically labelled sample composite is induced and concentrated in a laser light irradiation area. Here, before the antigen-antibody reaction, the magnetically labelled antibody and the sample are settled by a centrifugal operation to concentrate and a processing is performed for a higher probability of reaction. Thus, only a limited amount of the magnetically labelled antibody is enough even for a very small amount of the sample thereby making this method effective for reduction in non-specific reaction based on an unreacted magnetically labelled antibody.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、抗原抗体反応を利用した免疫測定方法に関す
るものである。更に詳述するならば、本発明は極めて微
mの検体から特定の抗体または抗原を定量的に検出可能
なレーザ磁気免疫測定方法を実施するための検体調整方
法に関する乙のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an immunoassay method using antigen-antibody reactions. More specifically, the present invention relates to a sample preparation method for carrying out a laser magnetic immunoassay method capable of quantitatively detecting a specific antibody or antigen from an extremely small sample.

「従来の技術」 後天性免疫不全症候群、成人T細胞白血病等のような新
型ウィルス性疾病、あるいは各種ガンの早期検査法とし
て、抗原抗体反応を利用した免疫測定法の開発が、現在
、阻界的規模で推進されている。
``Conventional technology'' The development of immunoassay methods that utilize antigen-antibody reactions as an early detection method for new viral diseases such as acquired immunodeficiency syndrome, adult T-cell leukemia, etc., and various cancers is currently facing a hurdle. It is being promoted on a large scale.

従来から知られる微量免疫測定法としては、ラジオイム
ノアッセイ(以下、RIA法と記す)、酵素イムノアッ
セイ(EIA)、蛍光イムノアッセイ(F’lA)法等
が既に実用化されている。これらの方法は、それぞれア
イソトープ、酵素、蛍光物質を標識として付加した抗原
または抗体を用い、これと特異的に反応する抗体または
抗原の有無を検出する方法である。
As conventionally known microimmunoassay methods, radioimmunoassay (hereinafter referred to as RIA method), enzyme immunoassay (EIA), fluorescence immunoassay (F'lA) method, etc. have already been put into practical use. These methods use an antigen or antibody labeled with an isotope, an enzyme, or a fluorescent substance, respectively, and detect the presence or absence of an antibody or antigen that specifically reacts with the antigen or antibody.

RIAは、標識化されたアイソトープの放射線量を測定
することにより抗原抗体反応に寄与した検体量を定量す
るものであり、ピコグラム程度の超微量測定が可能な現
在唯一の方法である。しかしながら、この方法は放射性
物質を利用するので、特殊設備を必要とし、また、半減
期等による標識効果の減衰等を考慮しなければらないの
で、実施には大きな制約がある。更に、放射性廃棄物処
理が社会問題となっている現状を考慮すると、その実施
は自ずと制限される。
RIA quantifies the amount of specimen contributing to an antigen-antibody reaction by measuring the radiation dose of a labeled isotope, and is currently the only method capable of measuring ultra-trace amounts on the order of picograms. However, since this method uses radioactive substances, it requires special equipment, and the attenuation of the labeling effect due to half-life, etc. must be taken into consideration, so there are significant restrictions on its implementation. Furthermore, considering the current situation where radioactive waste disposal has become a social issue, its implementation is naturally limited.

一方、酵素、蛍光体を標識として用いる方法は、抗原抗
体反応に寄与した検体mを、発色や発光を観測すること
により検出する方法であり、RIA法の如き実施上の制
約はない。しかしながら、検出限界はナノグラム程度で
ある。
On the other hand, a method using an enzyme or a fluorophore as a label is a method of detecting the specimen m that has contributed to the antigen-antibody reaction by observing color development or luminescence, and there are no restrictions on implementation as in the RIA method. However, the detection limit is on the order of nanograms.

上述のように、従来の免疫測定法においては、高い検出
感度を有するRIA法は、放射性物質を使用するために
、その実施については多くの制約があり、一方、実施の
容易な酵素イムノアッセイ(EIA)法、蛍光イムノア
ッセイ(F’lA)法等は感度が低いため、主として抗
体検査に適用されていた。抗体検査は人体の免疫反応に
よってつくられた抗体を検出する方法であるから、感染
直後の血中のウィルスの直接検出は原理的に不可能であ
る。
As mentioned above, in conventional immunoassay methods, the RIA method, which has a high detection sensitivity, has many restrictions due to the use of radioactive substances. ) method, fluorescence immunoassay (F'lA) method, etc. have low sensitivity and have been mainly applied to antibody tests. Since antibody testing is a method of detecting antibodies produced by the human body's immune response, it is theoretically impossible to directly detect the virus in the blood immediately after infection.

また、レーザ光を利用して抗原抗体反応の有無を検出す
る方法として、例えば、主に肝臓癌の検出を目的として
開発されたAPP(アルファ・フェトプロティン)を利
用した方法がある。従来のレーザ光散乱法の根本的欠点
は、検体が分散された溶液の1部分のみをレーザ照射し
て検出するために、これ以上に検出感度を高めることは
原理的に望外のものである。また、このような本質的欠
点があるため、多量の検体を必要としていた。
Further, as a method for detecting the presence or absence of an antigen-antibody reaction using laser light, for example, there is a method using APP (alpha-fetoprotein), which was developed mainly for the purpose of detecting liver cancer. The fundamental drawback of the conventional laser light scattering method is that only a portion of the solution in which the analyte is dispersed is irradiated with a laser for detection, so it is theoretically undesirable to further increase the detection sensitivity. Furthermore, due to these essential drawbacks, a large amount of specimen was required.

これに対し、本発明者らは、従来の方法とは原理を異に
する免疫測定法の研究を行ない、先に特願昭61−22
4567号、特願昭61−252427号、特願昭61
−254164号、特願昭62−22062号、特願昭
62−22063号、特願昭62−152791号、特
願昭61−152792号、特願昭62−184902
号、特願昭62−264319号、特願昭62−267
481号としてレーザ磁気免疫測定法及び測定装置につ
いての発明を特許出願している。これらの新しい免疫測
定法は標識材料として磁性微粒子を用いる点に特徴があ
り、アイソトープを用いないでピコグラムの超微量検出
が可能である。本発明者らは上述の特許に基づき、磁性
微粒子を抗原あるいは抗体に標識し、初めて、ウィルス
の検出等を行なった。この新しいレーザ磁気免疫測定法
は従来量も検出感度が高いとされているRIA法よりら
、検出感度が高いことが確認されつつある。例えば、本
発明者らが日本ウィルス学会第35回総会(昭和62年
11月 講演番号4011r新しく開発した免疫測定装
置を用いたウィルスの検出実験」)で発表したように、
不活性化したインフルエンザウィルスA%B型をウィル
スのモデルとして用いて、ウィルス検出実験を行なった
ところ、1mQ中に1個程度のウィルスが存在する場合
でも検出できた。レーザ光をa縮された検体に照射して
検体からの出射光を検出する方法は、このように検出感
度が非常に高い方法である。
In response, the present inventors conducted research on an immunoassay method that differs in principle from conventional methods, and previously filed a patent application for
No. 4567, Patent Application No. 1982-252427, Patent Application No. 1983
-254164, Japanese Patent Application No. 62-22062, Japanese Patent Application No. 1982-22063, Japanese Patent Application No. 152791-1982, Japanese Patent Application No. 152792-1982, Japanese Patent Application No. 184902-1983
No., Patent Application No. 1982-264319, Patent Application No. 62-267
No. 481, he has filed a patent application for an invention relating to a laser magnetic immunoassay method and a measuring device. These new immunoassay methods are characterized by the use of magnetic particles as labeling materials, and are capable of detecting ultra-trace amounts of picograms without using isotopes. Based on the above-mentioned patent, the present inventors labeled magnetic fine particles with antigens or antibodies and detected viruses for the first time. It is being confirmed that this new laser magnetic immunoassay method has a higher detection sensitivity than the conventional RIA method, which is said to have a high detection sensitivity. For example, as the present inventors announced at the 35th general meeting of the Japanese Society of Virology (November 1988, lecture number 4011r, "Virus detection experiment using a newly developed immunoassay device"),
When a virus detection experiment was conducted using inactivated influenza virus type A%B as a virus model, it was possible to detect even when about one virus was present in 1 mQ. The method of irradiating the a-shrinked specimen with a laser beam and detecting the light emitted from the specimen has extremely high detection sensitivity as described above.

「発明が解決しようとする課題」 ところで、上述のRIA法、EIA法、EIA法等の標
識法においては、それぞれアイソトープ、酵素、蛍光色
素の各標識試薬を検体に過剰に加えて、検体との間で抗
原抗体反応させた後、未反応の標識試薬を洗浄により除
去する方法が取られている。検体の量が少なくなるほど
標識試薬が検体よりら大過剰となるため、洗浄で除去で
きずに残留する標識試薬の非特異反応が重要な問題とな
っていた。このような問題は、先に出願したレーザ磁気
免疫測定法においてら、同様に問題となっている。
"Problems to be Solved by the Invention" By the way, in the above-mentioned labeling methods such as the RIA method, EIA method, and EIA method, each labeling reagent such as an isotope, an enzyme, or a fluorescent dye is added in excess to a sample, and the labeling reagents are added to the sample in excess. A method of removing unreacted labeling reagents by washing is used after causing an antigen-antibody reaction between the two. As the amount of specimen decreases, the labeling reagent becomes larger in excess of the specimen, so non-specific reactions of the residual labeling reagent that cannot be removed by washing have become an important problem. Such a problem is also a problem in the previously filed laser magnetic immunoassay method.

本発明の課題は、先に本発明者らが発明したレーザ磁気
免疫測定法において、非特異反応を低減するための検体
調整方法を提供することにある。
An object of the present invention is to provide a sample preparation method for reducing non-specific reactions in the laser magnetic immunoassay method previously invented by the present inventors.

「課屈を解決するための手段」 本発明に係るレーザ磁気免疫測定方法を実施するための
検体調整方法は、磁性体微粒子に抗体を結合してなる磁
性体標識抗体と検体とを遠心沈殿させた後、抗原抗体反
応させることを特徴とするしのである。
"Means for Solving Imposition" A sample preparation method for carrying out the laser magnetic immunoassay method according to the present invention involves centrifuging a sample and a magnetically labeled antibody formed by binding an antibody to magnetic fine particles. After that, an antigen-antibody reaction is performed.

また、本発明の実施態様として、前記磁性体微粒子を超
常磁性体超微粒子として用いることが挙げられる。これ
により未反応の磁性体標識抗体が混在したままでも検体
を定量することが可能となる。
Further, as an embodiment of the present invention, the magnetic fine particles may be used as superparamagnetic ultrafine particles. This makes it possible to quantify the specimen even if unreacted magnetically labeled antibodies are present.

また、本発明の他の実施態様として、前記検体が前記遠
心工程以前に前記磁性体標識抗体よりも質量または体積
が充分に大きな非磁性体微小球に捕捉しておくことか挙
げられる。これによって、該遠心工程か簡単になり、か
つ未反応の磁性体標識抗体を検体と反応した磁性体標識
検体複合体から分離することが容易になる。分離の手段
としては、遠心分離あるいはフィルターなどが適用でき
る。
In another embodiment of the present invention, the specimen is captured in non-magnetic microspheres having a sufficiently larger mass or volume than the magnetically labeled antibody before the centrifugation step. This simplifies the centrifugation step and makes it easy to separate unreacted magnetically labeled antibodies from the magnetically labeled sample complexes that have reacted with the sample. As a means of separation, centrifugation or a filter can be used.

「作用」 本発明に係るレーザ磁気免疫測定方法を実施するための
検体調整方法は、感染初期の微量なウィルスの検出に特
に有効である。ウィルスが極僅かしか存在しない場合、
ウィルスに標識するためには大過剰の標識試薬を加えて
ウィルスとの遭遇の機会を増やす必要がある。しかし、
大過剰の標識試薬を加えるとウィルスと結合しない標識
試薬が測定時にも多量に残留するため、非特異反応によ
るバックグランドの上昇を来たす。本発明は遠心操作に
よって、磁性体標識抗体と検体を沈殿させることによっ
て濃縮し、反応の確率を高める処理を行なうことを特徴
としている。従って、検体が微量でも磁性体標識抗体は
少量で済み、未反応の該磁性体標識抗体に基づく非特異
反応の低減に効果的である。このように、従来大過剰に
加えていた標識試薬の量を著しく低減することが可能に
なった。
"Operation" The sample preparation method for carrying out the laser magnetic immunoassay method according to the present invention is particularly effective in detecting trace amounts of virus at the initial stage of infection. If there are only a few viruses,
In order to label a virus, it is necessary to add a large excess of labeling reagent to increase the chance of encountering the virus. but,
If a large excess of the labeling reagent is added, a large amount of the labeling reagent that does not bind to the virus will remain during measurement, resulting in an increase in background due to non-specific reactions. The present invention is characterized by performing a process that increases the probability of reaction by concentrating the magnetically labeled antibody and the specimen by precipitating them by centrifugation. Therefore, even if the amount of the sample is minute, only a small amount of magnetically labeled antibody is required, which is effective in reducing non-specific reactions caused by the unreacted magnetically labeled antibody. In this way, it has become possible to significantly reduce the amount of labeling reagent that was conventionally added in large excess.

本発明による検体調整の後、沈澱物を緩衝液中に分散し
て、検体と反応した磁性体標識抗体を検査容器に回収す
ることが出来る。このような検体調整方法によって回収
した磁性体標識抗体は検体と未反応のものも含まれてい
る。未反応の磁性体標識抗体を分離するいわゆるI3/
F分離を行なう場合は、本発明者らが特許出願中の、検
体をマイクロビーズで捕捉する処理工程を導入すること
によって、遠心分離で容易に分離できる。
After specimen preparation according to the present invention, the precipitate is dispersed in a buffer solution, and the magnetically labeled antibody that has reacted with the specimen can be collected into a test container. The magnetically labeled antibodies recovered by such sample preparation methods include some that have not reacted with the sample. The so-called I3/
When F separation is performed, separation can be easily performed by centrifugation by introducing a process in which the specimen is captured with microbeads, which the present inventors have applied for a patent.

即ち、該磁性体微粒子に抗体を結合して得られる磁性体
標識抗体よりも充分に大きな質量を有する非磁性体粒子
の表面上で検体を捕捉した後、該磁性体標識抗体と検体
とを抗原抗体反応させる。
That is, after capturing the specimen on the surface of non-magnetic particles having a mass sufficiently larger than that of the magnetically labeled antibody obtained by binding the antibody to the magnetic fine particles, the magnetically labeled antibody and the specimen are combined with the antigen. Make antibody reaction.

検体を捕捉するための前記非磁性体粒子は磁性体であっ
てはならない。何故ならば、検体を捕捉後磁性体標識抗
体で標識する意味が無くなるからである。前記非磁性体
微粒子としては、平均粒径0゜1〜10μm程度の微粒
子が好ましい。該非磁性体粒子は、例えばアクリルポリ
マー樹脂やポリスチレン樹脂等のプラスチック微小球、
あるいはンリカやアルミナ等の無機コロイド粒子などが
好ましい。
The non-magnetic particles for capturing the analyte must not be magnetic. This is because there is no point in labeling the specimen with a magnetically labeled antibody after capturing it. The non-magnetic fine particles preferably have an average particle diameter of about 0.1 to 10 μm. The non-magnetic particles are, for example, plastic microspheres made of acrylic polymer resin or polystyrene resin,
Alternatively, inorganic colloid particles such as phosphoric acid and alumina are preferable.

非磁性体粒子の表面に検体を捕捉する方法の一つとして
、該非磁性体粒子の表面を活性化して検体を非特異的に
吸着させる方法をとることができる。この方法は、スク
リーニング検査や、患者のうがい液からインフルエンザ
ウィルスを検出するような場合に有効である。うがい液
にはウィルスは多くても数百側程度しか存在しないし、
また、A型、B型等の複数の変異株があるから、まずウ
ィルスを特定せずに確実に前記非磁性体粒子に捕捉する
目的に適している。もう一つの方法として、非磁性体粒
子の表面上に予め既知の抗体あるいは抗原を固定してお
き検体を抗原抗体反応によって特異的に結合させる方法
がある。この方法は、非特異反応をできる限り排除して
特定のウィルスのみを確実に検出する精密検査に適して
いる。
One method for capturing a specimen on the surface of a non-magnetic particle is to activate the surface of the non-magnetic particle to non-specifically adsorb the specimen. This method is effective for screening tests and for detecting influenza virus from patient's gargle fluid. There are only a few hundred viruses at most in gargle fluid,
Furthermore, since there are multiple mutant strains such as type A and type B, it is suitable for the purpose of reliably capturing the virus on the non-magnetic particles without first identifying the virus. Another method is to immobilize a known antibody or antigen on the surface of non-magnetic particles in advance and specifically bind the sample through an antigen-antibody reaction. This method is suitable for detailed inspections that eliminate non-specific reactions as much as possible and reliably detect only specific viruses.

本発明の検体調整方法によって回収された検体は、遠心
によるB/F分離が望ましいが、フィルタによって分離
することも可能である。遠心分離の一例としては、例え
ば、1μmのアクリルポリマー樹脂を非磁性体粒子とし
て用いた場合、該非磁性体粒子に捕捉された抗原抗体複
合体は+50Orpm、5分間の低速遠心で沈殿する。
The specimen collected by the specimen preparation method of the present invention is preferably subjected to B/F separation by centrifugation, but it is also possible to separate it by using a filter. As an example of centrifugation, for example, when 1 μm acrylic polymer resin is used as the non-magnetic particles, the antigen-antibody complex captured by the non-magnetic particles is precipitated by low-speed centrifugation at +50 Orpm for 5 minutes.

一方、未反応の磁性体標識抗体は沈殿せず、上清として
留まる。沈澱物を採取して、例えば、HE P ESの
ような緩衝液中に抗原抗体複合体を分散させる。
On the other hand, unreacted magnetically labeled antibodies do not precipitate and remain as a supernatant. The precipitate is collected and the antigen-antibody complexes are dispersed in a buffer such as, for example, HEPES.

以上、説明したB/F分離を行なう方法の他に、該磁性
体微粒子として、本発明者らが先に発明し、特許出願し
た超常磁性体超微粒子を用いる方法を適用すれば、未反
応の磁性体標識抗体が混在したままでも検体を定量する
ことが可能であるから、本発明のレーザ磁気免疫方法を
実施するための検体調整を行なった検体を直接レーザ磁
気免疫測定装置で定量することが出来る。
In addition to the method of performing B/F separation described above, if a method using superparamagnetic ultrafine particles, which the present inventors previously invented and applied for a patent, is applied, the unreacted Since it is possible to quantify the sample even when magnetically labeled antibodies are present, it is possible to directly quantify the sample prepared using the laser magnetic immunoassay method of the present invention using the laser magnetic immunoassay device. I can do it.

