JP2008292292A - Particulate fixing method - Google Patents

Particulate fixing method Download PDF

Info

Publication number
JP2008292292A
JP2008292292A JP2007137950A JP2007137950A JP2008292292A JP 2008292292 A JP2008292292 A JP 2008292292A JP 2007137950 A JP2007137950 A JP 2007137950A JP 2007137950 A JP2007137950 A JP 2007137950A JP 2008292292 A JP2008292292 A JP 2008292292A
Authority
JP
Japan
Prior art keywords
resin
fine particles
fixing method
fine
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137950A
Other languages
Japanese (ja)
Inventor
Motonori Nakamura
元宣 中村
Takehiro Sasaki
雄大 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007137950A priority Critical patent/JP2008292292A/en
Publication of JP2008292292A publication Critical patent/JP2008292292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate fixing method which can subject even a small amount of particulates to an analysis by fixing the particulates so as to easily specify the presence location of the particulates. <P>SOLUTION: The particulate fixing method which fixes the particulates for analysis comprises, after dispersing the particulates on a surface of non-cured resin applied on a substrate, embedding the particulates into the resin while leaving a part of the particulates in their surface, and subsequently curing the resin. As means for embedding the particulates into the resin while leaving a part of the particulates in their surface, the method comprises spraying a gas onto the non-cured resin on the surface of which the particulates are dispersed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分析のための微粒子固定方法に関し、さらに詳しくはガスを用いる微粒子固定方法に関する。   The present invention relates to a fine particle fixing method for analysis, and more particularly to a fine particle fixing method using a gas.

石英ガラスや有機系高分子などの電気絶縁性微粒子の表面等の分析を行う際、微粒子を固定しなければ、電子銃を用いたSEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)、AES(オージェ電子分光法)などの分析において試料がチャージアップし、微粒子間同士で静電反発して装置内で微粒子が動いてしまう。また、金属系の導電性の微粒子であっても微粒子の場合、表面の酸化物層などの影響で電気絶縁性を示すこともある。このため、上記機器により微粒子の分析を行うには何らかの方法で微粒子を固定する必要がある。   When analyzing the surface of electrically insulating fine particles such as quartz glass and organic polymer, if the fine particles are not fixed, SEM (scanning electron microscope), TEM (transmission electron microscope) using an electron gun, In an analysis such as AES (Auger Electron Spectroscopy), the sample is charged up, electrostatic repulsion occurs between the fine particles, and the fine particles move in the apparatus. Moreover, even if it is a metal type electroconductive fine particle, in the case of microparticles | fine-particles, it may show electrical insulation by the influence of a surface oxide layer. For this reason, in order to analyze fine particles with the above-mentioned device, it is necessary to fix the fine particles by some method.

微粒子を固定する方法として、従来、例えばエポキシ樹脂などの樹脂中に被測定微粒子を分散させ、固化した後、切断機、研磨機を使用して微粒子の埋め込まれている部分を露出させ、仕上げ研磨する方法(特許文献1、段落番号[0006])、多孔質の包埋材中に被測定微粒子を保持させて加工、観察する方法(特許文献2、段落番号[0022])、エアロゾルを使用したセラミック膜を製造する方法(特許文献3)および溶媒に分散させた非導電性の材料を、凹凸を設けた金属基材の表面に塗布後乾燥する方法等が提案されている(特許文献4、段落番号[0006])。
特許第3776053号公報 特開2004−347400号公報 特開2006−188046号公報 特開平5−60666号公報
As a method for fixing the fine particles, conventionally, for example, after the fine particles to be measured are dispersed in a resin such as an epoxy resin and solidified, the portion where the fine particles are embedded is exposed by using a cutting machine or a polishing machine, and finish polishing. (Patent Document 1, Paragraph No. [0006]), a method of processing and observing fine particles held in a porous embedding material (Patent Document 2, Paragraph No. [0022]), and using an aerosol A method of manufacturing a ceramic film (Patent Document 3) and a method of applying a nonconductive material dispersed in a solvent to the surface of a metal substrate provided with irregularities and then drying are proposed (Patent Document 4,). Paragraph number [0006]).
Japanese Patent No. 3776053 JP 2004-347400 A JP 2006-188046 A Japanese Patent Laid-Open No. 5-60666

しかしながら、特許文献1および特許文献2に記載の方法では、分析に必要な試料を得るにはある程度の量の微粒子を必要とし、また、樹脂中に微粒子を分散させているため、微粒子の位置を把握することが難しく、研磨面に微粒子を露出させようとすると場合によっては研磨等を繰り返し試行しなければならず、多くの加工時間を必要とする。また、微粒子表面への樹脂の付着が避けられず、微粒子の表面の分析が困難であった。特許文献3に記載の方法では、基板と粒子を結合させるために反応性の成分を用いる必要があり、微粒子表面がうまく保持できず粒子単位での分析が困難であるという問題がある。さらに、特許文献4に記載の方法では、溶媒分子の吸着により微粒子の表面状態が変化してしまう恐れがあり、また、粒子の固定が不十分であるために微粒子が移動してしまい、分析できなくなる恐れがあった。   However, the methods described in Patent Document 1 and Patent Document 2 require a certain amount of fine particles to obtain a sample necessary for analysis, and the fine particles are dispersed in the resin. It is difficult to grasp, and if fine particles are to be exposed on the polished surface, depending on the case, polishing or the like must be tried repeatedly, which requires a lot of processing time. Further, the adhesion of the resin to the surface of the fine particles is unavoidable, and it is difficult to analyze the surface of the fine particles. In the method described in Patent Document 3, it is necessary to use a reactive component in order to bond the substrate and the particles, and there is a problem that the fine particle surface cannot be held well and analysis in units of particles is difficult. Furthermore, in the method described in Patent Document 4, there is a possibility that the surface state of the fine particles may be changed due to adsorption of solvent molecules, and the fine particles move due to insufficient fixation of the particles, so that analysis is possible. There was a fear of disappearing.

