JP2002053313A - Thin-filmy particle having skeleton consisting of carbon - Google Patents

Thin-filmy particle having skeleton consisting of carbon

Info

Publication number
JP2002053313A
JP2002053313A JP2000277307A JP2000277307A JP2002053313A JP 2002053313 A JP2002053313 A JP 2002053313A JP 2000277307 A JP2000277307 A JP 2000277307A JP 2000277307 A JP2000277307 A JP 2000277307A JP 2002053313 A JP2002053313 A JP 2002053313A
Authority
JP
Japan
Prior art keywords
particles
graphite
thin
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000277307A
Other languages
Japanese (ja)
Other versions
JP4798411B2 (en
Inventor
Masukazu Hirata
益一 平田
Shigeo Horiuchi
繁雄 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000277307A priority Critical patent/JP4798411B2/en
Priority to US09/923,404 priority patent/US6596396B2/en
Publication of JP2002053313A publication Critical patent/JP2002053313A/en
Application granted granted Critical
Publication of JP4798411B2 publication Critical patent/JP4798411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage technique using carbon fibers having new structural characteristics. SOLUTION: The thin-filmy particles having an independent form with 0.4 to 10 nm thickness and >=20 nm stretch in the plane direction and dispersible in a liquid having >=15 relative dielectric constant are obtained by accelerating separation of layers in the oxidation treatment of graphite. Further, the particles are reduced to obtain thin film graphite particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素からなる骨格
を持つ極めて薄い薄膜状粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extremely thin film-like particle having a carbon skeleton.

【0002】[0002]

【従来の技術】近年、形状の異方性が高い物質の探索と
その応用が急速に進行している。このような物質は、多
数個で他の物質との複合体にする場合には、低い分率の
添加で高強度などの各種性能を発現すると期待される。
また、その形状が極めて細い線状(1次元)や極めて薄
い平面状(2次元)で、電気的に半導体または良導体で
あれば、単独または少数個の集合体の場合に、電子物性
などに量子的な効果を発現すると期待される。
2. Description of the Related Art In recent years, search for substances having high anisotropy in shape and their application have been rapidly progressing. When a large number of such substances are made into a complex with another substance, various properties such as high strength are expected to be exhibited by adding a low fraction.
In addition, if the shape is an extremely thin line (one-dimensional) or an extremely thin plane (two-dimensional) and is an electrically semiconductor or a good conductor, a single or a small number of aggregates may cause a quantum phenomena in electronic properties. Is expected to exhibit a positive effect.

【0003】炭素原子を骨格とする異方性形状の物質と
しては、1次元では黒鉛繊維やそれが特に細くなった炭
素ナノチューブが知られており、2次元では黒鉛、フッ
化黒鉛、酸化黒鉛などが知られている。これらのうち、
黒鉛、フッ化黒鉛、酸化黒鉛はいずれも2次元的な基本
層が積み重なった多層構造体であり、一般に層数は非常
に多い。黒鉛の基本層は、sp結合の炭素からなり、
炭素原子1個分の厚さの構造を持つ。フッ化黒鉛の基本
層は、ダイヤモンド類似のジグザグの炭素の列で数えて
炭素原子1個分または2個分の厚さのsp結合の炭素
骨格と、その骨格の両側の面にフッ素が結合した構造を
持つ。酸化黒鉛の基本層は、同じくジグザグの炭素の列
で数えて炭素原子1個分または2個分の厚さの、少しs
結合の傾向のあるsp結合主体の炭素骨格と、そ
の骨格の両側の面に酸性の水酸基などが結合した構造を
持つと考えられている(例えば、「黒鉛層間化合物」,
第5章,炭素材料学会編,リアライズ社(1990);
T.Nakajima et al.,Carbon,
26,357(1988);M.Mermouxet
al.,Carbon,29,469(1991))。
As an anisotropic substance having a carbon atom as a skeleton, a one-dimensional graphite fiber or a carbon nanotube having a particularly fine shape is known, and a two-dimensional graphite fiber, graphite fluoride, graphite oxide or the like is known. It has been known. Of these,
Graphite, fluorinated graphite, and graphite oxide are all multi-layered structures in which two-dimensional basic layers are stacked, and the number of layers is generally very large. The basic layer of graphite consists of sp 2 bonded carbon,
It has a structure with a thickness of one carbon atom. Base layer of the fluorinated graphite, the carbon skeleton of the sp 3 bonds for one piece or two pieces of thick carbon atoms counted in columns of carbon in diamond-like zigzag, fluorine bonded to both surfaces of its backbone It has a structured structure. The base layer of graphite oxide is also slightly s thick, one or two carbon atoms, counted in a zig-zag carbon row.
It is considered to have a structure in which a carbon skeleton mainly composed of sp 3 bonds having a tendency of p 2 bonds and an acidic hydroxyl group or the like bonded to both sides of the skeleton (for example, “graphite intercalation compound”,
Chapter 5, edited by The Society of Carbon Materials, Realize (1990);
T. Nakajima et al. , Carbon,
26, 357 (1988); Mermouxet
al. , Carbon, 29,469 (1991)).

【0004】このような炭素骨格を持つ多層構造体が多
数の基本層に分離される例としては、黒鉛の層間でイソ
プレンなどを重合させるもの(H.Shioyama,
Carbon,35,1664(1997))、酸化黒
鉛の層間にポリエチレンオキシドを侵入させるもの
(Y.Matsuo et al.,Carbon,3
4,672(1996))や層間でアニリンなどを重合
させるもの(特開平11−263613)などがある。
[0004] As an example in which such a multilayer structure having a carbon skeleton is separated into a large number of basic layers, an example in which isoprene or the like is polymerized between graphite layers (H. Shioyama,
Carbon, 35, 1664 (1997)), which allows polyethylene oxide to penetrate between layers of graphite oxide (Y. Matsuo et al., Carbon, 3).
4,672 (1996)) and those in which aniline or the like is polymerized between layers (JP-A-11-263613).

【0005】[0005]

【発明が解決しようとする課題】ところが、それらの多
層構造の分離例では、基本層またはそれに近い極めて薄
い層は、複合体内部に構成成分として存在するのみであ
り、単独で安定に取り出されていなかった。すなわち、
結晶性の高い炭素骨格を持ち、独立した粒子として存在
することが可能な、極めて薄い膜状粒子は見出されてい
なかった。本発明の目的は、このような薄膜状粒子を提
供することにある。
However, in these examples of the separation of the multilayer structure, the base layer or an extremely thin layer close to the base layer exists only as a component inside the composite, and is taken out stably alone. Did not. That is,
Very thin film-like particles having a highly crystalline carbon skeleton and capable of existing as independent particles have not been found. An object of the present invention is to provide such a thin film particle.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記の目的
を達成するために、前述の多層構造体3種のうち、層の
分離が比較的生じ易いと考えられる酸化黒鉛を選び、さ
らに層の分離が促進されるように合成(酸化と精製)を
行い、目的の薄膜状粒子を得た。この薄膜状粒子の構造
は、これまでに知られている酸化黒鉛の構造にほぼ等し
いが、これまでに知られていないような極めて薄い形
状、すなわち、その平面方向の広がりに対して厚さが極
めて小さいような形状を持つ。粒子内部の層数で表現す
ると、基本層の20層分未満である。その結果、この薄
膜状粒子は、緻密な炭素骨格を持っているにもかかわら
ず、しなやかに変形することまで可能であった。
Means for Solving the Problems In order to achieve the above object, the present inventors have selected graphite oxide, which is considered to be relatively easy to separate layers, from among the above three types of multilayer structures. Synthesis (oxidation and purification) was carried out so as to promote separation of the layers, and the desired thin film-shaped particles were obtained. The structure of the thin film-like particles is almost equal to the structure of graphite oxide known so far, but has an extremely thin shape that has not been known so far, that is, the thickness thereof is larger than the thickness in the plane direction. It has a very small shape. When expressed in terms of the number of layers inside the particle, it is less than 20 layers of the basic layer. As a result, it was possible for these thin film-shaped particles to deform supplely despite having a dense carbon skeleton.

【0007】また、この薄膜状粒子は、液の中に分散さ
せて扱うことが望ましいが、合成直後の分散媒である水
だけでなく、他の分散媒への交換についても検討し、こ
の薄膜状粒子と他の物質との複合化などへの応用展開を
容易にした。さらに、通常の酸化黒鉛で知られているよ
うに、この薄膜状粒子を還元して、極めて薄く、ほぼ黒
鉛の構造を持つ薄膜状黒鉛粒子やその集合体とすること
が可能であった。
Further, it is desirable that the thin film particles are handled by dispersing them in a liquid. However, not only water, which is a dispersion medium immediately after synthesis, but also exchange with another dispersion medium is examined. Application development to compounding of particle-like particles with other substances has been facilitated. Further, as is known for ordinary graphite oxide, it was possible to reduce the thin film particles into thin graphite particles having an extremely thin and substantially graphite structure or aggregates thereof.

【0008】[0008]

【発明の実施の形態】本発明の薄膜状粒子の原料には、
層構造が発達した結晶性の高い黒鉛が望ましい。このよ
うな黒鉛は、各基本層が大きく、また隣接している2つ
の基本層の間を繋ぐシグマ結合の存在頻度が極めて低い
ために、酸化反応の後で薄膜状粒子に分離し易い。逆
に、層構造が未発達で結晶性の低い黒鉛では、酸化は生
じるが、層の分離が極めて悪い。より具体的には、粒子
内部の最も広い基本層の直径が粒子の直径にほぼ等し
く、粒子全体で単一の多層構造を持つ黒鉛が望ましい。
このような黒鉛として、天然黒鉛(特に良質なもの)、
キッシュ黒鉛(特に高温で作られたもの)、高配向性熱
分解黒鉛が知られている。天然黒鉛とキッシュ黒鉛の各
基本層はほぼ単一の方位を持つ単独の結晶であり、高配
向性熱分解黒鉛の各基本層は異なる方位を持つ多数の小
さな結晶の集合体である。本発明ではこれらの黒鉛や、
これらの黒鉛の層間を予め広げた膨張黒鉛を原料に用い
る。
BEST MODE FOR CARRYING OUT THE INVENTION The raw materials for the thin film particles of the present invention include:
Highly crystalline graphite with a developed layer structure is desirable. In such graphite, since each basic layer is large and the frequency of occurrence of sigma bonds connecting two adjacent basic layers is extremely low, the graphite is easily separated into thin film-like particles after the oxidation reaction. Conversely, in the case of graphite having an undeveloped layer structure and low crystallinity, oxidation occurs, but the separation of layers is extremely poor. More specifically, graphite having a single multilayer structure in which the diameter of the widest base layer inside the particle is approximately equal to the diameter of the particle and the entire particle is desirable.
Such graphite includes natural graphite (especially high quality),
Kish graphite (particularly made at high temperatures) and highly oriented pyrolytic graphite are known. Each basic layer of natural graphite and quiche graphite is a single crystal having a substantially single orientation, and each basic layer of highly oriented pyrolytic graphite is an aggregate of many small crystals having different orientations. In the present invention, these graphites,
Expanded graphite in which the layers between these graphite layers are expanded in advance is used as a raw material.