以上のようにして、本発明の検体は実施される。The specimen of the present invention is carried out as described above.

本発明の検体調整方法を適用した後、萌述したレーザ磁
気免疫測定法及び測定装置について技術開示している方
法で極微量の抗原あるいは抗体の検出を行うことができ
る。この新しいレーザ磁気免疫測定法はウィルスが1側
枕度でも検出できる感度かある。
After applying the sample preparation method of the present invention, a minute amount of antigen or antibody can be detected by the method disclosed in the above-mentioned laser magnetic immunoassay method and measuring device. This new laser magnetic immunoassay method is sensitive enough to detect the virus even if it is on one side.

「実施例」 及鳳夕工 本実施例は、実験上安全性の高い不活化したインフルエ
ンザウィルスを用いて本発明の検体調整法の検出限界を
調べる目的で実施したものである。
"Example" and Yuko Otori This example was carried out for the purpose of investigating the detection limit of the sample preparation method of the present invention using an inactivated influenza virus that is highly safe for experiments.

′=V均粒径1μmのアクリルポリマーからなる非磁性
体粒子の表面には、ウサギを免疫として得られたインフ
ルエンザウィルスに対する高度免疫血清が抗体として同
相化されている。凍結乾燥保存されている前記非磁性体
粒子は反応容器に入れられPBS緩衝液中に分散される
。モデル検体として既知の濃度のインフルエンザウィル
ス(A/石川用83 N 2 ))を前記工程で得られ
た非磁性体粒子分散液に加えて、該インフルエンザウィ
ルスを該非磁性体粒子の表面に捕捉した。本実施例では
ウィルスの検出限界を調べるために濃度1〜1千万個/
mQの範囲でlθ倍段階希釈した各濃度のウィルス溶液
を用いた。
'=V Hyperimmune serum against influenza virus obtained by immunizing a rabbit is in-phase with the antibody on the surface of non-magnetic particles made of acrylic polymer having an average particle diameter of 1 μm. The non-magnetic particles stored by freeze-drying are placed in a reaction container and dispersed in a PBS buffer. Influenza virus (A/Ishikawa 83 N 2 ) at a known concentration as a model specimen was added to the non-magnetic particle dispersion obtained in the above step, and the influenza virus was captured on the surface of the non-magnetic particles. In this example, in order to investigate the detection limit of viruses, the concentration was 10 to 10 million cells/
Virus solutions of various concentrations were used, which were serially diluted lθ times over a range of mQ.

磁性体標識抗体はデキストランで被覆した平均粒径40
r+I!+のマグネタイトからなる磁性体微粒子にフェ
レットを免疫して得られる抗血清から単離したIgG抗
体を共有結合したものである。
The magnetically labeled antibody is coated with dextran and has an average particle size of 40
r+I! IgG antibodies isolated from antiserum obtained by immunizing ferrets are covalently bonded to magnetic fine particles made of positive magnetite.

前記非磁性体粒子に捕捉した検体と前記磁性体標識抗体
I X l O−”mgとを遠心管に入れ、3000r
pm、15分の遠心の後、35℃、2.5時間のインキ
ュベートを行なった。この操作によって、検体は磁性標
識された。
The specimen captured by the non-magnetic particles and the magnetically labeled antibody IXlO-''mg were placed in a centrifuge tube, and the mixture was heated at 3000 r.
After centrifugation at pm for 15 minutes, incubation was performed at 35° C. for 2.5 hours. Through this operation, the specimen was magnetically labeled.

つぎに、前記工程で得られた抗原抗体複合体と未反応の
磁性体標識抗体とを分離するため、沈澱物を緩衝液中に
分散し、1500rpm、 5分間の遠心によって、前
記抗原抗体複合体は沈殿し、未反応の磁性体標識抗体は
上清として得られた。この工程で得られた沈澱物を採取
して、HE P E S緩衝液1mf2に該沈澱物を加
え、本発明者らが先に発明した干渉法(特開昭62−1
84902号)でウィルスの検出を行なった。その結果
、ウィルス1側枕度を検出することが出来た。
Next, in order to separate the antigen-antibody complex obtained in the above step from the unreacted magnetically labeled antibody, the precipitate is dispersed in a buffer solution and centrifuged at 1500 rpm for 5 minutes to separate the antigen-antibody complex. was precipitated, and unreacted magnetically labeled antibody was obtained as a supernatant. The precipitate obtained in this step was collected and added to 1 mf2 of HE P E S buffer solution, and the interferometry method (Japanese Unexamined Patent Application Publication No. 62-118) invented by the present inventors was applied.
84902) for virus detection. As a result, it was possible to detect the degree of virus 1 side.