本発明は、少量の微粒子でも分析に供することができ、多くの加工時間を必要としない分析のための微粒子固定方法を提供することを課題とする。
また、微粒子の表面を容易に分析することのできる微粒子固定方法を提供することを課題とする。
An object of the present invention is to provide a fine particle fixing method for analysis that can be used for analysis even with a small amount of fine particles and does not require much processing time.
It is another object of the present invention to provide a fine particle fixing method capable of easily analyzing the surface of fine particles.

本発明は、上記の課題を解決するためになされたものであり、微粒子の表面の一部を残して微粒子を樹脂で固定する微粒子固定方法を見出し、さらにガスを用いて微粒子を樹脂中に押し込む効率的な微粒子固定方法を見出し、本発明を完成させるに至ったものである。
以下、各請求項の発明について説明する。
The present invention has been made to solve the above-mentioned problems, and has found a fine particle fixing method in which fine particles are fixed with a resin while leaving a part of the surface of the fine particles, and further, the fine particles are pushed into the resin using a gas. The inventors have found an efficient method for fixing fine particles and have completed the present invention.
Hereinafter, the invention of each claim will be described.

請求項1に記載の発明は、
分析のために微粒子を固定する微粒子固定方法であって、基材上に塗布された未硬化樹脂の表面に微粒子を分散させた後、微粒子の表面の一部を残して微粒子を樹脂中に埋め込み、次いで樹脂を硬化させることを特徴とする微粒子固定方法である。
The invention described in claim 1
A fine particle fixing method for fixing fine particles for analysis. After fine particles are dispersed on the surface of an uncured resin applied on a substrate, the fine particles are embedded in the resin leaving a part of the surface of the fine particles. Then, a fine particle fixing method characterized by curing the resin.

請求項1の発明においては、微粒子を樹脂の表面に選択的に分散させるため、少量の微粒子でも分析可能となる微粒子固定方法を提供することができる。
また、微粒子の表面の一部が前記樹脂から露出した状態で樹脂に固定されているため、微粒子の位置を容易に特定することができ、例えば粒子の内部や断面の分析を行うためにFIB(Focused Ion Beam)、CP(Cross Section Polisher)による研磨等の加工を行うに際して、多くの加工時間を必要としない微粒子固定方法を提供することができる。
さらに、露出させた微粒子の表面には樹脂が付着しいていないため、微粒子の表面の分析を容易に行うことが可能となる微粒子固定方法を提供することができる。
In the invention of claim 1, since the fine particles are selectively dispersed on the surface of the resin, it is possible to provide a fine particle fixing method capable of analyzing even a small amount of fine particles.
Further, since a part of the surface of the fine particle is fixed to the resin in a state of being exposed from the resin, the position of the fine particle can be easily specified. For example, FIB ( When performing processing such as polishing by Focused Ion Beam (CP) or CP (Cross Section Polisher), a fine particle fixing method that does not require much processing time can be provided.
Furthermore, since the resin is not attached to the surface of the exposed fine particles, it is possible to provide a fine particle fixing method that makes it possible to easily analyze the surface of the fine particles.

請求項1の発明においては、微粒子固定用の樹脂は特に限定されないが、当初の未硬化の状態では樹脂中に微粒子を容易に埋め込むことができるよう室温で柔らかく、微粒子を埋め込んだ後では、微粒子を強固に固定できるよう硬化させることのできる樹脂、即ち硬化性樹脂が好ましい。
ここで硬化性樹脂とは、硬化剤、光開始剤、触媒など従来公知の硬化に必要な配合剤も公知の範囲で含んでおり、硬化する機能を有しているものとする。硬化性樹脂としては、熱硬化性樹脂(エポキシ樹脂、ポリウレタンなど)、室温硬化性樹脂(例えば、シリコン樹脂など)、紫外線硬化樹脂(例えば、不飽和基含有アクリル樹脂など)等が挙げられる。これらの内で好ましいのは熱硬化性樹脂(特にエポキシ樹脂)、紫外線硬化樹脂である。また、一液型でも二液型でもよいが、硬化反応によりガスを発生すると分析に際して電子線が不安定となるとともに、電子銃に悪影響を及ぼすことがあるため、ガスを発生しないタイプが好ましい。
また、前記微粒子固定用の樹脂として硬化に際して体積変化を生じないかまたは体積変化ができるだけ小さい樹脂を用いると、微粒子に歪みを生じさせることがないため、好ましい。
In the first aspect of the present invention, the resin for fixing the fine particles is not particularly limited. In the initial uncured state, the resin is soft at room temperature so that the fine particles can be easily embedded in the resin. A resin that can be cured so as to be firmly fixed, that is, a curable resin is preferable.
Here, the curable resin includes a compounding agent necessary for conventionally known curing such as a curing agent, a photoinitiator, and a catalyst in a known range, and has a function of curing. Examples of the curable resin include a thermosetting resin (such as an epoxy resin and polyurethane), a room temperature curable resin (such as a silicon resin), and an ultraviolet curable resin (such as an unsaturated group-containing acrylic resin). Of these, thermosetting resins (particularly epoxy resins) and ultraviolet curable resins are preferred. Although a one-pack type or a two-pack type may be used, a gas-free type is preferable because when the gas is generated by a curing reaction, the electron beam becomes unstable during analysis and may adversely affect the electron gun.
In addition, it is preferable to use a resin that does not change in volume during curing or uses a volume that is as small as possible as the resin for fixing the fine particles, because the fine particles are not distorted.

