JP4405368B2 - Reduction reaction vessel and sponge titanium production method - Google Patents

Reduction reaction vessel and sponge titanium production method Download PDF

Info

Publication number
JP4405368B2
JP4405368B2 JP2004324498A JP2004324498A JP4405368B2 JP 4405368 B2 JP4405368 B2 JP 4405368B2 JP 2004324498 A JP2004324498 A JP 2004324498A JP 2004324498 A JP2004324498 A JP 2004324498A JP 4405368 B2 JP4405368 B2 JP 4405368B2
Authority
JP
Japan
Prior art keywords
reduction reaction
reaction vessel
titanium
molten
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004324498A
Other languages
Japanese (ja)
Other versions
JP2006131976A (en
Inventor
治幸 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2004324498A priority Critical patent/JP4405368B2/en
Publication of JP2006131976A publication Critical patent/JP2006131976A/en
Application granted granted Critical
Publication of JP4405368B2 publication Critical patent/JP4405368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、クロール法によるスポンジチタンの製造に係わる還元反応容器とそれを用いたスポンジチタンの製造方法に関し、さらに詳しくは、容器材料が耐酸化性を有する材料で構成され、寿命延長できる還元反応容器とそれを用いてスポンジチタンの品質向上を図るスポンジチタン製造方法に関するものである。   The present invention relates to a reduction reaction vessel related to the production of sponge titanium by the crawl method and a method of producing sponge titanium using the same, and more specifically, a reduction reaction in which the vessel material is composed of a material having oxidation resistance and can extend the life. The present invention relates to a container and a method for producing sponge titanium that uses the container to improve the quality of sponge titanium.

通常、クロール法によるスポンジチタンの製造において、還元反応容器に溶融状態のマグネシウム(本明細書では、単に「溶融Mg」という)を装入し、この溶融Mgに四塩化チタンを供給することで還元反応させて、チタンを生成し、塩化マグネシウムを副生する。副生した塩化マグネシウムは、溶融Mgより比重が大きいので還元反応容器の下方に溜まる。一方、チタンは粒状に生成し、還元反応容器の底部に設置したロストルと呼ばれる底板上に沈降堆積する。反応終了後、還元反応容器の下方部に溜まった塩化マグネシウムは、未反応の溶融Mgとともに、導管を通じて還元反応容器の底部から吸引され、他の容器に移される。   Normally, in the production of sponge titanium by the crawl method, the reduction reaction vessel is charged with molten magnesium (herein simply referred to as “molten Mg”), and the titanium is reduced by supplying titanium tetrachloride to the molten Mg. React to produce titanium and by-produce magnesium chloride. By-product magnesium chloride has a specific gravity greater than that of molten Mg, and therefore accumulates below the reduction reaction vessel. On the other hand, titanium is produced in a granular form and is deposited on a bottom plate called a rooster installed at the bottom of the reduction reaction vessel. After completion of the reaction, magnesium chloride accumulated in the lower part of the reduction reaction vessel is sucked from the bottom of the reduction reaction vessel through the conduit together with unreacted molten Mg and transferred to another vessel.

次に、この還元反応容器は、空の反応容器と連結配管で接続される。そして、還元反応容器と連結配管は、加熱される。このとき、還元反応容器内に残留した未反応の溶融Mgおよび塩化マグネシウムは、蒸発し、連結配管を経由して空の反応容器内に流入する。空の反応容器は、外部から冷却されており、流入した溶融Mgおよび塩化マグネシウムはこの反応容器内に凝縮する(本工程を「分離工程」という)。そして、加熱された還元反応容器には、沈降したチタンが底板上にスポンジ状の塊として残る。   Next, this reduction reaction vessel is connected to an empty reaction vessel by a connecting pipe. Then, the reduction reaction vessel and the connection pipe are heated. At this time, the unreacted molten Mg and magnesium chloride remaining in the reduction reaction vessel evaporate and flow into the empty reaction vessel via the connecting pipe. The empty reaction vessel is cooled from the outside, and the molten Mg and magnesium chloride that flowed in are condensed in the reaction vessel (this step is referred to as “separation step”). In the heated reduction reaction vessel, the precipitated titanium remains as a sponge-like lump on the bottom plate.

このようにして、スポンジチタンは、分離工程で、マグネシウムおよび塩化マグネシウムと分離され、冷却された後、還元反応容器から取り出され、切断され、破砕され、篩い分けられて製品となる。   In this way, the titanium sponge is separated from magnesium and magnesium chloride in the separation step, cooled, and then taken out from the reduction reaction vessel, cut, crushed and sieved into a product.

スポンジチタン中の不純物は、還元反応容器に装入される溶融Mgに含まれるFeなどの重金属、および還元反応容器の内表面が溶融Mgや塩化マグネシウムによって侵食されて溶出するFeなどの重金属が、溶融Mgと四塩化チタンとが還元反応する際に、一部が塩化物として生成することで生じる。また分離工程で、前記塩化物、および還元反応容器内面から溶出し溶融Mgおよび塩化マグネシウムに混入する重金属は、溶融Mgおよび塩化マグネシウムを蒸発除去する時にスポンジチタンに付着する。   Impurities in the sponge titanium are heavy metals such as Fe contained in molten Mg charged into the reduction reaction vessel, and heavy metals such as Fe that are eroded by molten Mg and magnesium chloride on the inner surface of the reduction reaction vessel, When molten Mg and titanium tetrachloride undergo a reductive reaction, a part is generated as a chloride. In the separation step, the chloride and the heavy metal eluted from the inner surface of the reduction reaction vessel and mixed into the molten Mg and magnesium chloride adhere to the sponge titanium when the molten Mg and magnesium chloride are removed by evaporation.

一方、溶融Mgに含まれるFeなどの重金属は、溶融Mgに四塩化チタンを供給して還元反応を生じる際に、還元反応初期に生成するスポンジチタンにゲッタリングされ、その後の溶融Mgは、Feなどの重金属が除かれた純度の高いものとなる。   On the other hand, heavy metals such as Fe contained in molten Mg are gettered to sponge titanium produced at the initial stage of the reduction reaction when titanium tetrachloride is supplied to molten Mg to cause a reduction reaction. It becomes a high purity product from which heavy metals such as are removed.