本発明の場合、表面積の大きな非磁性体粒子の表面で3
次元的に検体を捕捉し、磁性体標識抗体−と抗原抗体反
応するから、従来の2次元的に反応させる方法よりも反
応時間を短縮することができる。また、この特徴のため
、極微量の検体の捕捉にも有利である。捕捉・反応過程
で攪拌処理を併用すれば更に捕捉・反応処理時間の短縮
ができる。
In the case of the present invention, on the surface of nonmagnetic particles with a large surface area, 3
Since the specimen is captured dimensionally and the antigen-antibody reaction is performed with the magnetically labeled antibody, the reaction time can be shorter than the conventional two-dimensional reaction method. This feature also makes it advantageous for capturing extremely small amounts of analytes. If a stirring process is used in combination with the capture/reaction process, the time required for the capture/reaction process can be further shortened.

本発明の実施例を適用した場合、磁性体標識抗体の量は
、適用しない場合に比べ1桁以上低減することが出来た
When the example of the present invention was applied, the amount of magnetically labeled antibody was able to be reduced by more than one order of magnitude compared to the case where it was not applied.

また、本実施例のように遠心力によってB/F分離すれ
ば、洗浄よりも確実な分離が行なわれる。
Further, if B/F separation is performed by centrifugal force as in this embodiment, separation is more reliable than washing.

遠心条件は使用する非磁性体粒子と磁性体標識抗体との
比重差に応じて最適な条件が決められる。
Optimal centrifugation conditions are determined depending on the difference in specific gravity between the nonmagnetic particles and the magnetically labeled antibody used.

この際、アルブミン、パーコールを加えた密度勾配遠心
すれば、さらに非磁性体粒子と磁性体標識抗体の分離が
確実に行える。
At this time, by performing density gradient centrifugation with albumin and Percoll added, non-magnetic particles and magnetically labeled antibodies can be separated more reliably.

実施例2 本実施例は徂者のうがい液からインフルエンザウィルス
を検出する実験例である。患者のうがい液を30m12
採取し、まず、前処理として3000rpm、  I 
0分間の遠心にかけて異物等を沈殿させて除去し、この
上清を検体とした。
Example 2 This example is an experimental example of detecting influenza virus from a person's gargling fluid. 30m12 of patient's gargling fluid
First, as a pretreatment, 3000 rpm, I
Foreign matter was precipitated and removed by centrifugation for 0 minutes, and this supernatant was used as a sample.

磁性体標識抗体は、平均粒径5nmのマグネタイト超常
磁性超微粒子であって、その表面はデキストランで被覆
され、フエレットを免疫して得られた抗血清から単離さ
れたIgG抗体が該デキストランに共有結合されている
The magnetically labeled antibody is a magnetite superparamagnetic ultrafine particle with an average particle size of 5 nm, the surface of which is coated with dextran, and the IgG antibody isolated from the antiserum obtained by immunizing ferrets is covalently coated with the dextran. combined.

前記検体と前記超常磁性体超微粒子からなる磁性体標識
抗体とを遠心管に入れ、35℃で20000 rpm、
60分間超遠心機にかけ、両者を沈殿させ、抗原抗体反
応させた。こうして得られた沈澱物In(を採取して、
以下に述べるレーザ磁気免疫測定装置で測定した。
The sample and the magnetically labeled antibody made of the superparamagnetic ultrafine particles were placed in a centrifuge tube, and the mixture was heated at 35° C. and 20,000 rpm.
Both were precipitated by ultracentrifugation for 60 minutes, and an antigen-antibody reaction was caused. The precipitate In( thus obtained) was collected and
Measurements were made using the laser magnetic immunoassay device described below.

本実施例の測定工程においては、本発明者らは現在出願
中のレーザ磁気免疫測定方法に記載した超常磁性超微粒
子を標識に用いた。この方法は、電磁石と該電磁石に対
向して設置された磁極片からなる傾斜磁界発生装置の中
に前記検査容器を挿入し、該検査容器の該磁極片直下の
水面に濃縮された検体からの散乱光等の出射光を検出す
るものであって、いわゆる13/F分離が不要な方法で
ある。即ち、検体と抗原抗体反応した磁性体標識抗体は
未反応の磁性体標識抗体よりも体積が増大するため、ブ
ラウン運動が不活発となるから前記傾斜磁界発生装置で
濃縮する際に未反応のものよりも濃縮されやすいことを
利用する方法である。例えば、散乱光の経時変化パター
ンから、反応したしのと未反応のものとを識別すること
が出来る。
In the measurement step of this example, the present inventors used superparamagnetic ultrafine particles described in the currently pending laser magnetic immunoassay method as a label. In this method, the test container is inserted into a gradient magnetic field generator consisting of an electromagnet and a magnetic pole piece placed opposite the electromagnet, and the sample concentrated on the water surface directly below the magnetic pole piece of the test container is collected. This method detects emitted light such as scattered light, and does not require so-called 13/F separation. In other words, the volume of the magnetically labeled antibody that has reacted with the antigen-antibody with the sample increases more than that of the unreacted magnetically labeled antibody, and the Brownian motion becomes inactive. This is a method that takes advantage of the fact that it is easier to concentrate. For example, it is possible to distinguish between reacted and unreacted light from the temporal change pattern of scattered light.

以上説明した検体調整方法を、うがい液中のインフルエ
ンザウィルスの検出を想定したモデル実験に適用したと
ころ、100112の水溶液中に存在する数百側程度存
在するウィルスを検体調整から測定までの所要時間が3
時間程度で検出することが出来た。なお、うがい液中の
インフルエンザウィルスを鶏卵で培養し、血球凝集反応
を肉眼で観察する従来の方法では、数週間かかっていた
When the sample preparation method described above was applied to a model experiment assuming the detection of influenza virus in gargling fluid, it was found that the time required from sample preparation to measurement was 3
It was possible to detect it in about an hour. The conventional method of culturing the influenza virus in gargling fluid in chicken eggs and observing the hemagglutination reaction with the naked eye took several weeks.

「発明の効果」 以上詳述のように、本発明に従うレーザ磁気免疫測定方
法を実施するための検体調整方法は、磁性体標識抗体の
使用量の低減が可能であるため、未反応の該磁性体標識
抗体による非特異反応を低減に極めて有効である。この
結果、測定のS/N比が改善されるので、検出感度の改
善に極めて効果的である。また、高価なモノクローナル
抗体を有効に使用することが出来るから、経済化が図れ
る。さらに、検体を連続的に反応させることか出来るか
ら、うがい液等の多量の検体中に僅かしか存在しないウ
ィルスの検出にも有利である。
"Effects of the Invention" As detailed above, the method for preparing a sample for carrying out the laser magnetic immunoassay method according to the present invention makes it possible to reduce the amount of magnetically labeled antibodies used. It is extremely effective in reducing non-specific reactions caused by body-labeled antibodies. As a result, the S/N ratio of measurement is improved, which is extremely effective in improving detection sensitivity. Moreover, since expensive monoclonal antibodies can be used effectively, economical efficiency can be achieved. Furthermore, since the specimen can be reacted continuously, it is advantageous for detecting viruses that are only present in a small amount in a large amount of specimen such as gargling fluid.

このように、RIA法以上の検出感度を有しているから
、従来不可能であった感染直後の抗原検査が実施できる
。更に、非磁性体粒子、標識体として用いる磁性体超微
粒子は、放射線あるいは毒性の点では問題なく、検体に
対して安定なものを容易に人手できる。
In this way, since it has a detection sensitivity higher than that of the RIA method, it is possible to conduct an antigen test immediately after infection, which was previously impossible. Furthermore, non-magnetic particles and magnetic ultrafine particles used as labels do not pose any problems in terms of radiation or toxicity, and are stable against specimens that can be easily prepared manually.

本発明は、実施例に上げたウィルスの検出に限らず、癌
の早期診断、アレルギー、細菌等の検査や従来RIA法
が適用されていたペプチドホルモン等の種々のホルモン
あるいは種々の酵素、ビタミン、薬剤などの測定にも応
用することが可能である。従って、従来は限定された施
設でRIA法によらなければ実施できなかった精密な測
定を一般的な環境で広〈実施することが可能となる。集
団検診等のような一般的な状況で、各種のウィルス、癌
等のスクリーニング検査等の精密な測定が広〈実施でき
れば、癌あるいはウィルス性疾患等の早期診断が可能と
なり、有効な早期治療を的確に実施することか可能とな
る。このように、本発明が医学・医療の分野で果たす効
果は計り知れない。
The present invention is not limited to the detection of viruses as mentioned in the examples, but also the early diagnosis of cancer, allergy, bacterial testing, various hormones such as peptide hormones, various enzymes, vitamins, It can also be applied to the measurement of drugs, etc. Therefore, it becomes possible to widely carry out precise measurements in a general environment, which could previously only be carried out in limited facilities using the RIA method. If accurate measurements such as screening tests for various viruses and cancers can be carried out in general situations such as mass medical examinations, it will be possible to make early diagnosis of cancer or viral diseases, and provide effective early treatment. It becomes possible to implement it accurately. As described above, the effects of the present invention in the medical and medical fields are immeasurable.

出願人  日本電信電話株式会社Applicant: Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)所定の抗原あるいは抗体に磁性体微粒子を標識と
して付加した磁性体標識体と検体たる抗体あるいは抗原
とを抗原抗体反応させる第1工程と、前記第1工程後の
磁性体標識体と検体との複合体である磁性体標識検体複
合体を含む溶液に磁界を作用させてレーザ光照射領域に
前記磁性体標識検体複合体を誘導・濃縮させる第2工程
と、を少なくとも含むレーザ磁気免疫測定方法を実施す
るための検体調整方法であって、 前記磁性体微粒子に抗体を結合してなる磁性体標識抗体
と検体を遠心沈殿させた後、抗原抗体反応させることを
特徴とするレーザ磁気免疫測定方法を実施するための検
体調整方法。
(1) A first step of causing an antigen-antibody reaction between a predetermined antigen or antibody labeled with magnetic fine particles as a label and an antibody or antigen serving as a specimen, and a step of causing an antigen-antibody reaction between the magnetically labeled material and the specimen after the first step. a second step of inducing and concentrating the magnetically labeled analyte complex in a laser beam irradiation area by applying a magnetic field to a solution containing a magnetically labeled analyte complex that is a complex with a laser-magnetic immunoassay. A method for preparing a specimen for carrying out the method, the laser magnetic immunoassay comprising: centrifugally precipitating a specimen with a magnetically labeled antibody formed by binding an antibody to the magnetic fine particles, and then causing an antigen-antibody reaction. Sample preparation method for carrying out the method.
(2)前記磁性体微粒子が超常磁性体超微粒子であるこ
とを特徴とする請求項1記載のレーザ磁気免疫測定方法
を実施するための検体調整方法。
(2) A specimen preparation method for carrying out the laser magnetic immunoassay method according to claim 1, wherein the magnetic fine particles are superparamagnetic ultrafine particles.
(3)前記検体が前記遠心工程以前に前記磁性体標識抗
体よりも質量または体積が充分に大きな非磁性体微小球
に捕捉されていることを特徴とする請求項1または2記
載のレーザ磁気免疫測定方法を実施するための検体調整
方法。
(3) The laser magnetic immunotherapy according to claim 1 or 2, wherein the specimen is captured in non-magnetic microspheres having a sufficiently larger mass or volume than the magnetically labeled antibody before the centrifugation step. Sample preparation method for carrying out the measurement method.
JP63156519A 1988-04-26 1988-06-24 Sample adjustment for implementing laser magnetic immunological measurement Pending JPH01321362A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63156519A JPH01321362A (en) 1988-06-24 1988-06-24 Sample adjustment for implementing laser magnetic immunological measurement
DE68916843T DE68916843T2 (en) 1988-04-26 1989-04-26 Microparticles, method and apparatus for collecting samples for use in labeling immune responses and method and apparatus for preparing samples.
EP89304171A EP0339980B1 (en) 1988-04-26 1989-04-26 Magnetic micro-particles, method and apparatus for collecting specimens for use in labelling immune reactions, and method and device for preparing specimens
US07/991,507 US5340749A (en) 1988-04-26 1992-12-17 Method for collecting and preparing specimens for immune reactions
US08/249,152 US5498550A (en) 1988-04-26 1994-05-25 Device for collecting or preparing specimens using magnetic micro-particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156519A JPH01321362A (en) 1988-06-24 1988-06-24 Sample adjustment for implementing laser magnetic immunological measurement

Publications (1)

Publication Number Publication Date
JPH01321362A true JPH01321362A (en) 1989-12-27

Family

ID=15629559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156519A Pending JPH01321362A (en) 1988-04-26 1988-06-24 Sample adjustment for implementing laser magnetic immunological measurement

Country Status (1)

Country Link
JP (1) JPH01321362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same

Similar Documents

Publication Publication Date Title
US5340749A (en) Method for collecting and preparing specimens for immune reactions
JP6720138B2 (en) Method for detecting test substance and reagent kit used in the method
TW297094B (en)
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
US5236824A (en) Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
EP0194156B1 (en) Method of measuring the amount of immune antibody in serum
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
JP2502546B2 (en) Laser magnetic immunoassay method
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
JP2532670B2 (en) Immunological measurement method using magnetic marker particles
JPH01321362A (en) Sample adjustment for implementing laser magnetic immunological measurement
JPH02151766A (en) Measurement of laser magnetic immunity
JPH01321363A (en) Sample adjustment for implementing laser magnetic immunological measurement
JPH0750112B2 (en) Sample preparation method for carrying out laser magnetic immunoassay method
JPH07111429B2 (en) Laser magnetic immunoassay
JP2551627B2 (en) Laser magnetic immunoassay device
US3449488A (en) Immunology
JP2502148B2 (en) Non-separable laser magnetic immunoassay method and measuring apparatus
JPH02118431A (en) Method and apparatus for adjusting specimen for electron microscope
JPH02151767A (en) Method and apparatus for adjusting sample with magnetic particle used for marking immunological reaction
JP2716227B2 (en) Immunological measurement method using magnetic marker particles
WO2023282862A1 (en) A test method for diagnosis of covid-19 disease
JPH04323560A (en) Magnetic particle labelling material for use in laser magnetic immunity measurement and adjusting method for subject
JP2010078374A (en) Method of detecting anti-erythrocyte antibody