JP2010102829A - Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method - Google Patents

Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method Download PDF

Info

Publication number
JP2010102829A
JP2010102829A JP2008270446A JP2008270446A JP2010102829A JP 2010102829 A JP2010102829 A JP 2010102829A JP 2008270446 A JP2008270446 A JP 2008270446A JP 2008270446 A JP2008270446 A JP 2008270446A JP 2010102829 A JP2010102829 A JP 2010102829A
Authority
JP
Japan
Prior art keywords
graphite oxide
size distribution
particle size
particle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008270446A
Other languages
Japanese (ja)
Other versions
JP5272641B2 (en
Inventor
Takuya Goto
拓也 後藤
Kazuyoshi Joto
和良 上等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008270446A priority Critical patent/JP5272641B2/en
Publication of JP2010102829A publication Critical patent/JP2010102829A/en
Application granted granted Critical
Publication of JP5272641B2 publication Critical patent/JP5272641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of liquid containing graphite oxide particles capable of easily and efficiently evaluating homogeneity of liquid containing graphite oxide particles. <P>SOLUTION: The evaluation method of the liquid containing graphite oxide particles includes a measuring process to determine particle-size distribution of the graphite oxide particles in the liquid containing graphite oxide particles by a liquid-phase sedimentation type particle-size distribution determining method, and a comparing process to compare the particle-size distribution measured in the measuring process with a reference particle-size distribution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化黒鉛粒子含有液の評価方法、これを用いた酸化黒鉛粒子含有液の製造方法及び導電体の製造方法に関する。   The present invention relates to a method for evaluating a graphite oxide particle-containing liquid, a method for producing a graphite oxide particle-containing liquid using the same, and a method for producing a conductor.

近年、形状の異方性が高い物質の探索、及びその応用が急速に進行している。このような物質は、多数個で他の物質との複合体にする場合には、低い添加率で高強度などの各種性能を発現すると期待されている。またその形状が極めて細い線状(1次元)や極めて薄い平面状(2次元)で、その物質が電気的に半導体または良導体であれば、単独または少数個の集合体の場合に、電子物性などに量子的な効果を発現するとも期待されている。   In recent years, the search for a material having a high shape anisotropy and its application are rapidly progressing. In the case where a large number of such substances are combined with other substances, it is expected that various properties such as high strength will be exhibited at a low addition rate. Also, if the shape is very thin linear (1D) or very thin planar (2D) and the material is an electrically semiconductor or good conductor, the physical properties can be used in the case of a single or a small number of aggregates. It is also expected to produce a quantum effect.

炭素原子を骨格とする異方性形状の平面状物質として、酸化黒鉛が知られている。酸化黒鉛は黒鉛を特定の方法により酸化することで得られる黒鉛層間化合物の一種である。酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、一般に層数は非常に多い。酸化黒鉛の基本層は、ジグザグの炭素の列で数えて炭素原子1個分または2個分の厚さの、少しsp結合の傾向のあるsp結合主体の炭素骨格と、その骨格の両側の面に結合した酸性の水酸基とを有する構造を持つと考えられている(例えば、非特許文献1〜3)。 Graphite oxide is known as an anisotropic planar material having a carbon atom as a skeleton. Graphite oxide is a kind of graphite intercalation compound obtained by oxidizing graphite by a specific method. Graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and the number of layers is generally very large. The basic layer of graphite oxide consists of a carbon skeleton with a thickness of one or two carbon atoms counted in a zigzag carbon array and a sp 3 bond-dominant carbon skeleton with a slight tendency to sp 2 bonds, and both sides of the skeleton. It is thought that it has the structure which has the acidic hydroxyl group couple | bonded with the surface (for example, nonpatent literatures 1-3).

このような酸化黒鉛として、層数の少ない非常に薄いものも作られており(例えば、非特許文献4)、本発明者らも先に、そのような酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと呼ぶことが望ましい(グラフェンは黒鉛の1層分の名称))の薄膜状粒子を高収率で製造する方法を見出すと共に、それを還元して層数の非常に少ない黒鉛(層数が1枚の場合はグラフェンと呼ぶことが望ましい)類似の薄膜状粒子を得たところである(特許文献1〜3)。   As such a graphite oxide, a very thin one having a small number of layers has also been made (for example, Non-Patent Document 4), and the present inventors have previously made such graphite oxide (when the number of layers is one). For example, graphene oxide (graphene is the name of one layer of graphite)) is found in a method for producing a high-yield thin film-like particle, and it is reduced to reduce the number of graphite ( When the number of layers is one, it is desirable to call it graphene.) Similar thin film-like particles have been obtained (Patent Documents 1 to 3).

上述した酸化黒鉛粒子は、精製の度合いにより基本層の層数が変わってくる。そして、基本層の層数の違いが粒子の厚さの違いになり、この厚さの違いがアスペクト比(粒子の面方向の大きさと厚さの比)に影響する。厚さが小さいほどアスペクト比が高く(つまり形状異方性が高く)なり、フィラーとしてはより効果が高いと考えられる。例えば酸化黒鉛粒子が樹脂に添加された場合、その酸化黒鉛粒子のアスペクト比が大きいほど、その樹脂は、より少ない量の酸化黒鉛粒子を添加するだけで導電性を得ることが可能となる。   The number of basic layers of the above-described graphite oxide particles varies depending on the degree of purification. The difference in the number of layers in the basic layer becomes the difference in the thickness of the particles, and the difference in the thickness affects the aspect ratio (ratio between the size of the particles in the plane direction and the thickness). The smaller the thickness, the higher the aspect ratio (that is, the higher the shape anisotropy), and the higher the effect as a filler. For example, when graphite oxide particles are added to a resin, the larger the aspect ratio of the graphite oxide particles, the more the resin can be made conductive by adding a smaller amount of graphite oxide particles.

粒子の厚さが性能に大きく影響する一方で、形状異方性が高い粒子の厚さを簡便に評価する方法は今のところなく、酸化黒鉛の薄膜状粒子の厚さを判断する方法としては、分散液中にある一部の粒子を基板上に乗せ、その粒子の原子間力顕微鏡観察で厚さを評価する方法が一般的である(例えば下記非特許文献5)。
特開2002−53313号公報 特開2003−176116号公報 特開2005−63951号公報 「黒鉛層間化合物」,第5章,炭素材料学会編,リアライズ社(1990) T. Nakajima et al.A NEW STRUCTURE MODEL OFGRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al.FTIRAND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991) N. A. Kotov et al.UltrathinGraphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly:TransitionBetween Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) Stankovich etal,J.Mater.Chem.,2006,16,155-158,Stankovich et al,Carbon44(2006)3342-3347
While the thickness of the particles greatly affects performance, there is currently no simple method for evaluating the thickness of particles with high shape anisotropy. A general method is to place some particles in the dispersion on a substrate and evaluate the thickness of the particles by observation with an atomic force microscope (for example, Non-Patent Document 5 below).
JP 2002-53313 A JP 2003-176116 A JP 2005-63951 A “Graphite Intercalation Compound”, Chapter 5, Carbon Society of Japan, Realize (1990) T. Nakajima et al. A NEW STRUCTURE MODEL OFGRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al. FTIRAND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991) NA Kotov et al. UltrathinGraphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: TransitionBetween Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) Stankovich etal, J. Mater. Chem., 2006, 16, 155-158, Stankovich et al, Carbon44 (2006) 3342-3347

ところで、酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を製造する上で、各粒子の厚さは性能を決める重要な要素であり、酸化黒鉛粒子の厚さの管理を適切に行う必要がある。   By the way, when manufacturing the graphite oxide particle containing liquid containing a graphite oxide particle, the thickness of each particle is an important factor which determines performance, and it is necessary to manage the thickness of a graphite oxide particle appropriately.

しかし、酸化黒鉛粒子含有液を複数作製し、それらの均質性を評価しようとする場合、酸化黒鉛粒子含有液中の極一部の粒子の厚さを原子間力顕微鏡観察で評価しただけでは、液中の粒子全体の厚さを評価したことにはならないため、均質性を満足に評価することは困難であり、ひいてはそれを用いて製造される導電膜の性能を安定化することも困難である。   However, when preparing a plurality of graphite oxide particle-containing liquids and evaluating their homogeneity, just evaluating the thickness of a very small part of the particles in the graphite oxide particle-containing liquid with atomic force microscopy, Since the thickness of the whole particle in the liquid is not evaluated, it is difficult to satisfactorily evaluate the homogeneity, and it is also difficult to stabilize the performance of the conductive film manufactured using the same. is there.

このため、酸化黒鉛粒子含有液の均質性を確保するために酸化黒鉛粒子含有液中の粒子全体の厚さを評価する評価方法の確立が望まれていた。   For this reason, establishment of the evaluation method which evaluates the thickness of the whole particle | grains in a graphite oxide particle containing liquid in order to ensure the homogeneity of a graphite oxide particle containing liquid was desired.

本発明は上記事情に鑑みてなされたものであり、酸化黒鉛粒子含有液の均質性を簡便かつ有効に評価できる酸化黒鉛粒子液の評価方法、及びこれを用いた酸化黒鉛粒子含有液の製造方法及び導電体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a method for evaluating a graphite oxide particle solution that can easily and effectively evaluate the homogeneity of a graphite oxide particle-containing solution, and a method for producing a graphite oxide particle-containing solution using the same. And it aims at providing the manufacturing method of a conductor.

本発明者らは、上記課題を解決するため鋭意検討を進めた。その検討の過程で、液相沈降式粒度分布測定法によって粒度分布を測定することを検討した。液相沈降式粒度分布測定法は粒子の粒径の違いによって液相中での粒子の沈降速度が異なることを利用して、粒子の粒度分布を測定する方法である。しかし、液相沈降式粒度分布測定法は、粒子が球形であることを前提としているところ、その酸化黒鉛粒子は高い形状異方性を有しており、球形とは程遠い形状を有する。このため、粒子の粒径が同じでも、液相中で沈降するときの粒子の姿勢によって沈降速度が異なるのではないかと本発明者らは考えた。即ち、酸化黒鉛粒子の厚さ方向が水平方向に近い場合には液相に対する粒子の抵抗が小さいために粒子の沈降速度は大きく、酸化黒鉛粒子の厚さ方向が鉛直方向に近い場合には液相に対する粒子の抵抗が大きいために粒子の沈降速度が小さくなるのではないかと考えた。即ち、本発明者らは、酸化黒鉛粒子の厚さと液相中での沈降速度との間で相関関係は見られず、液相沈降式粒度分布を利用して酸化黒鉛粒子全体の厚さを評価することは極めて困難であると考えた。   The inventors of the present invention have made extensive studies to solve the above problems. In the course of the study, it was examined to measure the particle size distribution by liquid phase sedimentation type particle size distribution measurement method. The liquid phase sedimentation type particle size distribution measurement method is a method for measuring the particle size distribution of particles by utilizing the fact that the sedimentation speed of particles in the liquid phase varies depending on the particle size of the particles. However, the liquid phase sedimentation particle size distribution measurement method assumes that the particles are spherical, and the graphite oxide particles have high shape anisotropy and have a shape far from the spherical shape. For this reason, even if the particle diameter of the particles is the same, the present inventors considered that the settling speed may differ depending on the posture of the particles when settling in the liquid phase. That is, when the thickness direction of the graphite oxide particles is close to the horizontal direction, the particle settling speed is large because the resistance of the particles to the liquid phase is small, and when the thickness direction of the graphite oxide particles is close to the vertical direction, It was thought that the sedimentation rate of the particles would decrease because of the large resistance of the particles to the phase. That is, the present inventors found no correlation between the thickness of the graphite oxide particles and the sedimentation rate in the liquid phase, and the total thickness of the graphite oxide particles was determined using the liquid phase sedimentation type particle size distribution. It was considered extremely difficult to evaluate.

しかし、本発明者らが液相沈降式粒度分布測定法を利用し、粒度分布が互いに近似する酸化黒鉛粒子含有液を用いて導電膜を作製したところ、意外なことに、導電膜はほぼ同じ抵抗値を示すことが明らかとなった。このことから、本発明者らは、酸化黒鉛粒子含有液が均質であり、粒度分布の近似性が酸化黒鉛粒子含有液の均質性の指標となり得ることを見出した。さらに本発明者らは、高いアスペクト比(=(粒子の平面方向の大きさの最大値)/(厚さ))の酸化黒鉛粒子においても、厚さのわずかな違いで粒子の沈降速度が変化することから、液相沈降式粒度分布測定法が酸化黒鉛粒子含有液中の粒子全体の厚さを評価する方法、即ち酸化黒鉛含有粒子含有液の評価方法として簡便かつ有効であることをも見出し、本発明を完成するに至ったものである。   However, when the present inventors made a conductive film using a graphite oxide particle-containing liquid whose particle size distributions approximated each other using the liquid phase sedimentation type particle size distribution measurement method, surprisingly, the conductive films were almost the same. It became clear that resistance value was shown. From this, the present inventors have found that the graphite oxide particle-containing liquid is homogeneous, and the closeness of the particle size distribution can be an indicator of the homogeneity of the graphite oxide particle-containing liquid. Furthermore, the present inventors also changed the sedimentation rate of the graphite oxide particles having a high aspect ratio (= (maximum size in the plane direction of the particles) / (thickness)) with a slight difference in thickness. Therefore, it has also been found that the liquid phase sedimentation type particle size distribution measurement method is simple and effective as a method for evaluating the total thickness of particles in a graphite oxide particle-containing liquid, that is, as a method for evaluating a graphite oxide-containing particle-containing liquid. The present invention has been completed.

即ち本発明は、酸化黒鉛粒子を含有する酸化黒鉛粒子含有液中の前記酸化黒鉛粒子の粒度分布を、液相沈降式粒度分布測定法を用いて測定する測定工程と、前記測定工程で測定した粒度分布と、基準となる基準粒度分布とを比較して酸化黒鉛粒子含有液を評価する比較工程と、を含むことを特徴とする酸化黒鉛粒子含有液の評価方法である。   That is, the present invention measures the particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid containing the graphite oxide particles using a liquid phase precipitation type particle size distribution measuring method, and the measurement step. A comparison step of evaluating a graphite oxide particle-containing liquid by comparing a particle size distribution with a reference standard particle size distribution.

また本発明は、酸化黒鉛粒子を薄層化する薄層化工程と、前記薄層化工程で薄層化された酸化黒鉛粒子を含む酸化黒鉛粒子含有液を、上述した酸化黒鉛粒子含有液の評価方法により評価する評価工程とを含み、前記評価工程で評価された酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布が、前記基準粒度分布に近似していない場合には、前記基準粒度分布に近似するように前記薄層化工程及び前記評価工程を繰り返すことによって、前記基準粒度分布に近似した粒度分布を有する酸化黒鉛粒子含有液を得る、酸化黒鉛粒子含有液の製造方法である。   Further, the present invention provides a thinning step for thinning graphite oxide particles, and a graphite oxide particle-containing liquid containing the graphite oxide particles thinned in the thinning step. The particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid evaluated in the evaluation step is not approximate to the reference particle size distribution, the reference particle size distribution The graphite oxide particle-containing liquid is obtained by repeating the thinning step and the evaluation step so as to approximate the same, thereby obtaining a graphite oxide particle-containing liquid having a particle size distribution approximate to the reference particle size distribution.

この発明によれば、基準粒度分布に近似した粒度分布を有する酸化黒鉛粒子含有液を得るようにしているため、均質性の高い酸化黒鉛粒子含有液を得ることができる。   According to the present invention, since the graphite oxide particle-containing liquid having a particle size distribution approximate to the reference particle size distribution is obtained, a highly homogeneous graphite oxide particle-containing liquid can be obtained.

さらに本発明は、上記酸化黒鉛粒子含有液の製造方法により製造される酸化黒鉛粒子含有液を含む導電体形成液を準備する導電体形成液準備工程と、前記導電体形成液をフィルム状に形成した後乾燥させ、導電膜を含む導電体を形成する膜形成工程と、を含むことを特徴とする導電体の製造方法である。   Furthermore, the present invention provides a conductor forming liquid preparation step for preparing a conductor forming liquid containing the graphite oxide particle-containing liquid produced by the method for producing a graphite oxide particle-containing liquid, and forming the conductor forming liquid in a film shape And a film forming step of forming a conductor including a conductive film by drying, and a method of manufacturing a conductor.

この導電体の製造方法によれば、所望の性能を有する導電膜を含む導電体を得ることができる。またこのような導電体を複数製造する場合には、ほぼ同性能の導電体を安定して製造することができる。   According to this conductor manufacturing method, a conductor including a conductive film having desired performance can be obtained. When a plurality of such conductors are manufactured, a conductor having substantially the same performance can be stably manufactured.

本発明によれば、酸化黒鉛粒子含有液の均質性を簡便且つ有効に評価できる酸化黒鉛粒子含有液の評価方法、これを用いた酸化黒鉛粒子含有液の製造方法および導電体の製造方法が提供される。   According to the present invention, there is provided a method for evaluating a graphite oxide particle-containing liquid capable of simply and effectively evaluating the homogeneity of the liquid graphite oxide-containing liquid, a method for producing a graphite oxide particle-containing liquid using the same, and a method for producing a conductor. Is done.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[導電体の製造方法]
まず導電体の製造方法の実施形態について説明する。
[Method for producing conductor]
First, an embodiment of a method for manufacturing a conductor will be described.

まず導電体の製造方法の実施形態の説明に先立ち、その製造方法により製造される導電体の構成について図1を用いて説明する。   First, prior to description of an embodiment of a method for manufacturing a conductor, a configuration of a conductor manufactured by the manufacturing method will be described with reference to FIG.

図1は、本実施形態の導電体の製造方法により製造される導電体の一例を示す側面図である。図1に示すように、本実施形態の導電体100は、基材1と、基材1の一面1a上に設けられる導電膜2とを備えている。   FIG. 1 is a side view showing an example of a conductor manufactured by the method for manufacturing a conductor according to the present embodiment. As shown in FIG. 1, the conductor 100 of the present embodiment includes a base material 1 and a conductive film 2 provided on one surface 1 a of the base material 1.

基材1としては、ガラス板、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルムなどが挙げられる。   Examples of the substrate 1 include a glass plate, a polyethylene terephthalate film, and a polycarbonate film.

導電膜2は導電性を有しており、酸化黒鉛粒子を含有する導電体形成液を基材1の一面1a上に塗布してフィルム状に形成した後、乾燥することによって得られるものである。   The conductive film 2 has conductivity, and is obtained by applying a conductor forming liquid containing graphite oxide particles on one surface 1a of the substrate 1 to form a film and then drying it. .

次に、導電体100の製造方法について図2を参照して説明する。   Next, a method for manufacturing the conductor 100 will be described with reference to FIG.

図2は、導電体100の製造方法を示すフローチャートである。図2に示すように、導電体100の製造方法は、まず酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を製造し(S100〜S103)、得られた酸化黒鉛粒子含有液を含む導電体形成液を準備し(S104)、その後、この導電体形成液を用いて基材1上に導電膜2を形成して導電体100を得るものである(S105)。そこで、はじめに酸化黒鉛粒子含有液の製造方法について説明する。   FIG. 2 is a flowchart showing a method for manufacturing the conductor 100. As shown in FIG. 2, the manufacturing method of the conductor 100 first manufactures a graphite oxide particle-containing liquid containing graphite oxide particles (S100 to S103), and a conductor forming liquid containing the obtained graphite oxide particle-containing liquid. Is prepared (S104), and then the conductive film 2 is formed on the substrate 1 using this conductor forming liquid to obtain the conductor 100 (S105). Therefore, first, a method for producing a graphite oxide particle-containing liquid will be described.

(酸化黒鉛粒子含有液の製造方法)
酸化黒鉛粒子含有液の酸化黒鉛粒子は、黒鉛を酸化することにより得られるものである。
(Method for producing graphite oxide particle-containing liquid)
The graphite oxide particles in the graphite oxide particle-containing liquid are obtained by oxidizing graphite.

上記酸化黒鉛粒子の原料として用いられる黒鉛には、各種黒鉛が使用可能であるが、層構造が発達した結晶性の高い黒鉛が酸化黒鉛製造の収率が高く、基本層の層数が少ない酸化黒鉛が得られやすいという理由から好ましい。このような黒鉛として、天然黒鉛(特に良質なもの)、キッシュ黒鉛(特に高温で作られたもの)、高配向性熱分解黒鉛が好ましく用いられる他、これらの黒鉛の層間を予め広げた膨張黒鉛も好ましく用いられる。また、黒鉛中の金属元素などの不純物は、予め約0.5質量%以下になるまで除去されていることが望ましい。   Various types of graphite can be used for the graphite used as a raw material for the above graphite oxide particles. However, highly crystalline graphite with a developed layer structure has a high yield in the production of graphite oxide and has a small number of basic layers. It is preferable because graphite is easily obtained. As such graphite, natural graphite (particularly good quality), quiche graphite (particularly made at high temperature), highly oriented pyrolytic graphite are preferably used, and expanded graphite in which the layers of these graphites are expanded in advance. Are also preferably used. Further, it is desirable that impurities such as metal elements in the graphite have been removed in advance until it becomes about 0.5% by mass or less.

上記酸化黒鉛粒子は、例えば硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用して黒鉛を酸化する方法(Hummers−Offeman法)によって製造される。   The graphite oxide particles are produced by, for example, a method of oxidizing graphite (Hummers-Offeman method) using sulfuric acid, sodium nitrate, or potassium permanganate.

この方法ではまず、硝酸ナトリウム、硫酸、過マンガン酸カリウム、黒鉛を混合することで黒鉛の層間に硫酸イオンを侵入させて、反応液中に硫酸−黒鉛層間化合物を生成させる(層間化合物生成工程:S100)。ここで、硝酸ナトリウム、硫酸、過マンガン酸カリウムの比率を、例えば質量比で硝酸ナトリウム10に対して、硫酸が828、過マンガン酸カリウムが60とすると、硫酸−黒鉛層間化合物を効果的に生成することができる。   In this method, first, sodium nitrate, sulfuric acid, potassium permanganate, and graphite are mixed to cause sulfate ions to enter between the graphite layers, thereby generating a sulfuric acid-graphite intercalation compound in the reaction solution (intercalation compound generation step: S100). Here, when the ratio of sodium nitrate, sulfuric acid, and potassium permanganate is, for example, sodium nitrate 10 by mass ratio with sulfuric acid 828 and potassium permanganate 60, sulfuric acid-graphite intercalation compound is effectively generated. can do.

次に、上記反応液中に水を添加することで硫酸−黒鉛層間化合物に加水分解を起こし、酸化黒鉛粒子を生成させる(加水分解工程:S101)。こうして酸化黒鉛粒子を含む反応液が得られる。   Next, the sulfuric acid-graphite intercalation compound is hydrolyzed by adding water to the reaction solution to generate graphite oxide particles (hydrolysis step: S101). Thus, a reaction liquid containing graphite oxide particles is obtained.

続いて、反応液中に残存する硫酸イオン、マンガンイオン等の不純物イオンを除去して反応液を精製し、酸化黒鉛粒子含有液を得る(精製工程:S102)。   Subsequently, impurity ions such as sulfate ions and manganese ions remaining in the reaction solution are removed and the reaction solution is purified to obtain a graphite oxide particle-containing solution (purification step: S102).

ここで、反応液中に残存する不純物イオンを除去する方法としては、溶媒の添加操作と溶媒の除去操作とを順次行う方法が例示できる。溶媒の除去操作には、デカンテーション、濾過、遠心分離、透析、イオン交換などの公知の手段を用いることができる。デカンテーションや濾過は、沈降が遅いために精製時間が長くなることや酸化黒鉛粒子による閉塞によってほとんど濾過ができないことから、比較的短時間で精製可能な遠心分離がより好ましい。   Here, examples of the method for removing impurity ions remaining in the reaction solution include a method of sequentially performing a solvent addition operation and a solvent removal operation. For the solvent removal operation, known means such as decantation, filtration, centrifugation, dialysis, and ion exchange can be used. In decantation and filtration, since sedimentation is slow, the purification time becomes long, and filtration is hardly possible due to clogging with graphite oxide particles. Therefore, centrifugation capable of purification in a relatively short time is more preferable.

なお、上記精製工程においては、酸化黒鉛粒子同士の凝集を防止する観点から、上記溶媒として、比誘電率が15以上である液体を用いることが好ましく、中でも水を用いることが特に好ましい。ここで、水の中でも特にイオン交換水を用いることが好ましい。   In the purification step, from the viewpoint of preventing aggregation of graphite oxide particles, a liquid having a relative dielectric constant of 15 or more is preferably used as the solvent, and water is particularly preferably used. Here, it is particularly preferable to use ion-exchanged water among water.

上記精製工程により酸化黒鉛粒子において層の分離が進み、酸化黒鉛粒子の薄層化が行われる。即ち、精製工程は、本発明に係る酸化黒鉛粒子含有液の製造方法における薄層化工程に相当するものである。   Separation of layers in the graphite oxide particles proceeds by the purification step, and the graphite oxide particles are thinned. That is, the refining step corresponds to the thinning step in the method for producing a graphite oxide particle-containing liquid according to the present invention.

(酸化黒鉛粒子含有液の評価方法)
本実施形態では、上記精製工程の後に、酸化黒鉛粒子含有液を評価する(評価工程:S103)。ここで、酸化黒鉛粒子含有液の評価方法について説明する。
(Method for evaluating graphite oxide particle-containing liquid)
In the present embodiment, the graphite oxide particle-containing liquid is evaluated after the purification step (evaluation step: S103). Here, a method for evaluating the graphite oxide particle-containing liquid will be described.

まずこの評価方法では、酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を、液相沈降式粒度分布測定法を用いて測定する(測定工程:S103A)。   First, in this evaluation method, the particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid is measured using a liquid phase precipitation type particle size distribution measurement method (measurement step: S103A).

ここで、粒度分布とは、酸化黒鉛粒子全体の厚さの分布を意味する。このような粒度分布を測定する装置としては、液相沈降式粒度分布測定法を実施する装置であれば特に制限はなく、例えば、HORIBA製超遠心式自動粒度分布測定装置CAPA−700が利用可能である。このCAPA−700では、密度(ρ)、粘性係数(η)の溶媒中に存在する直径(D)、密度(ρ)の球形粒子がStokesの沈降式に従って一定速度で沈降するという理論が応用されている(HORIBA製超遠心式自動粒度分布測定装置CAPA−700マニュアル)。但し、Stokesの沈降式は球形粒子に対する式で、形状異方性が高い粒子などでは正確な粒径を反映していない。つまり、この装置で測定される粒径は、粒子が球形であることを前提とした粒径であることから、形状異方性が高い粒子では特に粒径の値自体には意味がない。しかし、溶媒の密度(ρ)、粘性係数(η)、および酸化黒鉛粒子含有液の密度(ρ)が同一の場合、得られる粒径の値は沈降速度と対応があり、粒径の値が小さいものほど沈降速度は遅くなる。このため、粒径の値自体に意味はなくても、上記装置は、酸化黒鉛粒子含有液同士を相対的に比較し、両者が相対的に同質かどうかを評価する場合には有用なのである。 Here, the particle size distribution means the thickness distribution of the entire graphite oxide particles. The apparatus for measuring such particle size distribution is not particularly limited as long as it is an apparatus for performing a liquid phase sedimentation type particle size distribution measuring method. For example, an ultracentrifugal automatic particle size distribution measuring apparatus CAPA-700 manufactured by HORIBA can be used. It is. The CAPA-700 has a theory that spherical particles having a diameter (D) and a density (ρ) existing in a solvent having a density (ρ 0 ) and a viscosity coefficient (η 0 ) settle at a constant speed according to the Stokes sedimentation equation. Applied (HORIBA ultracentrifugal automatic particle size distribution analyzer CAPA-700 manual). However, the Stokes sedimentation equation is an equation for spherical particles, and does not reflect the exact particle size of particles with high shape anisotropy. That is, the particle size measured by this apparatus is a particle size on the assumption that the particles are spherical, and therefore the particle size value itself has no meaning for particles having high shape anisotropy. However, when the density of the solvent (ρ 0 ), the viscosity coefficient (η 0 ), and the density of the graphite oxide particle-containing liquid (ρ) are the same, the value of the obtained particle size corresponds to the sedimentation rate, The smaller the value, the slower the sedimentation rate. For this reason, even if the value of the particle size itself is meaningless, the above apparatus is useful when relatively comparing graphite oxide particle-containing liquids and evaluating whether the two are relatively homogeneous.

ここで、上記装置では、測定時に溶媒の密度、粘性係数や粒子の密度等の条件を入力する必要があるが、上述したように、粒径の値自体に意味がないことから、実際とは異なる値を入力してもよく、必ずしも正しい値(溶媒が水の場合は、水の密度である1g/cm)を入力する必要はない。 Here, in the above apparatus, it is necessary to input conditions such as solvent density, viscosity coefficient and particle density at the time of measurement, but as described above, since the particle size value itself has no meaning, it is actually Different values may be input, and it is not always necessary to input a correct value (when the solvent is water, the density of water is 1 g / cm 3 ).

次に、こうして測定した粒度分布を、基準となる基準粒度分布と比較して、酸化黒鉛粒子含有液を評価する(比較工程:S103B)。このとき、酸化黒鉛粒子含有液の粒度分布が基準粒度分布と近似していなければ酸化黒鉛粒子含有液は良好でないと評価され、近似していれば、酸化黒鉛粒子含有液は良好と評価される。このように、液相沈降式粒度分布を測定することにより、酸化黒鉛粒子含有液の均質性を簡易かつ有効に評価できる。   Next, the particle size distribution measured in this way is compared with a reference reference particle size distribution to evaluate the graphite oxide particle-containing liquid (comparative step: S103B). At this time, if the particle size distribution of the graphite oxide particle-containing liquid does not approximate the reference particle size distribution, the graphite oxide particle-containing liquid is evaluated as not good, and if approximate, the graphite oxide particle-containing liquid is evaluated as good. . Thus, by measuring the liquid phase sedimentation particle size distribution, the homogeneity of the graphite oxide particle-containing liquid can be easily and effectively evaluated.

ここで、「基準粒度分布」は、任意に選ぶことができる。   Here, the “reference particle size distribution” can be arbitrarily selected.

また基準粒度分布と測定された粒度分布との形状の近似性を比較できる指標としては、例えばR値を用いることができる。R値は、基準粒度分布と比較したときの酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布についての値であり、粒径D(i=1〜n)の基準となる量がX(i=1〜n)で、比較とする試料の量がY(i=1〜n)であるとき、以下のようにして計算される。

Figure 2010102829
As an index that can compare the closeness of the shape between the reference particle size distribution and the measured particle size distribution, for example, an R 2 value can be used. The R 2 value is a value regarding the particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid as compared with the reference particle size distribution, and the amount serving as a reference for the particle size D i (i = 1 to n) is X When i (i = 1 to n) and the amount of the sample to be compared is Y i (i = 1 to n), the calculation is performed as follows.
Figure 2010102829

ここで、R値は0〜1の値をとり、1に近いほど分布が近似することを意味する。例えばR値が0.70以上であれば、測定した粒度分布が基準粒度分布に近似していると評価する。ここで、測定した粒度分布と基準粒度分布とは、R値が0.80以上である場合に近似していると評価することが好ましく、R値が0.90以上である場合に近似していると評価することがさらに好ましい。この場合、測定に係る酸化黒鉛粒子含有液の粒度分布と、基準粒度分布との近似性はかなり高まるので、測定に係る酸化黒鉛粒子含有液を、基準粒度分布を持つ酸化黒鉛粒子含有液に近づけることができる。 Here, the R 2 value takes a value of 0 to 1, and the closer to 1, the closer the distribution is. For example, if the R 2 value is 0.70 or more, it is evaluated that the measured particle size distribution approximates the reference particle size distribution. Here, it is preferable to evaluate that the measured particle size distribution and the reference particle size distribution are approximate when the R 2 value is 0.80 or more, and approximate when the R 2 value is 0.90 or more. More preferably, it is evaluated that In this case, the approximation between the particle size distribution of the graphite oxide particle-containing liquid related to the measurement and the reference particle size distribution is considerably increased, so that the graphite oxide particle-containing liquid related to the measurement is brought close to the graphite oxide particle-containing liquid having the reference particle size distribution. be able to.

そして、上記評価工程で、酸化黒鉛粒子含有液が良好でないと評価された場合には、さらに、その酸化黒鉛粒子含有液に対して上記精製工程および上記評価工程を繰り返し行うことによって、酸化黒鉛粒子の粒度分布を、基準粒度分布に近づけるのである。こうして、良好と評価された酸化黒鉛粒子含有液が得られる。   In the evaluation step, if it is evaluated that the graphite oxide particle-containing liquid is not good, the graphite oxide particle is further obtained by repeatedly performing the purification step and the evaluation step on the graphite oxide particle-containing liquid. This is because the particle size distribution of is close to the reference particle size distribution. Thus, a graphite oxide particle-containing liquid evaluated as good is obtained.

このようにして良好と評価された酸化黒鉛粒子含有液の粒度分布は基準分布と近似しているため、均質性の高い酸化黒鉛粒子含有液を得ることができる。   Since the particle size distribution of the graphite oxide particle-containing liquid evaluated as good in this way is close to the standard distribution, a highly homogeneous graphite oxide particle-containing liquid can be obtained.

以下、HORIBA製超遠心式自動粒度分布測定装置CAPA−700を例に、酸化黒鉛粒子含有液の評価方法について具体的に説明する。   Hereinafter, the evaluation method of the graphite oxide particle-containing liquid will be described in detail by taking, as an example, an ultracentrifugal automatic particle size distribution analyzer CAPA-700 manufactured by HORIBA.

CAPA−700では他の多くの装置と同様に溶媒の密度(ρ)、粘性係数(η)および粒子の密度(ρ)を設定すれば、その沈降速度の違いから液中に存在する粒子の粒径の分布が測定できる。さらに測定する粒子が沈降する速度に応じて遠心力を変えて測定することができる。溶媒の密度(ρ)、粘性係数(η)および粒子の密度(ρ)は実際に使用している溶媒・粒子の値を用いる必要はなく、ちょうど比較しやすい粒度分布が得られるように適当な値を選択すればよい。例えば、エスイーシー社製天然黒鉛SNO−2(純度99.97質量%以上)を原料としてHummers−Offeman法により作製された酸化黒鉛粒子に十分精製を行って得られた酸化黒鉛粒子の水分散液について、CAPA−700で粒度分布測定を行った。この場合、下記表1に示す条件で良好な粒度分布を測定することができた。ここで、粒度分布が良好かどうかについては、量(%)(面積基準)が2%未満となっている粒径と、2%以上になっている粒径とが同程度存在する粒径分布であるかどうかを基準に判断したものである。なお、「量(%)(面積基準)」については後述する。

Figure 2010102829
In CAPA-700, as in many other devices, if the solvent density (ρ 0 ), viscosity coefficient (η 0 ), and particle density (ρ) are set, particles existing in the liquid due to the difference in sedimentation speed The particle size distribution can be measured. Furthermore, the centrifugal force can be changed according to the speed at which the particles to be measured settle. The solvent density (ρ 0 ), viscosity coefficient (η 0 ), and particle density (ρ) do not need to use the actual solvent / particle values, so that a comparable particle size distribution can be obtained. An appropriate value may be selected. For example, an aqueous dispersion of graphite oxide particles obtained by sufficiently purifying graphite oxide particles produced by Hummers-Offeman method using natural graphite SNO-2 (purity 99.97% by mass or more) manufactured by ESC Corporation as a raw material The particle size distribution was measured with CAPA-700. In this case, a good particle size distribution could be measured under the conditions shown in Table 1 below. Here, as to whether the particle size distribution is good or not, the particle size distribution in which the amount (%) (area basis) is less than 2% and the particle size of 2% or more exists to the same extent. It is judged on the basis of whether or not. “Amount (%) (area standard)” will be described later.
Figure 2010102829

ここで、回転数は沈降時に加える遠心力に対応し、回転数が高いほど強い遠心力を加えて測定することになる。   Here, the rotation speed corresponds to the centrifugal force applied during sedimentation, and the higher the rotation speed, the stronger the centrifugal force is applied and measured.

図3は、上記測定条件で同一試料を2回測定した測定1及び測定2の結果である。図3において、横軸は粒子の粒径を表し、縦軸は、量(%)(面積基準)を表す。量(%)(面積基準)とは、全粒子について粒径を直径として求めた円の面積の総和において、ある粒径を持つ粒子の円の面積の和が占める割合を表す。従って例えば、粒度分布において、ある粒径の量(%)と、別の粒径の量(%)とが同一であるとした場合、あくまでも粒径を直径とした円の面積の和が等しいのであって、粒子の数が等しいというものではない。図4及び図5においても、横軸及び縦軸は図3と同様である。図3に示す結果によれば、良好な粒度分布が得られており、2回測定時の再現性も良好である。測定1に対する測定2のR値は0.95であった。 FIG. 3 shows the results of Measurement 1 and Measurement 2 in which the same sample was measured twice under the above measurement conditions. In FIG. 3, the horizontal axis represents the particle size of the particles, and the vertical axis represents the amount (%) (area basis). The amount (%) (area basis) represents the ratio of the sum of the areas of the circles of particles having a certain particle diameter to the total area of the circles obtained by using the particle diameter as the diameter for all particles. Therefore, for example, in the particle size distribution, if the amount (%) of one particle size is the same as the amount (%) of another particle size, the sum of the areas of the circles with the particle size being the diameter is the same. It is not that the number of particles is equal. 4 and 5, the horizontal axis and the vertical axis are the same as those in FIG. According to the results shown in FIG. 3, a good particle size distribution is obtained, and the reproducibility during the second measurement is also good. The R 2 value of measurement 2 relative to measurement 1 was 0.95.

図4は、精製の各段階1〜6において上記と同一条件で粒度分布測定を行った結果を示すグラフである。精製段階を示す数字は、大きいほど精製が進んでいることを表している。図4に示す結果より、精製が進み酸化黒鉛粒子の厚みが薄くなるにつれて、粒度分布のピークが粒径の小さな値の方にシフトしており、CAPA−700で測定した粒度分布は、酸化黒鉛粒子の厚さを十分に反映したものとなっていることが分かる。   FIG. 4 is a graph showing the results of the particle size distribution measurement performed under the same conditions as described above in the purification steps 1 to 6. The number indicating the purification step indicates that the larger the purification step, the more advanced the purification. From the results shown in FIG. 4, as the refinement progresses and the thickness of the graphite oxide particles decreases, the peak of the particle size distribution shifts to a smaller value of the particle size, and the particle size distribution measured by CAPA-700 is It can be seen that the thickness sufficiently reflects the thickness of the particles.

ここで、上記のようにして得られた酸化黒鉛粒子含有液において、酸化黒鉛粒子の形状は平板状となっている。酸化黒鉛粒子の形状が平板状であると、形状異方性が高まり、形状異方性が小さい酸化黒鉛粒子と比べて、導電膜2に導電性を発現させるために必要な導電膜2中の酸化黒鉛粒子の含有率を少なくすることができ、結果的に得られる導電膜2からの酸化黒鉛粒子の脱離を抑制でき且つ導電膜2の透明性を高めることができる。   Here, in the graphite oxide particle-containing liquid obtained as described above, the shape of the graphite oxide particles is flat. When the shape of the graphite oxide particles is a flat plate shape, the shape anisotropy is increased, and the conductive film 2 in the conductive film 2 necessary for expressing the conductivity as compared with the graphite oxide particles having a small shape anisotropy. The content rate of the graphite oxide particles can be reduced, the resulting detachment of the graphite oxide particles from the conductive film 2 can be suppressed, and the transparency of the conductive film 2 can be increased.

酸化黒鉛粒子の形状が平板状である場合、酸化黒鉛粒子の平均粒径が100nm以上であり、且つ平均厚さが0.4nm〜100nmであることが好ましい。特に平均厚さについては、0.4nm〜10nmであることがより好ましい。この場合、酸化黒鉛における基本層の層数が非常に少なく、平均厚さが薄いことで還元が容易となり、また、形状異方性が顕著に高く、そのため導電膜2に導電性を発現させるために必要な導電膜2中の酸化黒鉛粒子の含有率を低減することが可能となる。このため、導電膜2について高い透明性が得られるとともに、導電膜2からの酸化黒鉛粒子の脱離を顕著に抑制できる。   When the shape of the graphite oxide particles is flat, the average particle size of the graphite oxide particles is preferably 100 nm or more, and the average thickness is preferably 0.4 nm to 100 nm. In particular, the average thickness is more preferably 0.4 nm to 10 nm. In this case, the number of basic layers in the graphite oxide is very small, the average thickness is thin, the reduction is easy, and the shape anisotropy is remarkably high, so that the conductive film 2 is made conductive. It becomes possible to reduce the content rate of the graphite oxide particles in the conductive film 2 necessary for this. For this reason, high transparency is obtained for the conductive film 2 and the detachment of the graphite oxide particles from the conductive film 2 can be remarkably suppressed.

なお、酸化黒鉛粒子の「平均粒径」とは、光学顕微鏡または電子顕微鏡を使って5個の酸化黒鉛粒子を観察した場合に、酸化黒鉛粒子の平面方向の粒径の平均値を言うものとする。ここで、「粒径」とは、光学顕微鏡または電子顕微鏡を使って酸化黒鉛粒子を観察したときの酸化黒鉛粒子の最も長い対角線の長さを言うものとする。   The “average particle size” of the graphite oxide particles means the average value of the particle sizes in the plane direction of the graphite oxide particles when the five graphite oxide particles are observed using an optical microscope or an electron microscope. To do. Here, “particle diameter” refers to the length of the longest diagonal line of graphite oxide particles when the graphite oxide particles are observed using an optical microscope or an electron microscope.

また、酸化黒鉛粒子の「平均厚さ」とは、原子間力顕微鏡を使って5個の酸化黒鉛粒子について測定された厚さの平均値を言うものとする。   The “average thickness” of the graphite oxide particles refers to the average value of the thicknesses measured for the five graphite oxide particles using an atomic force microscope.

次に、上記のようにして良好と評価された酸化黒鉛粒子含有液は通常、分散媒と混合される。こうして、酸化黒鉛粒子含有液を含む導電体形成液を準備する(導電体形成液準備工程:S104)。   Next, the graphite oxide particle-containing liquid evaluated as good as described above is usually mixed with a dispersion medium. Thus, a conductor forming liquid containing the graphite oxide particle-containing liquid is prepared (conductor forming liquid preparing step: S104).

このとき酸化黒鉛粒子含有液と混合される分散媒は必要に応じて適切なものを選択することが可能であるが、精製工程で用いる溶媒として水が用いられる場合には、分散媒としても水を用いることが、交換が不要でコストを低減できることから好ましい。   At this time, an appropriate dispersion medium to be mixed with the graphite oxide particle-containing liquid can be selected as necessary. However, when water is used as a solvent used in the purification process, the dispersion medium can be used as a dispersion medium. It is preferable to use since the replacement is unnecessary and the cost can be reduced.

但し、精製工程で用いる溶媒として水が用いられる場合でも、分散媒として、必ずしも水を用いる必要はなく、例えば、メタノール、エタノール、アセトン、2−ブタノンなど、比誘電率が15以上の高極性液体を用いてもよい。このような水以外の高極性の液体を主な分散媒とするための手段として、元の分散液に含まれる水よりも十分多量の水以外の高極性液体を加えて希釈する方法、水以外の高極性液体を加えてから遠心分離とデカンテーションなどで上澄みを除くことを繰り返して水以外の高極性の分散媒に徐々に交換する方法、などが例示できる。また、数種類の液体を適当な割合で混合した液体を分散媒として用いることも可能である。この場合、一部に比誘電率15未満の液体を用いてもよい。   However, even when water is used as the solvent used in the purification process, it is not always necessary to use water as the dispersion medium. For example, methanol, ethanol, acetone, 2-butanone, or the like, a highly polar liquid having a relative dielectric constant of 15 or more. May be used. As a means for using such a highly polar liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently large amount of highly polar liquid other than water than the water contained in the original dispersion, other than water And a method of gradually exchanging the dispersion with a highly polar dispersion medium other than water by repeating the removal of the supernatant by centrifugation and decantation after adding the highly polar liquid. It is also possible to use a liquid obtained by mixing several kinds of liquids at an appropriate ratio as a dispersion medium. In this case, a liquid having a relative dielectric constant of less than 15 may be used in part.

上記導電体形成液準備工程では、酸化黒鉛粒子含有液に対しては、分散媒のほか、還元作用を有する化合物、高分子材料をさらに添加してもよい。このような還元作用を有する化合物としては、各種還元剤が利用可能である。なかでも、導電体形成液を乾燥して分散媒を除去する前には酸化黒鉛粒子中の酸素量を10質量%以上減少させず、導電体形成液を乾燥し分散媒を除去する過程または導電体形成液を乾燥し分散媒を除去した後に酸化黒鉛粒子を還元する作用を有する還元剤がさらに好ましい。   In the conductor forming liquid preparation step, a compound having a reducing action and a polymer material may be further added to the graphite oxide particle-containing liquid in addition to the dispersion medium. Various reducing agents can be used as the compound having such a reducing action. In particular, before removing the dispersion medium by drying the conductor formation liquid, the process of removing the dispersion medium by drying the conductor formation liquid without reducing the oxygen content in the graphite oxide particles by 10 mass% or more. A reducing agent having an action of reducing graphite oxide particles after drying the body-forming liquid and removing the dispersion medium is more preferable.

ここで、この還元剤が、導電体形成液を乾燥して分散媒を除去する前に酸化黒鉛粒子中の酸素量を10質量%以上減少させないかどうかについては次のようにして測定することができる。即ちまず導電体形成液と比率を同一にした酸化黒鉛粒子、還元剤及び分散媒のみからなる液を作製し、25℃で1時間放置した後に還元剤を除去し、このときの液中に含まれる酸化黒鉛粒子中の酸素量を測定する。そして、この測定された酸素量と、予め還元剤と接触させない状態で測定された酸化黒鉛粒子中の酸素量との差を算出する。こうして、上記還元剤が、酸化黒鉛粒子中の酸素量を10質量%以上減少させないかどうかを判断することができる。   Here, whether or not this reducing agent does not reduce the amount of oxygen in the graphite oxide particles by 10 mass% or more before drying the conductor forming liquid and removing the dispersion medium can be measured as follows. it can. That is, first, a liquid consisting only of graphite oxide particles, a reducing agent, and a dispersion medium having the same ratio as the conductor forming liquid was prepared, and the reducing agent was removed after standing at 25 ° C. for 1 hour, and contained in the liquid at this time. Measure the amount of oxygen in the oxidized graphite particles. And the difference of this measured amount of oxygen and the amount of oxygen in the graphite oxide particle measured beforehand in the state which is not made to contact with a reducing agent is calculated. Thus, it can be determined whether the reducing agent does not reduce the oxygen content in the graphite oxide particles by 10 mass% or more.

この場合、酸化黒鉛粒子が、導電体形成液を乾燥し分散媒を除去する過程または導電体形成液を乾燥し分散媒を除去した後に還元剤によって還元されるので、還元による酸化黒鉛粒子同士の分散状態の悪化を抑制することができ、ひいては、酸化黒鉛粒子の含有率が低くても、得られる導電体100がより高い導電性を有することとなる。さらにまた、上記構成の還元剤が導電体形成液中に含まれていると、還元剤を用いない場合に比べて導電体形成液を低温で加熱しただけで酸化黒鉛粒子を還元させることができる。   In this case, the graphite oxide particles are reduced by the reducing agent after drying the conductor forming liquid and removing the dispersion medium, or after drying the conductor forming liquid and removing the dispersion medium. The deterioration of the dispersion state can be suppressed, and as a result, even if the content of the graphite oxide particles is low, the obtained conductor 100 has higher conductivity. Furthermore, when the reducing agent having the above structure is included in the conductor forming liquid, it is possible to reduce the graphite oxide particles only by heating the conductor forming liquid at a low temperature as compared with the case where the reducing agent is not used. .

上記のような還元剤としては、例えば、ヒドロキノン、レゾルシノール、カテコール、ピロガロール、没食子酸、L−システイン、ヨウ化水素酸、ヒドラジン、ホスフィン酸、クエン酸、チオ硫酸ナトリウム、チオ硫酸アンモニウム、次亜リン酸ナトリウム、ポリアクリル酸、L(+)アスコルビン酸などが挙げられ、中でもヒドロキノン、ピロガロール、ホスフィン酸が、より高い導電性が得られると言う理由から好ましく用いられる。   Examples of the reducing agent include hydroquinone, resorcinol, catechol, pyrogallol, gallic acid, L-cysteine, hydroiodic acid, hydrazine, phosphinic acid, citric acid, sodium thiosulfate, ammonium thiosulfate, and hypophosphorous acid. Sodium, polyacrylic acid, L (+) ascorbic acid and the like can be mentioned, among which hydroquinone, pyrogallol, and phosphinic acid are preferably used because higher conductivity is obtained.

上記高分子材料としては、上記分散媒に分散あるいは溶解する材料を使用することが望ましい。また上記導電体形成液は、必要に応じてバインダをさらに含有してもよい。この場合、バインダとして、上記分散媒に分散あるいは溶解する材料を使用すると好ましい。高分子材料及びバインダを上記分散媒に分散あるいは溶解する材料とすれば、実質的にすべての材料を均一に分散あるいは溶解させた導電体形成液を容易に得ることが可能である。   As the polymer material, it is desirable to use a material that is dispersed or dissolved in the dispersion medium. Moreover, the said conductor formation liquid may further contain a binder as needed. In this case, it is preferable to use a material that is dispersed or dissolved in the dispersion medium as the binder. If the polymer material and the binder are materials that are dispersed or dissolved in the dispersion medium, it is possible to easily obtain a conductor forming liquid in which substantially all materials are uniformly dispersed or dissolved.

なお、上記導電体形成液中に高分子材料やバインダが多量に含まれると酸化黒鉛粒子の粒度分布測定結果に誤差が生じやすい。このため、上記高分子材料やバインダを多量に含む導電体形成液について粒度分布を測定し、評価するのではなく、上記精製工程の後で行っているように、上記高分子材料やバインダを多量に含まない酸化黒鉛粒子含有液について粒度分布測定を行い、評価を行うのがよいのである。   Note that if the polymer forming liquid contains a large amount of a polymer material or a binder, an error is likely to occur in the particle size distribution measurement result of the graphite oxide particles. For this reason, rather than measuring and evaluating the particle size distribution of the conductor forming liquid containing a large amount of the polymer material or binder, the polymer material or binder is used in a large amount as performed after the purification step. It is preferable to perform evaluation by measuring the particle size distribution of the liquid containing graphite oxide particles not contained in the sample.

上記高分子材料又はバインダとしては、シリカゾルや有機シランなどの無機系材料、ポリカーボネート樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、メタクリル樹脂、フッ素樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリビニルアルコール樹脂などの有機系材料、これらの材料を適当な溶媒に分散させたエマルジョンが挙げられる。   Examples of the polymer material or binder include inorganic materials such as silica sol and organic silane, polycarbonate resin, polystyrene resin, polyvinyl chloride resin, methacrylic resin, fluororesin, polyimide resin, polyamide resin, polyamideimide resin, and polyvinyl alcohol resin. And organic emulsions in which these materials are dispersed in a suitable solvent.

次に、上記のようにして得られた導電体形成液を、基材1の一面1a上に塗布してフィルム状に形成し、その後導電体形成液を乾燥させる。こうして導電体100の製造が完了する(膜形成工程:S105)。   Next, the conductor forming liquid obtained as described above is applied onto one surface 1a of the substrate 1 to form a film, and then the conductor forming liquid is dried. Thus, the manufacture of the conductor 100 is completed (film formation step: S105).

導電体形成液の塗布の方法は、基材1の一面1a上への塗布が可能であれば特に限定されるものではなく、例えばスピンコータ法、バーコータ法、ロールコータ法などの方法を用いることができる。   The method of applying the conductor forming liquid is not particularly limited as long as it can be applied onto the one surface 1a of the base material 1. For example, a spin coater method, a bar coater method, a roll coater method or the like may be used. it can.

また導電体形成液の乾燥も特に限定されるものではなく、一般的な方法で行うことが可能である。   Also, the drying of the conductor forming liquid is not particularly limited, and can be performed by a general method.

導電体形成液を乾燥して分散媒を除去する工程またはその後における加熱温度は、好ましくは30℃〜250℃、より好ましくは40℃〜200℃である。   The step of drying the conductor forming liquid to remove the dispersion medium or the heating temperature thereafter is preferably 30 ° C to 250 ° C, more preferably 40 ° C to 200 ° C.

このようにして、酸化黒鉛粒子を分散させた導電膜2を基材1上に得ることができる。なお、基材1上に得られる膜が、未還元の状態の酸化黒鉛粒子を含有し導電性を有しない場合には、必要に応じて、該酸化黒鉛粒子を部分的または完全に還元させるようにしてもよい。該酸化黒鉛粒子を還元させる方法としては、導電体形成液に対して200℃程度の熱処理を行う方法が例示できる。   In this way, the conductive film 2 in which graphite oxide particles are dispersed can be obtained on the substrate 1. In addition, when the film | membrane obtained on the base material 1 contains unreduced graphite oxide particles and does not have conductivity, the graphite oxide particles may be partially or completely reduced as necessary. It may be. Examples of the method for reducing the graphite oxide particles include a method of performing a heat treatment at about 200 ° C. on the conductor forming liquid.

また、上記のように高温で熱処理を行わなくても、上述したように、導電体形成液が、上述した還元剤を含んでいれば、より低い温度で酸化黒鉛粒子を部分的又は完全に還元させることができ、導電膜2がより高い導電性を得ることができる。   Further, as described above, the graphite oxide particles are partially or completely reduced at a lower temperature as long as the conductor forming liquid contains the reducing agent as described above without performing the heat treatment at a high temperature as described above. The conductive film 2 can obtain higher conductivity.

本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、精製工程後の酸化黒鉛粒子含有液が評価の対象とされているが、評価の対象となる酸化黒鉛粒子含有液は、精製工程後のものに限られず、酸化黒鉛粒子を薄層化する工程であればどのような工程であってもよい。このような工程としては、例えば超音波処理工程が挙げられる。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the graphite oxide particle-containing liquid after the purification process is the object of evaluation, but the graphite oxide particle-containing liquid to be evaluated is not limited to that after the purification process, and the graphite oxide particles Any process may be used as long as the process is thinned. An example of such a process is an ultrasonic treatment process.

また粒度分布を比較するときの指標としては、R値以外に、平均粒径や最小粒径の量などの特定の値を用いてもよい。 In addition to the R 2 value, a specific value such as the average particle size or the minimum particle size may be used as an index when comparing the particle size distributions.

以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.

(実施例1)
エスイーシー社製天然黒鉛SNO−2(純度99.97質量%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で5日間、緩やかに撹拌しながら放置した。得られた高粘度の液を、5質量%硫酸水溶液1000cmに約1時間で撹拌しながら加えて、さらに2時間撹拌した。得られた液に過酸化水素(30質量%水溶液)30gを加えて、2時間撹拌した。
Example 1
10 g of natural graphite SNO-2 (purity 99.97% by mass or more) manufactured by ESC Corporation, from 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), and 45 g of potassium permanganate (purity 99%) And then left at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was added to 1000 cm 3 of a 5% by mass sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 mass% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours.

この液を、3質量%硫酸/0.5質量%過酸化水素の混合水溶液を用いた遠心分離を行った後、水を用いた遠心分離を繰り返すことで精製を行い、酸化黒鉛粒子の水分散液を作製した。   This solution is subjected to centrifugation using a mixed aqueous solution of 3% by mass sulfuric acid / 0.5% by mass hydrogen peroxide, and then purified by repeating the centrifugation using water to disperse the graphite oxide particles in water. A liquid was prepared.

精製の途中段階で、精製後の液について、HORIBA製超遠心式自動粒度分布測定装置CAPA−700により酸化黒鉛粒子含有液の粒度分布測定を行った。測定には下記表2に示す条件を用いた。

Figure 2010102829
In the middle of the purification, the purified liquid was subjected to particle size distribution measurement of the graphite oxide particle-containing liquid using an ultracentrifugal automatic particle size distribution measuring apparatus CAPA-700 manufactured by HORIBA. The conditions shown in Table 2 below were used for the measurement.
Figure 2010102829

以上の方法により、精製の途中段階でCAPA−700により粒度分布測定を行い、R値が0.9以上になることを基準として4種類の酸化黒鉛粒子含有液を作製した。 By the above method, particle size distribution measurement was performed by CAPA-700 in the middle of purification, and four types of graphite oxide particle-containing liquids were prepared based on the R 2 value being 0.9 or more.

図5は、このようにして作製された4種類の酸化黒鉛粒子含有液の粒度分布測定結果である。run1を基準としてrun2〜4のR値を計算した結果は、0.92(run2)、0.91(run3)、0.92(run4)であった。この4種類の分散液を濃度1.3質量%となるように濃度を調整し、10gの分散液に対して、13gの水系グラスカ(JSR社製、固形分量40質量%、水60質量%)、0.5gのヒドロキノン、8gの水及び8gのメタノールを加え、よく混合し混合分散液を得た。続いて、この混合分散液をNo.2のバーコーター(塗布厚み4.58μm)を使ってガラス上に塗布しフィルム状に形成した後、分散媒を乾燥・除去した。その後、140℃,180分間の加熱処理を行った。こうしてガラス上に塗膜を有する導電体を得た。 FIG. 5 shows the particle size distribution measurement results of the four types of graphite oxide particle-containing liquids thus produced. The R 2 values of run 2 to 4 calculated based on run 1 were 0.92 (run 2), 0.91 (run 3), and 0.92 (run 4). The concentration of these four types of dispersions was adjusted to 1.3% by mass, and 13 g of water-based glass squirrel (manufactured by JSR, solid content 40% by mass, water 60% by mass) with respect to 10 g of the dispersion. 0.5 g hydroquinone, 8 g water and 8 g methanol were added and mixed well to obtain a mixed dispersion. Subsequently, this mixed dispersion was designated as No.1. 2 was applied onto glass using a bar coater (application thickness: 4.58 μm) to form a film, and then the dispersion medium was dried and removed. Thereafter, heat treatment was performed at 140 ° C. for 180 minutes. Thus, a conductor having a coating film on glass was obtained.

run1〜4の分散液を用いて得られた塗膜の面積抵抗率を調べたところ、面積抵抗率は以下のとおりであった。
run1の分散液を使用した場合:1×10(Ω/□)
run2の分散液を使用した場合:2×10(Ω/□)
run3の分散液を使用した場合:1×10(Ω/□)
run4の分散液を使用した場合:2×10(Ω/□)
When the area resistivity of the coating film obtained using the dispersions of run 1 to 4 was examined, the area resistivity was as follows.
When run1 dispersion is used: 1 × 10 9 (Ω / □)
When run2 dispersion is used: 2 × 10 9 (Ω / □)
When run3 dispersion is used: 1 × 10 9 (Ω / □)
When a dispersion of run4 is used: 2 × 10 9 (Ω / □)

(比較例1)
CAPA−700による粒度分布測定を行わないこと以外は実施例1と同様にして、酸化黒鉛粒子の水分散液を4種類作製するとともに、これら分散液を用いた塗膜の作製を行った。そして、4種類の分散液から得られた塗膜の面積抵抗率を調べたところ、面積抵抗率は、
1×10(Ω/□)
1×1010(Ω/□)
5×10(Ω/□)
2×10(Ω/□)
であり、抵抗のばらつきが大きかった。
(Comparative Example 1)
Four types of aqueous dispersions of graphite oxide particles were prepared in the same manner as in Example 1 except that the particle size distribution measurement by CAPA-700 was not performed, and a coating film was prepared using these dispersions. And when the area resistivity of the coating film obtained from four types of dispersions was examined, the area resistivity was
1 × 10 9 (Ω / □)
1 × 10 10 (Ω / □)
5 × 10 9 (Ω / □)
2 × 10 9 (Ω / □)
The resistance variation was large.

実施例1と比較例1の結果より、同様に作製された分散液でも液相沈降式粒度分布測定による評価を行った実施例1では、それを用いて作製された導電膜の抵抗の再現性が高いことがわかった。   From the results of Example 1 and Comparative Example 1, in Example 1 in which a dispersion prepared in the same manner was evaluated by liquid phase sedimentation type particle size distribution measurement, the reproducibility of the resistance of the conductive film prepared using the same was used. Was found to be expensive.

よって、本発明によれば、均質性の高い分散液が製造できることが確認された。   Therefore, according to the present invention, it was confirmed that a highly homogenous dispersion can be produced.

本発明に係る導電体の製造方法により製造される導電体の一例を示す側面図である。It is a side view which shows an example of the conductor manufactured by the manufacturing method of the conductor which concerns on this invention. 本発明に係る導電体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the conductor which concerns on this invention. 同一試料を液相沈降式粒度分布測定により2回測定したときの粒度分布を示すグラフである。It is a graph which shows a particle size distribution when the same sample is measured twice by liquid phase sedimentation type particle size distribution measurement. 精製の各段階で液相沈降式粒度分布測定を行ったときの粒度分布を示すグラフである。It is a graph which shows a particle size distribution when liquid phase sedimentation type particle size distribution measurement is performed at each stage of purification. 実施例1に係る酸化黒鉛粒子含有液の製造方法により得られた4種類の酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of graphite oxide particles in four types of graphite oxide particle-containing liquids obtained by the method for producing a graphite oxide particle-containing liquid according to Example 1. FIG.

符号の説明Explanation of symbols

1…基材、2…導電膜、100…導電体。   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Conductive film, 100 ... Conductor.

Claims (3)

酸化黒鉛粒子を含有する酸化黒鉛粒子含有液中の前記酸化黒鉛粒子の粒度分布を、液相沈降式粒度分布測定法を用いて測定する測定工程と、
前記測定工程で測定した粒度分布と、基準となる基準粒度分布とを比較して酸化黒鉛粒子含有液を評価する比較工程と、
を含むことを特徴とする酸化黒鉛粒子含有液の評価方法。
A measurement step of measuring the particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid containing the graphite oxide particles using a liquid phase sedimentation type particle size distribution measurement method;
A comparison step of evaluating the graphite oxide particle-containing liquid by comparing the particle size distribution measured in the measurement step with a reference reference particle size distribution;
The evaluation method of the graphite oxide particle containing liquid characterized by including.
酸化黒鉛粒子を薄層化する薄層化工程と、
前記薄層化工程で薄層化された酸化黒鉛粒子を含む酸化黒鉛粒子含有液を、請求項1に記載の酸化黒鉛粒子含有液の評価方法により評価する評価工程とを含み、
前記評価工程で評価された酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布が、前記基準粒度分布に近似していない場合には、前記基準粒度分布に近似するように前記薄層化工程及び前記評価工程を繰り返すことによって、前記基準粒度分布に近似した粒度分布を有する酸化黒鉛粒子含有液を得る、
ことを特徴とする酸化黒鉛粒子含有液の製造方法。
A thinning process for thinning graphite oxide particles;
An evaluation step of evaluating the graphite oxide particle-containing liquid containing the graphite oxide particles thinned in the thinning step by the method for evaluating a graphite oxide particle-containing liquid according to claim 1,
When the particle size distribution of the graphite oxide particles in the graphite oxide particle-containing liquid evaluated in the evaluation step is not close to the reference particle size distribution, the thinning step and the reference particle size distribution are approximated to the reference particle size distribution. By repeating the evaluation step, a graphite oxide particle-containing liquid having a particle size distribution approximate to the reference particle size distribution is obtained.
A method for producing a graphite oxide particle-containing liquid.
請求項2に記載の酸化黒鉛粒子含有液の製造方法により製造される酸化黒鉛粒子含有液を含む導電体形成液を準備する導電体形成液準備工程と、
前記導電体形成液をフィルム状に形成した後乾燥させ、導電膜を含む導電体を形成する膜形成工程と、
を含むことを特徴とする導電体の製造方法。
A conductor forming liquid preparation step of preparing a conductor forming liquid containing the graphite oxide particle-containing liquid produced by the method for producing a graphite oxide particle-containing liquid according to claim 2;
A film forming step of forming the conductor forming liquid into a film and then drying to form a conductor including a conductive film;
The manufacturing method of the conductor characterized by including.
JP2008270446A 2008-10-21 2008-10-21 Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor Expired - Fee Related JP5272641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270446A JP5272641B2 (en) 2008-10-21 2008-10-21 Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270446A JP5272641B2 (en) 2008-10-21 2008-10-21 Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor

Publications (2)

Publication Number Publication Date
JP2010102829A true JP2010102829A (en) 2010-05-06
JP5272641B2 JP5272641B2 (en) 2013-08-28

Family

ID=42293320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270446A Expired - Fee Related JP5272641B2 (en) 2008-10-21 2008-10-21 Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor

Country Status (1)

Country Link
JP (1) JP5272641B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2013056815A (en) * 2011-09-08 2013-03-28 Korea Inst Of Machinery & Materials Graphene paper of reduced graphene oxide layer and coating layer laminated sequentially, and method for producing the same
JP2014501681A (en) * 2010-10-28 2014-01-23 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド Graphite oxide and carbon fiber
KR20150027115A (en) * 2012-06-06 2015-03-11 도레이 카부시키가이샤 Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
WO2017082262A1 (en) * 2015-11-11 2017-05-18 株式会社日本触媒 Method for producing graphite oxide
JP2017088451A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017088450A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017128483A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Production method of graphite oxide
JP2017160070A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Method for producing graphite oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166321A (en) * 1988-10-27 1991-07-18 Kawasaki Steel Corp Method and device for pelletizing sintering raw material
WO1997016521A1 (en) * 1995-10-30 1997-05-09 The Procter & Gamble Company Bleach catalyst particles
JP2001324441A (en) * 2000-05-16 2001-11-22 Horiba Ltd Particle size distribution-measuring apparatus
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP3084424U (en) * 2001-08-31 2002-03-22 信越ポリマー株式会社 Wiper blade
JP2002114135A (en) * 1999-06-07 2002-04-16 Shin Etsu Polymer Co Ltd Wiper blade for transportation and manufacturing method for the same
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166321A (en) * 1988-10-27 1991-07-18 Kawasaki Steel Corp Method and device for pelletizing sintering raw material
WO1997016521A1 (en) * 1995-10-30 1997-05-09 The Procter & Gamble Company Bleach catalyst particles
JPH10512917A (en) * 1995-10-30 1998-12-08 ザ、プロクター、エンド、ギャンブル、カンパニー Bleaching catalyst particles
JP2002114135A (en) * 1999-06-07 2002-04-16 Shin Etsu Polymer Co Ltd Wiper blade for transportation and manufacturing method for the same
JP2001324441A (en) * 2000-05-16 2001-11-22 Horiba Ltd Particle size distribution-measuring apparatus
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP3084424U (en) * 2001-08-31 2002-03-22 信越ポリマー株式会社 Wiper blade
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2014501681A (en) * 2010-10-28 2014-01-23 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド Graphite oxide and carbon fiber
JP2013056815A (en) * 2011-09-08 2013-03-28 Korea Inst Of Machinery & Materials Graphene paper of reduced graphene oxide layer and coating layer laminated sequentially, and method for producing the same
KR102000812B1 (en) 2012-06-06 2019-07-16 도레이 카부시키가이샤 Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
KR20150027115A (en) * 2012-06-06 2015-03-11 도레이 카부시키가이샤 Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
JP2015520109A (en) * 2012-06-06 2015-07-16 東レ株式会社 Graphene powder, method for producing graphene powder, and electrode for lithium ion battery containing graphene powder
WO2017082262A1 (en) * 2015-11-11 2017-05-18 株式会社日本触媒 Method for producing graphite oxide
JP2017088450A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017088451A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
US11286166B2 (en) 2015-11-11 2022-03-29 Nippon Shokubai Co., Ltd. Method for producing graphite oxide
JP2017128483A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Production method of graphite oxide
JP2017160070A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Method for producing graphite oxide

Also Published As

Publication number Publication date
JP5272641B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272641B2 (en) Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor
JP4591666B2 (en) Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
Mejia et al. Aspect ratio and polydispersity dependence of isotropic-nematic transition in discotic suspensions
JP2017536317A (en) Graphene production method using high-speed homogenization pretreatment and high-pressure homogenization
JP2002053313A (en) Thin-filmy particle having skeleton consisting of carbon
CN109705527B (en) Graphene dispersion paste, preparation method and use method thereof
Yang et al. Intercalating oleylamines in graphite oxide
JP5339099B2 (en) Method for synthesizing thin-film particles having a carbon skeleton
JP2011079701A (en) Method for producing purified graphite oxide particle-containing liquid
Inoue et al. Boron nitride with high zeta potential via plasma processing in solution for preparation of polyrotaxane composite
JP2009259716A (en) Conductor and its method for manufacturing
Wong et al. Materials processes of graphite nanostructured composites using ball milling
KR20160101556A (en) Method for preparation of highly concentrated graphene dispersion
Dimou et al. In situ control of graphene oxide dispersions with a small impedance sensor
JP2004091251A (en) Method for reducing thin-film particle having framework comprising carbon
JP2010123280A (en) Method of manufacturing conductor
JP7487783B2 (en) Conductive two-dimensional particles and their manufacturing method
Dou et al. The influences of internal interactions and functional groups on the adsorption of graphene and graphene oxide with alumina substrate
JP5937813B2 (en) Amino group-modified carbon material, method for producing the same, and composite material
CN108408702A (en) A kind of Preparation method and use lacking layer black phosphorus stabilizer, few layer black phosphorus dispersion liquid
KR20160123171A (en) Method for preparation of graphene by using a polyethyleneoxide-based dispersion
JP5446702B2 (en) Method for producing graphite oxide particle-containing liquid
CN104138795A (en) Method for separating different sizes of alpha aluminum oxide nano-particles
JP5617992B2 (en) Method for producing purified graphite oxide particle-containing liquid
JP6828503B2 (en) Inorganic layered material laminate, heat dissipation member, and power device device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

LAPS Cancellation because of no payment of annual fees