さらに、樹脂自体が導電性を有すると、分析時にチャージアップを抑制することができるため好ましい。樹脂に導電性を付与する方法としては、樹脂にカーボン、グラファイト、銀、銅などの導電性の粒子をフィラーとして添加することができる。   Furthermore, it is preferable that the resin itself has conductivity because charge-up can be suppressed during analysis. As a method for imparting conductivity to the resin, conductive particles such as carbon, graphite, silver, and copper can be added to the resin as a filler.

樹脂中に微粒子を埋め込む方法は特に限定されない。例えば樹脂より十分に比重の大きい微粒子であれば自重で比較的短時間に樹脂中に埋め込む方法を適用することができる。また、樹脂よりも比重が大きいが、その差が小さい場合には例えば遠心力を加えること等により、埋め込みに要する時間を短縮することができる。しかし、樹脂との間に比重の差が殆どないか、逆に樹脂に比べて比重が小さい微粒子については、意図的に微粒子を樹脂中に押し込む必要がある。この場合には樹脂の表面に分散させた微粒子に固体状の物体を押し当てるという一般的な方法や液体を介して加圧する方法を適用することができる。
微粒子を部分的に樹脂に埋め込み、次いで樹脂を硬化させ固定を完了する。樹脂を硬化させることによって、微粒子が強固に固定されるので、分析中に粒子が移動する恐れを無くすことができる。
The method for embedding the fine particles in the resin is not particularly limited. For example, a method of embedding in a resin in a relatively short time by its own weight can be applied to fine particles having a specific gravity sufficiently larger than that of the resin. Moreover, although specific gravity is larger than resin, when the difference is small, the time required for embedding can be shortened by applying centrifugal force, for example. However, for fine particles that have little difference in specific gravity with the resin or that have a smaller specific gravity than the resin, it is necessary to intentionally push the fine particles into the resin. In this case, a general method of pressing a solid object against fine particles dispersed on the surface of the resin or a method of applying pressure through a liquid can be applied.
The fine particles are partially embedded in the resin, and then the resin is cured to complete the fixing. By curing the resin, the fine particles are firmly fixed, so that the possibility of moving the particles during the analysis can be eliminated.

また、前記基材は特に限定されるものではないが、導電性タイプが好ましい。分析時に樹脂に照射された電子線は樹脂を貫通して基材にまで届き、チャージアップを発生させる。チャージアップは電子線にゆがみを発生させるため、分析の妨げになる恐れがある。金属製等の導電性タイプの基材を用いることにより、チャージアップを抑制することができる。基材用の材料としては、特にAlは加工性がよく、Cuは伝導性がよく、SUSは入手しやすいので好ましい。   The substrate is not particularly limited, but is preferably a conductive type. The electron beam irradiated to the resin at the time of analysis penetrates the resin and reaches the base material to generate charge up. Charge-up causes distortion in the electron beam, which may hinder analysis. Charge-up can be suppressed by using a conductive type base material such as metal. As a material for the substrate, Al is particularly preferable because it has good processability, Cu has good conductivity, and SUS is easily available.

また、粒子の存在位置が把握できているため、容易に加工を施すことができる。また、請求項1の発明によって得られる固定された微粒子の露出させた表面には樹脂が付着していないため、そのまま表面の分析に適用することができる。   Further, since the position of the particles can be grasped, it can be easily processed. Further, since the resin is not attached to the exposed surface of the fixed fine particles obtained by the invention of claim 1, it can be directly applied to the analysis of the surface.

なお、請求項1の発明は、無機物、有機物等材質を問わず種々の微粒子に適用することができる。微粒子の平均粒子径についても特に限定はないが、特に0.1μm〜10μmの粒径の微粒子に対して好適に使用できる。
なお、請求項1の発明における「微粒子の表面の一部」とは、後の分析が可能となる範囲の面積を有する表面であればよく、大きさについて特に限定はない。
The invention of claim 1 can be applied to various fine particles regardless of materials such as inorganic and organic materials. The average particle size of the fine particles is not particularly limited, but it can be suitably used particularly for fine particles having a particle size of 0.1 μm to 10 μm.
The “part of the surface of the fine particles” in the first aspect of the present invention is not particularly limited as long as it is a surface having an area in a range that enables later analysis.

請求項2に記載の発明は、
前記微粒子の表面の一部を残して微粒子を樹脂中に埋め込む手段として、表面に微粒子を分散させた未硬化樹脂にガスを吹き付けることを特徴とする請求項1に記載の微粒子固定方法である。
The invention described in claim 2
2. The fine particle fixing method according to claim 1, wherein gas is blown to an uncured resin in which fine particles are dispersed on the surface as means for embedding the fine particles in the resin while leaving a part of the surface of the fine particles.