【0009】黒鉛の基本層や基本層の内部の微小部分の
大きさは、X線回折におけるピーク形状、走査型電子顕
微鏡による電子チャネリングコントラスト像の観察、偏
光顕微鏡観察などで推定することができる。また、他の
指標として、例えば電気抵抗が約10−6Ωm以下とな
ることも目安になる。しかし、それらの指標は層の分離
の可能性を示すのみであるため、実際には対象となる黒
鉛原料を用いて酸化と精製を行い、多層構造の分離を確
認することが望ましい。
The size of the graphite basic layer and the minute portions inside the basic layer can be estimated by peak shape in X-ray diffraction, observation of an electron channeling contrast image by a scanning electron microscope, observation by a polarizing microscope, and the like. As another index, for example, it is also a guide that the electric resistance is about 10 −6 Ωm or less. However, since these indexes only indicate the possibility of layer separation, it is actually desirable to perform oxidation and purification using the target graphite raw material to confirm the separation of the multilayer structure.

【0010】黒鉛中の金属元素などの不純物は、予め約
0.5%以下に除去されていることが望ましい。不純物
が多いと、多層構造の分離が阻害される可能性がある。
It is desirable that impurities such as metal elements in graphite have been removed to about 0.5% or less in advance. If there are many impurities, separation of the multilayer structure may be hindered.

【0011】黒鉛の粒子径は、生成する薄膜状粒子の平
面方向の大きさに反映されるため、合成したい薄膜状粒
子の大きさで選択すればよく、数mmまたはそれ以上の
広がりを持つ薄膜状粒子も本質的に合成可能である。た
だし、粒子径が大きくなるにつれて、酸化に要する時間
が長くなる。また、生成する薄膜状粒子の平面方向の形
状を例えば正方形のように規定したい場合には、黒鉛原
料の段階で予め正方形に切断しておいてもよい。ただ
し、切断の際には、結晶の方位を認識しておく必要があ
る。
Since the particle size of graphite is reflected in the size of the thin film particles to be formed in the plane direction, it may be selected according to the size of the thin film particles to be synthesized. Shaped particles can also be synthesized in nature. However, as the particle diameter increases, the time required for oxidation increases. When it is desired to define the shape of the thin film-like particles to be formed in the plane direction as, for example, a square, the particles may be cut into a square beforehand at the stage of the graphite raw material. However, when cutting, it is necessary to recognize the crystal orientation.

【0012】本発明における黒鉛の酸化には、公知のB
rodie法(硝酸、塩素酸カリウムを使用)、Sta
udenmaier法(硝酸、硫酸、塩素酸カリウムを
使用)、Hummers−Offeman法(硫酸、硝
酸ナトリウム、過マンガン酸カリウムを使用)などが利
用できる。これらのうち、特に酸化が進行するのはHu
mmers−Offeman法(W.S.Hummer
s et al.,J.Am.Chem.Soc.,8
0,1339(1958);米国特許No.27988
78(1957))であり、本発明でもこの酸化方法が
特に推奨される。
In the oxidation of graphite in the present invention, known B
rodie method (using nitric acid and potassium chlorate), Sta
Udenmaier method (using nitric acid, sulfuric acid, and potassium chlorate), Hummers-Offman method (using sulfuric acid, sodium nitrate, and potassium permanganate) can be used. Among these, Hu is particularly oxidized.
mmers-Offeman method (WS Hummer)
s et al. , J .; Am. Chem. Soc. , 8
0,1339 (1958); U.S. Pat. 27988
78 (1957)), and this oxidation method is particularly recommended in the present invention.

【0013】これらの黒鉛の酸化方法では、まず、酸化
剤のイオンが黒鉛の層間に侵入し、層間化合物を生成す
る。その後、水を加えることで、層間化合物が加水分解
されて、酸化黒鉛となる。これらの反応のうち、層間化
合物の生成は、特に時間を要し、黒鉛の粒径に依存す
る。そのため、黒鉛の粒径により酸化剤と共存させる時
間を変化させ、黒鉛粒子の内部にできるだけ酸化剤のイ
オンを侵入させておくことが望ましい。本発明者らが調
べたところ、Hummers−Offeman法の場合
には、20℃付近において、1時間当たり約10μm以
上のイオンの侵入が認められたことから、黒鉛の粒径1
0μm当たりで少なくとも30分以上、できれば3時間
以上の酸化時間で、黒鉛を酸化することが望ましい。
In these methods of oxidizing graphite, first, ions of an oxidizing agent penetrate between layers of graphite to generate an intercalation compound. After that, by adding water, the interlayer compound is hydrolyzed to form graphite oxide. Among these reactions, formation of an intercalation compound requires a particularly long time and depends on the particle size of graphite. Therefore, it is desirable to change the time for coexistence with the oxidizing agent according to the particle size of the graphite so that ions of the oxidizing agent enter the graphite particles as much as possible. The present inventors have investigated and found that in the case of the Hummers-Offman method, the intrusion of ions of about 10 μm or more per hour was observed at around 20 ° C.
It is desirable to oxidize graphite for an oxidation time of at least 30 minutes or more, preferably 3 hours or more per 0 μm.

【0014】以上の黒鉛の酸化方法では、反応液中に残
存する酸化剤または酸化剤が分解されて生じるイオンや
イオン由来の成分を除去して精製する必要がある。公知
の酸化方法では、この精製を水やアルコールなどによる
洗浄で行っている。本発明では、この精製段階におい
て、反応液中または層間に残って層の分離を妨害する可
能性のある成分をより積極的に除き、薄膜状粒子への分
離を促進する。すなわち、液中に共存する分散媒以外の
低分子や小さなイオンを可能な限り除くことで、酸化黒
鉛の各層に存在する酸性の水酸基のイオン解離度を高
め、イオン性の大型粒子と見なせる各層の間の静電的反
発を強めることで、多層構造の分離を促進する。
In the above-described method for oxidizing graphite, it is necessary to purify by removing the oxidizing agent remaining in the reaction solution or the ions or components derived from the decomposition of the oxidizing agent. In a known oxidation method, this purification is performed by washing with water, alcohol, or the like. In the present invention, in the purification step, components remaining in the reaction solution or between the layers and possibly hindering the separation of the layers are more positively removed, and the separation into thin film particles is promoted. That is, by removing as much as possible low molecules and small ions other than the dispersion medium coexisting in the liquid, the ionic dissociation degree of the acidic hydroxyl group present in each layer of the graphite oxide is increased, and each layer of the layer which can be regarded as large ionic particles is increased. By strengthening the electrostatic repulsion between them, the separation of the multilayer structure is promoted.

【0015】本発明者らが調べたところ、例えば酸化黒
鉛の濃度約1wt%以下において、硫酸の濃度が約0.
05wt%以下になると、多層構造の分離が急速に進行
していた。硫酸のイオン解離を1段までとして計算する
と、反応液中の酸化黒鉛由来(酸化黒鉛のイオン解離で
生じる水素イオンを含む)以外の小さなイオンの濃度は
約10mol/m以下となる。そこで、この濃度以下
となるように生成物を精製することが望ましく、一般に
この精製を進めるほど層の分離が進行する。具体的に
は、水を加えてから、小さなイオンと共に水を除く。用
いる水は高純度のものが望ましい。
The present inventors have examined that, for example, when the concentration of graphite oxide is about 1 wt% or less, the concentration of sulfuric acid is about 0.1 wt%.
When the content became 05 wt% or less, the separation of the multilayer structure proceeded rapidly. When the calculation is made with the ion dissociation of sulfuric acid up to one stage, the concentration of small ions other than those derived from graphite oxide (including hydrogen ions generated by ion dissociation of graphite oxide) in the reaction solution is about 10 mol / m 3 or less. Therefore, it is desirable to purify the product so as to have a concentration of not more than this concentration. Specifically, after adding water, water is removed together with small ions. The water used is desirably of high purity.

【0016】他方、イオン性の大型粒子である各層の分
離を進めるためには、精製時の液中の酸化黒鉛粒子の濃
度を低くして、各層のイオン解離度を高めることも重要
である。そこで、水を加えて粒子を均一に分散させた段
階の酸化黒鉛の濃度を約5wt%以下、より望ましくは
1wt%以下とする。
On the other hand, in order to promote separation of each layer, which is large ionic particles, it is also important to lower the concentration of graphite oxide particles in the liquid at the time of purification and increase the degree of ion dissociation in each layer. Therefore, the concentration of graphite oxide at the stage where water is added to uniformly disperse the particles is set to about 5% by weight or less, more preferably 1% by weight or less.

【0017】Hummers−Offeman法では、
通常、加水分解後に過酸化水素を加えて過マンガン酸イ
オンをマンガン(IV)イオンに分解してから水で洗浄
して、他の硫酸イオンやカリウムイオンなどと共に除去
する(W.S.Hummers et al.,J.A
m.Chem.Soc.,80,1339(195
8))。しかし、中性になるとマンガンイオンの溶解性
が低下し、マンガンの水酸化物などとなって層間に残存
する可能性がある。そこで、水による洗浄の前に、硫酸
水溶液または硫酸と過酸化水素の混合水溶液で十分に洗
浄することが望ましい。
In the Hummers-Offeman method,
Usually, hydrogen peroxide is added after hydrolysis to decompose permanganate ions into manganese (IV) ions and then washed with water to remove them together with other sulfate ions and potassium ions (WS Hummers et al.). al., JA
m. Chem. Soc. , 80, 1339 (195
8)). However, when it becomes neutral, the solubility of manganese ions decreases, and there is a possibility that the manganese ions become hydroxides of manganese and remain between the layers. Therefore, it is desirable to sufficiently wash with a sulfuric acid aqueous solution or a mixed aqueous solution of sulfuric acid and hydrogen peroxide before washing with water.

【0018】具体的な洗浄による精製操作には、デカン
テーション、濾過、遠心分離、透析、イオン交換などの
公知の手段を用いればよい。ここで、原料黒鉛の粒子径
が小さいほど、また、層の分離が進んで薄膜状粒子が増
えるほど、さらには、小さなイオンなどの除去が進むに
つれて、薄膜状粒子の単位体積当たりの電荷が増す。そ
の結果、粒子間の反発が強くなり、また、分散媒を保持
(水であれば水和)する程度も高くなるため、いずれの
精製操作も困難になっていく。この場合、精製効率の比
較的高い操作は遠心分離、透析、イオン交換であり、特
に比較的短時間で精製可能な操作は遠心分離である。他
方、デカンテーションや濾過は、沈降が遅いことや薄膜
状粒子による閉塞により、薄膜状粒子の直径が小さくな
るほど困難となる。なお、粒子間の反発を一時的に低下
させるために、誘電率の低い他の溶媒の使用や塩析など
を適宜組み合わせてもよい。
For specific purification operations by washing, known means such as decantation, filtration, centrifugation, dialysis, and ion exchange may be used. Here, as the particle diameter of the raw graphite decreases, and as the separation of layers progresses and the number of thin film particles increases, and as the removal of small ions and the like progresses, the charge per unit volume of the thin film particles increases. . As a result, the repulsion between the particles becomes stronger, and the degree to which the dispersion medium is retained (water is hydrated) becomes higher, so that any purification operation becomes difficult. In this case, operations with relatively high purification efficiency are centrifugation, dialysis, and ion exchange, and operations that can be purified in a relatively short time are centrifugation. On the other hand, decantation and filtration become more difficult as the diameter of the thin film particles decreases, due to slow sedimentation and blockage by the thin film particles. In order to temporarily reduce the repulsion between particles, use of another solvent having a low dielectric constant, salting out, or the like may be appropriately combined.

【0019】精製時において、多層構造の分離は自発的
に生じる。これに加えて、小さなイオンと共に水を除い
た後で、再度水を加えて均一の分散液とする際に、振と
うなどの撹拌操作が加わるため、分離がさらに促進され
る。また、超音波照射も利用可能であるが、層の分離と
共に各層の基本構造が破壊されて小さくなる傾向がある
ため、特に小さな径の薄膜状粒子を生成したい場合に用
いることが望ましい。
During purification, separation of the multilayer structure occurs spontaneously. In addition to this, when water is removed together with the small ions and then water is added again to form a uniform dispersion, a stirring operation such as shaking is added, so that the separation is further promoted. Ultrasonic irradiation can also be used, but since the basic structure of each layer tends to be destroyed and become smaller as the layers are separated, it is desirable to use the method particularly when it is desired to produce thin film-like particles having a small diameter.

【0020】以上のように精製することで、多くの粒子
内部で層の分離が進むが、多層構造の分離が不十分な、
薄膜状でない粒子もわずかに残存する。これは、原料中
の不純物(分離困難な黒鉛や他の無機物)や、酸化時と
精製時に混入した異物などである。これらは一般に沈降
し易いため、精製時にデカンテーションや極めて緩やか
な遠心分離で除くことが可能である。
By the purification as described above, the separation of the layers proceeds in many particles, but the separation of the multilayer structure is insufficient.
Some particles that are not in the form of a thin film also remain. These are impurities in the raw materials (e.g., graphite and other inorganic substances that are difficult to separate) and foreign substances mixed during oxidation and purification. Since these generally precipitate easily, they can be removed by decantation or extremely gentle centrifugation during purification.

【0021】以上の操作で、多くの粒子内部で層の分離
が進む。他方、分離していない層同士の部分でも分離の
可能性が高まるが、大きな粒子であるために粒子内部の
層間に水素結合などが数多く存在し、実質的には短時間
での分離が困難になっている可能性がある。そこで、さ
らに層の分離を促進する方法としては、精製の終了した
分散液を希釈してから、さらに分散媒の分子運動や薄膜
状粒子の運動を強めることが考えられる。具体的には、
分散液への超音波照射や加熱などがある。ただし、超音
波照射では、前記のように層の分離と共に各層の基本構
造が破壊されて小さくなる傾向がある。また、加熱で
は、イオン解離度が高まることも期待できるが、特に高
温の場合に粒子が部分的に還元される可能性があるの
で、あまり高温にしないことが望ましい。具体的には5
0〜150℃となる。
By the above operation, the separation of the layers progresses in many particles. On the other hand, the possibility of separation increases even between parts that have not been separated, but because of large particles, many hydrogen bonds and the like exist between layers inside the particles, making it difficult to separate in a short time. May have become. Therefore, as a method for further promoting the separation of the layers, it is conceivable to further enhance the molecular motion of the dispersion medium and the motion of the thin film particles after diluting the purified dispersion. In particular,
Examples include ultrasonic irradiation and heating of the dispersion. However, with ultrasonic irradiation, the basic structure of each layer tends to be destroyed and become smaller as the layers are separated as described above. Heating can also be expected to increase the degree of ion dissociation, but it is desirable not to raise the temperature too high, especially at high temperatures, as particles may be partially reduced. Specifically, 5
0 to 150 ° C.

【0022】さらに層の分離が進んだ粒子を選択的に得
るには、分散性の違いにより分別すればよい。例えば、
デカンテーションや比較的緩やかな遠心分離を行い、非
沈降部分を用いればよい。
In order to selectively obtain particles in which the layers have further separated, the particles may be separated based on the difference in dispersibility. For example,
Decantation or relatively gentle centrifugation may be performed, and the non-settling portion may be used.

【0023】以上の各操作により、ナノフィルムと呼べ
るような、極めて薄い薄膜状粒子が水に分散した分散液
が完成する。
Through the above operations, a dispersion liquid in which extremely thin thin film-like particles, which can be called a nanofilm, are dispersed in water is completed.

【0024】この薄膜状粒子の分散液は、一般的な酸化
黒鉛と同様、高濃度のままで乾燥させると、多数の粒子
が凝集し、再度の分散が困難となる(逆に、これまでの
酸化黒鉛の構造についての多くの研究は、この凝集状態
の固体に対するものであり、本発明のような薄膜状粒子
は知られていなかった)。そこで、この薄膜状粒子を具
体的な目的に用いる場合には、その保存を含めてできる
だけ分散液のままで扱うこと、極めて低濃度の分散液か
らの乾燥、噴霧乾燥、凍結乾燥などで凝集の少ない薄膜
状粒子を得ること、分散液のままで用いて他の物質と混
合すること、などが望ましい。
When the dispersion liquid of the thin film-like particles is dried at a high concentration, like a general graphite oxide, many particles are aggregated, and it is difficult to re-disperse the particles. Much work on the structure of graphite oxide has been directed to this agglomerated solid, and no thin film particles as in the present invention were known). Therefore, when the thin film particles are used for a specific purpose, they should be handled as a dispersion liquid as much as possible, including preservation of the particles, and aggregation, such as drying from a very low concentration dispersion, spray drying, and freeze drying. It is desirable to obtain a small number of thin film-like particles, to use the dispersion as it is, and to mix it with another substance.

【0025】分散液のままで用いる場合、用途によって
は水以外の分散媒が望ましいことがある。その場合に
は、前記の精製の途中で他の分散媒を用いるか、精製後
に分散液を遠心分離などで濃縮して水を減らしてから、
他の溶媒を加えて混合後に遠心分離などで濃縮すること
を繰り返して、分散媒を交換すればよい。ここで、薄膜
状粒子は極性が高いため、誘電率の高い極性の分散媒と
の親和性が高く、そのような分散媒を用いれば薄膜状粒
子の凝集が少ない。具体的には、比誘電率で約15以上
の分散媒が望ましい。また、分散媒の交換の際に、2種
の分散媒同士の相溶性がよくない場合には、それら2種
の分散媒の両方に相溶性のよい第3の分散媒を経由して
交換してもよい。
When used as a dispersion, a dispersion medium other than water may be desirable depending on the application. In that case, use another dispersion medium during the purification, or after purification, reduce the water by concentrating the dispersion by centrifugation or the like,
The dispersion medium may be exchanged by repeatedly adding another solvent, mixing and then concentrating by centrifugation or the like. Here, since the thin film particles have high polarity, they have a high affinity for a dispersion medium having a high dielectric constant and a high polarity, and the use of such a dispersion medium causes less aggregation of the thin film particles. Specifically, a dispersion medium having a relative dielectric constant of about 15 or more is desirable. In addition, when the compatibility of the two types of dispersion media is not good when exchanging the dispersion media, the exchange is performed via a third dispersion medium having good compatibility with both of the two types of dispersion media. You may.

【0026】本発明で得られる薄膜状粒子は、水酸基な
どの官能基を持っているため、例えば、ホルムアルデヒ
ド、カルボン酸類、イソシアン酸エステル類、エポキシ
化合物などとの反応が期待できる。その場合、薄膜状粒
子と反応させる他の分子が複数の官能基または複数の結
合を生じる官能基を持っていると、複数の薄膜状粒子の
間を架橋することになる。
Since the thin film particles obtained in the present invention have a functional group such as a hydroxyl group, a reaction with, for example, formaldehyde, carboxylic acids, isocyanates, epoxy compounds and the like can be expected. In such a case, if another molecule to be reacted with the thin film-shaped particles has a plurality of functional groups or a plurality of functional groups capable of forming a bond, the plurality of thin film-shaped particles are crosslinked.

【0027】本発明で得られる薄膜状粒子を他の有機ま
たは無機の重合性物質と混合し、その重合性物質を重合
させると、薄膜状粒子を含む複合体とすることができ
る。この場合、薄膜状粒子の分散液を他の重合性物質に
混合し、分散媒を除いてから重合すると、複合体の中で
の薄膜状粒子の凝集を最小限にすることができる。
When the thin film particles obtained by the present invention are mixed with another organic or inorganic polymerizable substance and the polymerizable substance is polymerized, a composite containing the thin film particles can be obtained. In this case, when the dispersion liquid of the thin film particles is mixed with another polymerizable substance and polymerized after removing the dispersion medium, aggregation of the thin film particles in the composite can be minimized.

【0028】本発明で得られる薄膜状粒子に電子物性を
期待する場合には、この薄膜状粒子を還元し、黒鉛類似
のsp結合主体の電子状態にして、電気伝導性を高め
ることが望ましい。還元には還元剤を用いる各種の公知
の還元反応や電極反応(電解還元)が利用可能である
が、特に還元剤を用いる場合には、基本層まで分解でき
ていないと、多層粒子の内部までの完全な還元は困難で
あると考えられる。他方、酸化黒鉛の一般的挙動とし
て、加熱により多層内部まで黒鉛類似の構造にすること
が可能であり、複数の粒子が凝集した状態で加熱すれ
ば、多層粒子内部の層間や複数の粒子間にパイ結合が生
じて、通常の黒鉛フィルムなどの巨視的な形状の付与も
可能であることが知られている(J.Maire et
al.,Carbon,6,555(1968))。
本発明の薄膜状粒子は、特に薄い形状を持つために、同
様の加熱により黒鉛類似の構造にすることで、カーボン
ナノフィルムまたは黒鉛ナノフィルムと呼べるような単
独の薄膜状黒鉛粒子となる。このような単独の薄膜状黒
鉛粒子、またはそれが複数個で平面状に凝集したより大
きな膜状構造体は、電子物性などに2次元の量子効果を
発現すると期待される。具体的な利用に際しては、例え
ば薄膜状粒子を高耐熱性の適当な基板に乗せて、加熱に
より還元し、得られた薄膜状黒鉛粒子を各種のエッチン
グ方法などにより所定の形状に加工すればよい。
When the thin film particles obtained in the present invention are expected to have electronic properties, it is desirable to reduce the thin film particles to make them into an electronic state mainly composed of sp 2 bonds similar to graphite to increase the electric conductivity. . Various known reduction reactions using a reducing agent and an electrode reaction (electrolytic reduction) using a reducing agent can be used for the reduction. In particular, when the reducing agent is used, if the base layer has not been decomposed, the inside of the multilayer particle may be reduced. The complete reduction of is considered difficult. On the other hand, as a general behavior of graphite oxide, it is possible to form a graphite-like structure up to the inside of the multilayer by heating, and if a plurality of particles are heated in an agglomerated state, heating between layers within the multilayer particle or between the plurality of particles. It is known that a pi bond occurs and a macroscopic shape such as a normal graphite film can be provided (J. Maire et al.).
al. , Carbon, 6,555 (1968)).
Since the thin film-shaped particles of the present invention have a particularly thin shape, they are made into a structure similar to graphite by the same heating, so that single thin film-shaped graphite particles can be called carbon nanofilms or graphite nanofilms. Such a single thin-film graphite particle or a larger film-like structure in which a plurality of the thin-film graphite particles are aggregated in a planar shape is expected to exhibit a two-dimensional quantum effect on electronic properties and the like. For specific use, for example, the thin film particles may be placed on a suitable substrate having high heat resistance, reduced by heating, and the obtained thin graphite particles may be processed into a predetermined shape by various etching methods. .

【0029】また、この薄膜状黒鉛粒子と他の重合性物
質を混合し、重合性物質を重合させて、薄膜状黒鉛粒子
を含む複合体とすることも可能であり、例えば複合体に
電気伝導性を与えることが可能となる。
It is also possible to mix the thin-film graphite particles with another polymerizable substance and polymerize the polymerizable substance to form a composite containing the thin-film graphite particles. Can be given.

【0030】さらに、この薄膜状黒鉛粒子は、薄膜状ダ
イヤモンド、薄膜状大型炭化水素などの新規な炭素構造
体の前駆物質となる可能性がある。
Further, the thin-film graphite particles may be a precursor of a novel carbon structure such as a thin-film diamond and a thin-film large hydrocarbon.

【0031】本発明で得られる薄膜状粒子は、緻密な炭
素骨格を持つ薄い構造体であるため、その還元型を含め
て、粒子単独の場合や、複数の粒子が平面状に凝集して
より大きな膜状構造体となった場合に、ミューオンや陽
子などの素粒子、小さなイオン、低分子などの選択透過
性または遮蔽性の膜材料となる可能性がある。
Since the thin film particles obtained in the present invention are thin structures having a dense carbon skeleton, the thin particles, including the reduced form thereof, may be used alone or when a plurality of particles are aggregated in a plane. When a large film-like structure is formed, there is a possibility that the film material may be a selectively permeable or shielding film material such as elementary particles such as muons and protons, small ions, and low molecules.

【0032】[0032]

【実施例】以下、実施例を用いて本発明をさらに詳しく
説明するが、本発明はこれによって限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0033】実施例1 天然黒鉛((株)エスイーシー製、SNO−25、純度
99.97wt%以上、2900℃の加熱で不純物など
を除いた精製品、平均粒径24μm、粒径4.6μm以
下と61μm以上が各5wt%)10g、硝酸ナトリウ
ム(純度99%)7.5gを三角フラスコに入れ、硫酸
(純度96%)345cmを加えて撹拌子を入れて、
氷水を入れた水浴で冷却しながら撹拌し、この中に過マ
ンガン酸カリウム(純度99%)45gを約1時間で徐
々に加えた。2時間で冷却を終了し、さらに緩やかに撹
拌しながら、約20℃で5日間放置した。得られた高粘
度の液を、5wt%硫酸水溶液(希釈用の水には伝導度
0.1μS/cm未満のものを用いた(以下同じ))1
000cmに約1時間で撹拌しながら加えて、さらに
2時間撹拌した。得られた液に過酸化水素(30wt%
水溶液)30gを加えて、2時間撹拌した。
Example 1 Natural graphite (manufactured by SSC Co., Ltd., SNO-25, purity 99.97 wt% or more, purified product from which impurities were removed by heating at 2900 ° C., average particle size 24 μm, particle size 4.6 μm or less) 10 g of sodium nitrate (purity 99%) and 7.5 g of sodium nitrate (purity 99%) were put in an Erlenmeyer flask, 345 cm 3 of sulfuric acid (purity 96%) was added, and a stirrer was put therein.
The mixture was stirred while being cooled in a water bath containing ice water, and 45 g of potassium permanganate (purity: 99%) was gradually added thereto over about 1 hour. The cooling was completed in 2 hours, and the mixture was left at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was treated with a 5 wt% sulfuric acid aqueous solution (a water having a conductivity of less than 0.1 μS / cm was used for dilution (the same applies hereinafter)) 1
The mixture was added to 000 cm 3 with stirring for about 1 hour, and further stirred for 2 hours. Hydrogen peroxide (30 wt%
(Aqueous solution) was added and stirred for 2 hours.

【0034】この液を遠心瓶(内容量は約400c
)3本に移して遠心分離(最大回転半径17cm
(以下同じ)、1000rpm、10分)し、上澄み
(沈殿も少し混入する、以下同じ)を廃棄して沈殿のみ
とした。さらに、沈殿を遠心瓶に入れたまま、3wt%
硫酸/0.5wt%過酸化水素の混合水溶液(沈殿に対
して約6倍〜約4倍、操作が進むにつれて倍率は減少)
を加えてから、蓋をして、瓶を振って沈殿を再分散さ
せ、遠心分離(3000rpm、20分)して、上澄み
を廃棄する操作を15回行った。混合水溶液として合計
約13kgを用いた。
This solution was centrifuged in a centrifuge bottle (with a capacity of about 400 c
m 3 ) Transfer to 3 tubes and centrifuge (maximum turning radius 17 cm)
(The same applies hereinafter), 1000 rpm, 10 minutes), and the supernatant (a small amount of the sediment is mixed in, the same applies hereinafter) was discarded to obtain only the precipitate. Further, while keeping the precipitate in a centrifuge bottle, 3 wt%
Sulfuric acid / 0.5 wt% hydrogen peroxide mixed aqueous solution (about 6 times to about 4 times the precipitation, magnification decreases as the operation proceeds)
Was added, the bottle was shaken, the bottle was shaken to re-disperse the precipitate, centrifuged (3,000 rpm, 20 minutes), and the supernatant was discarded 15 times. A total of about 13 kg was used as the mixed aqueous solution.

【0035】加える液を水に替えて、同様に再分散と遠
心分離(7000rpm、30分)と上澄みの廃棄を2
回繰り返した。さらに水を加えて再分散させ、1日間放
置して沈殿しやすい少量の粒子(厚い粒子など)のみを
沈殿させた。この沈殿を除き、沈殿しなかった液を遠心
分離(7000rpm、30分)して、上澄みを廃棄し
た。上澄み以外は、下部の流動しにくい沈殿と上部の少
し粘度の高い液であり、合計約650cmとなった。
The solution to be added was replaced with water, and redispersion, centrifugation (7000 rpm, 30 minutes) and discarding of the supernatant were performed in the same manner.
Repeated times. Further, water was added for re-dispersion, and the mixture was allowed to stand for 1 day to precipitate only a small amount of particles (thick particles and the like) which were likely to precipitate. The precipitate was removed, and the liquid that did not precipitate was centrifuged (7000 rpm, 30 minutes), and the supernatant was discarded. Except for the supernatant, the lower part was a hard-to-flow sediment and the upper part was slightly viscous, and the total was about 650 cm 3 .

【0036】この流動しにくい沈殿と少し粘度の高い液
とを撹拌し、均質の液にしてから、その約1/2(残り
は実施例2で使用)を遠心瓶6本に分割し、同様に水
(約5倍〜0.4倍、操作が進むにつれて倍率は減少)
を加えて再分散と遠心分離(7000rpm、60分)
と上澄みの廃棄を合計20回繰り返した。その後、少量
の水を加えて撹拌し、高度に精製した薄膜状粒子の水分
散液、1350cmを得た。液の一部を乾燥して乾燥
前後の重量変化から、液中の薄膜状粒子の濃度は0.4
5wt%となった。
This hard-to-flow sediment and a slightly high-viscosity liquid are stirred to make a homogeneous liquid, and about そ の of the liquid (the remainder is used in Example 2) is divided into six centrifuge bottles. Water (approximately 5 to 0.4 times, the magnification decreases as the operation proceeds)
And re-dispersion and centrifugation (7000 rpm, 60 minutes)
And the supernatant were discarded a total of 20 times. Thereafter, a small amount of water was added and stirred to obtain 1350 cm 3 of a highly purified aqueous dispersion of thin film particles. From the weight change before and after drying a part of the liquid, the concentration of the thin film particles in the liquid is 0.4%.
It became 5 wt%.

【0037】得られた水分散液をガラス板に乗せて、温
度約20℃、相対湿度約40%で約10日間かけて乾燥
させ、X線回折測定を行った。0.83nmに対応する
ピークが得られた。これは一般的に知られている酸化黒
鉛(層間に水を保持した場合)の層間距離に対応する。
The obtained aqueous dispersion was placed on a glass plate, dried at a temperature of about 20 ° C. and a relative humidity of about 40% for about 10 days, and subjected to X-ray diffraction measurement. A peak corresponding to 0.83 nm was obtained. This corresponds to the generally known interlayer distance of graphite oxide (when water is held between layers).

【0038】得られた水分散液を少量ガラス板に乗せ、
乾燥後に光学顕微鏡(OM)で観察したところ、輪郭が
明らかで平面方向の広がりが最大で数十μmの大きな薄
膜状粒子と、ガラス板の全面を覆う膜状のもの(後記の
電子顕微鏡観察との対比より、特に薄い粒子の集合体で
ある可能性が高い)が存在していた。また、粒子は光を
よく透過し、反射光での観察が適していた。
A small amount of the obtained aqueous dispersion is placed on a glass plate,
Observation with an optical microscope (OM) after drying revealed that the thin film-shaped particles, which had clear contours and had a maximum spread of several tens of μm in the planar direction, and a thin film-shaped particle covering the entire surface of the glass plate (see the electron microscope observation described later) Is particularly likely to be an aggregate of thin particles). Also, the particles transmitted light well, and observation with reflected light was suitable.

【0039】同じ水分散液を水で100倍に希釈してか
らガラス板に乗せて乾燥させて、薄膜状粒子の厚さの平
均値を出すことを試みた。液中から乾燥して付着した粒
子集合体の平均の厚さが約12nmと計算(粒子の密度
を2.1g/cmとした)される場合に、液が拡がっ
た全面にほぼ粒子3枚程度以上が重なっていることがO
M観察で確認された(粒子は極めて薄いが、ガラスより
も反射率が高いため、識別できた)。これより、個々の
薄膜状粒子の厚さは平均4nm未満となる。
The same aqueous dispersion was diluted 100-fold with water, placed on a glass plate and dried to obtain an average value of the thickness of the thin film particles. When the average thickness of the particle aggregates dried and adhered from the liquid is calculated to be about 12 nm (the particle density is set to 2.1 g / cm 3 ), almost three particles are spread over the entire surface where the liquid is spread. It is O that more than degree overlaps
M observation confirmed (particles were very thin, but could be identified because of their higher reflectivity than glass). Thus, the average thickness of the individual thin film particles is less than 4 nm.

【0040】同じ水分散液をメタノール(純度99.8
%)で約200倍に希釈し、参照物質として微粉砕した
天然黒鉛を少量加えてから、電子顕微鏡観察用のカーボ
ンマイクログリッド貼付の銅メッシュに乗せて乾燥させ
た。これを予めOM観察し、マイクログリッド上に乗っ
た薄膜状粒子の重なりの多い領域(反射光の多い領域)
と重なりの少ない領域(反射光の少ない領域)とを確認
してから、透過型電子顕微鏡(TEM)で像観察と電子
線回折(ED)測定を行った。
The same aqueous dispersion was treated with methanol (purity 99.8).
%), A small amount of finely ground natural graphite was added as a reference substance, and then placed on a copper mesh with a carbon microgrid for electron microscopic observation and dried. This is observed by OM in advance, and the area where the thin film-like particles on the microgrid overlap frequently (the area where the reflected light is large)
Then, after confirming a region with a small overlap (a region with a small amount of reflected light), image observation and electron beam diffraction (ED) measurement were performed with a transmission electron microscope (TEM).

【0041】低倍率のTEM像では、いずれの領域にお
いても、広い範囲でほとんど特別な模様は見られなかっ
たが、一部に多数の線状の模様が観察された。また、E
Dでは、重なりの多い領域は、互いに回転関係にある複
数組の6回対称のED像(黒鉛類似)が重なり合った、
複雑なED像を与えた。これより、複数個の薄膜状粒子
(各粒子の内部は結晶性が高い)が重なり合っているこ
とが裏付けられた。他方、重なりの少ない領域は、同じ
6回対称のED像を1組のみ与えた。これより、単独の
薄膜状粒子(粒子の内部は結晶性が高い)であることが
分かった。それらのED像より求められる格子面間隔
(各層の内部にある炭素の作る格子面の間隔であり、層
間の間隔ではない)は、天然黒鉛のED像を参照とし
て、約0.215nmと計算された。この値は薄膜状粒
子が緻密な結晶性の炭素骨格を持っていることを示す。
また、薄膜状粒子ごとメッシュを傾斜させた場合のED
像の消失角度から、ED像を与える基本層の厚さは約
0.4nmとなった。
In the low-magnification TEM images, almost no special pattern was observed in a wide range in any of the regions, but a large number of linear patterns were observed in some parts. Also, E
In D, the region with many overlaps is obtained by overlapping a plurality of sets of six-fold symmetric ED images (similar to graphite) that are in a rotational relationship with each other.
A complex ED image was given. This proved that a plurality of thin film-like particles (the inside of each particle had high crystallinity) overlapped. On the other hand, the region with little overlap gave only one set of the same 6-fold symmetric ED image. From this, it was found that the particles were single thin film-shaped particles (the inside of the particles had high crystallinity). The lattice spacing determined from these ED images (the spacing between lattice planes formed by carbon inside each layer, not the spacing between layers) is calculated to be about 0.215 nm with reference to the ED image of natural graphite. Was. This value indicates that the thin film-shaped particles have a dense crystalline carbon skeleton.
In addition, the ED when the mesh is inclined together with the thin film particles
From the vanishing angle of the image, the thickness of the basic layer giving the ED image was about 0.4 nm.

【0042】さらに、TEM像で、その単独の薄膜状粒
子に含まれる線状の模様を拡大して観察したところ、線
状の模様の内部に結晶格子に対応する縞模様が見えた。
これは、メッシュの面に垂直(電子ビームの進行方向に
平行)な部分が存在することを示す。すなわち、この部
分は、分散液中では平坦であった粒子の一部が、例えば
乾燥しつつマイクログリッド上に粒子が捕捉される段階
で、皺(平面方向に対して垂直に立ち上がり、また戻る
構造)になったものと考えられた。そして、その格子縞
の間隔は約0.3〜0.6nmであった。この値の上限
は、酸化黒鉛(炭素骨格の厚さが炭素原子1個分で、そ
の両側の面に水酸基などがあり、層間の水が極めて少な
い場合)の基本層の間隔0.61nm(M.Mermo
ux et al.,Carbon,29,469(1
991))に近く、下限は黒鉛の基本層の間隔0.34
nmに近い。そのため、例えば、酸化黒鉛の基本層、ま
たは酸化黒鉛の基本層が電子線で加熱され、還元されて
黒鉛となった構造、さらにそれらの中間的な構造に対応
している可能性が高い。また、皺の幅の半分が薄膜状粒
子の厚さに対応すると仮定して、複数個の薄膜状粒子に
ついて多数の皺を観察し、薄膜状粒子の厚さは薄いもの
で約2nm、厚いもので約7nmと実測された。
Further, on a TEM image, when a linear pattern contained in the single thin film particle was enlarged and observed, a stripe pattern corresponding to a crystal lattice was found inside the linear pattern.
This indicates that there is a portion perpendicular to the surface of the mesh (parallel to the traveling direction of the electron beam). In other words, this portion has a structure in which a part of the particles that were flat in the dispersion liquid is wrinkled (rises and returns perpendicular to the plane direction, for example) at the stage where the particles are captured on the microgrid while drying, for example. ) Was considered to have become. The interval between the lattice fringes was about 0.3 to 0.6 nm. The upper limit of this value is 0.61 nm (M.sub.M) between the basic layers of graphite oxide (in the case where the thickness of the carbon skeleton is one carbon atom, hydroxyl groups are present on both sides, and the amount of water between the layers is extremely small). .Mermo
ux et al. , Carbon, 29, 469 (1
991)), and the lower limit is 0.34 between the graphite base layers.
close to nm. Therefore, for example, there is a high possibility that the basic layer of graphite oxide or the basic layer of graphite oxide is heated by an electron beam and reduced to graphite, and further, corresponds to an intermediate structure between them. Also, assuming that half of the width of the wrinkles corresponds to the thickness of the thin film-like particles, a large number of wrinkles were observed for a plurality of thin film-like particles. Was measured to be about 7 nm.

【0043】以上のように、得られた薄膜状粒子は極め
て薄いこと、薄いために緻密な炭素骨格でありながら変
形可能であること、が分かった。
As described above, it was found that the obtained thin film-like particles were extremely thin, and that they were deformable while having a dense carbon skeleton because they were thin.

【0044】実施例2 実施例1で均質にした残り約1/2の液を再生セルロー
ス製のチューブ(断面積5cm、厚さ30μm、分画
分子量は12000〜14000であり、密度1g/c
の球状タンパク質を仮定して計算すると直径約3.
5nm以下の粒子を透過する)に入れて密封し、約20
倍の水を外液として透析した。外液を約2日ごとに合計
10回交換してから、内部の液を取り出して、高度に精
製した薄膜状粒子の水分散液、450cmを得た。濃
度は1.5wt%であった。
Example 2 About half of the liquid homogenized in Example 1 was reconstituted with a regenerated cellulose tube (cross-sectional area: 5 cm 2 , thickness: 30 μm, molecular weight cut off: 12000-14000, density: 1 g / c.
diameter of about 3 is calculated assuming a globular protein of m 3.
5 μm or smaller), and sealed.
The dialysis was performed using twice the amount of water as an external solution. After the external solution was exchanged about every two days for a total of 10 times, the internal solution was taken out to obtain 450 cm 3 of a highly purified aqueous dispersion of thin film particles. The concentration was 1.5 wt%.

【0045】OM観察とTEM観察により、実施例1と
同様の極めて薄い粒子が確認された。
By OM observation and TEM observation, extremely thin particles similar to those in Example 1 were confirmed.

【0046】実施例3 実施例1で得た薄膜状粒子の水分散液の一部を遠心分離
(7000rpm、30分)し、上澄みを捨て、残りの
うち上部の少し粘度の高い液の部分を少量取り出してガ
ラス瓶に入れ、水で約100倍に希釈した。この液を入
れたガラス瓶を150℃のホットプレート上に置き、液
を約20分間加熱(煮沸)した。
Example 3 A part of the aqueous dispersion of the thin film particles obtained in Example 1 was centrifuged (7000 rpm, 30 minutes), the supernatant was discarded, and the upper part of the slightly viscous liquid was removed from the rest. A small amount was taken out, placed in a glass bottle, and diluted about 100-fold with water. The glass bottle containing this liquid was placed on a hot plate at 150 ° C., and the liquid was heated (boiled) for about 20 minutes.

【0047】得られた液をメタノールで約10倍に希釈
し、カーボンマイクログリッド貼付の銅メッシュに乗せ
て乾燥させた。これを予めOMで観察し、マイクログリ
ッド上に乗った薄膜状粒子の重なりの多い領域と重なり
の少ない領域とを確認してから、TEMで観察した。
The obtained liquid was diluted about 10-fold with methanol, placed on a copper mesh with a carbon microgrid, and dried. This was observed in advance by OM, and after confirming a region where the thin film-like particles on the microgrid had a large overlap and a region where the overlap was small, the TEM was observed.

【0048】いずれの領域でも実施例1と同様な皺が観
察されたが、皺は実施例1の場合ほど鮮明ではなかっ
た。重なりの少ない領域に存在する皺を高倍率で観察し
ようとしたところ、強い電子ビームの熱的な影響により
皺が解消してしまうためか、観察できなかった。他方、
重なりの多い領域の皺は、皺のある粒子が他の皺のない
粒子によって補強されるためか、不鮮明ながらも観察可
能であり、特に幅の狭い皺の特に狭い部分から、薄膜状
粒子の厚さは約1nm未満となった。これは実施例1の
場合よりも小さい。基本層の表面に存在する水酸基など
の官能基の大きさまで考慮すると、基本層の厚さは約
0.61nm(M.Mermoux etal.,Ca
rbon,29,469(1991))であるから、得
られた厚さは基本層の厚さに近く、元の多層構造がほぼ
完全に分離したと考えられた。
Although wrinkles similar to those in Example 1 were observed in any of the regions, the wrinkles were not as sharp as in Example 1. An attempt was made to observe wrinkles present in a region with little overlap at a high magnification, but the observation was not possible, probably because the wrinkles were eliminated due to the thermal influence of the strong electron beam. On the other hand,
The wrinkles in the areas of high overlap may be observable, though blurred, because the wrinkled particles are reinforced by other non-wrinkled particles. The length was less than about 1 nm. This is smaller than in the first embodiment. Considering the size of functional groups such as hydroxyl groups present on the surface of the basic layer, the thickness of the basic layer is about 0.61 nm (M. Mermoux et al., Ca.
rbon, 29, 469 (1991)), the obtained thickness was close to the thickness of the base layer, and it was considered that the original multilayer structure was almost completely separated.

【0049】実施例4 大きな粒径の天然黒鉛((株)エスイーシー製、純度9
9.76wt%以上、2900℃の加熱で金属元素など
を除いた精製品、直径約1.4〜2.0mm、厚さ0.
1mm以下の鱗片状)1gを用い、極めて緩やかに撹拌
しながら10日間の放置時間で酸化した以外は実施例1
と同様にして、薄膜状粒子の水分散液を得た。
Example 4 Natural graphite having a large particle size (produced by SSC, purity 9)
9.76 wt% or more, purified product excluding metal elements and the like by heating at 2900 ° C., about 1.4 to 2.0 mm in diameter and 0.1 mm in thickness.
Example 1 except that 1 g of flakes (1 mm or less) was oxidized for 10 days while being stirred very slowly.
In the same manner as in the above, an aqueous dispersion of thin film-like particles was obtained.

【0050】OM観察したところ、得られた粒子は平面
方向の大きさが平均約0.1mmになっていたが、約
0.3mm以上の粒子もわずかに含まれていた。
According to OM observation, the obtained particles had an average size in the plane direction of about 0.1 mm, but slightly contained particles of about 0.3 mm or more.

【0051】実施例5 実施例1で得た薄膜状粒子の水分散液を遠心瓶に入れ、
アセトン(25℃における比誘電率20.7、純度9
9.5%、水分散液の約2倍〜4倍、操作が進むにつれ
て倍率は増大)を加えて再分散と遠心分離(7000r
pm、30分)と上澄みの廃棄を合計3回繰り返した。
得られた沈殿は濃度が約1.7wt%で、流動性のない
固まりであった。
Example 5 The aqueous dispersion of the thin film particles obtained in Example 1 was placed in a centrifuge bottle,
Acetone (dielectric constant at 25 ° C. 20.7, purity 9)
9.5%, about 2 to 4 times that of the aqueous dispersion, the magnification increases as the operation proceeds), and redispersion and centrifugation (7000 rpm)
pm, 30 minutes) and the supernatant was discarded three times in total.
The resulting precipitate had a concentration of about 1.7% by weight and was a mass without fluidity.

【0052】さらにこの固まりを遠心瓶に入れたまま、
2−ブタノン(20℃における比誘電率18.5、純度
99%、アセトン分散液の約4倍)を加えて再分散と遠
心分離(7000rpm、30分)と上澄みの廃棄を合
計3回繰り返した。得られた沈殿は濃度が約2.0wt
%で、流動性のない固まりであった。
Further, while keeping this mass in a centrifuge bottle,
2-butanone (dielectric constant at 20 ° C .: 18.5, purity: 99%, about 4 times that of acetone dispersion) was added, and redispersion, centrifugation (7000 rpm, 30 minutes) and discarding of the supernatant were repeated a total of three times. . The obtained precipitate has a concentration of about 2.0 wt.
%, The mass was non-flowable.

【0053】以上のように、薄膜状粒子は水以外の液体
でも分散系を作ることができた。ただし、誘電率の低下
に伴い、粒子間の反発が小さくなるために、より高濃度
の沈殿を生成しやすくなった。また、その形状の異方性
が高いために、数%の低濃度でも周囲の分散媒を保持し
て、分散液の流動性が著しく低下した。
As described above, a dispersion system could be formed from the thin film particles even with a liquid other than water. However, since the repulsion between particles became smaller with a decrease in the dielectric constant, a higher concentration precipitate was easily generated. In addition, since the anisotropy of the shape was high, the surrounding dispersion medium was retained even at a low concentration of several%, and the fluidity of the dispersion liquid was significantly reduced.

【0054】さらに、2−ブタノンを含む薄膜状粒子の
沈殿に2−ブタノンを加え、撹拌して再分散させ、薄膜
状粒子を約0.5%含む2−ブタノン分散液とした。こ
の液と、エポキシ樹脂(クレゾールノボラックエポキシ
型、硬化剤にイミダゾール類、60wt%の2−ブタノ
ン溶液)を混合し、60℃に加熱しながら減圧して2−
ブタノンを除いてから、160℃、2時間で硬化させる
ことで、約1.5wt%の薄膜状粒子が均一に分散した
複合体を得た。
Further, 2-butanone was added to the precipitate of the thin film particles containing 2-butanone, and the mixture was stirred and redispersed to obtain a 2-butanone dispersion containing about 0.5% of the thin film particles. This solution was mixed with an epoxy resin (cresol novolak epoxy type, imidazole as a curing agent, a 60 wt% 2-butanone solution), and the pressure was reduced while heating to 60 ° C.
After removing butanone, the mixture was cured at 160 ° C. for 2 hours to obtain a composite in which about 1.5 wt% of thin film particles were uniformly dispersed.

【0055】実施例6 実施例1で得た薄膜状粒子の水分散液をガラス板の上に
乗せ、また、同じ水分散液をメタノールで200倍に希
釈した液をカーボンマイクログリッド貼付の銅メッシュ
の上に乗せて、いずれも約20℃で乾燥後に200℃で
加熱して、薄膜状粒子を還元した。
Example 6 An aqueous dispersion of the thin film particles obtained in Example 1 was placed on a glass plate, and a liquid obtained by diluting the same aqueous dispersion 200 times with methanol was coated on a copper mesh with a carbon microgrid. Each was dried at about 20 ° C. and then heated at 200 ° C. to reduce the thin film particles.

【0056】ガラス板の上の還元物(厚さ約30μm、
拡がりは2cm×2cm程度)について通常の電気用テ
スターを用いて電極間隔1mmで電気抵抗を測定したと
ころ、約800Ωであった(同じ測定方法で厚さ0.5
mmの低配向の黒鉛シートは1.5Ωであった)。ま
た、この還元物をガラス板から剥離し、1000℃で加
熱した場合には、同約5Ωとなった。
The reduced product on the glass plate (thickness: about 30 μm,
The electric resistance of the electrode was measured at a distance of 1 mm using a normal electric tester for about 2 cm × 2 cm.
mm low orientation graphite sheet was 1.5Ω). When the reduced product was peeled off from the glass plate and heated at 1000 ° C., the value was about 5Ω.

【0057】銅メッシュに乗せた粒子の形状をOMで観
察したところ、200℃の加熱の前後で形状はほとんど
変化していなかった。また、加熱で粒子が少し着色し、
反射率が高まったが、メッシュ上に乗っている厚さが少
ないために半透明であった。
When the shape of the particles placed on the copper mesh was observed by OM, the shape was hardly changed before and after heating at 200 ° C. Also, the particles are slightly colored by heating,
Although the reflectivity increased, it was translucent due to the small thickness on the mesh.

【0058】実施例7 実施例4で得た薄膜状粒子を含む水分散液を水で希釈し
てガラス板の上に乗せ、約20℃で乾燥後に200℃で
加熱して、薄膜状粒子を還元した。OM観察したとこ
ろ、ガラス板上の還元前の粒子は、その一部が弱い明暗
の差で識別できるだけであったのに対して、還元後に
は、すでに識別できていた粒子は極めて識別し易くな
り、さらにガラスの全面に弱い明暗の差で識別できる粒
子が見えた。還元により粒子が少し着色し、反射率が高
くなることで、より薄い粒子まで識別できるようになっ
たと考えられる。また、これらの粒子は還元後も半透明
であった。
Example 7 The aqueous dispersion containing the thin film particles obtained in Example 4 was diluted with water, placed on a glass plate, dried at about 20 ° C., and then heated at 200 ° C. to remove the thin film particles. Reduced. According to OM observation, particles before reduction on the glass plate could only be partially identified with a small difference in light and darkness, but after reduction, particles that had already been identified became extremely easy to identify. Further, particles that could be distinguished by a small difference in light and darkness were visible on the entire surface of the glass. It is considered that the particles are slightly colored by the reduction and the reflectance is increased, so that even thinner particles can be identified. These particles were also translucent after reduction.

【0059】実施例8 実施例1で得た薄膜状粒子を含む水分散液を水で約50
倍に希釈し、アルミニウム粉末(純度99.9%、平均
粒径3μm)と塩酸(35wt%水溶液)を加え、超音
波を照射して、薄膜状粒子の水素化を試みた。薄膜状粒
子は、少なくともその表面が還元され、疎水性で巨視的
に黒色の粒子となって、大部分が液面に浮かんだ。生じ
た粒子を濾過により水洗し、少量の水と共に乾燥させず
に回収して容器に入れた。
Example 8 An aqueous dispersion containing the thin film particles obtained in Example 1 was washed with water for about 50 hours.
The resultant was diluted twice, added with aluminum powder (purity 99.9%, average particle diameter 3 μm) and hydrochloric acid (35 wt% aqueous solution), and irradiated with ultrasonic waves to try to hydrogenate the thin film particles. At least the surface of the thin film-shaped particles was reduced, turned into hydrophobic and macroscopically black particles, and most of them floated on the liquid surface. The resulting particles were washed with water, collected with a small amount of water without drying, and placed in a container.

【0060】粒子を乾燥させて各種測定を行った。OM
観察したところ、得られた粒子は半透明であった。TE
M観察したところ、紙をつぶしたように乱雑に折れ曲が
って変形した、薄膜状粒子の単独または複数での凝集物
が確認された。さらにX線回折測定したところ、元の薄
膜状粒子で認められた0.83nmに対応するピークは
完全に消失しており、変形と凝集により配向性が極めて
低くなったことが分かった。
The particles were dried and various measurements were made. OM
Observation revealed that the obtained particles were translucent. TE
As a result of M observation, a single or a plurality of aggregates of the thin film-like particles, which were randomly bent and deformed as if the paper were crushed, were confirmed. Further, X-ray diffraction measurement revealed that the peak corresponding to 0.83 nm observed in the original thin film-like particles had completely disappeared, indicating that the orientation was extremely low due to deformation and aggregation.

【0061】本発明による薄膜状粒子は、極めて薄いた
めに、緻密な炭素骨格を持ちながら粒子内部での変形が
可能であり、分散媒との親和性が低下すると、線形屈曲
性高分子のように自己凝集を生じる場合があることが分
かった。 実施例9
Since the thin film-shaped particles according to the present invention are extremely thin, they can be deformed inside the particles while having a dense carbon skeleton. It was found that self-aggregation sometimes occurred. Example 9

【0062】実施例1で得た薄膜状粒子を含む水分散液
に2枚の白金電極(液に接触している面積は各約6cm
、間隔1cm)を入れ、直流(19Vで約0.02
A)を印加した。正極(電源基準)では薄膜状粒子と同
様の色の高粘度の付着物が生成し、負極では水素の発生
と共に黒色の付着物が生成した。
The aqueous dispersion containing the thin-film particles obtained in Example 1 was placed on two platinum electrodes (the area in contact with the liquid was about 6 cm each).
2 , 1cm spacing, direct current (about 0.02 at 19V)
A) was applied. At the positive electrode (based on the power source), a high-viscosity deposit having a color similar to that of the thin-film particles was produced, and at the negative electrode, a black deposit was produced along with the generation of hydrogen.

【0063】各電極を別の容器の水に入れ、各付着物を
電極から離した。正極の付着物は再度水に分散し、OM
で元の薄膜状粒子と同様の粒子が観察された。これは、
水酸基がわずかに減少して一時的に凝集した薄膜状粒子
であると考えられた。また、負極の生成物は、水に分散
せずに沈殿し、OMで実施例8と同様の凝集物が観察さ
れた。これは、生成した水素の一部が水素分子になる前
に薄膜状粒子を還元することで生成した凝集物であると
考えられた。
Each electrode was placed in a separate container of water to separate each deposit from the electrodes. The deposit on the positive electrode is dispersed again in water, and OM
, Particles similar to the original thin film-like particles were observed. this is,
It was considered that the film-like particles were temporarily aggregated due to a slight decrease in hydroxyl groups. Further, the product of the negative electrode precipitated without being dispersed in water, and the same aggregates as in Example 8 were observed in OM. This was considered to be an aggregate formed by reducing the thin film particles before a part of the generated hydrogen became hydrogen molecules.

【0064】比較例1 天然黒鉛の代わりに合成黒鉛(TIMCAL AMER
ICA INC.製、TIMREX KS75、純度9
9.9%以上、平均粒径は約15μm)を用いて、実施
例1と同様に酸化と精製を行った。原料の合成黒鉛とは
明らかに異なる、水との親和性の高い粒子の分散液にな
ったが、実施例1における分散液よりも粘度が低く、遠
心分離でもより高濃度の沈殿を生じた。
Comparative Example 1 In place of natural graphite, synthetic graphite (TIMCAL AMER)
ICA INC. Made, TIMREX KS75, purity 9
Oxidation and purification were carried out in the same manner as in Example 1 using 9.9% or more and an average particle size of about 15 μm). A dispersion of particles having high affinity for water was obtained, which was clearly different from the raw material synthetic graphite, but had a lower viscosity than the dispersion in Example 1, and a higher concentration of precipitate was generated even by centrifugation.

【0065】OMで観察したところ、非平面状の粒子が
大部分で、平面状の粒子はわずかであった。これらは、
いずれも透明であったが、大部分が透過光で容易に識別
できる程度に厚かった。
Observation by OM revealed that most of the non-planar particles were small and that the number of flat particles was small. They are,
Although all were transparent, most were thick enough to be easily identified by transmitted light.

【0066】比較例2 酸化時間を2時間とし、沈殿し易い粒子の除去を行わな
い以外は実施例1と同様にして、黒鉛の酸化と精製を行
った。
Comparative Example 2 Graphite was oxidized and purified in the same manner as in Example 1 except that the oxidation time was set to 2 hours, and that particles that easily precipitated were not removed.

【0067】OMで観察したところ、直径で約40μm
以下の粒子はほとんどが透明で薄い平面状になってい
た。他方、より大きな粒子は、非平面状のものと平面状
のものからなり、いずれも透過光で容易に識別できる程
度に厚く、粒子の周辺部分は透明であるが中央部分は黒
色で不透明であった。中央部分は酸化されていないと考
えられた。
When observed by OM, the diameter was about 40 μm.
The following particles were mostly transparent and thin planar. On the other hand, larger particles consist of non-planar and planar ones, both thick enough to be easily identified by transmitted light, with the periphery of the particles being transparent but the central part being black and opaque. Was. The central part was not considered oxidized.

【0068】比較例3 実施例1と同様に、黒鉛を酸化し、3wt%硫酸/0.
5wt%過酸化水素の混合水溶液で洗浄した後の段階の
分散液をOMで観察した。大部分が平面状粒子であった
が、その大部分は透過光で容易に識別できる程度に厚か
った。実施例1との比較から、小さなイオンを除去する
段階で層の分離が進行することが分かった。
Comparative Example 3 In the same manner as in Example 1, graphite was oxidized and 3 wt% sulfuric acid / 0.1%
The dispersion at the stage after washing with a mixed aqueous solution of 5 wt% hydrogen peroxide was observed by OM. Most were planar particles, but most were thick enough to be easily identified by transmitted light. From comparison with Example 1, it was found that layer separation progressed at the stage of removing small ions.

【0069】比較例4 実施例1で得た薄膜状粒子の水分散液を、ホットプレー
トに乗せたガラス板の上で約50℃に加熱して水を除
き、厚さ約0.1mmの固まりの乾燥物とした。
Comparative Example 4 An aqueous dispersion of the thin film-shaped particles obtained in Example 1 was heated to about 50 ° C. on a glass plate placed on a hot plate to remove water, and a lump having a thickness of about 0.1 mm was obtained. Was dried.

【0070】得られた乾燥物を水に入れ、6時間撹拌し
た。肉眼で識別できるような凝集物があり、完全な再分
散は困難であった。
The obtained dried product was put in water and stirred for 6 hours. There were aggregates that could be discerned with the naked eye, and complete redispersion was difficult.

【0071】[0071]

【発明の効果】本発明の薄膜状粒子は、従来知られてい
た酸化黒鉛よりも極めて薄く、異方性の高い形状を持
つ。そのため、粒子の内部に緻密な炭素骨格を持つにも
関わらずしなやかに変形することが可能であり、また、
他の物質と複合化する場合には低い分率の添加で高強度
などの各種性能を発現することが期待される。さらに、
この薄膜状粒子を還元して黒鉛類似の電子状態にする
と、電気伝導性を示し、その形状が極めて薄いために2
次元の量子効果を発現することが期待される。
The thin-film particles of the present invention are much thinner than conventionally known graphite oxide and have a highly anisotropic shape. Therefore, despite having a dense carbon skeleton inside the particles, it is possible to deform flexibly,
When complexed with other substances, various properties such as high strength are expected to be exhibited by adding a low fraction. further,
When this thin film-like particle is reduced to an electronic state similar to graphite, it exhibits electrical conductivity and its shape is extremely thin.
It is expected to exhibit a dimensional quantum effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄膜状粒子の光学顕微鏡写真(ガラス板上)Fig. 1 Optical micrograph of thin film particles (on a glass plate)

【図2】薄膜状粒子の透過型電子顕微鏡写真(多数の皺
を含む平面で、皺以外の平面部分は認識できない、黒く
て太い部分はカーボンマイクログリッド)
FIG. 2 is a transmission electron micrograph of a thin film particle (a flat surface including many wrinkles, a flat portion other than the wrinkles cannot be recognized, and a black and thick portion is a carbon microgrid)

【図3】薄膜状粒子の透過型電子顕微鏡写真(1本の皺
の拡大)
FIG. 3 is a transmission electron micrograph of a thin film particle (enlargement of one wrinkle).

【図4】アルミニウムと塩酸で還元された薄膜状粒子の
凝集物の透過型電子顕微鏡写真
FIG. 4 is a transmission electron micrograph of an aggregate of thin film particles reduced with aluminum and hydrochloric acid.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛を酸化して得られ、厚さが0.4〜
10nm、平面方向の大きさが20nm以上であり、比
誘電率が15以上の液体に分散可能であることを特徴と
する炭素からなる骨格を持つ薄膜状粒子。
2. The method according to claim 1, which is obtained by oxidizing graphite and has a thickness of 0.4 to
Thin film-like particles having a skeleton made of carbon, having a size of 10 nm, a size in a plane direction of 20 nm or more, and being dispersible in a liquid having a relative dielectric constant of 15 or more.
【請求項2】 請求項1に記載の薄膜状粒子を比誘電率
が15以上の液体に分散させたことを特徴とする薄膜状
粒子の分散液。
2. A dispersion of thin-film particles, wherein the thin-film particles according to claim 1 are dispersed in a liquid having a relative dielectric constant of 15 or more.
【請求項3】 請求項1に記載の薄膜状粒子を還元して
得られる薄膜状黒鉛粒子または薄膜状黒鉛粒子の集合
体。
3. A thin-film graphite particle or an aggregate of thin-film graphite particles obtained by reducing the thin-film particle according to claim 1.
【請求項4】 原料として、粒子内部の最も広い基本層
の直径が粒子の直径にほぼ等しく、粒子全体で単一の多
層構造を持つ黒鉛を用いることを特徴とする請求項1に
記載の薄膜状粒子の合成方法。
4. The thin film according to claim 1, wherein the raw material is graphite having a single multilayer structure in which the diameter of the widest basic layer inside the particle is substantially equal to the diameter of the particle. Method for synthesizing shaped particles.
【請求項5】 原料として、不純物が0.5%以下に除
去された黒鉛を用いることを特徴とする請求項1に記載
の薄膜状粒子の合成方法。
5. The method for synthesizing thin film particles according to claim 1, wherein graphite from which impurities are removed to 0.5% or less is used as a raw material.
【請求項6】 黒鉛の粒径10μm当たり30分以上の
酸化時間で黒鉛を酸化することを特徴とする請求項1に
記載の薄膜状粒子の合成方法。
6. The method according to claim 1, wherein the graphite is oxidized for an oxidation time of 30 minutes or more per 10 μm of the particle size of the graphite.
【請求項7】 黒鉛の酸化の後に、反応液中の酸化生成
物由来以外の小さなイオンの濃度を10mol/m
下として酸化生成物を精製することを特徴とする請求項
1に記載の薄膜状粒子の合成方法。
7. The thin film according to claim 1, wherein after the graphite is oxidized, the concentration of small ions other than those derived from the oxidation product in the reaction solution is reduced to 10 mol / m 3 or less to purify the oxidation product. Method for synthesizing shaped particles.
【請求項8】 黒鉛の酸化の後に、反応液中の酸化生成
物の分散時における濃度を5wt%以下として酸化生成
物を精製することを特徴とする請求項1に記載の薄膜状
粒子の合成方法。
8. The method for synthesizing thin film particles according to claim 1, wherein after the oxidation of the graphite, the concentration of the oxidized product in the reaction solution at the time of dispersion is 5 wt% or less to purify the oxidized product. Method.
【請求項9】 精製時に多層構造の分離の不十分な粒子
を沈降させて除くことを特徴とする請求項1に記載の薄
膜状粒子の合成方法。
9. The method for synthesizing thin-film particles according to claim 1, wherein particles of the multilayer structure having insufficient separation are settled out during purification.
【請求項10】 薄膜状粒子の分散液を50〜150℃
の温度範囲で加熱して、薄膜状粒子内部の多層構造の分
離をさらに進めることを特徴とする請求項1に記載の薄
膜状粒子の合成方法。
10. A dispersion of the thin film-shaped particles at 50 to 150 ° C.
The method for synthesizing thin-film particles according to claim 1, wherein the heating is performed in the temperature range described above to further promote separation of the multilayer structure inside the thin-film particles.
【請求項11】 分散媒となる液体を、水から他の比誘
電率の異なる液体に交換することを特徴とする請求項2
に記載の薄膜状粒子の分散液の作製方法。
11. The liquid serving as a dispersion medium is exchanged from water to another liquid having a different relative dielectric constant.
3. The method for producing a dispersion liquid of thin film-like particles according to item 1.
【請求項12】 請求項1に記載の薄膜状粒子を加熱、
還元剤または電極反応により還元することを特徴とする
請求項3に記載の薄膜状黒鉛粒子または薄膜状黒鉛粒子
の集合体の合成方法。
12. Heating the thin film-shaped particles according to claim 1,
The method for synthesizing thin-film graphite particles or an aggregate of thin-film graphite particles according to claim 3, wherein the reduction is performed by a reducing agent or an electrode reaction.
JP2000277307A 2000-08-09 2000-08-09 Method for synthesizing thin-film particles having a carbon skeleton Expired - Fee Related JP4798411B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000277307A JP4798411B2 (en) 2000-08-09 2000-08-09 Method for synthesizing thin-film particles having a carbon skeleton
US09/923,404 US6596396B2 (en) 2000-08-09 2001-08-08 Thin-film-like particles having skeleton constructed by carbons and isolated films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000277307A JP4798411B2 (en) 2000-08-09 2000-08-09 Method for synthesizing thin-film particles having a carbon skeleton

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011104307A Division JP5339099B2 (en) 2011-05-09 2011-05-09 Method for synthesizing thin-film particles having a carbon skeleton

Publications (2)

Publication Number Publication Date
JP2002053313A true JP2002053313A (en) 2002-02-19
JP4798411B2 JP4798411B2 (en) 2011-10-19

Family

ID=18762657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000277307A Expired - Fee Related JP4798411B2 (en) 2000-08-09 2000-08-09 Method for synthesizing thin-film particles having a carbon skeleton

Country Status (1)

Country Link
JP (1) JP4798411B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
JP2006064693A (en) * 2004-07-27 2006-03-09 Horiba Ltd Carbon nanotube analysis method and sample analysis method
US7381352B2 (en) 2003-07-23 2008-06-03 Mitsubishi Gas Chemical Company, Inc. Dispersion of thin particles having a skeleton consisting of carbons
WO2008152680A1 (en) * 2007-06-14 2008-12-18 Kyosetu Corporation Process for producing carbon nanosheet
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010506014A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-rubber nanocomposites
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2011032156A (en) * 2009-07-06 2011-02-17 Kaneka Corp Method for manufacturing graphene or thin film graphite
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2011098843A (en) * 2009-11-04 2011-05-19 Fuji Electric Holdings Co Ltd Solid acid and method for producing the same
JP2011105569A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Method for manufacturing graphene thin film
JP2011111367A (en) * 2009-11-27 2011-06-09 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2011189700A (en) * 2010-03-16 2011-09-29 Sekisui Chem Co Ltd Combined sheet
WO2011118535A1 (en) 2010-03-25 2011-09-29 積水化学工業株式会社 Resin composition, synthetic resin sheet, synthetic resin molded article, and synthetic resin laminate
JP2011195432A (en) * 2010-02-26 2011-10-06 Sekisui Chem Co Ltd Method for producing flaky graphite and flaky graphite
US8080179B2 (en) 2003-07-23 2011-12-20 Mitsubishi Gas Chemical Company, Inc. Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
WO2011158906A1 (en) 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin-based resin composition
WO2011158907A1 (en) 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin resin composition and process for producing same
JP2012515705A (en) * 2009-01-26 2012-07-12 ダウ グローバル テクノロジーズ エルエルシー Method for producing graphite oxide using nitrate
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
JP5098064B1 (en) * 2012-04-02 2012-12-12 国立大学法人 岡山大学 Oxidized flake graphite and method for producing the same
JP2013517200A (en) * 2010-01-18 2013-05-16 ユニバーシティ・オブ・マンチェスター Graphene polymer composite
WO2013077178A1 (en) 2011-11-24 2013-05-30 積水化学工業株式会社 Resin composite material and method for manufacturing resin composite material
JP2014501681A (en) * 2010-10-28 2014-01-23 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド Graphite oxide and carbon fiber
JP2014062042A (en) * 2013-11-08 2014-04-10 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
JP2015147723A (en) * 2014-02-05 2015-08-20 ベレノス・クリーン・パワー・ホールディング・アーゲー Production method of graphite oxide and application thereof
JP2016527166A (en) * 2013-05-24 2016-09-08 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Methods for making nanoporous graphene and graphene quantum dots
WO2017082262A1 (en) * 2015-11-11 2017-05-18 株式会社日本触媒 Method for producing graphite oxide
JP2017088451A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017088455A (en) * 2015-11-12 2017-05-25 株式会社日本触媒 Graphite oxide derivative
JP2017088450A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017128483A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Production method of graphite oxide
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2017160070A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Method for producing graphite oxide
JP2018177578A (en) * 2017-04-11 2018-11-15 株式会社日本触媒 Method for producing flaky material
US10766774B2 (en) 2015-11-12 2020-09-08 Nippon Shokubai Co., Ltd. Oxidized graphite derivative and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749099B2 (en) * 2016-01-14 2020-09-02 株式会社日本触媒 Method for producing graphite oxide
JP6832134B2 (en) * 2015-11-12 2021-02-24 株式会社日本触媒 Graphite oxide derivative
JP6762850B2 (en) * 2016-03-24 2020-09-30 株式会社日本触媒 Method for producing graphite oxide derivative

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) * 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) * 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591666B2 (en) * 2003-07-23 2010-12-01 三菱瓦斯化学株式会社 Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
US7381352B2 (en) 2003-07-23 2008-06-03 Mitsubishi Gas Chemical Company, Inc. Dispersion of thin particles having a skeleton consisting of carbons
US8080179B2 (en) 2003-07-23 2011-12-20 Mitsubishi Gas Chemical Company, Inc. Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
JP4678152B2 (en) * 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 Dispersion of thin film particles with a carbon skeleton
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2006064693A (en) * 2004-07-27 2006-03-09 Horiba Ltd Carbon nanotube analysis method and sample analysis method
JP4484780B2 (en) * 2004-07-27 2010-06-16 株式会社堀場製作所 Carbon nanotube analysis method
JP2010506014A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-rubber nanocomposites
WO2008152680A1 (en) * 2007-06-14 2008-12-18 Kyosetu Corporation Process for producing carbon nanosheet
JP2011500488A (en) * 2007-10-19 2011-01-06 ユニバーシティー オブ ウロンゴング Method for producing graphene
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2012515705A (en) * 2009-01-26 2012-07-12 ダウ グローバル テクノロジーズ エルエルシー Method for producing graphite oxide using nitrate
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
US9428394B2 (en) 2009-05-22 2016-08-30 William Marsh Rice University Highly oxidized graphene oxide and methods for production thereof
JP2011032156A (en) * 2009-07-06 2011-02-17 Kaneka Corp Method for manufacturing graphene or thin film graphite
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2011098843A (en) * 2009-11-04 2011-05-19 Fuji Electric Holdings Co Ltd Solid acid and method for producing the same
JP2011105569A (en) * 2009-11-20 2011-06-02 Fuji Electric Holdings Co Ltd Method for manufacturing graphene thin film
JP2011111367A (en) * 2009-11-27 2011-06-09 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
JP2011144060A (en) * 2010-01-13 2011-07-28 Sekisui Chem Co Ltd Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material
JP2011144071A (en) * 2010-01-14 2011-07-28 Sekisui Chem Co Ltd Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film
JP2013517200A (en) * 2010-01-18 2013-05-16 ユニバーシティ・オブ・マンチェスター Graphene polymer composite
JP2011195432A (en) * 2010-02-26 2011-10-06 Sekisui Chem Co Ltd Method for producing flaky graphite and flaky graphite
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
JP2011189700A (en) * 2010-03-16 2011-09-29 Sekisui Chem Co Ltd Combined sheet
WO2011118535A1 (en) 2010-03-25 2011-09-29 積水化学工業株式会社 Resin composition, synthetic resin sheet, synthetic resin molded article, and synthetic resin laminate
EP2607422A1 (en) 2010-03-25 2013-06-26 Sekisui Chemical Co., Ltd. Resin composition, synthetic resin sheet, synthetic resin molded article, and synthetic resin laminate
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
WO2011158906A1 (en) 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin-based resin composition
WO2011158907A1 (en) 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin resin composition and process for producing same
JP2014501681A (en) * 2010-10-28 2014-01-23 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド Graphite oxide and carbon fiber
WO2013077178A1 (en) 2011-11-24 2013-05-30 積水化学工業株式会社 Resin composite material and method for manufacturing resin composite material
JP5098064B1 (en) * 2012-04-02 2012-12-12 国立大学法人 岡山大学 Oxidized flake graphite and method for producing the same
JP2016527166A (en) * 2013-05-24 2016-09-08 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Methods for making nanoporous graphene and graphene quantum dots
JP2014062042A (en) * 2013-11-08 2014-04-10 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2015147723A (en) * 2014-02-05 2015-08-20 ベレノス・クリーン・パワー・ホールディング・アーゲー Production method of graphite oxide and application thereof
WO2017082262A1 (en) * 2015-11-11 2017-05-18 株式会社日本触媒 Method for producing graphite oxide
JP2017088451A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
JP2017088450A (en) * 2015-11-11 2017-05-25 株式会社日本触媒 Manufacturing method of graphite oxide
US11286166B2 (en) 2015-11-11 2022-03-29 Nippon Shokubai Co., Ltd. Method for producing graphite oxide
JP2017088455A (en) * 2015-11-12 2017-05-25 株式会社日本触媒 Graphite oxide derivative
US10766774B2 (en) 2015-11-12 2020-09-08 Nippon Shokubai Co., Ltd. Oxidized graphite derivative and method for producing same
JP2017128483A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Production method of graphite oxide
JP2017160070A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Method for producing graphite oxide
JP2018177578A (en) * 2017-04-11 2018-11-15 株式会社日本触媒 Method for producing flaky material

Also Published As

Publication number Publication date
JP4798411B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP2002053313A (en) Thin-filmy particle having skeleton consisting of carbon
US6596396B2 (en) Thin-film-like particles having skeleton constructed by carbons and isolated films
JP6537553B2 (en) Large scale production of graphene oxide for industrial applications
JP5339099B2 (en) Method for synthesizing thin-film particles having a carbon skeleton
TWI434904B (en) Transparent conductive film, transparent electrode substrate, and liquid crystal alignment film using the same, and carbon nanotube tube and preparation method thereof
CN108430642B (en) Method for producing isolated graphene sheets directly from graphitic material
US9926427B2 (en) Chemical-free production of graphene-reinforced polymer matrix composites
US9548494B2 (en) Stable dispersions of single and multiple graphene layers in solution
TWI597237B (en) Dispersion of composition containing carbon nanotube, conductive molding and method for manufacturing thereof
CN108778994A (en) The inorganic matrix composite of graphene enhancing is produced without chemicals formula
Aslam et al. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets
US20180272565A1 (en) Chemical-free production of graphene-polymer pellets and graphene-polymer nanocomposite products
JP2003176116A (en) Large, thin film particle consisting of carbon
JP5328043B2 (en) Polymer-grafted carbon nanotube and method for producing the same
Korucu et al. A TOPSIS-based Taguchi design to investigate optimum mixture proportions of graphene oxide powder synthesized by hummers method
JP5272641B2 (en) Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor
JP2003238131A (en) Random aggregate of thin particle with carbon skeletal structure
WO2009125788A1 (en) Electrically conductive film wherein carbon nanotubes are used, and method of producing same
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
Ding et al. Efficient exfoliation of layered materials by waste liquor
JP5326336B2 (en) Conductor and manufacturing method thereof
JP5030057B2 (en) Fabrication of conductive carbon nanotube honeycomb film
CN108026021A (en) The polyethylene terephthalate of graphene enhancing
Bodin et al. Mild air oxidation of boron nitride nanotubes. Application as nanofillers for thermally conductive polycarbonate nanocomposites
KR20210119649A (en) Method for producing conductive graphene fibers having thermal stability and conductive graphene fibers produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees