JP6908412B2 - Manufacturing method of titanium sponge - Google Patents

Manufacturing method of titanium sponge Download PDF

Info

Publication number
JP6908412B2
JP6908412B2 JP2017072750A JP2017072750A JP6908412B2 JP 6908412 B2 JP6908412 B2 JP 6908412B2 JP 2017072750 A JP2017072750 A JP 2017072750A JP 2017072750 A JP2017072750 A JP 2017072750A JP 6908412 B2 JP6908412 B2 JP 6908412B2
Authority
JP
Japan
Prior art keywords
reduction reaction
reaction vessel
titanium
sponge
titanium sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072750A
Other languages
Japanese (ja)
Other versions
JP2018172756A (en
Inventor
吉田 稔
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2017072750A priority Critical patent/JP6908412B2/en
Publication of JP2018172756A publication Critical patent/JP2018172756A/en
Application granted granted Critical
Publication of JP6908412B2 publication Critical patent/JP6908412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、四塩化チタンを金属マグネシウムにより還元してスポンジチタンを製造する高純度スポンジチタンの製造方法に関する。 The present invention relates to a method for producing high-purity titanium sponge, which is produced by reducing titanium tetrachloride with metallic magnesium to produce titanium sponge.

従来、金属チタンは、工業的にはクロール法によって製造されたスポンジチタンをもとに製造されている。そして、近年、半導体デバイス向けの高純度チタンの需要が増加しており、これに伴って高純度のスポンジチタンを安価に製造することが求められている。 Conventionally, metallic titanium is industrially manufactured based on sponge titanium manufactured by the Kroll process. In recent years, the demand for high-purity titanium for semiconductor devices has been increasing, and along with this, there is a demand for inexpensive production of high-purity titanium sponge.

このクロール法によるスポンジチタン製造工程は、塩化蒸留工程、還元分離工程、破砕工程及び電解工程の四工程に大別される。 The titanium sponge titanium production process by this Kroll process is roughly divided into four steps: a chloride distillation step, a reduction separation step, a crushing step and an electrolysis step.

これらの工程の一つである還元分離工程は、還元工程及び真空分離工程からなる。還元工程では、ステンレス製の還元反応容器内の溶融金属マグネシウムに四塩化チタンを滴下し、還元反応を起こすことで、スポンジチタンを生成させる。次いで、真空分離工程にて、還元工程で生成したスポンジチタンを高温且つ減圧下で真空引きすることで、残存した塩化マグネシウムや金属マグネシウムが取り除かれたスポンジチタンが製造される(非特許文献1)。 The reduction separation step, which is one of these steps, comprises a reduction step and a vacuum separation step. In the reduction step, titanium tetrachloride is dropped onto molten metal magnesium in a stainless steel reduction reaction vessel to cause a reduction reaction to produce titanium sponge. Next, in the vacuum separation step, the titanium sponge produced in the reduction step is evacuated at a high temperature and under reduced pressure to produce titanium sponge from which residual magnesium chloride and metallic magnesium have been removed (Non-Patent Document 1). ..

真空分離後のスポンジチタンは、ロストルあるいは押し抜きパンチと呼ばれる容器底部に設置された押し抜き用床部材によって、押し出される。また、抜出後のロストルや還元反応容器表面に付着し、残ったスポンジチタンは不純物金属を多く含んでいると考えられていた。そのため、はつり除去と呼ばれるチッピングにより、還元反応容器の内面及びロストルの表面に付着したチタンを主成分とするチタン系不純物(以下、「付着チタン」と呼ぶ)を物理的に除去することで、次のバッチで生成するスポンジチタンの純度が向上すると考えられていた(特許文献1)。 The titanium sponge after vacuum separation is extruded by a punching floor member installed at the bottom of the container called a rostrum or a punching punch. In addition, it was thought that the titanium sponge that adhered to the rostrum after extraction and the surface of the reduction reaction vessel and remained contained a large amount of impurity metals. Therefore, by physically removing titanium-based impurities (hereinafter referred to as "adhered titanium") adhering to the inner surface of the reduction reaction vessel and the surface of the rostrum by chipping called chipping removal, the following is performed. It was thought that the purity of titanium sponge produced in the batch was improved (Patent Document 1).

このことから、還元反応容器の内面の付着チタンを削れば削るほど純度が向上すると考えられ、還元反応容器内の広範囲にわたって地肌が露出するほどに付着チタンを除去することが好ましいとされていた。そして、これらのはつり除去作業は、生産性を著しく悪化させているが、やむを得ないものであると考えられていた。 From this, it is considered that the more the adhered titanium on the inner surface of the reduction reaction vessel is scraped, the higher the purity is considered, and it is preferable to remove the adhered titanium so that the background is exposed over a wide area in the reduction reaction vessel. And, although these chipping removal operations significantly deteriorated productivity, they were considered to be unavoidable.

資源と素材 Vo.1.109 P1157−1163(1993)Resources and Materials Vo. 1.109 P1157-1163 (1993)

特開2006−265587JP 2006-265587 特開2006−131976JP 2006-131976

本発明は、高純度スポンジチタンの製造に関する上記課題を解決するもので、還元反応容器内のはつり除去作業の負荷を軽減できるスポンジチタンの製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems concerning the production of high-purity titanium sponge, and an object of the present invention is to provide a method for producing titanium sponge, which can reduce the load of the work of removing the shavings in the reduction reaction vessel.

上記課題を解決するために、本発明者らは、還元反応容器から生成したスポンジチタンを取り出した後に、還元反応容器の内面に付着している付着チタン中のNi汚染経路に着目し、鋭意検討を重ねた結果、付着チタンにNiが濃化する機構は、特許文献1に記載の初期生成チタンへのゲッタリング効果による汚染ではなく、原料Mg中のNi、及び還元反応中に還元反応容器内から溶融Mgに溶出したNiが、還元反応終了後の真空分離工程において蒸発せず、残留したMg中のNiが、還元反応容器の内面の付着チタンに取り込まれることが主要因であることがわかった。 In order to solve the above problems, the present inventors have focused on the Ni contamination path in the adhered titanium adhering to the inner surface of the reduction reaction vessel after taking out the sponge titanium produced from the reduction reaction vessel, and diligently studied it. As a result of stacking, the mechanism by which Ni is concentrated in the adhered titanium is not the contamination due to the gettering effect on the initially produced titanium described in Patent Document 1, but the Ni in the raw material Mg and the inside of the reduction reaction vessel during the reduction reaction. It was found that the main factor was that the Ni eluted in the molten Mg did not evaporate in the vacuum separation step after the completion of the reduction reaction, and the remaining Ni in the Mg was incorporated into the adhered titanium on the inner surface of the reduction reaction vessel. rice field.

本発明は、かかる知見に基づきなされたもので、次の通りである。
すなわち、本発明(1)は、クロール法によるスポンジチタンの製造において、前回の還元反応のときに還元反応容器の内面及びロストルの表面に付着した付着チタンを除去するはつり除去を行った後、はつり除去が行われた還元反応容器を再使用して、クロール法によるスポンジチタンの製造を行う工程を有する高純度スポンジチタンの製造方法であって、
該はつり除去では、該還元反応容器の全高に対して下から50%の範囲において、該還元反応容器の全高に対して下から50%の範囲に存在する該還元反応容器の内面及び該ロストルの表面の合計面積に対する、該はつり除去を行った後に地肌が露出している該還元反応容器の内面及び該ロストルの表面の合計面積の割合(平均露出率A)が、50%以上となり、且つ、該還元反応容器の全高に対して下から50%の範囲を除いた範囲において、該はつり除去を行った後の該還元反応容器の内面の表面の地肌の露出率Bと、該はつり除去を行う前の前記還元反応容器の内面の表面の地肌の露出率Cとの差(露出率B−露出率C)が、20%以下となるように、該付着チタンのはつり除去を行うこと、
を特徴とする高純度スポンジチタンの製造方法を提供するものである。
The present invention has been made based on such findings, and is as follows.
That is, according to the present invention (1), in the production of titanium sponge by the Kroll process, after performing the shaving removal to remove the adhered titanium adhering to the inner surface of the reduction reaction vessel and the surface of the rostrum during the previous reduction reaction, the shaving is performed. A method for producing high-purity titanium sponge, which comprises a step of producing titanium sponge by the Kroll process by reusing the removed reduction reaction vessel.
In the removal of the suspension, the inner surface of the reduction reaction vessel and the rostrum which are present in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel and in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. The ratio (average exposure rate A) of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum whose skin is exposed after the removal of the suspension to the total area of the surface is 50% or more, and in the range excluding the range of 50% below the total height of the reduction reaction vessel, said the and scalp of exposure rate B of the surface of the inner surface of the reduction reaction vessel after the fishing removed, the chipping removed the difference between the exposure rate C of background of the surface of the inner surface of the reduction reaction vessel before carrying out (exposure rate B- exposure ratio C) is such that 20% or less, to perform the chipping removal of said adhesion titanium,
The present invention provides a method for producing high-purity titanium sponge, which is characterized by the above.

また、本発明(2)は、前記還元反応容器の溶融物抜出口が、前記還元反応容器の全高に対して下から5〜20%の範囲に位置していることを特徴とする(1)の高純度スポンジチタンの製造方法を提供するものである。 Further, the present invention (2) is characterized in that the melt outlet of the reduction reaction vessel is located in the range of 5 to 20% from the bottom with respect to the total height of the reduction reaction vessel (1). Provided is a method for producing high-purity titanium sponge.

本発明によれば、高純度のスポンジチタンを製造する方法であって、還元反応容器内のはつり除去作業の負荷を軽減できるスポンジチタンの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing high-purity titanium sponge, which can reduce the load of chipping removal work in the reduction reaction vessel.

本発明の高純度スポンジチタンの製造方法に用いられる還元反応装置を示す模式的な縦端面図である。It is a schematic vertical end view which shows the reduction reaction apparatus used in the manufacturing method of high-purity sponge titanium of this invention. 還元反応容器の全高を説明するための還元反応容器の縦端面図である。It is a vertical end view of the reduction reaction vessel for demonstrating the total height of the reduction reaction vessel.

本発明の高純度スポンジチタンの製造方法は、クロール法によるスポンジチタンの製造において、前回の還元反応のときに還元反応容器の内面及びロストルの表面に付着した付着チタンを除去するはつり除去を行った後、はつり除去が行われた還元反応容器を再使用して、クロール法によるスポンジチタンの製造を行う工程を有する高純度スポンジチタンの製造方法であって、
該はつり除去では、該還元反応容器の全高に対して下から50%の範囲において、該還元反応容器の全高に対して下から50%の範囲に存在する該還元反応容器の内面及び該ロストルの表面の合計面積に対する、該はつり除去を行った後に地肌が露出している該還元反応容器の内面及び該ロストルの表面の合計面積の割合(平均露出率A)が、50%以上となり、且つ、該還元反応容器の全高に対して下から50%の範囲を除いた範囲において、該はつり除去を行った後の該還元反応容器の内面の表面の地肌の露出率Bと、該はつり除去を行う前の前記還元反応容器の内面の表面の地肌の露出率Cとの差(露出率B−露出率C)が、20%以下となるように、該付着チタンのはつり除去を行うこと、
を特徴とする高純度スポンジチタンの製造方法である。
In the method for producing high-purity titanium sponge of the present invention, in the production of titanium sponge by the Kroll process, the titanium adhering to the inner surface of the reduction reaction vessel and the surface of the rostrum during the previous reduction reaction was removed by hanging. After that, it is a method for producing high-purity titanium sponge, which comprises a step of producing titanium sponge by the Kroll process by reusing the reduction reaction vessel from which the suspension has been removed.
In the removal of the suspension, the inner surface of the reduction reaction vessel and the rostrum which are present in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel and in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. The ratio (average exposure rate A) of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum whose skin is exposed after the removal of the suspension to the total area of the surface is 50% or more, and in the range excluding the range of 50% below the total height of the reduction reaction vessel, said the and scalp of exposure rate B of the surface of the inner surface of the reduction reaction vessel after the fishing removed, the chipping removed the difference between the exposure rate C of background of the surface of the inner surface of the reduction reaction vessel before carrying out (exposure rate B- exposure ratio C) is such that 20% or less, to perform the chipping removal of said adhesion titanium,
This is a method for producing high-purity titanium sponge, which is characterized by the above.

本発明の高純度スポンジチタンの製造方法は、クロール法、すなわち、還元反応容器に予め溶融Mgを入れておき、還元反応容器内に四塩化チタンを滴下して、溶融Mgと反応させることにより、スポンジチタンを製造する高純度スポンジチタンの製造方法である。 The method for producing high-purity titanium sponge of the present invention is a Kroll process, that is, by putting molten Mg in a reduction reaction vessel in advance and dropping titanium tetrachloride into the reduction reaction vessel to react with the molten Mg. This is a method for producing high-purity titanium sponge for producing titanium sponge.

そして、本発明の高純度スポンジチタンの製造方法では、前回の還元反応のときに還元反応容器の内面及びロストルの表面に付着した付着チタンを削り取ることにより、付着チタンを還元反応容器の内面及びロストルの表面から除去すること、すなわち、はつり除去を行った後、はつり除去が行われた還元反応容器を再使用して、クロール法によるスポンジチタンの製造を行う工程を有する高純度スポンジチタンの製造方法である。 Then, in the method for producing high-purity titanium sponge of the present invention, the adhered titanium adhered to the inner surface of the reduction reaction vessel and the surface of the rostrum during the previous reduction reaction is scraped off, so that the adhered titanium is removed from the inner surface of the reduction reaction vessel and the rostrum. A method for producing high-purity titanium sponge, which comprises a step of producing titanium sponge by a Kroll process by removing it from the surface of the titanium, that is, by reusing the reduction reaction vessel from which the titanium has been removed. Is.

本発明において、高純度スポンジチタンとは、Ni含有量が0.5質量ppm以下のスポンジチタンを指す。 In the present invention, the high-purity titanium sponge refers to titanium sponge having a Ni content of 0.5 mass ppm or less.

本発明の高純度スポンジチタンの製造方法に係る還元反応容器は、ステンレス鋼の内面に鉄がクラッドされたクラッド容器又はバタリング容器であり、また、ロストルは、鉄で構成されている。 The reduction reaction vessel according to the method for producing high-purity sponge titanium of the present invention is a clad vessel or buttering vessel in which iron is clad on the inner surface of stainless steel, and the rostrum is made of iron.

本発明の高純度スポンジチタンの製造方法に係る還元反応容器の構造について、図1を参照して説明する。図1は、本発明の高純度スポンジチタンの製造方法で用いられる還元反応装置を示す模式的な端面図である。還元反応装置1は、還元反応容器2と、還元反応容器2の下部に繋がる溶出物抜出管4と、還元反応容器2の上側を塞ぐ内蓋6及び外蓋5と、からなる。還元反応容器2の底部は、底部キャップ8で底が塞がれている。還元反応容器2内の下部には、ロストル3が設置されている。そして、還元工程では、スポンジチタンの製造は、還元反応容器2内に、予め溶融Mgを入れておき、還元反応容器2内に四塩化チタンを滴下して、溶融Mgと反応させることにより、ロストル3の上に、生成したスポンジチタンが堆積する。還元工程では、溶融Mgへ四塩化チタンを滴下しながら、溶出物抜出管4から、副生する塩化マグネシウムを抜き出す。溶融Mgへ四塩化チタンの滴下を終了した後は、還元反応容器2内を真空加熱して、未反応Mgと副生塩化マグネシウムを真空分離する分離工程を行う。分離工程を行った後は、還元反応容器ごと生成したスポンジチタン塊を冷却し、底部キャップ8、内蓋6及び外蓋5を外し、下からロストル3ごとスポンジチタン塊を押し上げ、スポンジチタン塊を、還元反応容器2の外に取り出す。 The structure of the reduction reaction vessel according to the method for producing high-purity titanium sponge of the present invention will be described with reference to FIG. FIG. 1 is a schematic end view showing a reduction reaction apparatus used in the method for producing high-purity titanium sponge of the present invention. The reduction reaction apparatus 1 includes a reduction reaction vessel 2, an eluate extraction tube 4 connected to the lower part of the reduction reaction vessel 2, and an inner lid 6 and an outer lid 5 that close the upper side of the reduction reaction vessel 2. The bottom of the reduction reaction vessel 2 is closed with a bottom cap 8. A rostrum 3 is installed in the lower part of the reduction reaction vessel 2. Then, in the reduction step, the production of titanium sponge is carried out by putting molten Mg in the reduction reaction vessel 2 in advance, dropping titanium tetrachloride into the reduction reaction vessel 2 and reacting with the molten Mg. The produced titanium sponge is deposited on top of 3. In the reduction step, magnesium chloride produced as a by-product is extracted from the eluate extraction tube 4 while dropping titanium tetrachloride onto the molten Mg. After the dropping of titanium tetrachloride into the molten Mg is completed, the inside of the reduction reaction vessel 2 is vacuum-heated to perform a separation step of vacuum-separating the unreacted Mg and the by-product magnesium chloride. After performing the separation step, the titanium sponge mass produced together with the reduction reaction vessel is cooled, the bottom cap 8, the inner lid 6 and the outer lid 5 are removed, and the titanium sponge mass is pushed up together with the rostrum 3 from below to remove the titanium sponge mass. , Take out from the reduction reaction vessel 2.

次いで、次の還元反応に還元反応容器2を再使用するために、スポンジチタン塊を取り出した後の還元反応容器2内の内面並びにロストル3の表面に付着した付着チタンを除去するはつり除去を行う。はつり除去では、還元反応容器2の全高13に対して下から50%分だけ高い位置14を、50%範囲の上端としたときに、その50%範囲の上端14から下の部分15に存在する還元反応容器2の内面及びロストル3の表面の付着チタンを中心に、はつり除去を行い、必要に応じて、50%範囲の上端14より上の範囲16の還元反応容器2の内面のはつり除去を行う。なお、還元反応容器2の場合、底部キャップ8の底面9及び側面10も、下から50%範囲に入っており、はつり除去を行った後は、再び底部キャップ8を、還元反応容器2の底部に取り付けるので、底部キャップ8の底面9及び側面10は、はつり除去の対象である。 Next, in order to reuse the reduction reaction vessel 2 for the next reduction reaction, the titanium adhered to the inner surface of the reduction reaction vessel 2 and the surface of the rostrum 3 after the titanium sponge mass is taken out is removed by fishing. .. In the chipping removal, when the position 14 which is 50% higher than the total height 13 of the reduction reaction vessel 2 is set as the upper end of the 50% range, it exists in the portion 15 below the upper end 14 of the 50% range. Chipping is removed centering on the adhered titanium on the inner surface of the reduction reaction vessel 2 and the surface of the rostrum 3, and if necessary, the inner surface of the reduction reaction vessel 2 in the range 16 above the upper end 14 in the 50% range is removed from the chipping. conduct. In the case of the reduction reaction vessel 2, the bottom surface 9 and the side surface 10 of the bottom cap 8 are also within the range of 50% from the bottom, and after the chipping is removed, the bottom cap 8 is again attached to the bottom of the reduction reaction vessel 2. The bottom surface 9 and the side surface 10 of the bottom cap 8 are subject to chipping removal.

そして、はつり除去を行った後の還元反応容器2を、次の還元反応に再使用する。 Then, the reduction reaction vessel 2 after the chipping removal is reused for the next reduction reaction.

なお、本発明において、「還元反応容器の全高」とは、還元反応容器を上下方向に見たときに、還元反応容器内にて、溶融Mgが接触する還元反応容器の内側の最も深い位置から、還元反応容器の内面の上端位置までの長さを指す。図2(A)に示す形態例のように、還元反応容器が底部キャップを有さない場合は、還元反応容器の底の最深位置が、還元反応容器の内側の最も深い位置であり、また、図2(B)〜(D)に示す形態例のように、還元反応容器が底部キャップを有する場合は、底部キャップの最深位置が、還元反応容器の内側の最も深い位置である。図2に示す(A)〜(D)の形態例では、いずれも、符号11で示す位置が、溶融Mgが接触する還元反応容器の内側の最も深い位置であり、符号12で示す位置が、還元反応容器の内面の上端位置であり、符号11で示す位置から符号12で示す位置までの距離が、還元反応容器の全高13である。また、本発明において、「還元反応容器の全高に対して下から50%の範囲」とは、還元反応容器の内側の最も深い位置より、還元反応容器の内側の全高の50%分だけ高い位置を、50%範囲の上端としたときに、その50%範囲の上端の位置から下の部分を指す。 In the present invention, the "total height of the reduction reaction vessel" means the deepest position inside the reduction reaction vessel with which the molten Mg comes into contact when the reduction reaction vessel is viewed in the vertical direction. , Refers to the length to the upper end position of the inner surface of the reduction reaction vessel. When the reduction reaction vessel does not have a bottom cap as in the embodiment shown in FIG. 2 (A), the deepest position at the bottom of the reduction reaction vessel is the deepest position inside the reduction reaction vessel, and When the reduction reaction vessel has a bottom cap as in the morphological examples shown in FIGS. 2B to 2D, the deepest position of the bottom cap is the deepest position inside the reduction reaction vessel. In each of the morphological examples (A) to (D) shown in FIG. 2, the position indicated by reference numeral 11 is the deepest position inside the reduction reaction vessel with which the molten Mg is in contact, and the position indicated by reference numeral 12 is the position indicated by reference numeral 12. The upper end position of the inner surface of the reduction reaction vessel, and the distance from the position indicated by reference numeral 11 to the position indicated by reference numeral 12 is the total height 13 of the reduction reaction vessel. Further, in the present invention, "the range of 50% from the bottom with respect to the total height of the reduction reaction vessel" is a position higher than the deepest position inside the reduction reaction vessel by 50% of the total height inside the reduction reaction vessel. Refers to the portion below the position of the upper end of the 50% range, where is defined as the upper end of the 50% range.

本発明の高純度スポンジチタンの製造方法において、はつり除去を行う方法としては、特に制限されず、通常のスポンジチタンの製造において行われる方法であればよく、例えば、チッピングマシンによって付着チタンを打撃しながら削り取る方法、スクレーパーやワイヤーブラシを用いて取り除く方法等が挙げられる。チッピングマシンによる方法は、還元反応容器の内面及びロストルの表面に、強固に付着している付着チタンや、大きな付着チタンを取り除くのに適しており、また、スクレーパーやワイヤーブラシによる方法は、還元反応容器の内面及びロストルの表面への付着力が弱い付着チタンを取り除くのに適している。 In the method for producing high-purity titanium sponge of the present invention, the method for removing the shavings is not particularly limited, and any method that is used in the ordinary production of titanium sponge may be used. For example, the adhered titanium is hit by a chipping machine. There are a method of scraping while scraping, a method of removing with a scraper or a wire brush, and the like. The method using a chipping machine is suitable for removing the adhered titanium firmly adhering to the inner surface of the reduction reaction vessel and the surface of the rostrum, and the method using a scraper or a wire brush is suitable for removing the adhering titanium. It is suitable for removing adhered titanium, which has weak adhesion to the inner surface of the container and the surface of the rostrum.

本発明の高純度スポンジチタンの製造方法に係るはつり除去では、還元反応容器の全高に対して下から50%の範囲において、還元反応容器の全高に対して下から50%の範囲に存在する還元反応容器の内面及びロストルの表面の合計面積に対する、はつり除去を行った後に地肌が露出している還元反応容器の内面及びロストルの表面の合計面積の割合(平均露出率Aとも記載する。)が、50%以上、好ましくは70%以上、特に好ましくは90%以上となるように、付着チタンのはつり除去を行う。本発明の高純度スポンジチタンの製造方法では、はつり除去において、はつり除去後の平均露出率Aが、上記範囲となるように、付着チタンのはつり除去を行うことにより、還元反応容器の下部に集中的に残留しているNi含有量が高い付着チタンを、還元反応容器の内面及びロストルの表面から取り除くことになるので、はつり除去作業の負荷を軽減することができ、次バッチで製造されるスポンジチタンへのNi汚染を効率良く少なくすることができる。 In the chipping removal according to the method for producing high-purity sponge titanium of the present invention, the reduction existing in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel and in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. The ratio of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum to which the background is exposed after the chipping removal is the ratio of the total area of the inner surface of the reaction vessel and the surface of the rostrum (also referred to as average exposure rate A). , 50% or more, preferably 70% or more, particularly preferably 90% or more, and the attached titanium is chipped off. In the method for producing high-purity titanium sponge of the present invention, in the chipping removal, the adhered titanium is chipped and concentrated in the lower part of the reduction reaction vessel so that the average exposure rate A after chipping removal is within the above range. Since the attached titanium having a high Ni content is removed from the inner surface of the reduction reaction vessel and the surface of the rostrum, the load of the chipping removal work can be reduced, and the sponge produced in the next batch can be reduced. Ni contamination of titanium can be efficiently reduced.

また、還元反応容器及びロストルを繰り返し再使用することにより、還元反応容器の内面及びロストルの表面は、部分的に、スポンジチタンと反応して合金化しているので、本発明において、「地肌」とは、元の還元反応容器の内面の鉄面及びロストルの表面の鉄面、又はEPMAによる表面分析において、表層から300μmまでの平均Ti濃度が30質量%以下である還元反応容器の内面のチタン鉄合金面及びロストルの表面のチタン鉄合金面を指す。 Further, by repeatedly reusing the reduction reaction vessel and rostrum, the inner surface of the reduction reaction vessel and the surface of rostrum are partially reacted with titanium sponge and alloyed. Is the iron surface of the inner surface of the original reduction reaction vessel and the iron surface of the surface of the rostrum, or the titanium iron on the inner surface of the reduction reaction vessel where the average Ti concentration from the surface layer to 300 μm is 30% by mass or less in the surface analysis by EPMA. Refers to the titanium-iron alloy surface on the alloy surface and the surface of the rostrum.

本発明において、「地肌が露出している」とは、付着チタンの付着がなく、還元反応容器の内面又はロストルの表面の元の鉄面又は合金化したチタン鉄合金面が、目視で確認されることを指す。 In the present invention, "the background is exposed" means that there is no adhesion of adhered titanium, and the original iron surface of the inner surface of the reduction reaction vessel or the surface of the rostrum or the alloyed titanium iron alloy surface is visually confirmed. Refers to that.

本発明において、地肌が露出している還元反応容器の内面及びロストルの表面の合計面積の測定方法であるが、先ず、はつり除去後に、還元反応容器の全高に対して下から50%の範囲にある還元反応容器の内面及びロストルの表面の写真を撮影する。このとき、1視野の撮影範囲を約300mm×400mm、画素数を1600×1200ピクセル以上とし、還元反応容器の全高に対して下から50%の範囲にある還元反応容器の内面及びロストルの表面の全範囲に亘って撮影する。次いで、得られた各写真を、画像処理解析装置(ルーゼックスAP NIRECO製)を用いて、二値化処理した後、地肌が露出している部分を選択して面積率の測定を行う。面積率は、地肌が露出している部分の面積をXとし、その他の部分の面積をYとして、「(X/(X+Y))×100」の式により、求められる。得られた各写真について、上記方法で面積率を測定し、全写真の面積率の平均値を、平均露出率A(%)(還元反応容器の全高に対して下から50%の範囲に存在する還元反応容器の内面及びロストルの表面の合計面積に対する、はつり除去を行った後に地肌が露出している還元反応容器の内面及びロストルの表面の合計面積の割合)とする。 In the present invention, the method for measuring the total area of the inner surface of the reduction reaction vessel with the exposed background and the surface of the rostrum is the method of measuring the total area. Take pictures of the inner surface of a reduction reaction vessel and the surface of the rostrum. At this time, the imaging range of one field of view is about 300 mm × 400 mm, the number of pixels is 1600 × 1200 pixels or more, and the inner surface of the reduction reaction vessel and the surface of the rostrum within the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. Shoot over the entire range. Next, each of the obtained photographs is binarized using an image processing analysis device (manufactured by Luzex AP NIRECO), and then a portion where the background is exposed is selected and the area ratio is measured. The area ratio is obtained by the formula of "(X / (X + Y)) x 100", where X is the area of the portion where the background is exposed and Y is the area of the other portion. The area ratio of each of the obtained photographs was measured by the above method, and the average value of the area ratios of all the photographs was present in the range of the average exposure rate A (%) (50% from the bottom with respect to the total height of the reduction reaction vessel). The ratio of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum to which the skin is exposed after the removal of the shavings is taken as the ratio of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum.

本発明の高純度スポンジチタンの製造方法に係るはつり除去では、還元反応容器の全高に対して下から50%の範囲を除いた範囲において、はつり除去を行った後の還元反応容器の内面の地肌の露出率B(%)と、はつり除去を行う前の還元反応容器の内面の表面の地肌の露出率C(%)との差(露出率B−露出率C)が、20%以下、好ましくは10%以下、特に好ましくは0%となるように、付着チタンのはつり除去を行う。本発明の高純度スポンジチタンの製造方法では、はつり除去において、はつり除去前後の露出率の差(露出率B−露出率C)が、上記範囲にあることにより、はつり除去作業の負荷を軽減することができる。還元反応容器の全高に対して下から50%の範囲よりも上部のスポンジチタンには、真空分離時に溶融物中のNiが置き去りにされることによるNiの汚染が少ないので、還元反応容器の全高に対して下から50%の範囲を除いた範囲に付着している付着チタンを、還元反応容器内に残したまま、次バッチに使用しても、高純度スポンジチタンの収率に影響を与えない。そして、還元反応容器の全高に対して下から50%の範囲を除いた範囲の付着チタンのはつり除去量を少なくすることにより、はつり除去作業の負荷を軽減することができる。また、付着チタンは、還元反応容器の表面の鉄と接触したまま、真空分離工程で長時間1000℃以上の高温下にあるため、付着チタンと還元反応容器の内面の鉄面が合金層を形成し、非常に強固な付着となる。これらのチタン鉄合金層を形成する付着チタンは、還元反応容器からスポンジ塊を押し抜いた際、一部は剥がれ落ち、その際、チタン鉄合金層や母材の一部が付着チタンと一緒に剥がれ落ち、容器内面が消耗することがある。なお、次回の還元反応のスポンジチタン塊の押し抜きの邪魔になるような、厚さが20mm程度より大きい付着チタンは、例外的に除去することが好ましい。 The high-purity sponge according to the manufacturing method of the titanium hanging removal of the present invention, in a range excluding the range of 50% below the total height of the reduction reaction vessel, chipping remove the inner surface of the reduction reaction vessel after a background exposure rate B (%), the difference between the exposure rate of the background of the surface of the inner surface of the front of the reduction reaction vessel to perform chipping removed C (%) (exposure rate B- exposure ratio C) is more than 20% The attached titanium is chipped off so as to be preferably 10% or less, particularly preferably 0%. In the method for producing high-purity sponge titanium of the present invention, in the chipping removal, the difference in the exposure rate before and after the chipping removal (exposure rate B-exposure rate C) is within the above range, so that the load of the chipping removal work is reduced. be able to. The total height of the reduction reaction vessel is less than that of the titanium sponge above the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. Even if the adhered titanium adhering to the range excluding the range of 50% from the bottom is used in the next batch while remaining in the reduction reaction vessel, it affects the yield of high-purity sponge titanium. do not have. Then, the load of the chipping removal work can be reduced by reducing the amount of chipping of the adhered titanium in the range excluding the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. Further, since the adhered titanium is kept in contact with the iron on the surface of the reduction reaction vessel and kept at a high temperature of 1000 ° C. or higher for a long time in the vacuum separation step, the adhered titanium and the iron surface on the inner surface of the reduction reaction vessel form an alloy layer. However, the adhesion is very strong. When the sponge mass is pushed out from the reduction reaction vessel, a part of the adhered titanium forming the titanium-iron alloy layer is peeled off, and at that time, a part of the titanium-iron alloy layer and the base material is together with the adhered titanium. It may come off and the inner surface of the container may be consumed. It is preferable to exceptionally remove the adhered titanium having a thickness of more than about 20 mm, which interferes with the pushing out of the titanium sponge mass in the next reduction reaction.

本発明において、「露出率C」の算出方法であるが、はつり除去前に、還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の表面の写真を撮影する。このとき、1視野の撮影範囲を約300mm×400mm、画素数を1600×1200ピクセル以上とし、還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の全範囲に亘って撮影する。次いで、得られた各写真を、画像処理解析装置(ルーゼックスAP NIRECO製)を用いて、二値化処理した後、地肌が露出している部分を選択して面積率の測定を行う。面積率は、地肌が露出している部分の面積をXとし、その他の部分の面積をYとして、「(X/(X+Y))×100」の式により、求められる。得られた各写真について、上記方法で面積率を測定し、全写真の面積率の平均値を、露出率C(%)(還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の面積に対する、はつり除去を行う前に地肌が露出している還元反応容器の内面の面積の割合)とする。 In the present invention, is a method of calculating the "exposure factor C", before chipping removal, a photograph of the surface of the inner surface of the reduction reaction vessel at the top than the range of 50% below the total height of the reduction reaction vessel Take a picture. In this case, the shooting range of one field of view about 300 mm × 400 mm, the number of pixels and 1600 × 1200 pixels or more, the total of the inner surface of the reduction reaction vessel at the top than the range of 50% below the total height of the reduction reaction vessel Shoot over a range. Next, each of the obtained photographs is binarized using an image processing analysis device (manufactured by Luzex AP NIRECO), and then a portion where the background is exposed is selected and the area ratio is measured. The area ratio is obtained by the formula of "(X / (X + Y)) x 100", where X is the area of the portion where the background is exposed and Y is the area of the other portion. The area ratio of each of the obtained photographs was measured by the above method, and the average value of the area ratios of all the photographs was set to the exposure rate C (%) (above the range of 50% from the bottom with respect to the total height of the reduction reaction vessel). with respect to the surface the product of the inner surface of a reduction reaction vessel, the background is the ratio) of the surface product of the inner surface of the reduction reaction vessel which is exposed before performing the chipping removed.

また、本発明において、「露出率B」の算出方法であるが、はつり除去後に、還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の写真を撮影する。このとき、1視野の撮影範囲を約300mm×400mm、画素数を1600×1200ピクセル以上とし、還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の全範囲に亘って撮影する。次いで、得られた各写真を、画像処理解析装置(ルーゼックスAP NIRECO製)を用いて、二値化処理した後、地肌が露出している部分を選択して面積率の測定を行う。面積率は、地肌が露出している部分の面積をXとし、その他の部分の面積をYとして、「(X/(X+Y))×100」の式により、求められる。得られた各写真について、上記方法で面積率を測定し、全写真の面積率の平均値を、露出率B(%)(還元反応容器の全高に対して下から50%の範囲より上部にある還元反応容器の内面の面積に対する、はつり除去後に地肌が露出している還元反応容器の内面の面積の割合)とする。 Further, in the present invention is a method of calculating the "exposure factor B", after chipping removal, a photograph of the inner surface of the reduction reaction vessel at the top than the range of 50% below the total height of the reduction reaction vessel shooting do. In this case, the shooting range of one field of view about 300 mm × 400 mm, the number of pixels and 1600 × 1200 pixels or more, the total of the inner surface of the reduction reaction vessel at the top than the range of 50% below the total height of the reduction reaction vessel Shoot over a range. Next, each of the obtained photographs is binarized using an image processing analysis device (manufactured by Luzex AP NIRECO), and then a portion where the background is exposed is selected and the area ratio is measured. The area ratio is obtained by the formula of "(X / (X + Y)) x 100", where X is the area of the portion where the background is exposed and Y is the area of the other portion. The area ratio of each of the obtained photographs was measured by the above method, and the average value of the area ratios of all the photographs was set to the exposure rate B (%) (above the range of 50% from the bottom with respect to the total height of the reduction reaction vessel). with respect to the surface the product of the inner surface of a reduction reaction vessel, the background is the ratio) of the surface product of the inner surface of the reduction reaction vessel which is exposed after removal chipping.

本発明の高純度スポンジチタンの製造方法において、還元反応容器の溶融物抜出口が、還元反応容器の全高に対して下から5〜20%の範囲に位置していることが、抜出口より下に残留する溶融物の量を少なくすることができ、又は溶融物抜出口の閉塞の可能性を少なくすることができる点で、好ましい。 In the method for producing high-purity titanium sponge of the present invention, it is below the outlet that the melt outlet of the reduction reaction vessel is located in the range of 5 to 20% from the bottom with respect to the total height of the reduction reaction vessel. It is preferable in that the amount of the melt remaining in the melt can be reduced or the possibility of clogging of the melt outlet can be reduced.

本発明の高純度スポンジチタンの製造方法は、同じ還元反応容器を用いて、その還元反応容器の内面の減肉が進み、クラッド鋼のSUS側からのNi溶出が起き、使用に耐えられなくなるまで、繰り返し行われる。 In the method for producing high-purity titanium sponge of the present invention, using the same reduction reaction vessel, the inner surface of the reduction reaction vessel is thinned, Ni elution occurs from the SUS side of the clad steel, and it becomes unusable. , Repeatedly.

以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention.

(実施例1〜4及び比較例1〜2)
以下に示すスポンジチタンの製造条件にて還元反応を行った後、生成したスポンジチタン塊を抜き出し、冷却した後の還元反応容器に対して、表1に示す露出率となるように、はつり除去を行った。その際、はつり除去作業の負荷、及びその還元反応容器を用いてスポンジチタンを製造したときの高純度スポンジチタンの収率を求めた。
(Examples 1 to 4 and Comparative Examples 1 to 2)
After performing the reduction reaction under the following conditions for producing titanium sponge, the produced titanium sponge mass was extracted, and the reduction reaction vessel after cooling was removed by chipping so as to have the exposure rate shown in Table 1. went. At that time, the load of the chipping removal work and the yield of high-purity titanium sponge when sponge titanium was produced using the reduction reaction vessel were determined.

<スポンジチタンの製造条件>
真空分離後のスポンジチタンの重量:約7ton
反応容器の内径:φ1900mm
原料Mgの仕込み量:12000kg
還元反応終了後のマグネシウム、塩化マグネシウム抜出量:9500kg
真空分離時の反応容器外表面の温度:1000〜1050℃
真空分離時間:130時間
<Manufacturing conditions for titanium sponge>
Weight of titanium sponge after vacuum separation: Approximately 7 tons
Inner diameter of reaction vessel: φ1900 mm
Amount of raw material Mg charged: 12000 kg
Extraction amount of magnesium and magnesium chloride after completion of reduction reaction: 9500 kg
Temperature of the outer surface of the reaction vessel during vacuum separation: 1000-1050 ° C
Vacuum separation time: 130 hours

<高純度スポンジチタンの収率の計算方法>
はつり除去後の還元反応容器及びロストルを使用して、スポンジチタンを製造し、生成したスポンジチタンのうち、採取スポンジチタンに対するNiの含有量が0.5質量ppm以下のスポンジチタンの採取量の割合を、高純度スポンジチタンの収率として求めた。また、取り出し後のスポンジ塊の高さをH、直径をDとしたとき、スポンジ塊の上面については、上端から0.1Hに相当する位置から上側部分を、下面については、下端から0.1Hに相当する位置から下側部分を、外周については、外表面から半径方向に0.1Dに相当する位置から外側部分を、それぞれカットして除いた残りの部分を、採取スポンジチタン部分とした。その結果を表1に記載した。表1では、比較例1の高純度スポンジチタンの収率を1として、相対比も記載する。
なお、Niの含有量が0.5質量ppm以下のスポンジチタンの採取方法は、上記方法で採取した採取スポンジチタン部分を、約30kg毎に区分けし、それぞれのNi含有量を分析し、Ni含有量が0.5質量ppm以下の区分を、高純度スポンジチタンとして採取した。
<Calculation method of yield of high-purity titanium sponge>
Sponge titanium was produced using the reduction reaction vessel and rostrum after removing the shavings, and the ratio of the amount of sponge titanium collected with a Ni content of 0.5% by mass or less to the collected sponge titanium among the produced sponge titanium. Was determined as the yield of high-purity titanium sponge. When the height of the sponge mass after removal is H and the diameter is D, the upper surface of the sponge mass is 0.1H from the upper end, and the lower surface is 0.1H from the lower end. The lower part from the position corresponding to the above, and the outer part from the position corresponding to 0.1D in the radial direction from the outer surface of the outer circumference were cut and removed, and the remaining part was defined as the collected sponge titanium part. The results are shown in Table 1. In Table 1, the relative ratio is also shown with the yield of high-purity titanium sponge of Comparative Example 1 as 1.
In the method of collecting sponge titanium having a Ni content of 0.5 mass ppm or less, the collected sponge titanium portion collected by the above method is divided into about 30 kg units, the Ni content of each is analyzed, and the Ni content is contained. A section having an amount of 0.5 mass ppm or less was collected as high-purity titanium sponge.

<はつり除去作業負荷の算出方法>
はつり除去作業の実働時間を、はつり除去作業で要した時間とした。例えば、はつり除去作業が、複数回にまたがって行われた場合は、実際にはつり除去作業を行なった時間のみを合計した。表1に、比較例1のはつり除去作業で要した時間を1として、相対比を記載する。
<Calculation method of chipping removal workload>
The actual working time of the chipping removal work was defined as the time required for the chipping removal work. For example, when the chipping removal work was performed over a plurality of times, only the time during which the chipping removal work was actually performed was totaled. Table 1 shows the relative ratio, where 1 is the time required for the chipping removal work of Comparative Example 1.

Figure 0006908412
Figure 0006908412

Claims (2)

クロール法によるスポンジチタンの製造において、前回の還元反応のときに還元反応容器の内面及びロストルの表面に付着した付着チタンを除去するはつり除去を行った後、はつり除去が行われた還元反応容器を再使用して、クロール法によるスポンジチタンの製造を行う工程を有するNi含有量が0.5質量ppm以下の高純度スポンジチタンの製造方法であって、
該はつり除去では、該還元反応容器の全高に対して下から50%の範囲において、該還元反応容器の全高に対して下から50%の範囲に存在する該還元反応容器の内面及び該ロストルの表面の合計面積に対する、該はつり除去を行った後に地肌が露出している該還元反応容器の内面及び該ロストルの表面の合計面積の割合(平均露出率A)が、50%以上となり、且つ、該還元反応容器の全高に対して下から50%の範囲を除いた範囲において、該はつり除去を行った後の該還元反応容器の内面の地肌の露出率Bと、該はつり除去を行う前の前記還元反応容器の内面の地肌の露出率Cとの差(露出率B−露出率C)が、20%以下となるように、該付着チタンのはつり除去を行うこと、
該クロール法によるスポンジチタンの製造を行う工程を行い得られたスポンジチタン塊を取り出し、次いで、該スポンジチタン塊の高さをH、直径をDとしたとき、該スポンジチタン塊の上面については、上端から0.1H以上に相当する位置から上側部分を、下面については、下端から0.1H以上に相当する位置から下側部分を、外周については、外表面から半径方向に0.1D以上に相当する位置から外側部分を、それぞれカットして除いた残りの部分を採取すること、
を特徴とする高純度スポンジチタンの製造方法。
In the production of titanium sponge by the Kroll process, the reduction reaction vessel in which the shavings were removed after the shavings were removed to remove the adhered titanium adhering to the inner surface of the reduction reaction vessel and the surface of the rostrum during the previous reduction reaction. A method for producing high-purity titanium sponge having a Ni content of 0.5% by mass or less, which comprises a step of producing titanium sponge by the Kroll process by reusing.
In the removal of the suspension, the inner surface of the reduction reaction vessel and the rostrum which are present in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel and in the range of 50% from the bottom with respect to the total height of the reduction reaction vessel. The ratio (average exposure rate A) of the total area of the inner surface of the reduction reaction vessel and the surface of the rostrum whose skin is exposed after the removal of the suspension to the total area of the surface is 50% or more, and In the range excluding the range of 50% from the bottom with respect to the total height of the reduction reaction vessel, the exposure rate B of the inner surface of the reduction reaction vessel after the removal of the suspension and the exposure rate B of the inner surface of the reduction reaction vessel before the removal of the suspension. The adhesive titanium is removed by shaving so that the difference (exposure rate B-exposure rate C) from the exposure rate C of the inner surface of the inner surface of the reduction reaction vessel is 20% or less.
When the height of the titanium sponge lump was H and the diameter was D, the upper surface of the titanium sponge lump was taken out after taking out the sponge titanium lump obtained by performing the step of producing the titanium sponge by the Kroll process. The upper part from the position corresponding to 0.1H or more from the upper end, the lower part from the position corresponding to 0.1H or more from the lower end for the lower surface, and 0.1D or more in the radial direction from the outer surface for the outer circumference. Collecting the remaining part after cutting and removing the outer part from the corresponding position,
A method for producing high-purity titanium sponge, which is characterized by.
前記還元反応容器の溶融物抜出口が、前記還元反応容器の全高に対して下から5〜20%の範囲に位置していることを特徴とする請求項1記載の高純度スポンジチタンの製造方法。 The method for producing high-purity titanium sponge according to claim 1, wherein the melt outlet of the reduction reaction vessel is located in the range of 5 to 20% from the bottom with respect to the total height of the reduction reaction vessel. ..
JP2017072750A 2017-03-31 2017-03-31 Manufacturing method of titanium sponge Active JP6908412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072750A JP6908412B2 (en) 2017-03-31 2017-03-31 Manufacturing method of titanium sponge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072750A JP6908412B2 (en) 2017-03-31 2017-03-31 Manufacturing method of titanium sponge

Publications (2)

Publication Number Publication Date
JP2018172756A JP2018172756A (en) 2018-11-08
JP6908412B2 true JP6908412B2 (en) 2021-07-28

Family

ID=64107145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072750A Active JP6908412B2 (en) 2017-03-31 2017-03-31 Manufacturing method of titanium sponge

Country Status (1)

Country Link
JP (1) JP6908412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301590B2 (en) * 2019-04-26 2023-07-03 東邦チタニウム株式会社 A method for producing sponge titanium, and a method for producing titanium processed or cast products.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749409A (en) * 1987-08-31 1988-06-07 Hiroshi Ishizuka Method of purifying refractory metal
JP3432072B2 (en) * 1996-04-08 2003-07-28 新日本製鐵株式会社 Reaction vessel used for producing titanium sponge and method for producing the same
JP2001040433A (en) * 1999-07-30 2001-02-13 Sumitomo Sitix Of Amagasaki Inc Producing apparatus for high melting point metal and production thereof
JP3578394B2 (en) * 2000-02-03 2004-10-20 東邦チタニウム株式会社 Cleaning device for cylindrical objects
JP4405368B2 (en) * 2004-11-09 2010-01-27 株式会社大阪チタニウムテクノロジーズ Reduction reaction vessel and sponge titanium production method
JP2006265587A (en) * 2005-03-22 2006-10-05 Sumitomo Titanium Corp Method for producing high purity sponge titanium
KR100916187B1 (en) * 2007-08-28 2009-09-08 한국기계연구원 The Manufacturing Apparatus for High Purity of Sponge Titanium and the Same Method
JP4906121B2 (en) * 2008-07-02 2012-03-28 株式会社大阪チタニウムテクノロジーズ Sponge titanium manufacturing method
JP6914081B2 (en) * 2017-03-31 2021-08-04 東邦チタニウム株式会社 Manufacturing method of titanium sponge

Also Published As

Publication number Publication date
JP2018172756A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6914081B2 (en) Manufacturing method of titanium sponge
EP1845325B1 (en) Apparatus for melting metal by electron beams and process for producing high-melting metal ingot using this apparatus
JP6908412B2 (en) Manufacturing method of titanium sponge
JP6784746B2 (en) Manufacturing method of metal container or tube, sponge titanium, and manufacturing method of titanium processed product or cast product
JP2008190024A (en) Method for producing titanium sponge
JP6924120B2 (en) Manufacturing method of titanium sponge
JP6794598B2 (en) Manufacturing method of Ti—Al alloy
WO2018155658A1 (en) Method for producing ti-al alloy
JP2006265587A (en) Method for producing high purity sponge titanium
JP2014133939A (en) Method for producing titanium
JP6297404B2 (en) Method for producing sponge titanium and method for producing titanium ingot using the same
JP6621550B2 (en) Method for producing sponge titanium and sponge titanium, and method for producing titanium ingot or titanium alloy ingot
JP2020180358A (en) Manufacturing method of sponge titanium, and titanium product or manufacturing method of cast product
JP2004043946A (en) Method and device for manufacturing high purity metal
JP4309675B2 (en) Method for producing titanium alloy
JP2023050955A (en) Manufacturing method of sponge titanium
JP5796882B2 (en) Method for producing sponge titanium particles
Jang et al. Effects of compression molding on meltability of uranium dendrites for ingot consolidation in a pyroprocess
JP3782415B2 (en) High purity sponge titanium material and method for producing titanium ingot
JP6989394B2 (en) Manufacturing method of titanium sponge
US3269830A (en) Production of niobium from niobium pentachloride
JP7385486B2 (en) Manufacturing method of titanium sponge
US3663001A (en) Vacuum separator
JP7126972B2 (en) Method for removing Sn and method for producing Pb
JP4441278B2 (en) Titanium metal production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210701

R150 Certificate of patent or registration of utility model

Ref document number: 6908412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150