請求項2の発明においては、ガスを吹き付ける(以下ガスフローともいう)ことにより弱い力で微粒子を樹脂に押し込むため、より確実に表面の一部を残して微粒子を樹脂中に埋め込み、固定させることが可能となる微粒子固定方法を提供することができる。   In the invention of claim 2, since the fine particles are pushed into the resin with a weak force by blowing a gas (hereinafter also referred to as a gas flow), the fine particles are more reliably embedded and fixed in the resin leaving a part of the surface. It is possible to provide a fine particle fixing method that enables the above.

微粒子に固体を接触させて物理的に押し込む方法は一般的であり、簡便な方法であるが、弱い力で押すことが難しく、微粒子の全体を樹脂中に埋め込んでしまう恐れがある。これに対してガスフローを用いて未硬化の樹脂上に分散した微粒子を押し込む方法は、微粒子を弱い力で押すことができるため、より確実に微粒子の表面の一部を残して他の部分を樹脂に埋め込むことができる。   A method of physically pushing a solid by bringing the solid into contact with the fine particle is general and a simple method, but it is difficult to push with a weak force, and the whole fine particle may be embedded in the resin. In contrast, the method of pushing fine particles dispersed on an uncured resin using a gas flow can push the fine particles with a weak force. Can be embedded in resin.

また、ガスを吹き付ける方法は、吹き付ける圧力を制御し易いため、好ましい。さらに、ふりかけた微粒子の内、余分な微粒子が吹き飛ばされ、樹脂に埋め込まれた一層のみが残るため、粒子単位で分析するための試料として好適に使用することができる。
なお、好ましいガスフローの圧力は0.02〜0.3MPaが適当であり、流量は0.1〜20リットル/秒が適当である。
Moreover, the method of spraying gas is preferable because the pressure of spraying can be easily controlled. Furthermore, since the extra fine particles are blown off from the sprinkled fine particles and only one layer embedded in the resin remains, it can be suitably used as a sample for analysis in units of particles.
In addition, 0.02-0.3 MPa is suitable for the pressure of a preferable gas flow, and 0.1-20 liter / second is suitable for a flow volume.

また、請求項2においては、微粒子が固体や液体と接触しない所謂非接触方式により樹脂に埋め込まれるため、微粒子の樹脂に埋め込まれていない表面に異物が付着することがなく、より清浄な粒子表面を有する微粒子固定方法を提供することができる。   Further, in claim 2, since the fine particles are embedded in the resin by a so-called non-contact method in which the fine particles do not come into contact with solids or liquids, foreign particles do not adhere to the surface of the fine particles that are not embedded in the resin. It is possible to provide a fine particle fixing method having the following.

請求項3に記載の発明は、
前記未硬化樹脂の表面に微粒子を分散させた後、微粒子の表面の一部を残して微粒子を樹脂中に埋め込む手段として、微粒子とガスの混合物を前記未硬化樹脂に吹き付けることを特徴とする請求項1に記載の微粒子固定方法である。
The invention described in claim 3
The fine particles are dispersed on the surface of the uncured resin, and then a mixture of the fine particles and the gas is sprayed onto the uncured resin as means for embedding the fine particles in the resin while leaving a part of the surface of the fine particles. Item 2. The fine particle fixing method according to Item 1.

請求項3の発明においては、予め微粒子とガスを混合して未硬化樹脂の表面に吹き付けるという簡便な方法により、樹脂の表面に微粒子を分散することと、微粒子の表面の一部を残して微粒子を樹脂中に埋め込むことを一工程で行うことが可能となる微粒子固定方法を提供することができる。   In the invention of claim 3, the fine particles are dispersed on the surface of the resin by a simple method of mixing the fine particles and the gas in advance and spraying on the surface of the uncured resin, and leaving the part of the surface of the fine particles. It is possible to provide a fine particle fixing method that enables embedding in a resin in one step.

請求項4に記載の発明は、
前記ガスが前記微粒子および樹脂に対して不活性なガスであることを特徴とする請求項1ないし請求項3のいずれかに記載の微粒子固定方法である。
The invention according to claim 4
The fine particle fixing method according to any one of claims 1 to 3, wherein the gas is a gas inert to the fine particles and the resin.

請求項4の発明においては、微粒子および樹脂に対して不活性なガスを用いるため、微粒子の表面を変質させずに残すことができ、表面の分析により適した微粒子固定方法を提供することができる。また、未硬化の樹脂が変質することがなく、その後の硬化が妨げられることがない微粒子固定方法を提供することができる。   In the invention of claim 4, since a gas inert to the fine particles and the resin is used, the surface of the fine particles can be left unaltered, and a fine particle fixing method more suitable for surface analysis can be provided. . Further, it is possible to provide a fine particle fixing method in which an uncured resin is not deteriorated and subsequent curing is not hindered.

請求項4の発明において、不活性なガスは微粒子、樹脂に対して不活性なガスであればよく特に限定されないが、一般的には窒素、アルゴンなどが好ましく、アルゴンがより好ましい。酸素、空気も問題がなければ使用できる。   In the invention of claim 4, the inert gas is not particularly limited as long as it is an inert gas with respect to the fine particles and the resin, but in general, nitrogen, argon and the like are preferable, and argon is more preferable. Oxygen and air can be used if there is no problem.

請求項5に記載の発明は、
前記樹脂が熱硬化性樹脂であり、加熱により樹脂を硬化することを特徴とする請求項1ないし請求項4のいずれかに記載の微粒子固定方法である。
The invention described in claim 5
5. The fine particle fixing method according to claim 1, wherein the resin is a thermosetting resin, and the resin is cured by heating.

請求項5の発明においては、熱硬化性樹脂の硬化が加熱によって促進される性質を利用することにより、速く樹脂を硬化させることができるため、分析のための微粒子を短時間で作製することが可能となる微粒子固定方法を提供することができる。   In the invention of claim 5, since the resin can be cured quickly by utilizing the property that curing of the thermosetting resin is accelerated by heating, it is possible to produce fine particles for analysis in a short time. A possible fine particle fixing method can be provided.

請求項5の発明において、加熱温度は熱硬化性樹脂の種類によるが、微粒子表面への影響を考えると、反応が穏やかな方が好ましい。
例えば、エポキシ樹脂であると60〜100℃で1時間程度保持するのが好ましい。室温であると24時間以内が好ましい。反応は十分に行わせることが好ましいが、微粒子が固定できていれば、加熱を止めて反応を停止してもよい。
In the invention of claim 5, the heating temperature depends on the kind of the thermosetting resin, but considering the influence on the surface of the fine particles, it is preferable that the reaction is gentle.
For example, when it is an epoxy resin, it is preferable to hold | maintain at 60-100 degreeC for about 1 hour. Within room temperature is preferably within 24 hours. The reaction is preferably performed sufficiently, but the heating may be stopped to stop the reaction as long as the fine particles are fixed.

請求項6に記載の発明は、
前記樹脂の硬化を減圧下で行うことを特徴とする請求項1ないし請求項5のいずれかに記載の微粒子固定方法である。
The invention described in claim 6
The fine particle fixing method according to any one of claims 1 to 5, wherein the resin is cured under reduced pressure.

請求項6の発明においては、固定用の樹脂として脱離ガスを発生する樹脂を用いても予め積極的に脱離ガスを除去する手段を設けているため、分析に悪影響を及ぼさない、分析のための微粒子固定方法を提供することができる。   In the invention of claim 6, since means for positively removing the desorbed gas is provided in advance even if a resin that generates desorbed gas is used as the fixing resin, the analysis is not adversely affected. A fine particle fixing method can be provided.

分析中に脱離ガスが発生すると分析時に電子線が不安定になる恐れがある他、電子銃を損傷する恐れがある。また、微粒子の表面が汚染される恐れがある。また、装置内の真空度が上がらず、分析そのものができないこともある。このため、微粒子を固定する樹脂としては上記の樹脂の硬化反応により脱離物(ガス)が発生しないものが好ましい。
例えばエポキシ樹脂のように、脱離ガスが少ない樹脂もある。しかし、減圧下で硬化させることにより、樹脂の種類によらずに脱離ガスの発生による悪影響を防ぐことができ、より正確な分析を可能とすることができるため好ましい。
減圧条件は、埋め込んだ微粒子が樹脂から剥離しなければ圧力を低くすることが好ましい。
If desorbed gas is generated during analysis, the electron beam may become unstable during analysis, and the electron gun may be damaged. In addition, the surface of the fine particles may be contaminated. In addition, the degree of vacuum in the apparatus does not increase, and analysis itself may not be possible. For this reason, as resin which fixes microparticles | fine-particles, what does not generate | occur | produce a desorption thing (gas) by the hardening reaction of said resin is preferable.
Some resins, such as epoxy resins, have less desorption gas. However, curing under reduced pressure is preferable because it can prevent an adverse effect due to the generation of desorbed gas regardless of the type of resin, and enables more accurate analysis.
It is preferable to reduce the pressure under reduced pressure unless the embedded fine particles are peeled off from the resin.

請求項7に記載の発明は、
前記樹脂が導電性フィラーを含有することを特徴とする請求項1ないし請求項6のいずれかに記載の微粒子固定方法である。
The invention described in claim 7
The fine particle fixing method according to claim 1, wherein the resin contains a conductive filler.

請求項7の発明においては、分析時にチャージアップを抑制して、電子線にゆがみが生じるのを防ぐことができるために、より正確に分析することが可能となる、分析のための微粒子固定方法を提供することができる。   In the invention of claim 7, since it is possible to prevent charge-up during analysis and prevent the electron beam from being distorted, it is possible to perform more accurate analysis, and the fine particle fixing method for analysis Can be provided.

請求項7の発明において使用する導電性フィラーとしては、導電性の金属(金、銅、SUS)粉末やグラファイト粉末などが挙げられるが、カーボングラファイト、銅粉などがより好ましい。これらの適当量が樹脂中に混練されると導電性が発現するため、使用できる。また、フィラーとして金属粉末を分散したタイプの樹脂も市販(ITW Chemtronics社 Circuit Works Conductive Epoxy CW2400(Agのフィラーが約50%混入))されており、好適に使用できる。   Examples of the conductive filler used in the invention of claim 7 include conductive metal (gold, copper, SUS) powder and graphite powder, and carbon graphite and copper powder are more preferable. When an appropriate amount of these is kneaded into the resin, conductivity is exhibited, so that it can be used. In addition, a resin in which metal powder is dispersed as a filler is commercially available (ITW Chemtronics, Circuit Works Conductive Epoxy CW2400 (mixed with about 50% Ag filler)), and can be suitably used.

本発明においては、少量の微粒子でも分析に供することができ、多くの加工時間を必要としない分析のための微粒子固定方法を提供することができる。
また、微粒子の表面を容易に分析することのできる微粒子固定方法を提供することができる。
In the present invention, even a small amount of fine particles can be used for analysis, and a fine particle fixing method for analysis that does not require much processing time can be provided.
In addition, it is possible to provide a fine particle fixing method capable of easily analyzing the surface of the fine particles.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(実施例1)
以下、図に基づいて実施例1を説明する。図1は、本発明の実施形態の1例を説明する概略図である。被測定物質としては平均粒子径500nmのSiOガラス製の微粒子3を用いた。樹脂1には金属微粒子が分散されている「CW2400」(エポキシ樹脂:Chemtronics社製)を用い、図1(a)に示すように、Al製の基材2上に樹脂1を塗布した後、図1(b)に示すように、上記微粒子3を樹脂1上にふりかけて分散させた。その後、図1(c)に示すように、0.2MPaの圧力の窒素ガスラインから窒素ガス5を10リットル/分の流量のガスフロー4として噴出させ樹脂に吹き付けた。次いで、60℃のホットプレートで1時間保持し、樹脂1を硬化させ、図1(d)に示す樹脂1の表面に固定された微粒子3を得た。室温に戻した後、表面を光学顕微鏡で観察すると樹脂1上に微粒子3が凝集せずに分散され、かつ微粒子3が表面の一部を残して樹脂1に埋め込まれている状態が観察できた。また、これをSEM装置(JSM−6300F)内に導入し、真空引き後観察を行ったところ、チャージアップの現象もなく、良好な状態で観察をすることができた。
Example 1
Hereinafter, Example 1 is demonstrated based on figures. FIG. 1 is a schematic diagram illustrating an example of an embodiment of the present invention. As the substance to be measured, fine particles 3 made of SiO 2 glass having an average particle diameter of 500 nm were used. Using “CW2400” (epoxy resin: manufactured by Chemtronics) in which fine metal particles are dispersed in the resin 1, as shown in FIG. 1A, the resin 1 is applied on the base material 2 made of Al. As shown in FIG. 1 (b), the fine particles 3 were dispersed on the resin 1 and dispersed. Thereafter, as shown in FIG. 1C, nitrogen gas 5 was blown out as a gas flow 4 having a flow rate of 10 liters / minute from a nitrogen gas line having a pressure of 0.2 MPa and sprayed onto the resin. Next, the resin 1 was cured by holding it on a hot plate at 60 ° C. for 1 hour to obtain fine particles 3 fixed on the surface of the resin 1 shown in FIG. When the surface was observed with an optical microscope after returning to room temperature, it was observed that the fine particles 3 were dispersed on the resin 1 without agglomeration, and the fine particles 3 were embedded in the resin 1 leaving a part of the surface. . In addition, when this was introduced into an SEM apparatus (JSM-6300F) and observed after evacuation, it was observed in a good state with no charge-up phenomenon.

(実施例2)
以下、図に基づいて実施例2を説明する。図2は、本発明の実施形態の別の例を説明する概略図である。被測定物質として平均粒子径500nmのSiOガラス製の微粒子3を用いた。樹脂1には金属微粒子が分散されている「CW2400」(エポキシ樹脂:Chemtronics社製)を用い、図2(a)に示すように、Cu製の基材2上にこの樹脂1を塗布した。次いで図2(b)に示すように、微粒子3を200mlのガラス製容器からなる予備混合容器6内に入れ、そこに0.3MPaの圧力の窒素ガスラインから窒素ガス5を導入し微粒子3と混合し、微粒子3を含ませたガスフロー4として噴出させ、樹脂1に吹き付けた。その後、約60℃に保ったホットプレート上で1時間保持し、樹脂1を硬化させ、図2(c)に示す樹脂1の表面に固定された微粒子3を得た。室温に戻した後、表面を光学顕微鏡で観察すると樹脂1上に微粒子3が凝集せずに分散され、かつ微粒子3が表面の一部を残して樹脂1に埋め込まれている状態が観察できた。また、これをAES装置(アルバックファイ社製SAM4300)内に導入し、真空引き後観察を行ったところ、チャージアップの現象も見られず、良好な状態で微粒子の表面状態解析を行うことができた。
(Example 2)
The second embodiment will be described below with reference to the drawings. FIG. 2 is a schematic diagram illustrating another example of the embodiment of the present invention. Fine particles 3 made of SiO 2 glass having an average particle diameter of 500 nm were used as the substance to be measured. As resin 1, “CW2400” (epoxy resin: manufactured by Chemtronics) in which metal fine particles are dispersed was used. As shown in FIG. 2A, this resin 1 was applied on a Cu substrate 2. Next, as shown in FIG. 2 (b), the fine particles 3 are put into a premixing vessel 6 made of a 200 ml glass vessel, and nitrogen gas 5 is introduced into the premixing vessel 6 from a nitrogen gas line at a pressure of 0.3 MPa. The mixture was mixed, ejected as a gas flow 4 containing fine particles 3, and sprayed onto the resin 1. Then, it hold | maintained on the hotplate maintained at about 60 degreeC for 1 hour, the resin 1 was hardened, and the microparticles | fine-particles 3 fixed to the surface of the resin 1 shown in FIG.2 (c) were obtained. When the surface was observed with an optical microscope after returning to room temperature, it was observed that the fine particles 3 were dispersed on the resin 1 without agglomeration, and the fine particles 3 were embedded in the resin 1 leaving a part of the surface. . Moreover, when this was introduced into an AES apparatus (SAM4300 manufactured by ULVAC-PHI) and observed after evacuation, no charge-up phenomenon was observed, and the surface condition analysis of fine particles could be performed in a good state. It was.

(実施例3)
以下、図に基づいて実施例3を説明する。微粒子を固定するための樹脂1としてグラファイト粉末を含む紫外線硬化樹脂を用いた。図1(a)において、樹脂1に平均粒子径2μmのグラファイト粉末を混合し(混合比率:60wt%)、SUS製の基材2上に塗布した後、図1(b)に示すように、被測定物として平均粒子径500nmのSiOガラス製の微粒子3を樹脂1上にふりかけて分散した。その後、図1(c)に示すように、0.2MPaの圧力の窒素ガスラインから窒素ガス5を10リットル/分の流量のガスフロー4として噴出させ樹脂に吹き付けた。次いで樹脂1にUV照射して硬化させ(硬化条件:150mW/cm、1分)、図1(d)に示す樹脂1の表面に固定された微粒子3を得た。表面を光学顕微鏡で観察すると樹脂1上に微粒子3が凝集せずに分散され、かつ微粒子3が表面の一部を残して樹脂1に埋め込まれている状態が観察できた。硬化試料をオージェ電子分光装置(アルバックファイ社製SAM4300)にて微粒子の表面状態を分析した。20000倍の倍率で表面の組成分析を行ったが、Si、Oの分布状態を観察することができ、また、樹脂1の成分であるCの検出が認められず、微粒子試料の最表面の分析を行うことができた。
(Example 3)
Hereinafter, Example 3 is demonstrated based on figures. An ultraviolet curable resin containing graphite powder was used as the resin 1 for fixing the fine particles. In FIG. 1 (a), graphite powder having an average particle diameter of 2 μm is mixed with resin 1 (mixing ratio: 60 wt%) and applied onto a SUS substrate 2, as shown in FIG. 1 (b). As an object to be measured, fine particles 3 made of SiO 2 glass having an average particle diameter of 500 nm were dispersed on the resin 1 and dispersed. Thereafter, as shown in FIG. 1C, nitrogen gas 5 was blown out as a gas flow 4 having a flow rate of 10 liters / minute from a nitrogen gas line having a pressure of 0.2 MPa and sprayed onto the resin. Next, the resin 1 was cured by UV irradiation (curing condition: 150 mW / cm 2 , 1 minute), and the fine particles 3 fixed on the surface of the resin 1 shown in FIG. When the surface was observed with an optical microscope, it was observed that the fine particles 3 were dispersed without being aggregated on the resin 1 and the fine particles 3 were embedded in the resin 1 leaving a part of the surface. The cured sample was analyzed for the surface state of the fine particles using an Auger electron spectrometer (SAM4300 manufactured by ULVAC-PHI). The composition of the surface was analyzed at a magnification of 20000 times, but the distribution state of Si and O could be observed, and the detection of C as a component of the resin 1 was not recognized, and the analysis of the outermost surface of the fine particle sample Was able to do.

本発明の実施形態の1例を説明する概略図である。It is the schematic explaining one example of embodiment of this invention. 本発明の実施形態の別の例を説明する概略図である。It is the schematic explaining another example of embodiment of this invention.

符号の説明Explanation of symbols

1 樹脂
2 基材
3 微粒子
4 ガスフロー
5 窒素ガス
6 予備混合器
DESCRIPTION OF SYMBOLS 1 Resin 2 Base material 3 Fine particle 4 Gas flow 5 Nitrogen gas 6 Premixer

Claims (7)

分析のために微粒子を固定する微粒子固定方法であって、基材上に塗布された未硬化樹脂の表面に微粒子を分散させた後、微粒子の表面の一部を残して微粒子を樹脂中に埋め込み、次いで樹脂を硬化させることを特徴とする微粒子固定方法。   A fine particle fixing method for fixing fine particles for analysis. After fine particles are dispersed on the surface of an uncured resin applied on a substrate, the fine particles are embedded in the resin leaving a part of the surface of the fine particles. Then, a method for fixing fine particles, wherein the resin is then cured. 前記微粒子の表面の一部を残して微粒子を樹脂中に埋め込む手段として、表面に微粒子を分散させた未硬化樹脂にガスを吹き付けることを特徴とする請求項1に記載の微粒子固定方法。   2. The fine particle fixing method according to claim 1, wherein as a means for embedding the fine particles in the resin while leaving a part of the surface of the fine particles, a gas is blown onto an uncured resin having fine particles dispersed on the surface. 前記未硬化樹脂の表面に微粒子を分散させた後、微粒子の表面の一部を残して微粒子を樹脂中に埋め込む手段として、微粒子とガスの混合物を前記未硬化樹脂に吹き付けることを特徴とする請求項1に記載の微粒子固定方法。   After dispersing fine particles on the surface of the uncured resin, a mixture of fine particles and gas is sprayed on the uncured resin as means for embedding the fine particles in the resin while leaving a part of the surface of the fine particles. Item 2. The fine particle fixing method according to Item 1. 前記ガスが前記微粒子および樹脂に対して不活性なガスであることを特徴とする請求項1ないし請求項3のいずれかに記載の微粒子固定方法。   The fine particle fixing method according to any one of claims 1 to 3, wherein the gas is a gas inert to the fine particles and the resin. 前記樹脂が熱硬化性樹脂であり、加熱により樹脂を硬化することを特徴とする請求項1ないし請求項4のいずれかに記載の微粒子固定方法。   The fine particle fixing method according to claim 1, wherein the resin is a thermosetting resin, and the resin is cured by heating. 前記樹脂の硬化を減圧下で行うことを特徴とする請求項1ないし請求項5のいずれかに記載の微粒子固定方法。   The fine particle fixing method according to any one of claims 1 to 5, wherein the resin is cured under reduced pressure. 前記樹脂が導電性フィラーを含有することを特徴とする請求項1ないし請求項6のいずれかに記載の微粒子固定方法。   The fine particle fixing method according to any one of claims 1 to 6, wherein the resin contains a conductive filler.
JP2007137950A 2007-05-24 2007-05-24 Particulate fixing method Pending JP2008292292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137950A JP2008292292A (en) 2007-05-24 2007-05-24 Particulate fixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137950A JP2008292292A (en) 2007-05-24 2007-05-24 Particulate fixing method

Publications (1)

Publication Number Publication Date
JP2008292292A true JP2008292292A (en) 2008-12-04

Family

ID=40167171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137950A Pending JP2008292292A (en) 2007-05-24 2007-05-24 Particulate fixing method

Country Status (1)

Country Link
JP (1) JP2008292292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159870A1 (en) * 2014-04-18 2015-10-22 株式会社堀場製作所 Sample dispersion device and sample dispersion method
JP2018136295A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Resin embedded sample and manufacturing method thereof, sample for transmission electron microscope and manufacturing method thereof
CN111551422A (en) * 2020-05-22 2020-08-18 宁波江丰电子材料股份有限公司 Metal powder sample preparation method for glow discharge mass spectrometry
CN115353708A (en) * 2022-08-26 2022-11-18 云南协研科技有限公司 Low-background conductive thermal insert special for scanning electron microscope and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159870A1 (en) * 2014-04-18 2015-10-22 株式会社堀場製作所 Sample dispersion device and sample dispersion method
JPWO2015159870A1 (en) * 2014-04-18 2017-04-13 株式会社堀場製作所 Sample dispersion apparatus and sample dispersion method
GB2548652A (en) * 2014-04-18 2017-09-27 Horiba Ltd Sample dispersion device and sample dispersion method
US9869615B2 (en) 2014-04-18 2018-01-16 Horiba, Ltd. Sample dispersion device and sample dispersion method
JP2018136295A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 Resin embedded sample and manufacturing method thereof, sample for transmission electron microscope and manufacturing method thereof
CN111551422A (en) * 2020-05-22 2020-08-18 宁波江丰电子材料股份有限公司 Metal powder sample preparation method for glow discharge mass spectrometry
CN115353708A (en) * 2022-08-26 2022-11-18 云南协研科技有限公司 Low-background conductive thermal insert special for scanning electron microscope and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100316586B1 (en) Method of modification of material surface and material having surface modified by the method
US7560134B2 (en) Nanoparticle implantation
JP6752490B2 (en) Defect reduction in substrate processing method
TWI496168B (en) Thixotropic conductive composition
JP2008292292A (en) Particulate fixing method
TWI829968B (en) Method and device for the surface treatment of substrates
KR101953938B1 (en) Conductive particles, conductive material and connection structure
TW200911890A (en) Method of changing rheology in filled resin systems using cavitation
WO2019107508A1 (en) Semiconductor device manufacturing method, curable resin composition for temporary fixation material, film for temporary fixation material, and laminated film for temporary fixation material
Kim et al. Anisotropic atomic layer etching of W using fluorine radicals/oxygen ion beam
JP6251935B2 (en) Joining method
JP2005134170A (en) Electron spectroscopic analysis method and analysis apparatus
JP3124508B2 (en) Method for modifying nitride surface and nitride surface modified by the method
Xu et al. Etching of glass, silicon, and silicon dioxide using negative ionic liquid ion sources
TW200902605A (en) Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
WO2012124527A1 (en) Resin paste composition for bonding semiconductor element, and semiconductor device
Kulisch et al. Surface and bioproperties of nanocrystalline diamond/amorphous carbon nanocomposite films
Puliyalil et al. Mechanisms of hydrophobization of polymeric composites etched in CF4 plasma
JP2019082476A (en) Resin-embedded sample
TWI291584B (en) Method to apply a liquid-crystal cell alignment by hydrogen ion beam
Kim et al. Poly‐Trimethoxyphenylsilane as Carrier Film for Residual‐Free CVD Graphene Transfer
EP4210073A1 (en) Production method for metal wiring and kit
Gopee Vertically aligned multiwalled carbon nanotubes as electronic interconnects
Mittal Particle removal from semiconductor substrates using the PLASMAX technology
JP4542212B2 (en) Low outgassing vinyl ester paint