JP5446702B2 - Method for producing graphite oxide particle-containing liquid - Google Patents

Method for producing graphite oxide particle-containing liquid Download PDF

Info

Publication number
JP5446702B2
JP5446702B2 JP2009233185A JP2009233185A JP5446702B2 JP 5446702 B2 JP5446702 B2 JP 5446702B2 JP 2009233185 A JP2009233185 A JP 2009233185A JP 2009233185 A JP2009233185 A JP 2009233185A JP 5446702 B2 JP5446702 B2 JP 5446702B2
Authority
JP
Japan
Prior art keywords
graphite oxide
containing liquid
oxide particle
oxide particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009233185A
Other languages
Japanese (ja)
Other versions
JP2011079700A (en
Inventor
拓也 後藤
和良 上等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009233185A priority Critical patent/JP5446702B2/en
Publication of JP2011079700A publication Critical patent/JP2011079700A/en
Application granted granted Critical
Publication of JP5446702B2 publication Critical patent/JP5446702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酸化黒鉛粒子含有液の製造方法に関する。   The present invention relates to a method for producing a graphite oxide particle-containing liquid.

近年、形状の異方性が高い物質の探索、及びその応用が急速に進行している。このような物質は、多数個で他の物質との複合体にする場合には、低い添加率で高強度などの各種性能を発現すると期待されている。またその形状が極めて細い線状(1次元)や極めて薄い平面状(2次元)で、その物質が電気的に半導体または良導体であれば、単独または少数個の集合体の場合に、電子物性などに量子的な効果を発現するとも期待されている。   In recent years, the search for a material having a high shape anisotropy and its application are rapidly progressing. In the case where a large number of such substances are combined with other substances, it is expected that various properties such as high strength will be exhibited at a low addition rate. Also, if the shape is very thin linear (1D) or very thin planar (2D) and the material is an electrically semiconductor or good conductor, the physical properties can be used in the case of a single or a small number of aggregates. It is also expected to produce a quantum effect.

このような形状の異方性が高い物質としては、炭素原子を骨格とする平面状物質である酸化黒鉛が知られている。酸化黒鉛は黒鉛を特定の方法により酸化することで得られる黒鉛層間化合物の一種である。酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、一般に層数は非常に多い。酸化黒鉛の基本層は、ジグザグの炭素の列で数えて炭素原子1個分または2個分の厚さの、少しsp結合の傾向のあるsp結合主体の炭素骨格と、その骨格の両側の面に結合した酸性の水酸基とを有する構造を持つと考えられている(例えば、非特許文献1〜3)。 As such a highly anisotropic substance, graphite oxide, which is a planar substance having a carbon atom as a skeleton, is known. Graphite oxide is a kind of graphite intercalation compound obtained by oxidizing graphite by a specific method. Graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and the number of layers is generally very large. The basic layer of graphite oxide consists of a carbon skeleton with a thickness of one or two carbon atoms counted in a zigzag carbon array and a sp 3 bond-dominant carbon skeleton with a slight tendency to sp 2 bonds, and both sides of the skeleton. It is thought that it has the structure which has the acidic hydroxyl group couple | bonded with the surface (for example, nonpatent literatures 1-3).

このような酸化黒鉛の粒子は、その厚さが性能に大きく影響し、厚さが薄いほどフィラーとしての効果が高いことから、層数の少ない非常に薄い酸化黒鉛粒子を作製することが重要とされている。   The thickness of such graphite oxide particles greatly affects the performance, and the thinner the thickness, the higher the effect as a filler. Therefore, it is important to produce very thin graphite oxide particles with a small number of layers. Has been.

このような非常に薄い酸化黒鉛粒子は、例えば非特許文献4に開示されており、本発明者らも先に、そのような酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと呼ぶことが望ましい(グラフェンは黒鉛の1層分の名称))の薄膜状粒子を高収率で製造する方法を見出すと共に、それを還元して層数の非常に少ない黒鉛(層数が1枚の場合はグラフェンと呼ぶことが望ましい)類似の酸化黒鉛の薄膜状粒子を得たところである(特許文献1〜3)。   Such very thin graphite oxide particles are disclosed in, for example, Non-Patent Document 4, and the present inventors have previously described such graphite oxide (when the number of layers is one, for example, called graphene oxide) Is desirable (graphene is the name of one layer of graphite)) and finds a method of producing high-yield thin-film particles and reduces it to reduce the number of graphite (when the number of layers is one) (It is desirable to call it graphene) A thin film-like particle of similar graphite oxide has been obtained (Patent Documents 1 to 3).

酸化黒鉛の薄膜状粒子を得る方法としては、酸化黒鉛粒子を含む酸化黒鉛粒子含有液に対して、デカンテーション法、透析法、ろ過法、遠心分離法などを用いた精製を繰り返し行う方法が知られている。精製を繰り返し行う方法では、酸化黒鉛粒子含有液中の不純物イオンが除去され、酸化黒鉛粒子において静電的反発による層間分離が進行し、酸化黒鉛粒子の薄層化が図られる。   As a method for obtaining thin film particles of graphite oxide, a method of repeatedly purifying a graphite oxide particle-containing liquid containing graphite oxide particles using a decantation method, a dialysis method, a filtration method, a centrifugal method, or the like is known. It has been. In the method of repeatedly performing the purification, impurity ions in the graphite oxide particle-containing liquid are removed, interlayer separation due to electrostatic repulsion proceeds in the graphite oxide particles, and the graphite oxide particles are thinned.

しかし、デカンテーション法では酸化黒鉛粒子の沈降が遅く、透析法では内外のイオンの濃度勾配が平衡に達することが必要となるため精製に多大な時間がかかる。ろ過法ではろ過膜の閉塞が起こりやすく、精製を行うことは困難である。   However, in the decantation method, the sedimentation of graphite oxide particles is slow, and in the dialysis method, the concentration gradient of the inside and outside ions needs to reach equilibrium, so that a long time is required for purification. In the filtration method, the filtration membrane is easily clogged and it is difficult to purify it.

これに対して、遠心分離法を用いた精製は、酸化黒鉛粒子の沈降速度を利用したものであり、短時間での精製が可能であるとされている。従って、遠心分離法を用いた精製は、酸化黒鉛粒子と不純物イオン等とを分離するのに有用である(例えば特許文献1,非特許文献5)。   On the other hand, purification using a centrifugal separation method uses the sedimentation rate of graphite oxide particles, and is said to be capable of purification in a short time. Accordingly, purification using a centrifugal separation method is useful for separating graphite oxide particles from impurity ions (for example, Patent Document 1 and Non-Patent Document 5).

しかし、酸化黒鉛粒子が薄くなると、酸化黒鉛粒子を沈降させるために多くの時間が必要となり、特に基本層(酸化グラフェン)の層数が少なくなった酸化黒鉛粒子は沈降速度が極端に小さく、沈降に多大な時間が必要となっていた。このため、大量生産等を考慮した場合、酸化黒鉛粒子が薄くなると遠心分離法を用いた精製は実用的とは言えず、酸化黒鉛粒子の薄層化に限界があった。   However, as the graphite oxide particles become thinner, more time is required to settle the graphite oxide particles. In particular, the graphite oxide particles having a reduced number of basic layers (graphene oxide) have an extremely low sedimentation rate, so that It took a lot of time. For this reason, when considering mass production and the like, if the graphite oxide particles become thin, purification using a centrifugal separation method cannot be said to be practical, and there is a limit to thinning the graphite oxide particles.

一方、精製を何度も繰り返す代わりに、精製をある程度行った後に超音波照射を用いて酸化黒鉛粒子の薄層化を図る方法が知られている。この方法では、超音波照射により、酸化黒鉛粒子に力が加えられ、これにより、酸化黒鉛粒子の層間分離が物理的に行われ、薄層化が行われると考えられていた。   On the other hand, instead of repeating the purification many times, a method is known in which the graphite oxide particles are thinned using ultrasonic irradiation after some purification. In this method, it was considered that force was applied to the graphite oxide particles by ultrasonic irradiation, whereby the interlayer separation of the graphite oxide particles was physically performed and the layer was thinned.

しかし、本発明者らが超音波照射法の実効性について確認したところ、超音波照射を用いる方法では、薄層化の処理時間は短くなるが薄層化と同時に面方向のサイズ(粒径)の縮小が激しく起こり、酸化黒鉛粒子のアスペクト比(粒径/厚さ)が小さくなってしまうことが判明した。   However, when the present inventors confirmed the effectiveness of the ultrasonic irradiation method, in the method using ultrasonic irradiation, the processing time for thinning is shortened, but the size (particle size) in the plane direction is reduced at the same time as thinning. It was found that the aspect ratio (particle size / thickness) of the graphite oxide particles was reduced.

特開2002−53313号公報JP 2002-53313 A 特開2003−176116号公報JP 2003-176116 A 特開2005−63951号公報JP 2005-63951 A

「黒鉛層間化合物」,第5章,炭素材料学会編,リアライズ社(1990)“Graphite Intercalation Compound”, Chapter 5, Carbon Society of Japan, Realize (1990) T. Nakajima et al.A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon,26, 357 (1988)T. Nakajima et al. A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al.FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon,29, 469 (1991)M. Mermoux et al. FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991) N. A. Kotov et al.Ultrathin Graphite Oxide-PolyelectrolyteComposites Prepared by Self-Assembly:Transition Between Conductive andNon-Conductive States, Adv. Mater., 8, 637 (1996)N. A. Kotov et al. Ultrathin Graphite Oxide-PolyelectrolyteComposites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) M.Hirata et al. Thin-filmparticles of graphite oxide 1:: High-yield synthesis and flexibility of theparticles,Carbon 42,2929-2937(2004)M.Hirata et al. Thin-film particles of graphite oxide 1 :: High-yield synthesis and flexibility of the particles, Carbon 42, 2929-2937 (2004)

従って、精製や超音波照射以外の方法で、酸化黒鉛粒子の薄層化を促進できる方法の確立が求められていた。   Therefore, establishment of a method capable of promoting the thinning of graphite oxide particles by a method other than purification and ultrasonic irradiation has been demanded.

本発明は上記事情に鑑みてなされたものであり、薄層化のための精製の繰り返しを行うことなく、また面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できる酸化黒鉛粒子含有液の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to reduce the thickness of graphite oxide particles without repeating refining for thinning and hardly causing reduction in size (particle size) in the plane direction. It aims at providing the manufacturing method of the graphite oxide particle containing liquid which can accelerate | stimulate layering.

本発明者らは、上記課題を解決するため鋭意検討を重ねた。その結果、管状や棒状の成形体の表面に沿って、精製工程で得られた酸化黒鉛粒子含有液を流通してみたところ、驚くべきことに面方向のサイズ(粒径)の縮小がほとんどなく、酸化黒鉛粒子の薄層化が促進されることが判明した。こうして本発明者らは以下の発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, when the graphite oxide particle-containing liquid obtained in the purification process was distributed along the surface of the tubular or rod-shaped molded body, surprisingly, there was almost no reduction in the size (particle size) in the plane direction. It was found that the thinning of graphite oxide particles was promoted. Thus, the present inventors have completed the following invention.

即ち本発明は、酸化黒鉛粒子と分散媒とを含有する酸化黒鉛粒子含有液を準備する準備工程と、酸化黒鉛粒子含有液を精製する精製工程とを含む酸化黒鉛粒子含有液の製造方法であって、前記精製工程の後に、管状又は棒状の成形体の表面に沿って、酸化黒鉛粒子含有液を流通させる流通工程を含み、前記精製工程が、前記準備工程で得られた酸化黒鉛粒子含有液において、前記酸化黒鉛粒子の薄層化の妨げとなる不純物イオンを前記酸化黒鉛粒子と分離する工程であり、前記流通工程が、前記精製工程以外の工程である、酸化黒鉛粒子含有液の製造方法である。 That is, the present invention is a method for producing a graphite oxide particle-containing liquid comprising a preparation step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium, and a purification step of purifying the graphite oxide particle-containing liquid. Te, after the purification step, along the surface of the tubular or rod-shaped molded bodies, saw including a distribution step of distributing graphite oxide particle-containing liquid, the purification step, oxidizing graphite particles containing obtained in the preparation step Production of graphite oxide particle-containing liquid , wherein the liquid ion is a step of separating impurity ions that hinder thinning of the graphite oxide particles from the graphite oxide particles, and the distribution step is a step other than the purification step. Is the method.

この製造方法によれば、精製工程の後に、管状又は棒状の成形体の表面に沿って酸化黒鉛粒子含有液が流通されることで、薄層化のための精製の繰り返しを行うことなく、また面方向のサイズ(粒径)の縮小をほとんど発生させずに、酸化黒鉛粒子の薄層化を促進することができる。このため、異方性の大きい酸化黒鉛粒子を製造できる。   According to this production method, after the purification step, the graphite oxide particle-containing liquid is circulated along the surface of the tubular or rod-shaped molded body, so that the purification for thinning is not repeated, and Thinning of the graphite oxide particles can be promoted with little reduction in the size (particle size) in the surface direction. For this reason, highly oxidized graphite oxide particles can be produced.

上記のように面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できる理由については未だ明らかではないが、本発明者らは、成形体の表面に沿って酸化黒鉛粒子含有液を流通させた際に、酸化黒鉛粒子含有液の流れによって各酸化黒鉛粒子にせん断力が付与され、このせん断力によって、酸化黒鉛粒子の薄層化が物理的に促進されているのではないかと推測している。   Although it is not yet clear why the thinning of the graphite oxide particles can be promoted with almost no reduction in the size (particle size) in the plane direction as described above, the present inventors have not made it to the surface of the molded body. When the graphite oxide particle-containing liquid is circulated along the surface, a shearing force is applied to each graphite oxide particle by the flow of the graphite oxide particle-containing liquid, and the thinning of the graphite oxide particles is physically accelerated by this shearing force. I guess that it is.

前記流通工程においては、前記成形体の表面に対する前記酸化黒鉛粒子含有液の流速を0.20m/s以上とすることが好ましい。   In the distribution step, it is preferable that the flow rate of the graphite oxide particle-containing liquid with respect to the surface of the compact is 0.20 m / s or more.

前記成形体が管状であり、前記流通工程において、前記酸化黒鉛粒子含有液を前記成形体の内壁面に沿って流通させることが好ましい。   It is preferable that the molded body is tubular and that the graphite oxide particle-containing liquid is circulated along the inner wall surface of the molded body in the distribution step.

この場合、酸化黒鉛粒子含有液が管状の成形体の内部に閉じ込められているため、酸化黒鉛粒子含有液を管状の成形体の外壁面に沿って流通させる場合に比べて、酸化黒鉛粒子含有液の流れにより各酸化黒鉛粒子に対してより効果的にせん断力を付与することが可能となり、酸化黒鉛粒子の薄層化をより促進することができる。   In this case, since the graphite oxide particle-containing liquid is confined inside the tubular molded body, the graphite oxide particle-containing liquid is compared with the case where the graphite oxide particle-containing liquid is circulated along the outer wall surface of the tubular molded body. By this flow, it becomes possible to more effectively apply a shearing force to each graphite oxide particle, and it is possible to further promote the thinning of the graphite oxide particle.

本発明によれば、薄層化のための精製の繰り返しを行うことなく、また面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できる酸化黒鉛粒子含有液の製造方法が提供される。   According to the present invention, graphite oxide particles that can promote the thinning of graphite oxide particles without repeating the purification for thinning and almost without reducing the size (particle size) in the plane direction A method for producing the containing liquid is provided.

実施例1〜5及び比較例1の酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。4 is a graph showing the particle size distribution of graphite oxide particles in the liquid oxide containing graphite particles of Examples 1 to 5 and Comparative Example 1. FIG. 実施例6〜10及び比較例1の酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。5 is a graph showing the particle size distribution of graphite oxide particles in the graphite oxide particle-containing liquids of Examples 6 to 10 and Comparative Example 1. FIG. 実施例10の酸化黒鉛粒子含有液中の酸化黒鉛粒子のSEM写真を示す図である。10 is a view showing an SEM photograph of graphite oxide particles in the graphite oxide particle-containing liquid of Example 10. FIG. 比較例1の酸化黒鉛粒子含有液中の酸化黒鉛粒子のSEM写真を示す図である。3 is a diagram showing an SEM photograph of graphite oxide particles in a graphite oxide particle-containing liquid of Comparative Example 1. FIG. 比較例2の酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。5 is a graph showing the particle size distribution of graphite oxide particles in the graphite oxide particle-containing liquid of Comparative Example 2. 比較例2の酸化黒鉛粒子含有液中の酸化黒鉛粒子のSEM写真を示す図である。6 is a view showing an SEM photograph of graphite oxide particles in a graphite oxide particle-containing liquid of Comparative Example 2. FIG.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[酸化黒鉛粒子含有液の製造方法]
本発明は、酸化黒鉛粒子と分散媒とを含有する酸化黒鉛粒子含有液を準備する準備工程と、酸化黒鉛粒子含有液を精製する精製工程とを含む酸化黒鉛粒子含有液の製造方法であって、前記精製工程の後に、管状又は棒状の成形体の表面に沿って、酸化黒鉛粒子含有液を流通させる流通工程を含む酸化黒鉛粒子含有液の製造方法である。
[Method for producing graphite oxide particle-containing liquid]
The present invention is a method for producing a graphite oxide particle-containing liquid comprising a preparation step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium, and a purification step of purifying the graphite oxide particle-containing liquid. The method for producing a graphite oxide particle-containing liquid comprising a flow step of circulating the graphite oxide particle-containing liquid along the surface of the tubular or rod-shaped formed body after the purification step.

この製造方法によれば、精製工程の後に、管状又は棒状の成形体の表面に沿って酸化黒鉛粒子含有液が流通されることで、薄層化のための精製の繰り返しを行うことなく、面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進することができる。このため、異方性の大きい酸化黒鉛粒子を製造できる。即ち、上記製造方法によれば、面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できる効率的な酸化黒鉛粒子含有液の製造方法が提供される。   According to this production method, the graphite oxide particle-containing liquid is circulated along the surface of the tubular or rod-shaped molded body after the purification step, so that the surface can be obtained without repeating purification for thinning. Thinning of graphite oxide particles can be promoted with little reduction in size (particle size) in the direction. For this reason, highly oxidized graphite oxide particles can be produced. That is, according to the above production method, there is provided an efficient method for producing a graphite oxide particle-containing liquid capable of promoting the thinning of the graphite oxide particles without causing a reduction in the size (particle size) in the plane direction. .

上記のように面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できる理由について、本発明者らは、成形体の表面に沿って酸化黒鉛粒子含有液を流通させた際に、酸化黒鉛粒子含有液の流れによって各酸化黒鉛粒子にせん断力が付与され、このせん断力によって、酸化黒鉛粒子の薄層化が物理的に促進されているのではないかと推測している。   As for the reason why the thinning of the graphite oxide particles can be promoted with little reduction in the size (particle size) in the plane direction as described above, the present inventors include graphite oxide particles along the surface of the molded body. When the liquid is circulated, a shear force is imparted to each graphite oxide particle by the flow of the graphite oxide particle-containing liquid, and the thinning of the graphite oxide particles is not physically promoted by this shear force. I guess.

以下、上記準備工程及び精製工程について詳細に説明する。   Hereinafter, the preparation step and the purification step will be described in detail.

<準備工程>
準備工程は、酸化黒鉛粒子と、これを分散させる分散媒とを含有する酸化黒鉛粒子含有液を準備する工程である。
<Preparation process>
The preparation step is a step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium in which the particles are dispersed.

酸化黒鉛粒子は、黒鉛を酸化することにより得られる。   Graphite oxide particles can be obtained by oxidizing graphite.

黒鉛としては、各種黒鉛が使用可能であるが、層構造が発達した結晶性の高い黒鉛が酸化黒鉛の収率が高く、基本層の層数が少ない酸化黒鉛が得られやすいという理由から好ましい。このような黒鉛として、天然黒鉛(特に良質なもの)、キッシュ黒鉛(特に高温で作られたもの)、高配向性熱分解黒鉛が好ましく用いられる他、これらの黒鉛の層間を予め広げた膨張黒鉛も好ましく用いられる。また、黒鉛中の金属元素などの不純物は、予め約0.5質量%以下になるまで除去されていることが望ましい。   As graphite, various types of graphite can be used. Graphite with high crystallinity with a developed layer structure is preferable because the yield of graphite oxide is high and graphite oxide with a small number of basic layers is easily obtained. As such graphite, natural graphite (particularly good quality), quiche graphite (particularly made at high temperature), highly oriented pyrolytic graphite are preferably used, and expanded graphite in which the layers of these graphites are expanded in advance. Are also preferably used. Further, it is desirable that impurities such as metal elements in the graphite have been removed in advance until it becomes about 0.5% by mass or less.

黒鉛の平均粒径は、酸化黒鉛粒子の平均粒径に反映されるため、合成したい酸化黒鉛粒子の平均粒径に応じて適宜選択すればよい。具体的には、酸化黒鉛粒子の平均粒径が例えば100nm以上である場合には、黒鉛の平均粒径を0.1μm以上100μm以下とすればよい。ここで、黒鉛の平均粒径を0.5μm以上50μm以下とすることが好ましく、1μm以上25μm以下とすることがさらに好ましい。黒鉛の平均粒径が0.1μm以上であると、平均粒径が0.1μm未満の場合に比べて、得られる酸化黒鉛粒子のアスペクト比が大きくなって形状異方性が大きくなり、黒鉛の平均粒径が100μm以下であると、黒鉛の平均粒径が100μmを超える場合に比べて、酸化に要する時間を短縮することができる。   Since the average particle size of graphite is reflected in the average particle size of graphite oxide particles, it may be appropriately selected according to the average particle size of graphite oxide particles to be synthesized. Specifically, when the average particle diameter of the graphite oxide particles is, for example, 100 nm or more, the average particle diameter of the graphite may be 0.1 μm or more and 100 μm or less. Here, the average particle size of graphite is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 25 μm or less. When the average particle size of the graphite is 0.1 μm or more, the aspect ratio of the obtained graphite oxide particles is increased and the shape anisotropy is increased as compared with the case where the average particle size is less than 0.1 μm. When the average particle size is 100 μm or less, the time required for oxidation can be shortened compared to the case where the average particle size of graphite exceeds 100 μm.

酸化黒鉛粒子の形状は、特に限定されるものではなく、種々の形状であってもよい。例えば酸化黒鉛粒子の形状は球状であっても平板状であってもよい。ここで、酸化黒鉛粒子の形状が平板状であると好ましい。酸化黒鉛粒子の形状が平板状であると、形状異方性がより高まり、形状異方性が小さい酸化黒鉛粒子と比べて、酸化黒鉛粒子含有液を用いて導電膜を製造した場合にその導電膜に導電性を発現させるのに必要な導電膜中の酸化黒鉛粒子の含有率を少なくすることができ、結果的に得られる導電膜からの酸化黒鉛粒子の脱離を抑制でき且つ導電膜の透明性をより高めることができる。   The shape of the graphite oxide particles is not particularly limited, and may be various shapes. For example, the graphite oxide particles may be spherical or flat. Here, it is preferable that the graphite oxide particles have a flat plate shape. When the shape of the graphite oxide particles is flat, the shape anisotropy is further increased, and when the conductive film is produced using the graphite oxide particle-containing liquid, the conductivity becomes lower. It is possible to reduce the content of graphite oxide particles in the conductive film necessary for developing conductivity in the film, to suppress the detachment of graphite oxide particles from the resulting conductive film, and Transparency can be further increased.

酸化黒鉛粒子の形状が平板状である場合、酸化黒鉛粒子の平均粒径が100nm以上であることが好ましい。この場合、形状異方性の高い酸化黒鉛粒子を作ることが可能になる。   When the shape of the graphite oxide particles is flat, the average particle size of the graphite oxide particles is preferably 100 nm or more. In this case, graphite oxide particles having high shape anisotropy can be produced.

酸化黒鉛粒子の「平均粒径」とは、光学顕微鏡または電子顕微鏡を使って5個の酸化黒鉛粒子を観察した場合に、酸化黒鉛粒子の平面方向の粒径の平均値を言うものとする。ここで、「粒径」とは、光学顕微鏡または電子顕微鏡を使って酸化黒鉛粒子を観察したときの酸化黒鉛粒子の最も長い対角線の長さを言うものとする。   The “average particle size” of the graphite oxide particles refers to the average value of the particle sizes in the planar direction of the graphite oxide particles when the five graphite oxide particles are observed using an optical microscope or an electron microscope. Here, “particle diameter” refers to the length of the longest diagonal line of graphite oxide particles when the graphite oxide particles are observed using an optical microscope or an electron microscope.

上記酸化黒鉛粒子としては、公知のBrodie法、Staudenmaier法、Hummers−Offeman法、特開2002−53313号公報および特開2003−176116号公報で開示される方法などによって、黒鉛を酸化することにより得られる酸化黒鉛粒子が利用できる。ここで、Brodie法は硝酸、塩素酸カリウムを使用して黒鉛を酸化させる方法であり、Staudenmaier法は、硝酸、硫酸及び塩素酸カリウムを使用して黒鉛を酸化させる方法である。またHummers−Offeman法は、硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用して黒鉛を酸化する方法である。中でもHummers−Offeman法により製造することが、安全性が高く、短時間で酸化黒鉛粒子を製造できる点から好ましい。   The graphite oxide particles can be obtained by oxidizing graphite by a known Brodie method, Staudenmaier method, Hummers-Offeman method, methods disclosed in JP-A Nos. 2002-53313 and 2003-176116, and the like. Graphite oxide particles can be used. Here, the Brodie method is a method of oxidizing graphite using nitric acid and potassium chlorate, and the Staudenmeier method is a method of oxidizing graphite using nitric acid, sulfuric acid and potassium chlorate. The Hummers-Offeman method is a method of oxidizing graphite using sulfuric acid, sodium nitrate, and potassium permanganate. Among them, it is preferable to manufacture by the Hummers-Offeman method from the viewpoint of high safety and capable of manufacturing graphite oxide particles in a short time.

上記酸化黒鉛粒子を分散させるための分散媒は、酸化黒鉛粒子を分散させることが可能な液体であればいかなるものであってもよい。このような分散媒としては、例えばメタノール、エタノール、アセトン、2−ブタノン、水などを挙げることができる。中でも、酸化黒鉛粒子同士の凝集を防止する観点から、比誘電率が15以上であるメタノール、水が好ましい。特に水が好ましく、水の中でも特にイオン交換水を用いることがより好ましい。   The dispersion medium for dispersing the graphite oxide particles may be any liquid as long as it can disperse the graphite oxide particles. Examples of such a dispersion medium include methanol, ethanol, acetone, 2-butanone, water, and the like. Among these, methanol and water having a relative dielectric constant of 15 or more are preferable from the viewpoint of preventing aggregation of graphite oxide particles. Water is particularly preferable, and it is more preferable to use ion-exchanged water among water.

<精製工程>
精製工程は、上記の準備工程で得られた酸化黒鉛粒子含有液を精製する工程であり、具体的には、上記の準備工程で得られた酸化黒鉛粒子含有液において、酸化黒鉛粒子の薄層化の妨げとなる不純物イオン等を酸化黒鉛粒子と分離するために行う工程である。
<Purification process>
The purification step is a step of purifying the graphite oxide particle-containing liquid obtained in the above preparation step. Specifically, in the graphite oxide particle-containing liquid obtained in the above preparation step, a thin layer of graphite oxide particles This is a step performed to separate impurity ions, etc., which hinder the conversion from graphite oxide particles.

精製工程としては、例えばデカンテーション法、遠心分離法、透析法、イオン交換法を用いたものを挙げられる。これらの中でも、遠心分離法を用いた精製工程が、比較的短時間で酸化黒鉛粒子含有液の精製が可能であることから好ましい。   Examples of the purification step include those using a decantation method, a centrifugal separation method, a dialysis method, and an ion exchange method. Among these, a purification process using a centrifugal separation method is preferable because the liquid containing graphite oxide particles can be purified in a relatively short time.

遠心分離法を用いた精製工程は、例えば、酸化黒鉛粒子含有液を遠心分離する工程と、遠心分離された酸化黒鉛粒子含有液から上澄みを除去する工程と、遠心分離された酸化黒鉛粒子含有液に分散媒を添加する分散媒添加工程とを含む。   The purification process using the centrifugal separation method includes, for example, a step of centrifuging the graphite oxide particle-containing liquid, a step of removing a supernatant from the centrifuged graphite oxide particle-containing liquid, and a centrifuged graphite oxide particle-containing liquid. And a dispersion medium addition step of adding a dispersion medium to.

ここで、分散媒としては通常、酸化黒鉛粒子含有液に含まれていた元の分散媒と同一のものが用いられるが、用途に応じて、酸化黒鉛粒子含有液に含まれていた元の分散媒と異なる分散媒を用いることもできる。この場合、精製工程を繰り返し行うことで、酸化黒鉛粒子含有液に含まれていた元の分散媒を、これと異なる他の分散媒に置換することが可能となる。   Here, the same dispersion medium as the original dispersion medium contained in the graphite oxide particle-containing liquid is usually used as the dispersion medium, but depending on the application, the original dispersion medium contained in the graphite oxide particle-containing liquid is used. A dispersion medium different from the medium can also be used. In this case, it is possible to replace the original dispersion medium contained in the graphite oxide particle-containing liquid with another dispersion medium different from this by repeatedly performing the purification step.

上記遠心分離法を用いた精製工程は、上澄みの導電率が150μS/cm以上までに留めることが、粒子の沈降が早いという理由から好ましく、200μS/cm以上までとすることがより好ましく、300μS/cm以上までとすることがさらに好ましい。   In the purification step using the above centrifugal separation method, it is preferable that the conductivity of the supernatant is kept to 150 μS / cm or more, because the sedimentation of particles is fast, more preferably 200 μS / cm or more, more preferably 300 μS / cm. More preferably, it is up to cm or more.

上記酸化黒鉛粒子含有液には、分散媒のほか、還元剤や高分子材料などの他の成分を添加してもよいが、効果的に薄層化を進行させるには余計な成分は添加しないことが望ましい。   In addition to the dispersion medium, other components such as a reducing agent and a polymer material may be added to the graphite oxide particle-containing liquid, but no additional components are added to effectively promote thinning. It is desirable.

(流通工程)
上記精製工程の後は、管状又は棒状の成形体の表面に沿って酸化黒鉛粒子含有液を流通させる。
(Distribution process)
After the purification step, the graphite oxide particle-containing liquid is circulated along the surface of the tubular or rod-shaped molded body.

成形体として管状の成形体を用いる場合、成形体の表面に沿って、酸化黒鉛粒子含有液を流通させる形態としては、酸化黒鉛粒子含有液を成形体の内壁面に沿って酸化黒鉛粒子含有液を流通させる形態と、酸化黒鉛粒子含有液を成形体の外壁面に沿って流通させる形態が挙げられる。   When a tubular molded body is used as the molded body, the graphite oxide particle-containing liquid is distributed along the inner wall surface of the molded body as a form for allowing the graphite oxide particle-containing liquid to flow along the surface of the molded body. And a form in which the graphite oxide particle-containing liquid is circulated along the outer wall surface of the molded body.

上記形態のうち酸化黒鉛粒子含有液を成形体の内壁面に沿って酸化黒鉛粒子含有液を流通させる形態が好ましい。この場合、酸化黒鉛粒子含有液が管状の成形体の内部に閉じ込められているため、酸化黒鉛粒子含有液を管状の成形体の外側に流通させる場合に比べて、酸化黒鉛粒子含有液の流れにより各酸化黒鉛粒子に対してより効果的にせん断力を付与することが可能となり、酸化黒鉛粒子の薄層化をより促進することができる。このため、異方性の大きい酸化黒鉛粒子を得ることができる。   Among the above forms, a form in which the graphite oxide particle-containing liquid is circulated along the inner wall surface of the molded body is preferable. In this case, since the graphite oxide particle-containing liquid is confined inside the tubular molded body, the graphite oxide particle-containing liquid flows more than the case where the graphite oxide particle-containing liquid flows outside the tubular molded body. It becomes possible to apply a shear force more effectively to each graphite oxide particle, and it is possible to further promote the thinning of the graphite oxide particle. For this reason, highly anisotropic graphite oxide particles can be obtained.

流通は酸化黒鉛粒子の平均厚さが0.4nm〜10nmになるまで行うことが好ましい。この場合、酸化黒鉛における基本層の層数が非常に少なく、平均厚さが薄いことで還元が容易となり、また、形状異方性が顕著に高くなり、そのため酸化黒鉛粒子含有液を用いて導電膜を製造した場合にその導電膜に導電性を発現させるために必要な導電膜中の酸化黒鉛粒子の含有率を低減することが可能となる。このため、導電膜について高い透明性が得られるとともに、導電膜からの酸化黒鉛粒子の脱離を顕著に抑制できる。   The circulation is preferably performed until the average thickness of the graphite oxide particles becomes 0.4 nm to 10 nm. In this case, the number of basic layers in graphite oxide is very small, and the average thickness is thin, so that reduction is facilitated and the shape anisotropy is remarkably increased. When the film is manufactured, it is possible to reduce the content of the graphite oxide particles in the conductive film necessary for the conductive film to exhibit conductivity. For this reason, high transparency is obtained for the conductive film, and detachment of the graphite oxide particles from the conductive film can be remarkably suppressed.

酸化黒鉛粒子の「平均厚さ」とは、原子間力顕微鏡を使って5個の酸化黒鉛粒子について測定された厚さの平均値を言うものとする。   The “average thickness” of graphite oxide particles refers to the average value of thicknesses measured for five graphite oxide particles using an atomic force microscope.

成形体の表面に対する酸化黒鉛粒子含有液の流速は0.2m/s以上であることが好ましい。この場合、各酸化黒鉛粒子に与えられるせん断力が大きくなり、その結果、各酸化黒鉛粒子の薄層化をより促進させることができ、異方性のさらに大きい酸化黒鉛粒子を得ることができる。   The flow rate of the graphite oxide particle-containing liquid with respect to the surface of the molded body is preferably 0.2 m / s or more. In this case, the shearing force applied to each graphite oxide particle is increased, and as a result, the thinning of each graphite oxide particle can be further promoted, and the graphite oxide particle having a larger anisotropy can be obtained.

成形体の表面に対する酸化黒鉛粒子含有液の流速はより好ましくは0.2m/s以上であり、さらに好ましくは0.5m/s以上である。但し、流速は10m/s以下であることが酸化黒鉛粒子の切断を防止する観点から好ましい。   The flow rate of the graphite oxide particle-containing liquid with respect to the surface of the molded body is more preferably 0.2 m / s or more, and further preferably 0.5 m / s or more. However, the flow rate is preferably 10 m / s or less from the viewpoint of preventing cutting of the graphite oxide particles.

酸化黒鉛粒子含有液を成形体の内壁面に沿って酸化黒鉛粒子含有液を流通させる場合、上記酸化黒鉛粒子含有液の流速は以下のように定義される。   When the graphite oxide particle-containing liquid is circulated along the inner wall surface of the molded body, the flow rate of the graphite oxide particle-containing liquid is defined as follows.

上記式から分かるように、流速は、流量と、成形体の長手方向に直交する面における酸化黒鉛粒子含有液が流通する流路の面積とによって決定される。ここで、「流路の面積」とは、成形体の長手方向に直交する面と成形体の内壁面である表面との交線によって囲まれる領域の面積に成形体の本数を乗じたものを意味する。   As can be seen from the above equation, the flow rate is determined by the flow rate and the area of the flow path through which the graphite oxide particle-containing liquid flows in a plane orthogonal to the longitudinal direction of the molded body. Here, the “area of the flow path” is obtained by multiplying the area of the region surrounded by the line of intersection between the surface perpendicular to the longitudinal direction of the molded body and the surface that is the inner wall surface of the molded body by the number of molded bodies. means.

成形体としては、例えばポリアクリロニトリル、ポリフッ化ビニリデン、酢酸セルロース、ポリスルホン、ポリイミドなどの樹脂、鉄、アルミニウム、銅などの金属、セラミックなどを用いることができる。ここで、樹脂としては、酸化黒鉛粒子含有液中の分散媒を通さないものを用いることが、酸化黒鉛粒子の表面付着を防止する観点から好ましい。   As the molded body, for example, a resin such as polyacrylonitrile, polyvinylidene fluoride, cellulose acetate, polysulfone, or polyimide, a metal such as iron, aluminum, or copper, or a ceramic can be used. Here, as the resin, it is preferable to use a resin that does not pass the dispersion medium in the graphite oxide particle-containing liquid from the viewpoint of preventing the surface adhesion of the graphite oxide particles.

成形体が管状である場合、管の内径(内部の直径)は通常、0.01〜500mmであり、好ましくは0.03〜100mmである。これにより、より強いせん断が得られ、薄層化の効果をより高めることができる。   When the molded body is tubular, the inner diameter (inner diameter) of the tube is usually 0.01 to 500 mm, preferably 0.03 to 100 mm. Thereby, stronger shear can be obtained and the effect of thinning can be further enhanced.

成形体が管状である場合、成形体内での通液時間には特に規定されないが、酸化黒鉛粒子の平均厚さが0.4nm〜10nmになるまで通液を行うことが望ましい。この場合、酸化黒鉛における基本層の層数が非常に少なく、平均厚さが薄いことで還元が容易となり、また、形状異方性が顕著に高く、そのため酸化黒鉛粒子含有液を用いて導電膜を製造した場合にその導電膜に導電性を発現させるために必要な導電膜中の酸化黒鉛粒子の含有率を低減することが可能となる。このため、導電膜について高い透明性が得られるとともに、導電膜からの酸化黒鉛粒子の脱離を顕著に抑制できる。   When the formed body is tubular, the liquid passing time in the formed body is not particularly limited, but it is desirable to pass the liquid until the average thickness of the graphite oxide particles becomes 0.4 nm to 10 nm. In this case, the number of basic layers in graphite oxide is very small, and the average thickness is thin, so that reduction is easy, and the shape anisotropy is remarkably high. In the case of producing a conductive film, it is possible to reduce the content of graphite oxide particles in the conductive film, which is necessary for the conductive film to exhibit conductivity. For this reason, high transparency is obtained for the conductive film, and detachment of the graphite oxide particles from the conductive film can be remarkably suppressed.

なお、酸化黒鉛粒子含有液を成形体の外壁面に沿って流通させる形態を用いる場合は、成形体として棒状のものが用いられる。この場合でも、流速は、酸化黒鉛粒子含有液を成形体の内側に流通させる形態と同様である。但し、酸化黒鉛粒子含有液を成形体の外壁面に沿って流通させる形態を用いる場合は、成形体を収容する筒状の密閉容器が必要となる。そして、上記流速の定義式において、「流路の面積」とは、成形体を収容する筒状の密閉容器の長手方向に直交する面と密閉容器の内壁面との交線によって囲まれる領域の面積から、密閉容器の長手方向に直交する面と棒状の成形体の外周面との交線によって囲まれる領域の面積に成形体の本数を乗じた値を差し引いた面積を意味する。   In addition, when using the form which distribute | circulates a graphite oxide particle containing liquid along the outer wall surface of a molded object, a rod-shaped thing is used as a molded object. Even in this case, the flow rate is the same as that in which the graphite oxide particle-containing liquid is circulated inside the compact. However, when using the form in which the graphite oxide particle-containing liquid is circulated along the outer wall surface of the molded body, a cylindrical sealed container for housing the molded body is required. In the above flow velocity definition formula, “the area of the flow path” means the area surrounded by the intersection line between the surface perpendicular to the longitudinal direction of the cylindrical sealed container containing the molded body and the inner wall surface of the sealed container. It means an area obtained by subtracting a value obtained by multiplying the area of the region surrounded by the line of intersection between the surface orthogonal to the longitudinal direction of the sealed container and the outer peripheral surface of the rod-shaped molded product by the number of molded products.

成形体が棒状である場合、成形体の直径は特に限定されるものではないが、1〜10mmとすればよい。   When the molded body is rod-shaped, the diameter of the molded body is not particularly limited, but may be 1 to 10 mm.

[導電体の製造方法]
上記酸化黒鉛粒子含有液の製造方法で得られた酸化黒鉛粒子含有液は、導電体の製造に使用することが可能である。ここで、「導電膜」とは、1.0×1012(Ω/□)以下の面積抵抗率を有する膜を言う。
[Conductor manufacturing method]
The graphite oxide particle-containing liquid obtained by the above method for producing a graphite oxide particle-containing liquid can be used for the production of a conductor. Here, the “conductive film” refers to a film having a sheet resistivity of 1.0 × 10 12 (Ω / □) or less.

導電体を製造するには、上記のようにして得られた酸化黒鉛粒子含有液を、基体の表面上に塗布してフィルム状に形成し、酸化黒鉛粒子含有液を乾燥させて分散媒を除去し、コート膜を形成させた後、酸化黒鉛粒子の還元処理を行えばよい。   To produce a conductor, the graphite oxide particle-containing liquid obtained as described above is applied onto the surface of the substrate to form a film, and the graphite oxide particle-containing liquid is dried to remove the dispersion medium. Then, after the coating film is formed, the graphite oxide particles may be reduced.

酸化黒鉛粒子含有液の塗布の方法は、基体の表面上への塗布が可能であれば特に限定されるものではなく、例えばスピンコータ法、バーコータ法、ロールコータ法などの方法を用いることができる。   The method for applying the graphite oxide particle-containing liquid is not particularly limited as long as it can be applied onto the surface of the substrate. For example, a spin coater method, a bar coater method, a roll coater method, or the like can be used.

酸化黒鉛粒子含有液を乾燥して分散媒を除去する際の加熱温度は、好ましくは30℃〜100℃、より好ましくは40℃〜80℃である。ただし、数分程度の短い時間であれば、高沸点の溶媒を除去する等の目的のために、200℃といった高温で加熱してもよい。 コート膜形成後の酸化黒鉛粒子の還元は例えば、200℃で30分以上加熱処理することで達成される。   The heating temperature for removing the dispersion medium by drying the graphite oxide particle-containing liquid is preferably 30 ° C to 100 ° C, more preferably 40 ° C to 80 ° C. However, the heating may be performed at a high temperature such as 200 ° C. for the purpose of removing the high boiling point solvent for a short time of about several minutes. The reduction of the graphite oxide particles after the formation of the coat film is achieved, for example, by heat treatment at 200 ° C. for 30 minutes or more.

なお、酸化黒鉛粒子含有液中に還元剤が含まれている場合には、酸化黒鉛粒子還元のための加熱温度を下げることができる。こうして導電体を得ることができる。   In addition, when the reducing agent is contained in the graphite oxide particle containing liquid, the heating temperature for graphite oxide particle reduction can be lowered. Thus, a conductor can be obtained.

以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.

(実施例1)
エスイーシー社製天然黒鉛SNO−3(純度99.97質量%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で7日間、緩やかに撹拌しながら放置した。
Example 1
10 g of natural graphite SNO-3 (purity 99.97% by mass or more) manufactured by ESC Co., Ltd. from 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), 45 g of potassium permanganate (purity 99%) Into the resulting mixture and left at about 20 ° C. for 7 days with gentle stirring.

得られた高粘度の液を、5質量%硫酸水溶液1000cmに約1時間で撹拌しながら加え、さらに2時間撹拌した。 The obtained high-viscosity liquid was added to 1000 cm 3 of a 5% by mass sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours.

得られた液に過酸化水素(30質量%水溶液)30gを加えて、2時間撹拌した。この液に対して遠心分離を一度行い、上澄みを除去した後、水を加えて全液量が3Lになるように調整した。以下、この酸化黒鉛粒子分散液を「分散液A」と呼ぶ。   Hydrogen peroxide (30 mass% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours. Centrifugation was performed once on this liquid, and after removing the supernatant, water was added to adjust the total liquid volume to 3 L. Hereinafter, this graphite oxide particle dispersion is referred to as “dispersion A”.

次に、上記分散液Aに対し、3質量%硫酸/0.5質量%過酸化水素の混合水溶液を用いた遠心分離を行った後、水を用いた遠心分離を繰り返すことで上澄みの導電率が300μS/cmになるまで分散液Aの精製を行った。こうして得られた精製後の分散液について、酸化黒鉛粒子の濃度が0.1重量%になるように水で希釈を行った。そして、得られた希釈分散液1kgについて、ポンプを使って内径19mm、長さ50cmのチューブ内に、チューブの内壁面に対する希釈分散液の流速を0.35(m/s)にして1hの通液を行った。このとき、チューブとしては、塩化ビニルからなるものを使用した。   Next, the dispersion A is subjected to centrifugation using a mixed aqueous solution of 3% by mass sulfuric acid / 0.5% by mass hydrogen peroxide, and then the centrifugation is repeated using water, whereby the conductivity of the supernatant is repeated. Dispersion A was purified until the solution reached 300 μS / cm. The purified dispersion thus obtained was diluted with water so that the concentration of the oxidized graphite particles was 0.1% by weight. Then, 1 kg of the obtained diluted dispersion was passed through a tube having an inner diameter of 19 mm and a length of 50 cm using a pump, and the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was set to 0.35 (m / s) for 1 h. Liquid was performed. At this time, a tube made of vinyl chloride was used.

以上のようにして酸化黒鉛粒子含有液を得た。   A graphite oxide particle-containing liquid was obtained as described above.

(実施例2)
希釈分散液をチューブ内に4h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 2)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the diluted dispersion was passed through the tube for 4 hours.

(実施例3)
希釈分散液をチューブ内に12h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 3)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the diluted dispersion was passed through the tube for 12 hours.

(実施例4)
希釈分散液をチューブ内に31h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
Example 4
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the diluted dispersion was passed through the tube for 31 h.

(実施例5)
希釈分散液をチューブ内に107h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 5)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the diluted dispersion was passed through the tube for 107 h.

(実施例6)
チューブの内壁面に対する希釈分散液の流速を0.75(m/s)にしたこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 6)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was 0.75 (m / s).

(実施例7)
チューブの内壁面に対する希釈分散液の流速を0.75(m/s)にするとともに希釈分散液をチューブ内に8h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 7)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was 0.75 (m / s) and the diluted dispersion was passed through the tube for 8 hours. It was.

(実施例8)
チューブの内壁面に対する希釈分散液の流速を0.75(m/s)にするとともに希釈分散液をチューブ内に23h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 8)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was 0.75 (m / s) and the diluted dispersion was passed through the tube for 23 h. It was.

(実施例9)
チューブの内壁面に対する希釈分散液の流速を0.75(m/s)にするとともに希釈分散液をチューブ内に55h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
Example 9
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was 0.75 (m / s) and the diluted dispersion was passed through the tube for 55 h. It was.

(実施例10)
チューブの内壁面に対する希釈分散液の流速を0.75(m/s)にするとともに希釈分散液をチューブ内に143h通液したこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Example 10)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the flow rate of the diluted dispersion with respect to the inner wall surface of the tube was 0.75 (m / s) and the diluted dispersion was passed through the tube for 143 h. It was.

(比較例1)
精製後の分散液を希釈せず、その後のチューブへの通液も行わなかったこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Comparative Example 1)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the purified dispersion was not diluted and the liquid was not passed through the tube thereafter.

実施例1〜5及び比較例1で得られた酸化黒鉛粒子含有液について、酸化黒鉛粒子の粒度分布を測定した。具体的には、酸化黒鉛粒子の層数の相対比較は液相沈降式粒度分布計(HORIBA製超遠心式自動粒度分布測定装置CAPA−700)による粒度分布測定により行った。   For the graphite oxide particle-containing liquids obtained in Examples 1 to 5 and Comparative Example 1, the particle size distribution of the graphite oxide particles was measured. Specifically, the relative comparison of the number of layers of graphite oxide particles was performed by measuring the particle size distribution with a liquid phase sedimentation particle size distribution meter (HORIBA ultracentrifugal automatic particle size distribution analyzer CAPA-700).

液相沈降式粒度分布計とは、粒径に応じて溶媒中の粒子の沈降速度が異なることを利用して粒子の粒径を評価する装置である。密度(ρ)、粘性係数(η)の溶媒中に存在する直径(D)、密度(ρ)の球形粒子はStokesの沈降式に従って一定速度で沈降することが知られており、液相沈降式粒度分布計ではこの理論を応用している(例えばHORIBA製超遠心式自動粒度分布測定装置CAPA−700マニュアル)。Stokesの沈降式は球形粒子に対する式で、形状異方性が高い粒子などについては正確な粒径を反映していない。しかし、溶媒の密度(ρ)、粘性係数(η)および粒子の密度(ρ)が同一の場合、得られる粒径の値は沈降速度と対応があり、粒径の値が小さいものほど沈降速度は遅くなっている。一方で、層数が少ない酸化黒鉛粒子ほど沈降速度が遅くなることから、同一のρ,η,ρで測定したデータをもとに粒径分布を比較することで層数の相対比較が可能になる。粒度分布測定は、下記表1に示す条件で行った。結果を図1に示す。なお、縦軸は、全粒子について粒径を直径として求めた円の面積の総和において、ある粒径を持つ粒子の円の面積の和が占める割合を表す(図2及び図5についても同様)。図1に示すように、通液時間が長くなるにつれて、分布のピークが右側に、即ち粒径が小さい方にシフトしていることが分かる。このことから、実施例1〜5の方法は、精製後の分散液についてさらに精製を行うことなく、比較例1よりも酸化黒鉛粒子の薄層化を促進できることが分かった。
A liquid phase sedimentation type particle size distribution analyzer is an apparatus that evaluates the particle size of particles by utilizing the fact that the sedimentation rate of particles in a solvent varies depending on the particle size. It is known that spherical particles having a diameter (D) and a density (ρ) existing in a solvent having a density (ρ 0 ) and a viscosity coefficient (η 0 ) settle at a constant speed according to the Stokes settling equation. This theory is applied to the sedimentation type particle size distribution meter (for example, HORIBA ultracentrifugal automatic particle size distribution analyzer CAPA-700 manual). Stokes' settling equation is a formula for spherical particles and does not reflect the exact particle size of particles with high shape anisotropy. However, when the solvent density (ρ 0 ), viscosity coefficient (η 0 ), and particle density (ρ) are the same, the particle size value obtained corresponds to the sedimentation rate, and the smaller the particle size value, The sedimentation rate is slow. On the other hand, as the graphite oxide particles with a smaller number of layers have a lower sedimentation rate, a relative comparison of the number of layers can be performed by comparing the particle size distribution based on the same data measured at ρ 0 , η 0 , and ρ. It becomes possible. The particle size distribution measurement was performed under the conditions shown in Table 1 below. The results are shown in FIG. The vertical axis represents the ratio of the sum of the areas of the circles of particles having a certain particle diameter to the total area of the circles obtained by determining the particle diameter as the diameter for all particles (the same applies to FIGS. 2 and 5). . As shown in FIG. 1, it can be seen that the distribution peak shifts to the right side, that is, the particle size is smaller as the liquid passing time becomes longer. From this, it turned out that the method of Examples 1-5 can accelerate | stimulate thinning of a graphite oxide particle rather than the comparative example 1 without further refine | purifying about the dispersion liquid after refinement | purification.

また実施例6〜10で得られた酸化黒鉛粒子含有液についても、上記と同様にして酸化黒鉛粒子の粒度分布を測定した。結果を図2に示す。なお、図2には、比較例1で得られた酸化黒鉛粒子含有液についての粒度分布の測定結果も示した。   Further, for the graphite oxide particle-containing liquids obtained in Examples 6 to 10, the particle size distribution of the graphite oxide particles was measured in the same manner as described above. The results are shown in FIG. In addition, in FIG. 2, the measurement result of the particle size distribution about the graphite oxide particle containing liquid obtained by the comparative example 1 was also shown.

図2に示すように、通液時間が長くなるにつれて、分布のピークが右側に、即ち粒径が小さい方にシフトしていることが分かる。このことから、実施例6〜10の方法は、精製後の分散液についてさらに精製を行うことなく、比較例1よりも酸化黒鉛粒子の薄層化を促進できることが分かった。   As shown in FIG. 2, it can be seen that the distribution peak shifts to the right side, that is, the particle size is smaller as the liquid passing time becomes longer. From this, it turned out that the method of Examples 6-10 can accelerate | stimulate thinning of a graphite oxide particle rather than the comparative example 1 without further refine | purifying about the dispersion liquid after refinement | purification.

また実施例10及び比較例1で得られた酸化黒鉛粒子含有液中の酸化黒鉛粒子について、2500倍の倍率でのSEM観察も行った。結果を図3及び図4にそれぞれ示す。なお、図3及び図4においては、酸化黒鉛粒子の色が濃いほど厚いことを意味する。   The graphite oxide particles in the graphite oxide particle-containing liquid obtained in Example 10 and Comparative Example 1 were also subjected to SEM observation at a magnification of 2500 times. The results are shown in FIGS. 3 and 4, respectively. 3 and 4, it means that the darker the oxide graphite particles are, the thicker the particles are.

図3及び図4に示す結果より、実施例10の酸化黒鉛粒子は、比較例1の酸化黒鉛粒子に比べて粒径がわずかに小さくなっているものの、色が非常に薄くなっており、薄層化が促進されていることが分かる。   From the results shown in FIG. 3 and FIG. 4, the graphite oxide particles of Example 10 have a slightly smaller particle size than the graphite oxide particles of Comparative Example 1, but the color is very light and thin. It can be seen that stratification is promoted.

また実施例1〜9で得られた酸化黒鉛粒子含有液中の酸化黒鉛粒子についても実施例10と同様にしてSEM観察を行ったところ、酸化黒鉛粒子の粒径及び色の濃さのいずれも実施例10と同程度であった。   Further, when the graphite oxide particles in the graphite oxide particle-containing liquids obtained in Examples 1 to 9 were also subjected to SEM observation in the same manner as in Example 10, both the particle diameter and the color density of the graphite oxide particles were observed. It was almost the same as Example 10.

以上より、実施例1〜9の方法によれば、精製後の分散液についてさらに精製を行うことなく、面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できることが分かった。   As described above, according to the methods of Examples 1 to 9, the graphite oxide particles were thinned without causing further reduction of the size (particle size) in the plane direction without further purification of the purified dispersion. It was found that can be promoted.

(比較例2)
希釈分散液100gに対して出力600Wの超音波ホモジナイザーで超音波照射を30分間行ったこと以外は実施例1と同様にして酸化黒鉛粒子含有液を得た。
(Comparative Example 2)
A graphite oxide particle-containing liquid was obtained in the same manner as in Example 1, except that 100 g of the diluted dispersion was subjected to ultrasonic irradiation with an ultrasonic homogenizer with an output of 600 W for 30 minutes.

比較例2で得られた酸化黒鉛粒子含有液について、実施例1と同様にして酸化黒鉛粒子の粒度分布を測定した。結果を図5に示す。   About the graphite oxide particle containing liquid obtained by the comparative example 2, it carried out similarly to Example 1, and measured the particle size distribution of the graphite oxide particle. The results are shown in FIG.

また得られた酸化黒鉛粒子含有液中の酸化黒鉛粒子について、実施例10及び比較例1と同様にしてSEM観察も行った。結果を図6に示す。なお、図6においても、酸化黒鉛粒子の色が濃いほど厚いことを意味する。   The graphite oxide particles in the obtained graphite oxide particle-containing liquid were also observed by SEM in the same manner as in Example 10 and Comparative Example 1. The results are shown in FIG. In FIG. 6 as well, the darker the oxide oxide particles are, the thicker it is.

図5をみると比較例2で得られた酸化黒鉛粒子含有液では酸化黒鉛粒子の薄層化が促進しているようにみえるが、図6をみると酸化黒鉛粒子の粒径が非常に小さくなっていることから、図5の結果は、極端に小さくなった粒径を反映した結果であると判断された。つまり、比較例2の方法では、薄層化の促進と同時に粒径を小さくする効果が非常に高いことがわかった。   FIG. 5 shows that the graphite oxide particle-containing liquid obtained in Comparative Example 2 promotes thinning of the graphite oxide particles, but when FIG. 6 is seen, the particle size of the graphite oxide particles is very small. Therefore, the result of FIG. 5 was determined to reflect the extremely small particle size. That is, it was found that the method of Comparative Example 2 has a very high effect of reducing the particle size at the same time as promoting thinning.

以上より、本発明によれば、薄層化のための精製の繰り返しを行うことなく、また面方向のサイズ(粒径)の縮小をほとんど発生させずに酸化黒鉛粒子の薄層化を促進できることが確認された。
As described above, according to the present invention, it is possible to promote the thinning of graphite oxide particles without repeating purification for thinning and almost no reduction in the size (particle size) in the plane direction. Was confirmed.

Claims (3)

酸化黒鉛粒子と分散媒とを含有する酸化黒鉛粒子含有液を準備する準備工程と、
酸化黒鉛粒子含有液を精製する精製工程とを含む酸化黒鉛粒子含有液の製造方法であって、
前記精製工程の後に、管状又は棒状の成形体の表面に沿って、酸化黒鉛粒子含有液を流通させる流通工程を含み、
前記精製工程が、前記準備工程で得られた酸化黒鉛粒子含有液において、前記酸化黒鉛粒子の薄層化の妨げとなる不純物イオンを前記酸化黒鉛粒子と分離する工程であり、
前記流通工程が、前記精製工程以外の工程である、酸化黒鉛粒子含有液の製造方法。
A preparation step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium;
A method for producing a graphite oxide particle-containing liquid comprising a purification step of refining the graphite oxide particle-containing liquid,
After said purification step, along the surface of the tubular or rod-shaped molded bodies, saw including a distribution step of distributing graphite oxide particle-containing liquid,
In the graphite oxide particle-containing liquid obtained in the preparation step, the purification step is a step of separating impurity ions that hinder thinning of the graphite oxide particles from the graphite oxide particles,
The manufacturing method of the graphite oxide particle containing liquid whose said distribution | circulation process is processes other than the said refinement | purification process .
前記流通工程において、前記成形体の表面に対する前記酸化黒鉛粒子含有液の流速を0.20m/s以上とする、請求項1に記載の酸化黒鉛粒子含有液の製造方法。   2. The method for producing a graphite oxide particle-containing liquid according to claim 1, wherein a flow rate of the graphite oxide particle-containing liquid with respect to the surface of the compact is 0.20 m / s or more in the distribution step. 前記成形体が管状であり、前記流通工程において、前記酸化黒鉛粒子含有液を前記成形体の内壁面に沿って流通させる、請求項1又は2に記載の酸化黒鉛粒子含有液の製造方法。
The manufacturing method of the graphite oxide particle containing liquid of Claim 1 or 2 which distribute | circulates the said graphite oxide particle containing liquid along the inner wall face of the said molded object in the said distribution process at the said molded object.
JP2009233185A 2009-10-07 2009-10-07 Method for producing graphite oxide particle-containing liquid Expired - Fee Related JP5446702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233185A JP5446702B2 (en) 2009-10-07 2009-10-07 Method for producing graphite oxide particle-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233185A JP5446702B2 (en) 2009-10-07 2009-10-07 Method for producing graphite oxide particle-containing liquid

Publications (2)

Publication Number Publication Date
JP2011079700A JP2011079700A (en) 2011-04-21
JP5446702B2 true JP5446702B2 (en) 2014-03-19

Family

ID=44074162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233185A Expired - Fee Related JP5446702B2 (en) 2009-10-07 2009-10-07 Method for producing graphite oxide particle-containing liquid

Country Status (1)

Country Link
JP (1) JP5446702B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139012A (en) * 1986-11-29 1988-06-10 Koa Sekiyu Kk Production of graphitic material for electric cell
JP4798411B2 (en) * 2000-08-09 2011-10-19 三菱瓦斯化学株式会社 Method for synthesizing thin-film particles having a carbon skeleton
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2004091251A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2004091252A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP4591666B2 (en) * 2003-07-23 2010-12-01 三菱瓦斯化学株式会社 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
JP4678152B2 (en) * 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 Dispersion of thin film particles with a carbon skeleton
JP5446703B2 (en) * 2009-10-07 2014-03-19 三菱瓦斯化学株式会社 Method for producing purified graphite oxide particle-containing liquid

Also Published As

Publication number Publication date
JP2011079700A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5272641B2 (en) Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor
US10304937B2 (en) Scalable process for producing exfoliated defect-free, non-oxidised 2-dimensional materials in large quantities
JP5446703B2 (en) Method for producing purified graphite oxide particle-containing liquid
JP4591666B2 (en) Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
JP5933374B2 (en) Method for producing thin-layer graphite or thin-layer graphite compound
CN103639421B (en) A kind of preparation method of the Graphene/argentum nano composite material of high conductivity
CN107108226B (en) Method for preparing graphene by utilizing high-speed homogenization pretreatment and high-pressure homogenization
JP6208364B2 (en) Graphene production method and graphene dispersion composition
WO2014021257A1 (en) Method for producing composite film comprising graphene and carbon nanotubes
CN105849040A (en) Production method for graphene
CN105949512A (en) Intercalation assembly based boron nitride-graphene composite material as well as application and preparation method thereof
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
CN104988592B (en) Polyvinyl alcohol/graphene composite nano fiber material and preparation method thereof
KR20160100268A (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
CN102581267A (en) Silver-graphene composite material and method for conveniently producing silver-graphene composite material
JP5326336B2 (en) Conductor and manufacturing method thereof
JP7056101B2 (en) Manufacturing method of reduced graphene
JP5446702B2 (en) Method for producing graphite oxide particle-containing liquid
KR101254425B1 (en) Graphene film having graphene oxide/poly vinyl alcohol composite and manufacturing method of the same
CN115989555A (en) Conductive two-dimensional particle and method for producing same
JP5617992B2 (en) Method for producing purified graphite oxide particle-containing liquid
CN104843677A (en) Porous graphene and preparation method therefor
US20230207152A1 (en) Conductive two-dimensional particle and method for producing the same
JP2004091251A (en) Method for reducing thin-film particle having framework comprising carbon
CN104138795B (en) A kind of separation method of different size alpha-aluminium oxide nano-particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees