JP6915859B2 - 光ファイバ水素センサ及びその製造方法 - Google Patents

光ファイバ水素センサ及びその製造方法 Download PDF

Info

Publication number
JP6915859B2
JP6915859B2 JP2017153126A JP2017153126A JP6915859B2 JP 6915859 B2 JP6915859 B2 JP 6915859B2 JP 2017153126 A JP2017153126 A JP 2017153126A JP 2017153126 A JP2017153126 A JP 2017153126A JP 6915859 B2 JP6915859 B2 JP 6915859B2
Authority
JP
Japan
Prior art keywords
optical fiber
nanoparticles
core
clad
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153126A
Other languages
English (en)
Other versions
JP2019032229A (ja
Inventor
渡辺 一弘
一弘 渡辺
西山 道子
道子 西山
藍 細木
藍 細木
昌一 窪寺
昌一 窪寺
正彦 白石
正彦 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soka University
Original Assignee
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soka University filed Critical Soka University
Priority to JP2017153126A priority Critical patent/JP6915859B2/ja
Publication of JP2019032229A publication Critical patent/JP2019032229A/ja
Application granted granted Critical
Publication of JP6915859B2 publication Critical patent/JP6915859B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、光ファイバを用いた水素センサ及びその製造方法に関する。
従来、パラジウム、酸化タングステンなどの水素吸蔵材を水素感応物質とし、光ファイバを用いて水素濃度を検知する光ファイバ水素センサが知られている。
例えば、特許文献1には、光ファイバのヘテロコア部の外周に、金などの表面プラズモン共鳴を励起可能な金属、五酸化タンタルなどの誘電体、及びパラジウムなどの水素吸蔵材を内側からこの順に積層した膜を設けた光ファイバ水素センサが開示されている。この光ファイバ水素センサにおいては、水素吸蔵材が水素を吸蔵、放出することによる膜の誘電関数の変化によって生じる光ファイバの表面プラズモン共鳴に基づいて水素濃度を検知している。
特開2014−59300号公報
しかしながら、上記特許文献1に開示された光ファイバ水素センサなどにおいては、水素の吸蔵、放出を行うたびに水素吸蔵材からなる層の体積が膨張、収縮するので、膜の表面膨張、層の剥離などが生じるおそれがある。そのため、長期間の使用によって、検知性能、応答性能などの特性が劣化するおそれがある。
本発明はかかる背景に鑑みてなされたものであり、長期間の使用する特性の劣化のおそれの低減を図ることが可能な光ファイバ水素センサ及びその製造方法を提供することを目的とする。
本発明の光ファイバ水素センサは、入射端から入射された光を出射端から出射する光ファイバと、該光ファイバの周囲の水素濃度に応じて前記光を受けた際の応答が変化する光応答部とを備え、前記光応答部は、水素吸蔵物質のナノ粒子が疎である状態で固定されていることを特徴とする。
本発明の光ファイバ水素センサによれば、水素吸蔵物質のナノ粒子が疎である状態で光ファイバに固定されているので、その周囲に存在する水素によって水素吸蔵物質のナノ粒子が膨張、収縮しても、従来の上記特許文献1に開示された技術のように密に固定されていない。
そのため、第1に、他のナノ粒子と接触しないように、又は接触しても盛り上がりが生じないように構成することが可能となる。これにより、長期間使用しても光応答部に表面膨張、剥離などが生じず、検知性能、応答性能などの特性が劣化する可能性の低減を図ることが可能となる。
第2に、膜である場合と比べて、ナノ粒子であるために粒径が小さく同じ体積で比較すると表面積が大きい。これにより、ナノ粒子に水素が素早く吸蔵されるので、応答性の向上を図ることも可能となる。
本発明の光ファイバ水素センサは、第1の態様として、前記光ファイバは、コア及びクラッドを有する光伝送部と、該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部は前記光伝送部のコアと異なる直径のコアを有し、前記光応答部は、前記ヘテロコア部の前記クラッドの外周面に前記水素吸蔵物質のナノ粒子が疎である状態で固定されてなるように構成すればよい。
この場合、光伝送部からヘテロコア部のクラッドに進入する光が外部に漏洩する割合が、光応答部によって周囲の水素濃度に応じて変化することにより、水素濃度を検知することが可能となる。
本発明の光ファイバ水素センサは、第2の態様として、前記光ファイバは、コア及びクラッドを有する光伝送部と、該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部は前記光伝送部のコアよりも小径のコアを有し、前記ヘテロコア部の前記クラッドの外周面に、表面プラズモン共鳴又は局在プラズモン共鳴を励起することが可能な金属膜が形成されており、前記光応答部は、前記金属膜の外周面に水素吸蔵物質のナノ粒子が疎である状態で固定されてなるように構成すればよい。
この場合、光伝送部からヘテロコア部のクラッドに進入する光の割合が、周囲の水素濃度に応じて光応答部によって変更されるので、金属膜に光が作用することで励起される表面プラズモン共鳴又は局在表面プラズモン共鳴に起因して、ヘテロコア部での所定波長の光の吸収度合(ひいては、光ファイバでの所定波長の光の伝送強度の減衰度合)が変更されるので、水素濃度を検知することが可能となる。
本発明の光ファイバ水素センサは、第3の態様として、前記光ファイバは、コア及びクラッドを有する光伝送部と、前記コア及びクラッドの少なくとも一部に形成された穴とを備え、前記光応答部は、前記穴の表面に水素吸蔵物質のナノ粒子が疎である状態で固定されてなるように構成すればよい。
この場合、光伝送部から進入する光が穴から外部に漏洩する割合が、光応答部によって周囲の水素濃度に応じて変化することにより、水素濃度を検知することが可能となる。
本発明の光ファイバ水素センサにおいて、前記疎である状態とは、前記ナノ粒子が固定されている表面に占める割合である被覆率が1%以下である。
本発明の光ファイバ水素センサの製造方法は、光ファイバの表面、又は光ファイバの表面上に形成された表面プラズモン共鳴又は局在プラズモン共鳴を励起することが可能な金属膜の表面をポリカチオン水溶液に浸し、前記表面に正の電荷を帯電させる工程と、前記正の電荷が帯電した表面を水素吸蔵物質のナノ粒子が懸濁された懸濁液に浸し、前記表面に前記ナノ粒子を疎に固定する工程とを備えており、前記疎である状態とは、前記ナノ粒子が固定されている表面に占める割合である被覆率が1%以下であることを特徴とする。
本発明の光ファイバ水素センサの製造方法によれば、前記表面に前記ナノ粒子を疎に固定することが簡易に行うことができると共に、前記表面に前記ナノ粒子が密に固定されることを確実に防止することが可能となる。
本発明の第1の実施形態に係る光ファイバ水素センサを用いた測定システムの模式一部断面図。 本発明の第2の実施形態に係る光ファイバ水素センサを用いた測定システムの模式一部断面図。 本発明の第3の実施形態に係る光ファイバ水素センサを用いた測定システムの模式一部断面図。 実施例1に係る光ファイバ水素センサのSEM写真。 実施例1に係る光ファイバ水素センサを用いた場合における光損失の変化を示すグラフ。 実施例2に係る光ファイバ水素センサを用いた場合における光損失の変化を示すグラフ。 比較例1に係る光ファイバ水素センサのSEM写真。
本発明の第1の実施形態に係る光ファイバ水素センサ100について図1を参照して説明する。
光ファイバ水素センサ100は、入射端から入射された光を出射端から出射する光ファイバ10と、光ファイバ10の周囲の水素濃度に応じて光を受けた際の応答が変化する光応答部20とを備えている。
ここで、光ファイバ10は、コア11及びクラッド12を有する光伝送部13と、光伝送部13のコア11及びクラッド12に各々連なるコア14及びクラッド15を有するヘテロコア部16とを備え、ヘテロコア部16は光伝送部13のコア11の直径とは直径が異なるコア14を有している。また、光伝送部13及びヘテロコア部16は、シングルモード光ファイバ及びマルチモード光ファイバのいずれであってもよい。
なお、本実施形態では、ヘテロコア部16のコア14は光伝送部13のコア11の直径よりも直径が小さいが、ヘテロコア部16のコア14は光伝送部13のコア11の直径よりも直径が大きくてもよい。
図1にはヘテロコア部16のコア14の直径は一定である場合を示しているが、コア14の直径が、軸心方向で変化するように、コア14が形成されていてもよい。例えば、コア14の直径が軸心方向の両端から中央側に向かって徐々に縮径していくようにコア14が形成されていてもよい。
なお、ヘテロコア部16の湾曲が変化しないように、光ファイバ水素センサ100は構成されている。これにより、ヘテロコア部16との境界で漏洩する光量の変化が、ヘテロコア部16の湾曲の変化によって影響を受けることを排除することができる。
そして、光応答部20は、ヘテロコア部16のクラッド15の外周面に固定されている。光応答部20は、水素吸蔵物質のナノ粒子21が疎である状態でクラッド15の外周面15aに固定されている。なお、図1〜図3は模式的に示されており、その寸法は実際のものを示していない。
水素吸蔵物質は、水素を吸蔵することにより体積が膨張し、水素を排出することにより体積が収縮する物質である。水素吸蔵物質として、例えばパラジウム、酸化タングステンが挙げられるが、本発明における水素吸蔵物質はこれらに限定されない。
ナノ粒子21とは、粒子の径がナノ単位であり、本実施形態で好ましいナノ粒子21は、粒径が例えば1nm〜100nm、より好ましくは1nm〜50nm、さらに好ましくは2〜20nmである。
ナノ粒子21が疎である状態とは、ナノ粒子21が凝集していない状態であり、水素吸蔵物質のナノ粒子21が水素を吸蔵してその体積が膨張しても、隣接するナノ粒子21と接触しない、または接触したとしても、そのナノ粒子21を脱落するほどに移動させるには至らない程度にばらけていることを意味する。例えば、疎である状態とは、ヘテロコア部16の表面上に固定化したナノ粒子21が表面を占める割合である被覆率が1%以下であることを意味する。
また、本発明において、ナノ粒子21が疎である状態には、ナノ粒子21同士が接触している場合も含まれ、この場合、水素吸蔵物質のナノ粒子21が水素を吸蔵してその体積が膨張しても、接触するナノ粒子21が脱落しない程度の隙間がナノ粒子21の周囲に存在していればよい。
さらに、本発明において、ナノ粒子21が疎である状態には、ナノ粒子21が積層している場合も含まれ、この場合も、水素吸蔵物質のナノ粒子21が水素を吸蔵してその体積が膨張しても、上下に存在するナノ粒子21が脱落しない程度の隙間がナノ粒子21の周囲に存在していればよい。
なお、水素吸蔵物質のナノ粒子21は、図示しない保護剤によって凝集が生じないように保護されていることが好ましい。保護剤は、ナノ粒子21の周囲を取り囲み、ナノ粒子21の凝集を防止し、且つ、ナノ粒子21が水素を吸蔵、放出を妨げないものであればよく、例えばPVP(ポリビニルピロリドン)などの樹脂を用いればよい。
光ファイバ水素センサ100は、測定システム150に使用される。
測定システム150は、光ファイバ水素センサ100の光伝送部13に入射する光を出力する光源110と、光ファイバ10から出射する光を受光する光検出器120と、光検出器120の出力を図示しないAD変換器を介して取り込むデータ処理装置130とを備える。
光源110は、例えば発光ダイオード(LED)、レーザダイオード(LD)等により構成され、光ファイバ水素センサ100の光ファイバ10の一方側の端部に接続される。
光検出器120は、例えばフォトダイオード(PD)等により構成され、光ファイバ水素センサ100の光伝送部13の他方側の端部に接続される。
データ処理装置130は、例えばパーソナルコンピュータ等のコンピュータ、あるいは、CPU等を含む電子回路ユニットにより構成される。
このように構成された測定システム150の光源110から光伝送部13に光が入射され、光伝送部13からの出射光が光検出器120により検出される。
そして、データ処理装置130により、光検出器120の出力により示される出射光の強度が計測され、該出射光の強度の計測値と、入射光の既定の強度との比率等を指標値として、光ファイバ水素センサ100における光の伝送損失(以降、単に光損失という)が計測される。なお、光ファイバ水素センサ100の光損失は、入射光の強度に対する出射光の強度の比率が小さいほど、大きなものとなる。
従って、光検出器120で受光した光量を計測することにより、光応答部20の体積変化を介して、周囲の水素濃度を検出することができる。ここで、光損失と水素濃度を予め関係付けておくことにより、得られた光損失から水素濃度を求めることができる。
本実施形態においては、水素吸蔵物質のナノ粒子21が疎である状態でクラッド15の外周面15aに固定されているので、ナノ粒子21の表面の大部分が露出している。そして、ナノ粒子21であるために粒径が小さく同じ体積で比較すると、粒径が大きな粒子である場合と比べて表面積が大きい。
これにより、ナノ粒子21の周囲に水素が存在するとき、ナノ粒子21は水素を素早く吸蔵して、その誘電率(屈折率)の変化が生じると共に、体積が直ぐに膨張するので、光伝送部13とヘテロコア部16との境界から漏洩する光の量が素早く増加し、光損失が増加するので、ヘテロコア部16の外側付近に存在する水素の濃度の増加を素早く検出することができる。
また、逆に、水素吸蔵物質の周囲に水素が存在しなくなれば、水素吸蔵物質は水素を素早く放出して、その体積が直ぐに収縮するので、光伝送部13とヘテロコア部16との境界から漏洩する光の量が素早く減少し、光損失が素早く減少するので、ヘテロコア部16の外側付近に存在する水素の濃度の減少を素早く検出することができる。
さらに、水素吸蔵物質のナノ粒子21が疎である状態でクラッド15の外周面15aに固定されているので、水素吸蔵物質は水素を素早く吸蔵して、その体積が膨張しても、隣接するナノ粒子21が脱落などが生じないので、長期間に亘って同じように良好な再現性で水素濃度を検出することができる。
これらにより、光ファイバ水素センサ100によれば、ヘテロコア部16の外側周囲における水素の濃度変化を素早く検出することが可能であると共に、長期間に亘って検出精度を良好に維持することが可能になる。
次に、本発明の第2の実施形態に係る光ファイバ水素センサ200について図2を参照して説明する。
光ファイバ水素センサ100は、入射端から入射された光を出射端から出射する光ファイバ30と、周囲の水素濃度に応じて光を受けた際の応答が変化する光応答部40とを備えている。
ここで、光ファイバ30は、前述した光ファイバ10と同様に、コア11及びクラッド12を有する光伝送部13と、光伝送部13のコア11及びクラッド12に各々連なるコア14及びクラッド15を有するヘテロコア部16とを備え、ヘテロコア部16は光伝送部13のコア11の直径とは直径が異なるコア14を有している。
さらに、ヘテロコア部16のクラッド15の外周面15aに、表面プラズモン共鳴又は局在プラズモン共鳴を励起することが可能な金属膜17が形成されている。例えば、金属膜17は、クラッド15の外周表面に蒸着により形成した厚さ数nm程度の金膜と、この金膜の外表面に蒸着により形成した厚さ数十nm程度の五酸化タンタル膜とが積層されて構成されている。なお、クロム、銀やアルミニウム等の他の金属を用いて、あるいは、蒸着以外の方法を用いて金属膜17を形成してもよい。
光応答部40は、水素吸蔵物質のナノ粒子21が疎である状態で金属膜17の外周面17aに固定されている。光応答部40は、前述した光応答部20と同様に構成されている。
さらに、光ファイバ水素センサ200は、前述した光ファイバ水素センサ100と同様に、前述した測定システム150と同様の構成の測定システム250に使用される。
光伝送部13とヘテロコア部16との境界から漏洩する光はヘテロコア部16のクラッド15と金属膜17との境界において反射する。このとき、エバネッセント相互作用と呼ばれる現象により、クラッド15内の光と金属膜17との間において相互作用が発生し、光損失としてスペクトル上に変化が現れ、反射率が変化する。大部分の場合には、光の反射率が低下して反射光の強度が減少する。なお、本実施形態では、光源110から光ファイバ10に入射させた光の強度変化を利用して計測するため、1つの波長に対するモード郡の合算の光強度のみを考慮すれば十分である。
金属膜17を設けたことによって、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)と呼ばれる現象により、光のエネルギーが表面プラズモン共鳴波を作り出すために奪われ、失われるので、反射率の変化をより大きくすることができ、光の強度変化の計測をより容易化することができる。
ここで、金属膜17に接している物質である光応答部40の屈折率がその周囲の水素濃度に応じて変化すると、クラッド15内の光の反射スペクトルが変化し、反射光の強度が変化する。
従って、光検出器120で透過光を計測し反射光の強度を求めることにより、光応答部40の屈折率を介して、周囲の水素濃度を検出することができる。ここで、光損失と水素濃度を予め関係付けておくことにより、計測した透過光から得られる光損失から水素濃度を求めることができる。
そして、光ファイバ水素センサ200は、前述した光ファイバ水素センサ100と同様に、水素吸蔵物質のナノ粒子21が疎である状態で金属膜17の外周面17aに固定されているので、水素吸蔵物質は水素を素早く吸蔵して、その体積が膨張しても、隣接するナノ粒子21が脱落などが生じないので、長期間に亘って同じように良好な再現性で水素濃度を検出することができる。より好ましくは、金属膜17上に設けた誘電体の膜の外周面17aに固定すればよい。
次に、本発明の第3の実施形態に係る光ファイバ水素センサ300について図3を参照して説明する。
光ファイバ水素センサ300は、入射端から入射された光を出射端から出射する光ファイバ50と、周囲の水素濃度に応じて光を受けた際の応答が変化する光応答部60とを備えている。
ここで、光ファイバ50は、コア51及びクラッド52を有する光伝送部53と、コア51の少なくとも一部と外部とを連通する穴54とを備えている。光伝送部53は、前述した光伝送部13と同様に構成されている。
光ファイバ50には、穴54が形成されている。穴54は、図3では1個であるが、複数であってもよい。また、穴54は、図3では貫通孔ではあるが、少なくとも外部とコア51の一部とを連通するものであれば非貫通孔であってもよい。穴54は、例えばフェムト秒レーザを使用して形成すればよい。
そして、光応答部60は、水素吸蔵物質のナノ粒子21が疎である状態で穴54の表面54aに固定されている。光応答部60は、前述した光応答部20,40と同様に構成されている。
さらに、光ファイバ水素センサ300は、前述した光ファイバ水素センサ100と同様に、前述した測定システム150,250と同様の構成の測定システム350に使用される。
これにより、光検出器120で受光した光量を計測することにより、光応答部60の体積変化を介して、周囲の水素濃度を検出することができる。ここで、光損失と水素濃度を予め関係付けておくことにより、得られた光損失から水素濃度を求めることができる。
そして、光ファイバ水素センサ300は、前述した光ファイバ水素センサ100,200と同様に、水素吸蔵物質のナノ粒子21が疎である状態で穴54の表面54aに固定されているので、水素吸蔵物質は水素を素早く吸蔵して、その体積が膨張しても、隣接するナノ粒子21が脱落などが生じないので、長期間に亘って同じように良好な再現性で水素濃度を検出することができる。
次に、本発明の実施形態に係る光ファイバ水素センサ100の製造方法について説明する。
まず、光伝送部13とヘテロコア部16とを備える光ファイバ10を用意する。
次に、ヘテロコア部16のクラッド15の外周面15aをポリマー電解質(ポリカチオン)の水溶液(ポリカチオン水溶液)に浸し、正の電荷を帯電させる工程を行う。
次に、正の電荷が帯電したクラッド15の外周面15aを水素吸蔵物質のナノ粒子が懸濁された懸濁液に浸し、クラッド15の外周面15aにナノ粒子を疎に固定する工程を行う。これにより、クラッド15の外周面15aにナノ粒子を疎に固定された状態からなる光応答部40が形成され、光ファイバ水素センサ100が完成する。
光ファイバ水素センサ200,300においても、同様に、光応答部40,60を形成すればよい。
なお、本発明は実施形態に限定されるものではない。例えば、本発明の光応答部は、周囲の水素濃度に応じて光を受けた際の応答が変化するものであればよく、上述した光応答部20,40,60の構成に限定されない。また、本発明の光応答部は、水素吸蔵物質のナノ粒子21が疎である状態で光ファイバ10,30,50の外端側に固定されていればよく、上述した光応答部20,40,60が設けられている部分に設けられるものに限定されない。
また、実施形態では、ヘテロコア部16を中間部に備える光ファイバ10の一端から他端まで光を伝送する測定システム150,250,350について説明した。しかし、これに限定されず、例えば、ヘテロコア部16又は光ファイバ10,30,50の一端部に反射鏡を装着し、光ファイバ10,30,50の一端部に、カプラを介して光源110及び光検出器120を接続することにより、測定システムを構成してもよい。
このように構成された測定システムにおいて、光源110から光ファイバ10,30,50にカプラを介して入射される光は、ヘテロコア部16に進入、又は穴54を通過した後、反射鏡で反射されて光ファイバ10,30,50に戻る。そして、この戻り光は、カプラを経由して光検出器120で受光される。このような測定システムにおいても、水素濃度を検出することができる。
(実施例)
以下、本実施形態の光ファイバ水素センサ100に係る実施例1,2について説明する。
図1に示す光ファイバ水素センサ100を製造した。光伝送部13は、コア11の直径が50μm、クラッド12の直径が125μmであるシングルモード光ファイバを用いた。ヘテロコア部16は、コア14の直径が3μm、クラッド15の直径が125μmであるシングルモード光ファイバを用いた。ヘテロコア部16の長さは15mmであった。
実施例1においては、保護剤としてPVPを用いて保護した粒径4nmのパラジウムを水素吸蔵物質のナノ粒子21として用い、このナノ粒子が懸濁された懸濁液に5分間浸して、クラッド15の外周面15aにナノ粒子を固定する工程を行った。
そして、クラッド15の外周面15aを走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて観察した。観察結果を図4に示した。このSEM写真には、粒径4nmのナノ粒子は観察されず、ナノ粒子が凝縮したものが観察された。被覆率は1.6×10−5であった。
このようにして製造した光ファイバ水素センサ100を使用した測定システム150において、LEDからなる光源110から光ファイバ10に850nmのレーザ光を入射し、ヘテロコア部16の周囲の雰囲気を水素濃度4%の窒素から雰囲気と水素濃度0%の窒素からなる雰囲気との交互に変化させた。このときに、光検出器120で検出した光損失の変化を図5のグラフに示した。図5から、良好な応答性において水素濃度の変化を検出できることが分かる。
次に、本実施形態の光ファイバ水素センサ200に係る実施例2について説明する。
図2に示す光ファイバ水素センサ200を製造した。光伝送部13は、コア11の直径が50μm、クラッド12の直径が125μmであるシングルモード光ファイバを用いた。ヘテロコア部16は、コア14の直径が3μm、クラッド15の直径が125μmであるシングルモード光ファイバを用いた。ヘテロコア部16の長さは15mmであった。
金属膜17として、クラッド15の外周表面に蒸着により数25nmの金膜を形成し、この金膜の外表面に蒸着により厚さ60nmの五酸化タンタル膜とを形成した。水素吸蔵物質のナノ粒子21として粒径4nmのパラジウムを用いた。
このようにして製造した光ファイバ水素センサ200を使用した測定システム250において、LEDからなる光源110から光ファイバ10に850nmのレーザ光を入射し、ヘテロコア部16の周囲の雰囲気を水素濃度4%の窒素から雰囲気と水素濃度0%の窒素からなる雰囲気との交互に変化させた。このときに、光検出器120で検出した光損失の変化を図6のグラフに示した。図6から、良好な応答性において水素濃度の変化を検出できることが分かる。
(比較例)
以下、比較例1について説明する。
実施例1と同様にして光ファイバ水素センサ100を製造したが、比較例1においては、実施例1と異なり、粒径40nmの金ナノ粒子をクエン酸で還元したコロイドを用いて、クラッド15の外周面15aにナノ粒子を固定する工程を行った。
そして、クラッド15の外周面15aを走査型電子顕微鏡を用いて観察した。観察結果を図7に示した。このSEM写真には、最も密な箇所では1μm当たり約65個、平均すると1μm当たり約30個のナノ粒子が観察された。これから被覆率は0.054(5.4%)であることが分かった。
10,30,50…光ファイバ、 11…コア、 12…クラッド、 13,53…光伝送部、 14…コア、 15…クラッド、 15a…クラッドの外周面、 16…ヘテロコア部、 17…金属膜、 17a…金属膜の外周面、 20,40,60…光応答部、 21…水素吸蔵物質のナノ粒子、 54…穴、 54a…穴の表面、 100,200,300…光ファイバ水素センサ、 110…光源、 120…光検出器、 130…データ処理装置、 150,250,350…測定システム。

Claims (5)

  1. 入射端から入射された光を出射端から出射する光ファイバと、
    該光ファイバの周囲の水素濃度に応じて前記光を受けた際の応答が変化する光応答部とを備え、
    前記光応答部は、水素吸蔵物質のナノ粒子が疎である状態で固定されており、
    前記疎である状態とは、前記ナノ粒子が固定されている表面に占める割合である被覆率が1%以下であることを特徴とする光ファイバ水素センサ。
  2. 前記光ファイバは、コア及びクラッドを有する光伝送部と、該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部は前記光伝送部のコアと異なる直径のコアを有し、
    前記光応答部は、前記ヘテロコア部の前記クラッドの外周面に前記水素吸蔵物質のナノ粒子が疎である状態で固定されてなることを特徴とする請求項1に記載の光ファイバ水素センサ。
  3. 前記光ファイバは、コア及びクラッドを有する光伝送部と、該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部は前記光伝送部のコアよりも小径のコアを有し、
    前記ヘテロコア部の前記クラッドの外周面に、表面プラズモン共鳴又は局在プラズモン共鳴を励起することが可能な金属膜が形成されており、
    前記光応答部は、前記金属膜の外周面に水素吸蔵物質のナノ粒子が疎である状態で固定されてなることを特徴とする請求項1に記載の光ファイバ水素センサ。
  4. 前記光ファイバは、コア及びクラッドを有する光伝送部と、前記コア及びクラッドの少なくとも一部に形成された穴とを備え、
    前記光応答部は、前記穴の表面に水素吸蔵物質のナノ粒子が疎である状態で固定されてなることを特徴とする請求項1に記載の光ファイバ水素センサ。
  5. 光ファイバの表面、又は光ファイバの表面上に形成された表面プラズモン共鳴又は局在プラズモン共鳴を励起することが可能な金属膜の表面をポリカチオン水溶液に浸し、前記表面に正の電荷を帯電させる工程と、
    前記正の電荷が帯電した表面を水素吸蔵物質のナノ粒子が懸濁された懸濁液に浸し、前記表面に前記ナノ粒子を疎に固定する工程とを備えており、
    前記疎である状態とは、前記ナノ粒子が固定されている表面に占める割合である被覆率が1%以下であることを特徴とする光ファイバ水素センサの製造方法。
JP2017153126A 2017-08-08 2017-08-08 光ファイバ水素センサ及びその製造方法 Active JP6915859B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153126A JP6915859B2 (ja) 2017-08-08 2017-08-08 光ファイバ水素センサ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153126A JP6915859B2 (ja) 2017-08-08 2017-08-08 光ファイバ水素センサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2019032229A JP2019032229A (ja) 2019-02-28
JP6915859B2 true JP6915859B2 (ja) 2021-08-04

Family

ID=65523249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153126A Active JP6915859B2 (ja) 2017-08-08 2017-08-08 光ファイバ水素センサ及びその製造方法

Country Status (1)

Country Link
JP (1) JP6915859B2 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720321B2 (en) * 2007-07-20 2010-05-18 General Electric Company Fiber optic sensor and method for making
US7489835B1 (en) * 2008-03-28 2009-02-10 General Electric Company Sensing system with fiber gas sensor
JP2010223817A (ja) * 2009-03-24 2010-10-07 Soka Univ エタノールセンサ及びこれを用いたエタノール計測システム
JP5759854B2 (ja) * 2011-09-30 2015-08-05 株式会社日立製作所 水素濃度計測装置及び水素濃度表示装置
JP2013076652A (ja) * 2011-09-30 2013-04-25 Hitachi Cable Ltd 水素検知用光ファイバ及びその製造方法、並びにこれを用いた水素検知システム
EP2584340A1 (en) * 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
JP5864272B2 (ja) * 2012-01-06 2016-02-17 日立Geニュークリア・エナジー株式会社 水素濃度計測装置
JP6344789B2 (ja) * 2012-08-24 2018-06-20 学校法人 創価大学 水素センサ、および、それを用いた検出装置
JP6332790B2 (ja) * 2014-03-05 2018-05-30 学校法人 創価大学 光ファイバセンサ装置及びその製造方法
JP6391305B2 (ja) * 2014-06-10 2018-09-19 学校法人 創価大学 光ファイバセンサ装置
JP6544027B2 (ja) * 2015-04-30 2019-07-17 学校法人 創価大学 光学式酸素センサ及びその製造方法

Also Published As

Publication number Publication date
JP2019032229A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
US8988669B2 (en) Power monitor for optical fiber using background scattering
JP6344789B2 (ja) 水素センサ、および、それを用いた検出装置
EP1114300B1 (fr) Capteur de temperature a fibre optique
CN108844919B (zh) 包层反射式倾斜光纤光栅折射率传感器及制作、测量方法
JP4597251B1 (ja) 光ファイバセンサ装置、光ファイバを用いたセンシング方法
JP2009524835A (ja) 光ファイバ線量計
GB2478829A (en) Fiber optic hydrogen purity sensor and system
JP2009025199A (ja) 光ファイバ型表面プラズモン湿度センサ、表面プラズモン湿度センサ、光ファイバ型湿度センサ及び湿度測定装置
WO2016156197A1 (fr) Dispositif de capteur a fibre optique
US20160123878A1 (en) Plasmonic hydrogen detection
JP6915859B2 (ja) 光ファイバ水素センサ及びその製造方法
JP2010223817A (ja) エタノールセンサ及びこれを用いたエタノール計測システム
JP2005121461A (ja) 光ファイバセンサおよびそれを用いた測定装置
US20120077895A1 (en) Status estimation device, status estimation method and program for ultraviolet curable resin
JP6391305B2 (ja) 光ファイバセンサ装置
JP2015156019A (ja) 低後方反射の光ファイバ成端
JP2013076652A (ja) 水素検知用光ファイバ及びその製造方法、並びにこれを用いた水素検知システム
CN112050940A (zh) 一种小型化强激光功率探测结构
CN103335985B (zh) 准分布式光纤光栅表面等离子体共振传感器及制备方法
Kelb et al. A planar low-cost full-polymer optical humidity sensor
US20230296449A1 (en) Temperature sensor
CN104165840A (zh) 基于单-多模光纤耦合的光纤端面无标记光学传感器
JP4823330B2 (ja) 光導波路型バイオケミカルセンサチップ及びその測定対象物の測定方法
WO2010084523A1 (ja) 湿度センサ及び湿度測定装置
JP2007101241A (ja) センシング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6915859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150