しかし、還元反応では、反応式が2Mg(液)+TiCl4(液)→Ti(固)+2MgCl2(液)であり、還元反応前の溶融Mgの液体容量に対し、ほぼ四塩化チタンの供給分、還元反応容器内の液体容量が増加することになり、還元反応容器の容積効率が良くない。そこで、通常の製造工程では、容積効率を良くし生産性を上げるために、上記の還元反応途中で、還元反応容器底部から塩化マグネシウムを抜き出し、さらに溶融Mgをあらたに追加装入して、還元反応を継続する方法を用いる。この場合、あらたに装入する溶融Mgに含まれる不純物に起因して、スポンジチタンの純度が悪化する。 However, in the reduction reaction, the reaction formula is 2Mg (liquid) + TiCl 4 (liquid) → Ti (solid) + 2MgCl 2 (liquid), and the supply amount of titanium tetrachloride is substantially equal to the liquid volume of molten Mg before the reduction reaction. The liquid capacity in the reduction reaction vessel increases, and the volumetric efficiency of the reduction reaction vessel is not good. Therefore, in the normal manufacturing process, in order to improve volumetric efficiency and increase productivity, magnesium chloride is extracted from the bottom of the reduction reaction vessel in the middle of the above reduction reaction, and molten Mg is additionally charged and reduced. Use a method to continue the reaction. In this case, the purity of the sponge titanium is deteriorated due to impurities contained in the molten Mg newly charged.

また、還元反応容器の内表面が溶融Mgや塩化マグネシウムによって侵食されて溶出するFeなどの不純物は、還元反応中および分離工程を通じ、スポンジチタンに付着、混入する。   Impurities such as Fe that are eluted by erosion of the inner surface of the reduction reaction vessel by molten Mg or magnesium chloride adhere to and mix with the sponge titanium during the reduction reaction and throughout the separation process.

前述のように、還元反応容器は、溶融Mgおよび塩化マグネシウムの蒸発時における高温、さらに溶融Mgとの接触や四塩化チタンなどの酸化雰囲気に曝されて還元反応容器材の成分が溶出する。具体的には、還元反応容器は、大気雰囲気で900℃前後の高温域に加熱され、さらに還元反応時間が、数十時間の長時間にわたって使用される。その間、還元反応容器には、自重および内容物の重量による応力および加熱または冷却による熱応力が付加され、さらにその外面は酸化して肉厚が薄くなるとともに、内面は、容器材の成分が溶出して溶損する。   As described above, the reduction reaction vessel is exposed to a high temperature during evaporation of molten Mg and magnesium chloride, and contact with molten Mg and an oxidizing atmosphere such as titanium tetrachloride, and the components of the reduction reaction vessel are eluted. Specifically, the reduction reaction vessel is heated to a high temperature range of about 900 ° C. in an air atmosphere, and the reduction reaction time is used for a long time of several tens of hours. Meanwhile, the reduction reaction vessel is subjected to stress due to its own weight and the weight of the contents, and thermal stress due to heating or cooling, and the outer surface is oxidized to reduce the thickness, and the components of the container material are eluted from the inner surface. Then it melts down.

不純物は、前述のように、還元反応初期にゲッタリングされてスポンジチタンに付着する。また、還元反応時に飛散した溶融Mgや塩化マグネシウム、四塩化チタンおよび生成したチタン粒子が還元反応容器内の上部に付着し、これらが還元反応後の分離工程を経て、スポンジチタンを取り出す際に、スポンジチタン上に落下、混入することがある。また、還元反応中では、還元反応容器から溶出した不純物は、チタンに付着して沈降する。容器内面から溶出する不純物による汚染は、スポンジチタン塊表面から進展するので不純物濃度はスポンジチタン塊の中心部に比較して周囲が高くなる。   As described above, the impurities are gettered at the beginning of the reduction reaction and adhere to the sponge titanium. In addition, when molten Mg, magnesium chloride, titanium tetrachloride, and generated titanium particles scattered during the reduction reaction are attached to the upper part of the reduction reaction vessel, and these take out a sponge titanium through a separation step after the reduction reaction, May fall and mix on sponge titanium. Further, during the reduction reaction, impurities eluted from the reduction reaction vessel adhere to titanium and precipitate. Contamination due to impurities eluted from the inner surface of the container progresses from the surface of the titanium sponge lump, so that the impurity concentration is higher at the periphery than the center of the sponge titanium lump.

このため、還元反応初期に底板上に沈降したチタン粒子および還元反応終期や分離工程で落下するチタン粒子、またはスポンジチタンの周囲にあり、特に不純物濃度が高いチタン粒子は、切断または破砕される前に取り除かれる。   For this reason, titanium particles that have settled on the bottom plate at the beginning of the reduction reaction, titanium particles that fall at the end of the reduction reaction or in the separation process, or titanium sponge, especially titanium particles with a high impurity concentration, are not cut or crushed. Removed.

以上のような環境で使用される還元反応容器は、生産規模の拡大に伴い大型化する際に、その材料として高温強度に優れたステンレス鋼を用いることで、その寿命を大きく延ばすことができる。スポンジチタンは、半導体用として高純度のものが使用されたり、また最近では展伸材などの用途にも高純度のものが要求されるようになり、ステンレス鋼中のクロム(Cr)やニッケル(Ni)および鉄(Fe)などの溶出に伴う重金属不純物の総量低減が求められるようになった。   When the reduction reaction vessel used in the environment as described above is enlarged as the production scale increases, the life of the reduction reaction vessel can be greatly extended by using stainless steel having excellent high-temperature strength as the material. High-purity titanium sponge is used for semiconductors, and recently, high-purity titanium is required for applications such as wrought materials. Chromium (Cr) and nickel ( Reduction of the total amount of heavy metal impurities accompanying elution of Ni) and iron (Fe) has been demanded.

そこで、高純度のスポンジチタンについては、還元反応容器の材料として、外面がSUS304などのステンレス鋼、直接溶融Mgなどと接触する内面が炭素鋼とする複合材、いわゆるクラッド鋼が使用されている。このように、還元反応容器にクラッド鋼が使用されることによって、スポンジチタンへのCrやNiといったステンレス鋼に多く含まれる成分からの汚染は低減できた。しかし、還元反応容器に使用するクラッド鋼は、例えば、ステンレス鋼と炭素鋼を爆着などによって貼り合わせたり、溶着したりするため、高価となる。これに対し、設備コストを低減するために、還元反応容器の長寿命化が求められている。   Therefore, for high-purity titanium sponge, a composite material in which the outer surface is stainless steel such as SUS304 and the inner surface that is in direct contact with molten Mg or the like, so-called clad steel, is used as the material for the reduction reaction vessel. Thus, by using clad steel for the reduction reaction vessel, contamination from components contained in a lot of stainless steel such as Cr and Ni to sponge titanium could be reduced. However, the clad steel used for the reduction reaction vessel is expensive because, for example, stainless steel and carbon steel are bonded or welded together by explosion or the like. On the other hand, in order to reduce the equipment cost, it is required to extend the life of the reduction reaction vessel.

また、一般工業用、機械加工用などに使用される展伸材などの一般用スポンジチタンについては、純度を高めようとする際に、上記のようなクラッド鋼を用いた還元反応容器を使用すれば、高純度のスポンジチタンが得られるので、従来の純度のスポンジチタンとの配合割合を変更することにより製造できるが、製造コストが大きく高騰する。そのため、製造コスト低減のため、設備費用が安価または設備寿命の長い還元反応容器を使用し、またスポンジチタンへの重金属汚染を低減することが求められている。   For general sponge titanium such as wrought material used for general industrial use and machining, use a reduction reaction vessel using clad steel as described above when attempting to increase purity. For example, since a high-purity sponge titanium can be obtained, it can be manufactured by changing the blending ratio with the conventional purity titanium sponge, but the manufacturing cost greatly increases. Therefore, in order to reduce the manufacturing cost, it is required to use a reduction reaction vessel having a low equipment cost or a long equipment life, and to reduce heavy metal contamination on sponge titanium.

これに対して、例えば、特許文献1では、ステンレス鋼またはクラッド鋼を使用する還元反応容器の長寿命化を図るため、上記のような大気雰囲気で高温かつ長時間、自重および内容物の重量による応力および加熱または冷却による熱応力を受ける環境のもとで、還元反応容器の外表面が損耗しやすい上半分を、Crを22%以上含有するフェライト系のステンレス鋼または耐熱鋼で、肉盛り溶接またはクラッド圧接した後還元反応容器に加工することにより補強しようとするものである。なお、このフェライト系のステンレス鋼または耐熱鋼は、耐酸化性や耐摩耗性に優れるものであることが示されている。   On the other hand, for example, in Patent Document 1, in order to extend the life of a reduction reaction vessel using stainless steel or clad steel, it depends on its own weight and the weight of contents at a high temperature and for a long time in the above atmospheric atmosphere. In an environment subject to stress and thermal stress due to heating or cooling, the upper half where the outer surface of the reduction reaction vessel tends to wear out is made of ferritic stainless steel or heat-resistant steel containing 22% or more of Cr, and overlay welding Or it is going to reinforce by processing into a reduction reaction container after clad pressure welding. It has been shown that this ferritic stainless steel or heat resistant steel is excellent in oxidation resistance and wear resistance.

しかしながら、特許文献1に記載されたように、SUS304やSUS316のようなオーステナイト系ステンレス鋼またはそれらを用いたクラッド鋼を用いる還元反応容器において、その外表面が損耗しやすい部分を肉盛り溶接またはクラッド圧接で補強しても、その補強に要する費用のため、設備費用が高騰または設備費用がさらに高価となり、その上、延びた寿命では、このような補強の費用を回収できるものでない。さらに、上記のようなステンレス鋼を用いる還元反応容器では、Fe、CrおよびNiを主とする重金属の不純物総量を低減することが困難である。   However, as described in Patent Document 1, in a reduction reaction vessel using an austenitic stainless steel such as SUS304 or SUS316 or a clad steel using the same, a portion where the outer surface is easily worn is welded or clad. Even if it is reinforced by pressure welding, the cost of the reinforcement increases the cost of the equipment or the cost of the equipment becomes more expensive. Moreover, the extended life cannot recover the cost of such reinforcement. Furthermore, in the reduction reaction vessel using stainless steel as described above, it is difficult to reduce the total amount of impurities of heavy metals mainly composed of Fe, Cr and Ni.

特開平09−272928号公報Japanese Patent Application Laid-Open No. 09-272928

従来のステンレス鋼を用いた還元反応容器やその外表面を補強する還元反応容器を用いて製造する場合は、上記のように、Fe、CrおよびNiなどの重金属の不純物の総量を低減するのが難しい。また、ステンレス鋼と炭素鋼を用いたクラッド鋼を還元反応容器に使用する場合、クラッド鋼自体が高価であり、またそのクラッド鋼の成形や加工にコストが掛かり、その上、補強するとなればさらに設備費用が高騰する。   When manufacturing using a conventional reduction reaction vessel using stainless steel or a reduction reaction vessel that reinforces its outer surface, the total amount of impurities of heavy metals such as Fe, Cr and Ni can be reduced as described above. difficult. In addition, when using a clad steel made of stainless steel and carbon steel for a reduction reaction vessel, the clad steel itself is expensive, and it costs more to form and process the clad steel. Equipment costs rise.

本発明は、上記の状況に鑑みてなされたものであり、従来のステンレス鋼の代わりに本発明で提案するステンレス鋼を還元反応容器に用いることにより、設備費用の高騰を招かずに還元反応容器の長寿命化を図ることができ、さらに生成するスポンジチタン中の不純物を低減できる還元反応容器、およびその還元反応容器を用いて純度の高いスポンジチタンを製造する方法を提供することを目的としている。   The present invention has been made in view of the above situation, and by using the stainless steel proposed in the present invention for the reduction reaction vessel instead of the conventional stainless steel, the reduction reaction vessel is not incurred without increasing the equipment cost. It is an object of the present invention to provide a reduction reaction vessel capable of prolonging the life of the product and further reducing impurities in the produced sponge titanium, and a method for producing high-purity sponge titanium using the reduction reaction vessel. .

本発明は、上記の目的を達成するためになされたものであり、下記(1)の還元反応容器、および(2)のスポンジチタン製造方法を要旨としている。
The present invention has been made in order to achieve the above object, and the gist of the present invention is the following (1) reduction reaction vessel and (2) a method for producing sponge titanium.

(1)四塩化チタンを溶融Mgによって還元反応させ、さらに還元反応の途中で、生成した塩化マグネシウムを外部に抜き出し、その後あらたにその内部に溶融Mgを装入して、再度還元反応させることによりスポンジチタンを製造する際に用いる還元用の反応容器であって、その構成材料が、質量%でC:0.05〜0.15%、Cr:20〜30%、Ni:10〜15%およびLa+Ce:0.06〜0.1%を含有し、残部がFeおよび不可避的不純物からなり、1000℃の大気雰囲気中で200時間の連続酸化試験した際に、表面の酸化増量が12g/m 2 以下であるステンレス鋼であることを特徴とする還元反応容器。
(1) the titanium tetrachloride is the reduction reaction by melt Mg, further in the course of the reduction reaction, extracted resulting magnesium chloride to the outside, and then charged with newly inside the molten Mg, by reduction reaction again A reduction reaction vessel used for producing titanium sponge, the constituent materials of which are C: 0.05 to 0.15% by mass, Cr: 20 to 30%, Ni: 10 to 15% and La + Ce: 0.06 to 0.1% is contained, the balance is Fe and inevitable impurities, and the surface oxidation increase is 12 g / m 2 when a continuous oxidation test is conducted in an air atmosphere at 1000 ° C. for 200 hours. A reduction reaction vessel characterized by being stainless steel as follows .

(2)クロール法によりスポンジチタンを製造する方法において、四塩化チタンを溶融Mgによって還元反応させる反応容器として、前記(1)に記載の還元反応容器を用い、さらに還元反応の途中で、前記還元反応容器内に生成した塩化マグネシウムを抜き出し、その後あらたに前記還元反応容器に溶融Mgを装入して、再度還元反応させることを特徴とするスポンジチタン製造方法である。
(2) In the method for producing sponge titanium by the crawl method, the reduction reaction vessel described in (1) above is used as a reaction vessel for reducing titanium tetrachloride with molten Mg, and the reduction is performed during the reduction reaction. This is a method for producing sponge titanium, characterized in that magnesium chloride produced in a reaction vessel is extracted, and thereafter molten Mg is newly charged into the reduction reaction vessel to cause a reduction reaction again.

本発明で規定する「酸化増量」とは、ステンレス鋼の耐酸化性の指標であって、大気中で高温、かつ長時間連続維持し、また常温とその高温の間で加熱と冷却とを繰り返すとき、ステンレス鋼中のMn、Si、Alなどの成分が酸化し、スケールとして表面を覆って重量が増加し、また高温でステンレス鋼中のC、N、Bなどの成分が酸化蒸発して減量することにより、その表面積当たりの重量増減を数値で示されるものである。   “Oxidation increase” defined in the present invention is an index of oxidation resistance of stainless steel, and is continuously maintained at a high temperature in the atmosphere for a long time, and heating and cooling are repeated between normal temperature and the high temperature. When components such as Mn, Si, and Al in stainless steel oxidize and cover the surface as a scale, the weight increases. Also, components such as C, N, and B in stainless steel oxidize and evaporate at high temperatures and lose weight. By doing so, the weight increase / decrease per surface area is indicated by a numerical value.

本発明の還元反応容器および製造方法によれば、通常のSUS304やSUS316(例えば、JIS記号表示のSUS304、SUS316)などのステンレス鋼を使用した還元反応容器と比較して材料費が少し割高であるが設備費用に大きな差がなく、また本発明の還元反応容器を用いてクロール法によりスポンジチタンを製造する際に、還元反応容器の外表面での減肉を低減できるので長期間の使用に耐え、また内表面での溶融Mgや塩化マグネシウムの溶出に起因する溶損が低減できるので、Feをはじめ、CrやNiなどの重金属がスポンジチタン中に不純物として混入するのを抑制できる。   According to the reduction reaction vessel and the production method of the present invention, the material cost is slightly higher than that of a reduction reaction vessel using stainless steel such as normal SUS304 or SUS316 (for example, SUS304 or SUS316 indicated by JIS symbol). However, there is no significant difference in equipment costs, and when producing sponge titanium by the crawl method using the reduction reaction container of the present invention, the thinning on the outer surface of the reduction reaction container can be reduced, so it can withstand long-term use. In addition, since melting loss caused by elution of molten Mg and magnesium chloride on the inner surface can be reduced, it is possible to suppress the mixing of heavy metals such as Fe, Cr and Ni as impurities into the sponge titanium.

上記で規定した本発明の還元反応容器およびスポンジチタン製造方法について、その内容を説明する。   The contents of the reduction reaction container and the titanium sponge production method of the present invention defined above will be described.

本発明の還元反応容器は、その構成する材料が、1000℃の大気雰囲気中で200時間の連続酸化試験した際に、表面の酸化増量を12g/m2以下とするステンレス鋼である。このようなステンレス鋼には、一例として、その成分組成が、質量%でC:0.05〜0.15%、Cr:20〜30%、Ni:10〜15%およびLa+Ce:0.06〜0.1%の高温用オーステナイト系ステンレス鋼がある。そして、このような成分組成の範囲では、上記酸化試験で表面の酸化増量を12g/m2以下にすることができるので、外表面の減肉速度(以下、「外面減肉速度」という)が大幅に低減できるだけでなく、溶融Mgや塩化マグネシウムに対して耐食性があり、Cr、NiおよびFeなどの重金属をはじめその他の金属成分などの溶出にともなう内表面の減肉速度(以下、「内面減肉速度」という)を低減できるからである。さらに、炭素鋼とともにクラッド鋼としたとき、還元反応容器の寿命を延長することができる。 The material constituting the reduction reaction container of the present invention is stainless steel whose surface oxidation increase is 12 g / m 2 or less when subjected to a continuous oxidation test for 200 hours in an air atmosphere at 1000 ° C. As an example, such a stainless steel has a composition of C: 0.05 to 0.15%, Cr: 20 to 30%, Ni: 10 to 15%, and La + Ce: 0.06 to mass%. There is 0.1% high temperature austenitic stainless steel. In such a component composition range, the surface oxidation increase can be made 12 g / m 2 or less in the above oxidation test, so that the outer surface thinning rate (hereinafter referred to as “outer surface thinning rate”) is reduced. Not only can it be significantly reduced, but it is also corrosion resistant to molten Mg and magnesium chloride, and the rate of thinning of the inner surface due to the elution of heavy metals such as Cr, Ni and Fe and other metal components (hereinafter referred to as “reduction of the inner surface”). This is because the “meat speed” can be reduced. Further, when the clad steel is used together with the carbon steel, the life of the reduction reaction vessel can be extended.

本発明における減肉速度の定義について説明すると、外面減肉速度および内面減肉速度は、加熱、還元、分離および冷却等を所定の回数、例えば、10回繰り返したとき、還元反応容器の外表面の減肉量および内表面の減肉量で表す。   The definition of the thinning rate in the present invention will be described. The outer surface thinning rate and the inner surface thinning rate are determined by repeating the heating, reduction, separation, cooling, and the like a predetermined number of times, for example, 10 times. It is expressed by the amount of thinning and the amount of thinning of the inner surface.

上記のような本発明の還元反応容器に用いるステンレス鋼(以下、「本発明ステンレス鋼」という)は、上記のように、高温の耐酸化性、耐食性、耐摩耗性およびクリープ特性が優れており、外表面での耐酸化性による減肉と、内表面での溶融Mgや塩化マグネシウムに起因する組成成分の溶出に伴う減肉が低減できる上、価格が通常のSUS304のようなステンレス鋼と比較して特に高価でない。また、還元反応容器の加工費用はステンレス鋼の種類に依存しないので、還元反応容器の設備費用には、大差がない。   The stainless steel (hereinafter referred to as “the present invention stainless steel”) used in the reduction reaction vessel of the present invention as described above has excellent high-temperature oxidation resistance, corrosion resistance, wear resistance, and creep properties as described above. In addition, it can reduce the thinning due to oxidation resistance on the outer surface and the thinning due to elution of composition components due to molten Mg and magnesium chloride on the inner surface, and the price is compared with stainless steel like SUS304 And not particularly expensive. Moreover, since the processing cost of the reduction reaction vessel does not depend on the type of stainless steel, there is no great difference in the equipment cost of the reduction reaction vessel.

本発明において、還元反応容器に用いるステンレス鋼の表面の酸化増量を12g/m2以下としたのは、いわゆるSUS304やSUS316を用いる還元反応容器と比較して、表面の酸化増量が少ないので、外面減肉速度が大幅に低減できるためである。 In the present invention, the increase in oxidation on the surface of the stainless steel used in the reduction reaction vessel is 12 g / m 2 or less because the increase in oxidation on the surface is small compared to the reduction reaction vessel using so-called SUS304 or SUS316. This is because the thinning rate can be greatly reduced.

本発明でいう高純度チタンスポンジは、半導体製造に用いるもので、その含有する重金属の総量が10ppm以下のものとする。また、一般工業用、機械加工用などに使用される展伸材などの一般用スポンジチタンは、その含有する重金属の総量が5000ppm以下のものとする。   The high-purity titanium sponge referred to in the present invention is used for semiconductor production, and the total amount of heavy metals contained is 10 ppm or less. Further, general sponge titanium such as wrought material used for general industrial use, machining, etc. has a total amount of heavy metals contained of 5000 ppm or less.

以下に、本発明の還元反応容器を用いてクロール法によりスポンジチタンを製造する場合と、SUS304やSUS316を用いた還元反応容器を使用する場合と、その作用および効果の違いを比較する。   Below, the case where sponge titanium is manufactured by the crawl method using the reduction reaction container of the present invention and the case where the reduction reaction container using SUS304 or SUS316 is used are compared in the difference in action and effect.

まず、還元反応容器の外表面の減肉について、上述のように、本発明ステンレス鋼は、高温での耐酸化性が優れているので、高温の大気雰囲気において、スポンジチタンの還元反応容器に用いて、外面減肉速度が大幅に低減できる。後述する実施例では、SUS304やSUS316を用いた還元反応容器と比較して、外面減肉速度がほぼ半分になり、寿命が40%も延びる。そして、内表面での減肉について、上述のように、本発明ステンレス鋼は、耐食性に優れており、溶融Mgや塩化マグネシウムによる溶損が低減できるので、SUS304やSUS316を用いた還元反応容器を使用する場合と比較して、内面減肉速度がほぼ80%になる。そのため、スポンジチタンに含まれるFeをはじめCrおよびNiなどの重金属の不純物を低減できる。このようにして、従来のSUS304やSUS316を用いる還元反応容器を使用した場合に、スポンジチタンに含まれるFe、CrおよびNiの総量は、8〜13%低減することができる。   First, regarding the thinning of the outer surface of the reduction reaction vessel, as described above, the stainless steel of the present invention is excellent in oxidation resistance at high temperatures, so that it is used in a reduction reaction vessel for sponge titanium in a high temperature atmosphere. Thus, the outer surface thinning rate can be greatly reduced. In the examples described later, compared to the reduction reaction vessel using SUS304 or SUS316, the outer surface thinning rate is almost halved and the life is extended by 40%. As described above, the stainless steel of the present invention is excellent in corrosion resistance and can reduce melting damage due to molten Mg or magnesium chloride. Therefore, a reduction reaction vessel using SUS304 or SUS316 is used. Compared with the case of using, the inner wall thinning rate is approximately 80%. Therefore, heavy metal impurities such as Fe, Cr, and Ni contained in sponge titanium can be reduced. Thus, when the conventional reduction reaction vessel using SUS304 or SUS316 is used, the total amount of Fe, Cr and Ni contained in the sponge titanium can be reduced by 8 to 13%.

次に、還元反応の途中で、還元反応容器から生成した塩化マグネシウムを抜き出し、その後あらたに還元反応容器に溶融Mgを装入して、再度還元反応させる場合と、上記のような還元反応を一度で行う場合と、その作用および効果を比較する。この再度還元反応させる場合においても、還元反応容器の外表面や内表面の使用環境は、ほとんど差がない。 還元反応容器の減肉について、還元反応時間が塩化マグネシウムの抜き出しや溶融Mgの装入に要し長くなるので、外表面の減肉量が増加し、外面減肉速度は大きくなる。また、還元反応の途中で溶融Mgを追加装入するため、内表面での減肉量が増加するので、内面減肉速度も大きくなる。従来のSUS304やSUS316を用いる還元反応容器を使用し、上記のような還元反応の途中で塩化マグネシウムの抜き出しと溶融Mgの装入を行うことによって、スポンジチタン中のFe、CrおよびNiの総量は、13%程度低減でき、純度の高い一般用スポンジチタンを容易に製造することができる。   Next, in the middle of the reduction reaction, the magnesium chloride produced from the reduction reaction vessel is extracted, and then the molten Mg is newly charged into the reduction reaction vessel to cause the reduction reaction again. Compare the actions and effects with those in Even when the reduction reaction is performed again, there is almost no difference in the usage environment of the outer surface and inner surface of the reduction reaction vessel. As for the reduction in the thickness of the reduction reaction vessel, the reduction reaction time becomes longer due to the extraction of magnesium chloride and the charging of molten Mg. In addition, since molten Mg is additionally charged during the reduction reaction, the amount of thinning on the inner surface increases, so that the inner surface thinning rate also increases. By using a conventional reduction reaction vessel using SUS304 or SUS316 and extracting magnesium chloride and charging molten Mg during the reduction reaction as described above, the total amount of Fe, Cr and Ni in the sponge titanium is Therefore, it is possible to easily produce a sponge titanium for general use with high purity.

また、本発明のクラッド鋼を使用した還元反応容器と、SUS304やSUS316をその外表面に、炭素鋼をその内表面とするクラッド鋼を用いた還元反応容器とで、その作用および効果を比較すると、高純度チタンを製造する場合に、Fe、CrおよびNiなどの重金属の総量は、ほとんど差はないが、クラッド鋼とした本発明の還元反応容器は、SUS304やSUS316を用いてクラッド鋼とした還元反応容器と比較して、寿命を大きく延長できる。   In addition, when the reduction reaction vessel using the clad steel of the present invention and the reduction reaction vessel using clad steel with SUS304 or SUS316 as the outer surface and carbon steel as the inner surface, the action and effect are compared. When producing high-purity titanium, the total amount of heavy metals such as Fe, Cr and Ni is almost the same, but the reduction reaction vessel of the present invention which is clad steel is clad steel using SUS304 or SUS316. Compared with the reduction reaction vessel, the life can be greatly extended.

本発明における減肉速度および寿命の評価方法について、以下に説明する。   The method for evaluating the thinning rate and life in the present invention will be described below.

減肉速度の評価は、SUS304を用いる還元反応容器を、還元反応途中で塩化マグネシウムの抜き出しと、溶融Mgの追加装入しない場合の還元反応容器の外面減肉速度および内面減肉速度を100とし、本発明の還元反応容器とSUS316を用いる還元反応容器でのそれぞれの減肉速度を相対的に示す。   For the evaluation of the thinning rate, the reduction reaction vessel using SUS304 was set to 100 for the outer wall thinning rate and the inner wall thinning rate of the reduction reaction vessel when magnesium chloride was withdrawn during the reduction reaction and no additional molten Mg was added. The relative thinning rates of the reduction reaction container of the present invention and the reduction reaction container using SUS316 are relatively shown.

また、還元反応容器の寿命は、最も損耗の激しい部分の肉厚が、高温強度として必要な材料の肉厚の1.2倍になったときをその寿命としている。そして、還元反応容器製作時の肉厚は、高温強度として必要な材料の肉厚の2.4倍とした。そして、寿命の評価は、SUS304を用いる還元反応容器を、還元反応途中で塩化マグネシウムの抜き出しと、溶融Mgの追加装入しない場合の寿命を100とし、本発明の還元反応容器とSUS316を用いる還元反応容器の寿命を相対的に示す。   The lifetime of the reduction reaction vessel is defined as the lifetime when the thickness of the most worn portion becomes 1.2 times the thickness of the material required for high temperature strength. And the thickness at the time of manufacture of a reduction reaction container was 2.4 times the thickness of the material required as high temperature strength. In the evaluation of the lifetime, the reduction reaction vessel using SUS304 is set to 100 when the magnesium chloride is withdrawn during the reduction reaction and the molten Mg is not additionally charged, and the reduction reaction vessel using the reduction reaction vessel of the present invention and SUS316 is used. The relative life of the reaction vessel is shown.

なお、炭素鋼を内表面に使用したクラッド鋼を用いる還元反応容器では、炭素鋼が高温時に有する強度をほとんど期待できないので、ステンレス鋼の肉厚をもとに評価する。また、寿命を判定する際に、使用中に急激な変形や割れが発生し、事故の恐れが生じる可能性があるなど危険と判断される場合、また上記の寿命前であっても、使用中に発生した変形が矯正できない程度にまで大きくなった場合にも寿命と判断するが、この場合は使用回数の評価をしない。   In addition, since the reduction | restoration reaction container using the clad steel which used carbon steel for the inner surface cannot expect the intensity | strength which carbon steel has at high temperature, it evaluates based on the thickness of stainless steel. Also, when judging the life, if it is judged as dangerous, such as sudden deformation or cracking during use, which may cause an accident, or even before the above life The life is also judged when the deformation that has occurred is too large to correct, but in this case, the number of uses is not evaluated.

また、スポンジチタン中の、Fe、CrおよびNiなどの重金属の総量は、還元反応初期に底板上に沈降したチタン粒子および還元反応終期や分離工程で落下するチタン粒子、またはスポンジチタンの周囲にあり、特に不純物濃度が高いチタン粒子を除いた部分のスポンジチタンを破砕し、整粒した後、無作為に複数点をサンプリングして濃度を測定し、その平均濃度で比較する。この重金属の総量の評価は、SUS304を用いる還元反応容器を使用し、前述のように、塩化マグネシウム還元反応容器の底部から塩化マグネシウムを抜き出し、さらに溶融Mgをあらたに追加装入して、還元反応を継続する場合のFe、CrおよびNiなどの重金属の総量を100とした相対的に示す。 Also, the total amount of heavy metals such as Fe, Cr and Ni in the titanium sponge is around the titanium particles that settled on the bottom plate at the beginning of the reduction reaction and the titanium particles that fall at the end of the reduction reaction or in the separation process, or the sponge titanium. In particular, a portion of titanium sponge excluding titanium particles having a high impurity concentration is crushed and sized, then a plurality of points are randomly sampled to measure the concentration, and the average concentration is compared. For the evaluation of the total amount of heavy metals, a reduction reaction vessel using SUS304 was used, and as described above, magnesium chloride was extracted from the bottom of the magnesium chloride reduction reaction vessel, and molten Mg was additionally added to the reduction reaction. The relative amount is shown with the total amount of heavy metals such as Fe, Cr, and Ni in the case of continuing to 100 being 100.

以下に、本発明の還元反応容器およびスポンジチタン製造方法が発揮する効果を、説明する。   Below, the effect which the reduction reaction container and sponge titanium manufacturing method of this invention exhibit is demonstrated.

外径を2m、長さを5mとした肉厚30mmとする還元反応容器を、本発明ステンレス鋼、JIS記号SUS304およびSUS316の試験材で製作し、下記のような試験条件で10tバッチのスポンジチタンを製造する試験を行った。   A reduction reaction vessel having an outer diameter of 2 m and a length of 5 m and a wall thickness of 30 mm was manufactured with the stainless steel of the present invention, JIS symbols SUS304 and SUS316, and a 10-ton batch of titanium sponge under the following test conditions. The test which manufactures was conducted.

試験に使用した本発明ステンレス鋼の化学組成(単位%)は、C:0.07、Si:0.37、Mn:0.56、P:0.026、S:0.001、Ni:11.27、Cr:23.16、Al:0.10、およびLa+Ce:0.03で、残部が実質的にFeおよび不可避的不純物である。   The chemical composition (unit%) of the stainless steel of the present invention used for the test is C: 0.07, Si: 0.37, Mn: 0.56, P: 0.026, S: 0.001, Ni: 11 .27, Cr: 23.16, Al: 0.10, and La + Ce: 0.03, the balance being substantially Fe and inevitable impurities.

そして、SUS304の化学組成は、C:0.002、Si:0.43、Mn:1.20、P:0.032、S:0.004、Ni:8.35およびCr:18.40であり、またSUS316の化学組成は、C:0.004、Si:0.63、Mn:0.89、P:0.034、S:0.001、Ni:10.50、Cr:16.75およびMo:2.06であり、残部が実質的にFeおよび不可避的不純物である。   The chemical composition of SUS304 is C: 0.002, Si: 0.43, Mn: 1.20, P: 0.032, S: 0.004, Ni: 8.35, and Cr: 18.40. Yes, and the chemical composition of SUS316 is C: 0.004, Si: 0.63, Mn: 0.89, P: 0.034, S: 0.001, Ni: 10.50, Cr: 16.75. And Mo: 2.06, the balance being substantially Fe and inevitable impurities.

試験条件は、還元反応容器内をアルゴンガスで置換した後、加熱し、溶融Mgを装入し、900℃前後で連続して還元反応に使用し、その後1040℃前後で90Hr連続して溶融Mgや塩化マグネシウムの蒸発分離に使用し、その後常温まで冷却してスポンジチタンを取り出し、さらに整備された後再度還元反応に使用することを寿命まで繰り返した。   The test conditions were that the inside of the reduction reaction vessel was replaced with argon gas, then heated, charged with molten Mg, continuously used for the reduction reaction at around 900 ° C., and then molten Mg continuously at around 1040 ° C. for 90 hours. It was used for evaporative separation of magnesium chloride and then cooled to room temperature, and sponge titanium was taken out. After further maintenance, it was used again for the reduction reaction until the end of its life.

また、還元反応の途中で、還元反応容器の底部から塩化マグネシウムを抜き出し、さらに溶融Mgを追加装入して、還元反応を再開する工程を、2度行った場合を試験し、比較した。この場合の還元反応時間は、100Hrである。   Further, in the course of the reduction reaction, magnesium chloride was extracted from the bottom of the reduction reaction vessel, molten Mg was additionally charged, and the process of restarting the reduction reaction was tested twice and compared. In this case, the reduction reaction time is 100 Hr.

試験に際して、本発明ステンレス鋼、SUS304およびSUS316の表面の酸化増量を調査したところ、それぞれ7〜12g/m2、32g/m2以上および30g/m2以上であった。 In tests, the present invention stainless steel, were investigated oxidation weight gain of the surface of SUS304 and SUS316, were respectively 7~12g / m 2, 32g / m 2 or more and 30 g / m 2 or more.

表1は、還元反応中に、塩化マグネシウムの抜き出しや溶融Mgの追加装入を行わない場合に、本発明の還元反応容器、並びに、SUS304およびSUS316を用いる還元反応容器を使用して試験した際の、外面減肉速度、内面減肉速度、寿命およびFe、CrおよびNiなどの重金属の総量の相対比較をしたものである。   Table 1 shows that when a reduction reaction vessel of the present invention and a reduction reaction vessel using SUS304 and SUS316 were used and tested when magnesium chloride was not extracted or molten Mg was not additionally charged during the reduction reaction. The relative comparison of the outer surface thinning rate, the inner surface thinning rate, the life, and the total amount of heavy metals such as Fe, Cr and Ni.

Figure 0004405368
Figure 0004405368

表1では、外面減肉速度について、本発明の還元反応容器の相対値は、SUS304を用いた還元反応容器と比較して、半減する。また、内面減肉速度について、本発明の還元反応容器では、SUS304を用いた還元反応容器と比較して、相対値が80に低減した。   In Table 1, the relative value of the reduction reaction container of the present invention is reduced by half as compared with the reduction reaction container using SUS304 with respect to the outer surface thinning rate. Further, regarding the inner surface thinning rate, the relative value of the reduction reaction container of the present invention was reduced to 80 as compared with the reduction reaction container using SUS304.

寿命については、外面減肉速度の改善に伴い、相対値が140と大きく延びる。重金属の総量について、後述する表2のSUS304を用いた還元反応容器が、還元反応途中に塩化マグネシウムの抜き出しや溶融Mgの追加装入をする場合を100としたときの相対値で70になるが、本発明の還元反応容器では、さらに65となり大きく向上する。   Regarding the life, the relative value greatly increases with 140 as the outer surface thinning rate is improved. Regarding the total amount of heavy metals, the reduction reaction vessel using SUS304 in Table 2 to be described later has a relative value of 70 when the case where magnesium chloride is extracted or molten Mg is additionally charged during the reduction reaction is 70. In the reduction reaction container of the present invention, it is further improved to 65.

また、表2は、還元反応途中に、塩化マグネシウムの抜き出しや溶融Mgの追加装入をする場合に、本発明の還元反応容器、並びに、SUS304およびSUS316を用いる還元反応容器を使用して試験した際の、外面減肉速度、内面減肉速度、寿命およびFe、CrおよびNiなどの重金属の総量を相対比較したものである。   Table 2 shows that the reduction reaction vessel of the present invention and the reduction reaction vessel using SUS304 and SUS316 were tested when magnesium chloride was extracted or molten Mg was additionally charged during the reduction reaction. In this case, the outer surface thinning rate, the inner surface thinning rate, the life, and the total amount of heavy metals such as Fe, Cr and Ni are relatively compared.

Figure 0004405368
Figure 0004405368

次に、外径および長さを上記の還元反応容器と同じとし、本発明ステンレス鋼、SUS304およびSUS316の肉厚を28mmとし、また炭素鋼の肉厚を9mmとするクラッド鋼を用いる還元反応容器を製作し、下記のような試験条件で10tバッチのスポンジチタンを製造する試験を行った。   Next, a reduction reaction vessel using clad steel having the same outer diameter and length as the above reduction reaction vessel, the stainless steel of the present invention, SUS304 and SUS316 having a thickness of 28 mm, and carbon steel having a thickness of 9 mm And a test for producing a 10-t batch of sponge titanium under the following test conditions was conducted.

試験条件は、上記の還元反応中に、塩化マグネシウムの抜き出しや溶融Mgの追加装入を行わない場合と同じとした。この場合、還元反応容器の寿命は、外面減肉速度によって決まるので、前述の表1に示す寿命と同様に、SUS304やSUS316を用いたクラッド鋼を使用した還元反応容器と比較して、寿命が大きく改善した。   The test conditions were the same as when magnesium chloride was not extracted or molten Mg was not additionally charged during the above reduction reaction. In this case, since the life of the reduction reaction vessel is determined by the outer surface thinning rate, the life of the reduction reaction vessel is longer than that of the reduction reaction vessel using the clad steel using SUS304 or SUS316, similarly to the life shown in Table 1 above. Greatly improved.

本発明の還元反応容器によれば、還元反応容器を構成する材料が、1000℃の大気雰囲気中で200時間の連続酸化試験した際に、表面の酸化増量が12g/m2以下とする高温の耐酸化性、耐食性、耐摩耗性およびクリープ特性に優れるステンレス鋼とすることで、従来のステンレス鋼を用いる還元反応容器より寿命が長くできる。また、本発明の還元反応容器を用いてクロール法によりスポンジチタンを製造すれば、還元反応容器が長寿命なので製造コストが低減でき、スポンジチタン中にFeをはじめCrやNiなどが不純物として溶出するのが抑制できる。これにより、本発明の還元反応容器およびスポンジチタン製造方法は、純度の高いスポンジチタンの製造において広く適用することができる。
According to the reduction reaction container of the present invention, when the material constituting the reduction reaction container is subjected to a continuous oxidation test for 200 hours in an air atmosphere at 1000 ° C., the surface oxidation increase is 12 g / m 2 or less. By making the stainless steel excellent in oxidation resistance, corrosion resistance, wear resistance and creep properties, the life can be made longer than a reduction reaction vessel using conventional stainless steel. In addition, if sponge titanium is produced by the crawl method using the reduction reaction vessel of the present invention, the reduction reaction vessel has a long life, so that the production cost can be reduced, and Fe, Cr, Ni, etc. are eluted as impurities in the sponge titanium. Can be suppressed. Thereby, the reduction reaction container and the sponge titanium production method of the present invention can be widely applied in the production of high-purity sponge titanium.

Claims (2)

四塩化チタンを溶融Mgによって還元反応させ、さらに還元反応の途中で、生成した塩化マグネシウムを外部に抜き出し、その後あらたにその内部に溶融Mgを装入して、再度還元反応させることによりスポンジチタンを製造する際に用いる還元用の反応容器であって、
その構成材料が、質量%でC:0.05〜0.15%、Cr:20〜30%、Ni:10〜15%およびLa+Ce:0.06〜0.1%を含有し、残部がFeおよび不可避的不純物からなり、1000℃の大気雰囲気中で200時間の連続酸化試験した際に、表面の酸化増量が12g/m 2 以下であるステンレス鋼であることを特徴とする還元反応容器。
Titanium tetrachloride is the reduction reaction by molten Mg, further in the course of the reduction reaction, extracted resulting magnesium chloride to the outside, followed by charged newly molten Mg therein, the sponge titanium by reduction again A reaction vessel for reduction used in production,
The constituent material contains C: 0.05 to 0.15% by mass, Cr: 20 to 30%, Ni: 10 to 15% and La + Ce: 0.06 to 0.1%, with the balance being Fe. And a reduction reaction vessel characterized in that it is made of stainless steel, which is made of inevitable impurities and has a surface oxidation increase of 12 g / m 2 or less when subjected to a continuous oxidation test for 200 hours in an air atmosphere at 1000 ° C.
クロール法によりスポンジチタンを製造する方法において、四塩化チタンを溶融Mgによって還元反応させる反応容器として、請求項1に記載の還元反応容器を用い、さらに還元反応の途中で、前記還元反応容器内に生成した塩化マグネシウムを抜き出し、その後あらたに前記還元反応容器内に溶融Mgを装入して、再度還元反応させることを特徴とするスポンジチタン製造方法。 In the method for producing sponge titanium by the crawl method, the reduction reaction vessel according to claim 1 is used as a reaction vessel for reducing titanium tetrachloride by molten Mg, and further in the reduction reaction vessel during the reduction reaction. A method for producing titanium sponge, wherein the produced magnesium chloride is extracted, and then the molten Mg is newly charged into the reduction reaction vessel and again subjected to a reduction reaction.
JP2004324498A 2004-11-09 2004-11-09 Reduction reaction vessel and sponge titanium production method Expired - Fee Related JP4405368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324498A JP4405368B2 (en) 2004-11-09 2004-11-09 Reduction reaction vessel and sponge titanium production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324498A JP4405368B2 (en) 2004-11-09 2004-11-09 Reduction reaction vessel and sponge titanium production method

Publications (2)

Publication Number Publication Date
JP2006131976A JP2006131976A (en) 2006-05-25
JP4405368B2 true JP4405368B2 (en) 2010-01-27

Family

ID=36725785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324498A Expired - Fee Related JP4405368B2 (en) 2004-11-09 2004-11-09 Reduction reaction vessel and sponge titanium production method

Country Status (1)

Country Link
JP (1) JP4405368B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866148B2 (en) * 2006-05-29 2012-02-01 東邦チタニウム株式会社 Clad container welding method and sponge titanium manufacturing method using the same
JP6908412B2 (en) * 2017-03-31 2021-07-28 東邦チタニウム株式会社 Manufacturing method of titanium sponge
JP7114421B2 (en) * 2018-09-11 2022-08-08 綜合警備保障株式会社 Mobile terminals, behavior management systems and programs
JP7301590B2 (en) * 2019-04-26 2023-07-03 東邦チタニウム株式会社 A method for producing sponge titanium, and a method for producing titanium processed or cast products.
CN114425648A (en) * 2021-11-29 2022-05-03 中国船舶重工集团公司第七二五研究所 Preparation method of high-purity titanium sponge steaming furnace tank

Also Published As

Publication number Publication date
JP2006131976A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP6522249B2 (en) Method of deoxygenating a metal having oxygen dissolved in a solid solution
CN107750280A (en) Alloy melting and method of refining
EP3287540B1 (en) Cr-mn-n austenitic heat-resistant steel and a method for manufacturing the same
JP2015520300A (en) Nickel-chromium alloy with good workability, creep strength and corrosion resistance
CN105658582A (en) Producing a titanium product
US10041146B2 (en) Processes for producing low nitrogen metallic chromium and chromium-containing alloys and the resulting products
JP2014043621A (en) Austenitic heat resistant steel
JP4405368B2 (en) Reduction reaction vessel and sponge titanium production method
TWI518183B (en) Corrosion resistant high nickel alloy and its manufacturing method
CA1202468A (en) Process for the production of nearly aluminum chloride-free titanium tetrachloride from titaniferous raw materials containing aluminum compounds
Zhang et al. A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi2 and Al-Si alloys
WO2019189531A1 (en) Cr-Ni BASED ALLOY, RAPIDLY SOLIDIFIED MOLDED BODY MADE OF Cr-Ni BASED ALLOY, ALLOY POWDER, POWDER METALLURGY MOLDED BODY, CAST MOLDED BODY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND MECHANICAL EQUIPMENT USING Cr-Ni BASED ALLOY, AND PIPING MEMBER
CA3190202A1 (en) Alloy for overlay welding, powder for welding, and reaction tube
TWI263680B (en) Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack
CN105839021B (en) The manufacture of steel pipe of ferritic stainless steel containing rare-earth and high chromium
CN112301244A (en) Method for manufacturing high-strength and high-toughness rare earth nickel-copper alloy
KR20080070726A (en) Heat-resistant alloy capable of depositing fine ti-nb-cr carbide or ti-nb-zr-cr carbide
JP2009209389A (en) Slag-fuming method
CN106086528A (en) There is nickel-base alloy and the smelting process thereof forging high yield
JP4180486B2 (en) Ni-base heat-resistant alloy
Dean et al. Metallic titanium and its alloys
EA017210B1 (en) Refractory alloy, fibre-forming plate and method for producing mineral wool
TWI748203B (en) Corrosion resistant high nickel alloy and method for manufacturing the same
NO831249L (en) PROCEDURE FOR SEPARATION AND EXTRACTION OF IRON AND ITS ALLOY METALS FROM OXYDS
RU2533072C1 (en) Refractory chromium-nickel alloy with austenite structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4405368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees