JP5796882B2 - Method for producing sponge titanium particles - Google Patents

Method for producing sponge titanium particles Download PDF

Info

Publication number
JP5796882B2
JP5796882B2 JP2011025636A JP2011025636A JP5796882B2 JP 5796882 B2 JP5796882 B2 JP 5796882B2 JP 2011025636 A JP2011025636 A JP 2011025636A JP 2011025636 A JP2011025636 A JP 2011025636A JP 5796882 B2 JP5796882 B2 JP 5796882B2
Authority
JP
Japan
Prior art keywords
pieces
sponge
sponge titanium
reduction reaction
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011025636A
Other languages
Japanese (ja)
Other versions
JP2012162785A (en
Inventor
安田 宗浩
宗浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2011025636A priority Critical patent/JP5796882B2/en
Publication of JP2012162785A publication Critical patent/JP2012162785A/en
Application granted granted Critical
Publication of JP5796882B2 publication Critical patent/JP5796882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、クロール法により製造したスポンジチタン塊から粒状のスポンジチタンを製造するポンジチタン粒の製造方法に関する。   The present invention relates to a method for producing ponzi titanium particles for producing granular sponge titanium from a sponge titanium mass produced by a crawl method.

従来より、金属チタンは、工業的にはクロール法により製造されたスポンジチタン塊から製造されている。このスポンジチタン塊から展伸材原料用のスポンジチタン粒、半導体デバイス向けのスポンジチタン粒が採取されるが、いずれの場合も次のような工程を経てその採取が行われる。   Conventionally, titanium metal is industrially produced from a sponge titanium mass produced by a crawl method. Sponge titanium particles for wrought material and sponge titanium particles for semiconductor devices are collected from this sponge titanium lump, and in any case, the collection is performed through the following steps.

クロール法によるスポンジチタンの製造では、還元反応容器内に予め溶融Mgを満たしておく。そこに容器上部から四塩化チタン液を滴下し、容器内のMgと反応させることでスポンジチタン塊が生成される。この還元反応工程か終了すると、真空分離工程、冷却工程を経て、還元反応容器内からスポンジチタン塊が取り出される。   In the production of sponge titanium by the crawl method, the reduction reaction vessel is filled with molten Mg in advance. A titanium tetrachloride liquid is dripped there from the container upper part, and a sponge titanium lump is produced | generated by making it react with Mg in a container. When this reduction reaction step is completed, a sponge titanium lump is taken out from the reduction reaction vessel through a vacuum separation step and a cooling step.

還元反応容器からスポンジチタン塊が取り出されると、そのスポンジチタン塊のうち不純物の多い低級部位が除去される。具体的には、外周部のうち容器内面に接していた部分を作業者が機械工具、例えばチッパーと呼ばれる小型の削岩機などを使用して除去する。また、容器内面に接していなかった部分でも、窒化物が濃化した部分を作業者が目視で観察しながら機械工具、例えばチッパーと呼ばれる小型の削岩機などにより除去する。また、反応初期のゲッタリングにより不純物が濃縮している下部がプレス刃により切断除去される。ちなみに、スポンジチタン塊は容器内面に沿っておおよそ円柱形状に形成されるが、正確には反応速度等の相違によりくびれをもった異形に形成され、通常は下部及び上部の外周面は容器内面に接するが、中段部の外周面はくびれにより容器内面から離れることになり、スポンジチタン塊全体としては上下方向で圧縮された砂時計の如き形状に形成される。   When the sponge titanium lump is taken out from the reduction reaction vessel, the lower part having a large amount of impurities is removed from the sponge titanium lump. Specifically, the worker removes the portion of the outer peripheral portion that is in contact with the inner surface of the container using a machine tool, for example, a small rock drill called a chipper. Further, even if the portion is not in contact with the inner surface of the container, the portion where the nitride is concentrated is removed by a machine tool, for example, a small rock drill called a chipper, while the operator visually observes the portion. Further, the lower part where impurities are concentrated by gettering in the initial stage of the reaction is cut and removed by a press blade. By the way, the sponge titanium lump is formed in a roughly cylindrical shape along the inner surface of the container, but precisely, it is formed in a deformed shape with a constriction due to the difference in reaction rate, etc. However, the outer peripheral surface of the middle step part is separated from the inner surface of the container by constriction, and the entire sponge titanium lump is formed in a shape like an hourglass compressed in the vertical direction.

低級部位の除去が終わったスポンジチタン塊に対しては、プレス刃による大割りが行われる。得られたスポンジチタン片(大片)に対しては、多段切断機による中割りが行われる。得られたスポンジチタン片(小片)に対してはジョークラッシャーなどの破砕機による小割りが行われる。かくして、粒状のスポンジチタンが得られる。得られたスポンジチタン粒は分級工程を経て容器内に梱包される。   The titanium sponge lump from which the lower part has been removed is roughly divided by a press blade. The obtained sponge titanium piece (large piece) is divided by a multistage cutting machine. The obtained titanium sponge piece (small piece) is divided by a crusher such as a jaw crusher. Thus, granular sponge titanium is obtained. The obtained sponge titanium particles are packed in a container through a classification process.

以上は展伸材原料用のスポンジチタン粒の製造工程であるが、半導体デバイス向けのスポンジチタン粒の場合は、スポンジチタン塊中で汚染が最も少ない中心部のみが、外周部除去後の大割りの段階で採取される。この工程は中心部採り、中心部採取などと呼ばれている(特許文献1)。採取された中心部に対しては、プレス刃による大割り、多段切断機による中割り、ジョークラッシャーなどの破砕機による小割りが行われる。中心部以外の部分は展伸材原料として使用される。   The above is the manufacturing process of sponge titanium particles for wrought material, but in the case of sponge titanium particles for semiconductor devices, only the central part with the least contamination in the sponge titanium lump is largely divided after the outer peripheral part is removed. It is collected at the stage. This process is called center sampling, center sampling, etc. (Patent Document 1). The collected central portion is divided into a large portion by a press blade, a middle portion by a multistage cutter, and a small portion by a crusher such as a jaw crusher. The part other than the center part is used as a wrought material.

還元反応容器としては、通常は耐熱性に優れたステンレス鋼容器が使用される。しかし、ステンレス鋼容器では、還元反応容器から容器内の溶融Mg中へNi,Crなどの重金属が溶出し、これによりスポンジチタン塊が汚染される。このため、最近の操業では、展伸材原料用、半導体デバイス向けを問わず、少なくとも内面を鉄としたクラッド容器或いはバタリング容器を使用し、容器を原因とする汚染を防止している。しかしながら、このような容器を使用しても容器内面からのFe汚染が問題となる外周部、すなわち容器内面に接していた部分については除去対象となることは前述したとおりである。   As the reduction reaction vessel, a stainless steel vessel having excellent heat resistance is usually used. However, in the stainless steel container, heavy metals such as Ni and Cr are eluted from the reduction reaction container into the molten Mg in the container, thereby contaminating the sponge titanium mass. For this reason, in recent operations, regardless of whether it is for wrought material or semiconductor devices, at least the inner surface of a clad container or a buttering container is used to prevent contamination caused by the container. However, as described above, the outer peripheral portion where Fe contamination from the inner surface of the container becomes a problem even when such a container is used, that is, the portion in contact with the inner surface of the container is to be removed.

このように、クロール法により製造されたスポンジチタン塊からスポンジチタン粒を製造する方法では、品質確保のために不純物濃度の高い低級部位の除去が不可欠となり、これによる歩留り低下が不可避の問題になっている。   As described above, in the method of producing sponge titanium particles from the sponge titanium mass produced by the crawl method, it is indispensable to remove the lower part having a high impurity concentration in order to ensure the quality, and the yield reduction due to this becomes an inevitable problem. ing.

特開2008−190024号公報Japanese Patent Laid-Open No. 2008-190024

本発明の目的は、不純物濃度の高い低級部位の除去による歩留り低下を効果的に抑制できる経済的なスポンジチタン粒の製造方法を提供することにある。   An object of the present invention is to provide an economical method for producing titanium sponge particles capable of effectively suppressing a decrease in yield due to removal of a lower part having a high impurity concentration.

上記目的を達成するために、本発明者は、還元反応容器から取り出したスポンジチタン塊の外周部から低級部位を除去する工程、特にその工程で生じる低級部位の取り扱いに着目した。すなわち、還元反応容器から取り出したスポンジチタン塊の外周部のうち、容器内面に接していた部分については、作業者が機械工具、例えばチッパーと呼ばれる小型の削岩機などを使用して全面的に除去する。一方、容器内面に接していなかった部分については、窒化物が濃化した部分を作業者が目視で観察しながら前記機械工具などにより部分的に除去する。除去量は前者の方が圧倒的に多い。   In order to achieve the above object, the present inventor paid attention to the process of removing the lower part from the outer peripheral portion of the sponge titanium lump taken out from the reduction reaction vessel, particularly the handling of the lower part generated in the process. That is, of the outer peripheral portion of the sponge titanium lump taken out from the reduction reaction vessel, the portion that was in contact with the inner surface of the vessel was completely covered by an operator using a machine tool, for example, a small rock drill called a chipper. Remove. On the other hand, with respect to the portion that is not in contact with the inner surface of the container, the operator concentrates on the portion where the nitride is concentrated, and removes it partially with the machine tool or the like while visually observing the portion. The removal amount is overwhelmingly larger in the former.

そして、除去量が圧倒的に多い高Fe濃度の低級部位については、従来は一律の扱いを受けており、全量が不良品として処分されるか、全量が粉末化されて鉄鋼用Ti添加材として使用されていた。   And, the lower part of the high Fe concentration with the overwhelmingly large removal amount has been treated uniformly, and the whole amount is disposed as a defective product, or the whole amount is pulverized and used as a Ti additive for steel It was used.

このような状況下で、本発明者は上記目的達成のため、比較的多量に除去されるスポンジチタン塊の外周部、特に容器内面と接していた部分から除去される高Fe低級部位の再使用を企画し、様々な調査を行った。その結果、容器内面と接していた部分から除去された高Fe低級部位については、除去片の大きさにより大きな品質差のあることが判明した。すなわち、スポンジチタン塊の外周部から低級部位を除去する作業は、前述したとおり、作業者が機械工具を使用して手作業により行う。容器内面と接していた部分から低級部位を除去する場合は、スポンジチタン塊の下部、上部の相当に広い領域を全周にわたって手作業により除去作業を行うことになる。その結果、除去片の大きさは様々となる。   Under such circumstances, in order to achieve the above object, the present inventor has reused the high-Fe lower portion removed from the outer peripheral portion of the sponge titanium lump removed in a relatively large amount, particularly from the portion in contact with the inner surface of the container. And conducted various surveys. As a result, it was found that the high Fe lower portion removed from the portion in contact with the inner surface of the container had a large quality difference depending on the size of the removed piece. That is, the operation of removing the lower portion from the outer peripheral portion of the sponge titanium lump is manually performed by the operator using the machine tool as described above. When the lower part is removed from the part that has been in contact with the inner surface of the container, the removal work is performed manually over the entire circumference of a considerably large area at the lower and upper parts of the sponge titanium lump. As a result, the size of the removal piece varies.

大きさが様々な除去片は、従来は一律の扱いを受けていたが、大きいものと小さいものとで不純物濃度に大きな差のあることが判明したのである。すなわち、容器内面と接していた部分から除去される高Fe低級除去片は、基本的に容器内面との接触面を有しており、その接触面近傍での不純物濃度が特に高い。除去片の大きさが異なると、除去片全体の体積に占める接触面近傍の高汚染領域の比率が異なり、大きなものほど高汚染領域の比率が小さくなって品質が上がる傾向となる。つまり、大きな除去片ほど、塊外周面から深く除去される傾向が大きく、除去片全体に占める高汚染領域の体積比率が小さくなって品質が上がる傾向となるのである。   Conventionally, removal pieces of various sizes have been treated uniformly, but it has been found that there is a large difference in impurity concentration between large and small removal pieces. That is, the high Fe lower removal piece removed from the portion in contact with the container inner surface basically has a contact surface with the container inner surface, and the impurity concentration in the vicinity of the contact surface is particularly high. When the size of the removal piece is different, the ratio of the highly contaminated area in the vicinity of the contact surface occupying the volume of the entire removed piece is different. The larger the removal piece, the smaller the ratio of the highly contaminated area and the higher the quality. That is, the larger the removed piece, the greater the tendency to be removed deeply from the outer peripheral surface of the lump, and the volume ratio of the highly contaminated area occupying the whole removed piece becomes smaller and the quality tends to increase.

このため、容器内面と接していた部分から除去された高Fe低級除去片を特定粒度で分級するならば、大粒度のものは高Fe低級除去片のなかでは高品質材に分類され、展伸材原料向け材料としての再使用が可能となることが判明した。   For this reason, if the high Fe lower removal pieces removed from the portion in contact with the inner surface of the container are classified with a specific particle size, those having a large particle size are classified as high quality materials among the high Fe lower removal pieces, and expanded. It became clear that it could be reused as a material for raw materials.

本発明のスポンジチタン粒の製造方法は、かかる知見を基礎として完成されたものであり、還元反応容器内でクロール法により製造され当該反応容器から取り出されたスポンジチタン塊を切断破砕してスポンジチタン粒を製造する際に、前記スポンジチタン塊の外周部の少なくとも還元反応容器内面と接していた低級部位を除去し、且つ還元反応容器内面と接していた低級部位から除去された除去片を分級して大粒径の除去片を他の除去片から分離することを構成上の特徴点としている。   The method for producing sponge titanium particles of the present invention has been completed on the basis of such knowledge, and the sponge titanium mass produced by the crawl method in a reduction reaction vessel and taken out from the reaction vessel is cut and crushed to obtain sponge titanium. When producing the grains, at least the lower part of the outer periphery of the sponge titanium block that was in contact with the inner surface of the reduction reaction container was removed, and the removed pieces removed from the lower part of the outer periphery of the sponge that were in contact with the inner surface of the reduction reaction container were classified. The feature of the structure is to separate the removal piece having a large particle size from the other removal pieces.

本発明のスポンジチタン粒の製造方法においては、還元反応容器内でクロール法により製造され当該反応容器から取り出されたスポンジチタン塊の外周部の少なくとも還元反応容器内面と接していた低級部位を除去し、且つ還元反応容器内面と接していた低級部位から除去された除去片を分級し、大粒径の除去片を他の除去片から分離する。大きいものは不純物濃度が低く、比較的高品質であることから、大粒径の除去片を他の除去片から分離することにより、展伸材原料として再使用が可能な除去片を選別回収することができ、その再使用により歩留りが向上する。大粒径の除去片を除去された後の他の除去片、すなわち小粒径の除去片は、従来どおり不良品として処分するか、或いは鉄鋼用Ti添加材原料としての使用が可能である。 In the method for producing sponge titanium particles of the present invention, at least the lower part of the outer periphery of the titanium sponge block produced by the crawl method in the reduction reaction vessel and taken out from the reaction vessel is in contact with the inner surface of the reduction reaction vessel. In addition, the removed pieces removed from the lower part in contact with the inner surface of the reduction reaction vessel are classified, and the removed pieces having a large particle size are separated from the other removed pieces. Larger ones have a lower impurity concentration and are of relatively high quality, so separating removed pieces that can be reused as a raw material for stretched materials is separated and recovered by separating the removed pieces of large particle size from other removed pieces. And the reuse improves the yield. Other removed pieces after the removal pieces having a large particle diameter, that is, removed pieces having a small particle diameter, can be disposed of as defective products as usual , or can be used as raw materials for Ti additives for steel.

分級に使用する篩の目開きは10〜200mmが望ましく、15〜150mmがより望ましい。この目開きが小さすぎると、分級分離される篩上の除去片の品質が低下する。すなわち、不純物濃度の高い小粒径除去片が、不純物濃度の低い大粒径除去片に多く混じり、品質が低下する。反対に目開きが小さすぎると、分級分離される篩上の除去片の品質は向上するが、分級分離量が少なくなり、歩留り向上効果が小さくなる。ここにおける目開きとは、篩穴の短径長である。例えば篩穴が正方形なら一辺の長さ、長方形なら短径の長さ、菱形なら向かい合う辺同士の距離、円形なら直径、楕円形なら短径である。   The sieve aperture used for classification is preferably 10 to 200 mm, and more preferably 15 to 150 mm. If this mesh opening is too small, the quality of the removed pieces on the sieve to be classified and separated will deteriorate. That is, many small particle size removal pieces with a high impurity concentration are mixed with large particle size removal pieces with a low impurity concentration, and the quality deteriorates. On the other hand, if the opening is too small, the quality of the removed pieces on the sieve to be classified and separated is improved, but the amount of classification and separation is reduced, and the yield improvement effect is reduced. The opening here is the minor axis length of the sieve hole. For example, if the sieve hole is square, the length is one side, if it is a rectangle, the length is short, if it is a diamond, the distance between opposite sides, if it is a circle, it is the diameter, if it is oval, it is the short diameter.

分級の際の留意点としては、分級により分離回収される大粒径の除去片への微細な除去片の付着を阻止することが望ましい。微細な除去片は不純物濃度が高く、大粒径の除去片への付着により大粒径の除去片の品質を低下させるからである。そして、その微細な除去片の付着阻止のためには、還元反応容器内面と接していた低級部位の除去作業を篩上で行うことが望まれる。低級部位の除去作業を篩上で行うことにより、除去作業で生じた微細な除去片は篩上の大粒径の除去片に殆ど付着することなく篩下に落下し、大粒径の除去片への微細な除去片の付着による汚染、これによる再使用材料の不純物濃度上昇を可及的に回避することができる。   As a precaution in classification, it is desirable to prevent the fine removed pieces from adhering to the removed pieces having a large particle size separated and recovered by classification. This is because the fine removed pieces have a high impurity concentration, and the quality of the removed pieces having a large particle size is deteriorated by adhesion to the removed pieces having a large particle size. In order to prevent the fine removed pieces from adhering, it is desired that the removal of the lower part in contact with the inner surface of the reduction reaction vessel is performed on a sieve. By performing the removal operation of the lower part on the sieve, the fine removal pieces generated by the removal work fall under the sieve with almost no adhesion to the removal pieces of large particle size on the sieve, and the removal pieces of large particle size Contamination due to adhesion of fine removed pieces to the surface, and increase in the impurity concentration of the reused material due to this can be avoided as much as possible.

また、分級により分離回収された大粒径の除去片の一部又は全部について、不純物濃度が特に高い還元反応容器内面との接触面近傍を除去するのも、再使用材料の不純物濃度低減に有効である。分離回収された大粒径の除去片の一部について、還元反応容器内面との接触面近傍を除去する場合、大粒径のものに作業を行うのが、作業性、効果が大きく合理的である。   It is also effective to reduce the impurity concentration of reusable materials by removing the vicinity of the contact surface with the inner surface of the reduction reaction vessel, which has a particularly high impurity concentration, for some or all of the large particle removal pieces separated and recovered by classification. It is. For some of the large particle size removal pieces that have been separated and recovered, when removing the vicinity of the contact surface with the inner surface of the reduction reaction vessel, it is reasonable to work on large particle size because workability and effect are large. is there.

本発明のスポンジチタン粒の製造方法は、従来省みられることのなかったスポンジチタン塊外周部からの除去片、特に還元反応容器内面と接していた低級部位からの除去片を分級して大粒径の除去片を他の除去片から分離することにより、展伸材原料として再使用が可能な除去片を選別回収することができ、その再使用により歩留り向上を図ることができる。   The method for producing sponge titanium particles of the present invention classifies the removed pieces from the outer periphery of the titanium sponge lump that has not been omitted in the past, particularly the removed pieces from the lower part that was in contact with the inner surface of the reduction reaction vessel. By separating the removal pieces having a diameter from other removal pieces, the removal pieces that can be reused as the wrought material can be selected and collected, and the reuse can improve the yield.

本発明の一実施形態を示すスポンジチタン粒製造方法の工程図である。It is process drawing of the sponge titanium particle manufacturing method which shows one Embodiment of this invention. 還元反応容器から取り出されたスポンジチタン塊のイメージ図である。It is an image figure of the sponge titanium lump taken out from the reduction reaction container. スポンジチタン塊の外周部から低級部位を除去する作業のイメージ図である。It is an image figure of the operation | work which removes a low-order site | part from the outer peripheral part of a sponge titanium lump.

以下に本発明の実施形態を図面に基づいて説明する。本実施形態では、クロール法により製造されたスポンジチタン塊から展伸材原料用のスポンジチタン粒が製造される。その製造工程を図1を参照して詳しく説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, sponge titanium particles for wrought material are produced from a sponge titanium mass produced by the crawl method. The manufacturing process will be described in detail with reference to FIG.

クロール法によるスポンジチタン塊の製造では、還元反応工程−真空分離工程を経てスポンジチタン塊が製造される。還元反応工程では、還元反応容器にMgが装填され、加熱炉内でそのMgが溶融され、容器内が溶融Mgで満たされる。還元反応容器は、外面側がステンレス鋼、内面側が鉄とされたクラッドクラッド容器或いはバタリング容器であり、底部に鉄からなる脱着可能なロストルを装備すると共に、そのロストルを押し上げるための閉止可能な小さな開口部を底面中心部に有している。   In the production of sponge titanium lumps by the crawl method, the sponge titanium lumps are produced through a reduction reaction step-vacuum separation step. In the reduction reaction step, Mg is loaded into the reduction reaction vessel, the Mg is melted in the heating furnace, and the vessel is filled with molten Mg. The reduction reaction vessel is a clad clad vessel or buttering vessel with stainless steel on the outer surface and iron on the inner surface, equipped with a detachable rooster made of iron at the bottom, and a small, closeable opening for pushing up the rooster. At the center of the bottom.

還元反応工程では、還元反応容器の底面中心部に設けられた開口部を閉じ、容器内を溶融Mgで満たした状態で、容器蓋の中心部を通って液状の四塩化チタンが容器内の溶融Mgに滴下される。これを継続することにより、還元反応容器内のロストル上にスポンジチタン塊が生成される。初期に生成したスポンジチタンにより溶融Mg中の不純物であるNiがゲッタリングされ、溶融Mgが精製される。このため、還元反応容器内の下部に生成されるスポンジチタンは汚染度が高く、逆にそれ以降に生成されるスポンジチタンは相対的に高品質となる。   In the reduction reaction step, liquid titanium tetrachloride is melted in the container through the center of the container lid with the opening provided at the center of the bottom of the reduction reaction container closed and the container filled with molten Mg. Dropped on Mg. By continuing this, a sponge titanium lump is generated on the rooster in the reduction reaction vessel. Ni, which is an impurity in the molten Mg, is gettered by the initially formed sponge titanium, and the molten Mg is purified. For this reason, the sponge titanium produced | generated in the lower part in a reduction reaction container has a high contamination degree, and conversely, the sponge titanium produced | generated after that becomes comparatively high quality.

還元反応が終了すると、還元反応容器内に生成されたスポンジチタン塊が、真空分離処理、冷却処理の後に、還元反応容器から取り出される。還元反応容器内に生成されるスポンジチタン塊は、図2に示すように、容器内面に沿っておおよそ円柱形状に形成されるが、正確には反応速度等の相違によりくびれをもった異形に形成され、通常は下部外周面及び上部外周面は容器内面に全周にわたって接するが、中段部外周面はくびれにより容器内面から離れた砂時計の如き形状に形成される。還元反応容器内に生成されたスポンジチタン塊の取り出しは、還元反応容器の容器蓋を開いた状態で、底面中心部に設けられた開口部から押し棒を挿入し、ロストルを押し上げることにより行われる。   When the reduction reaction is completed, the sponge titanium mass generated in the reduction reaction container is taken out from the reduction reaction container after the vacuum separation process and the cooling process. As shown in FIG. 2, the sponge titanium mass produced in the reduction reaction vessel is formed in a roughly cylindrical shape along the inner surface of the vessel, but precisely, it is formed in a deformed shape having a constriction due to a difference in reaction rate or the like. Usually, the lower outer peripheral surface and the upper outer peripheral surface are in contact with the inner surface of the container over the entire periphery, but the outer peripheral surface of the middle step portion is formed in a shape like an hourglass separated from the inner surface of the container by constriction. The sponge titanium mass generated in the reduction reaction vessel is taken out by inserting a push rod from the opening provided at the center of the bottom surface and pushing up the rooster with the vessel lid of the reduction reaction vessel opened. .

図2に示すように、還元反応容器から取り出されたスポンジチタン塊10は、外周部及び底部の低級部位を除く部分が製品として使用される。外周部除去では、スポンジチタン塊10の外周部のうち容器内面に接していた円柱部分11及び12を作業者が機械工具、例えばチッパーと呼ばれる小型の削岩機などを使用して全周にわたって除去する。また、容器内面に接していなかったくびれ部分13でも、窒化物が濃化した部分を作業者が目視で観察しながら機械工具、例えばチッパーと呼ばれる小型の削岩機などにより除去する。底部除去では、反応初期のゲッタリングにより不純物が濃縮している底部14がプレス刃により切断除去される。   As shown in FIG. 2, the titanium sponge lump 10 taken out from the reduction reaction vessel is used as a product except for the outer peripheral portion and the lower portion of the bottom portion. In the outer peripheral portion removal, the operator removes the cylindrical portions 11 and 12 that are in contact with the inner surface of the vessel from the outer peripheral portion of the sponge titanium lump 10 using a machine tool, for example, a small rock drill called a chipper. To do. Further, the constricted portion 13 that is not in contact with the inner surface of the container is removed by a machine tool such as a small rock drill called a chipper while the operator visually observes the portion where the nitride is concentrated. In the bottom removal, the bottom 14 in which impurities are concentrated by gettering at the beginning of the reaction is cut and removed by a press blade.

低級部位の除去が終わったスポンジチタン塊に対しては、プレス刃による大割りが行われる。得られたスポンジチタン片(大片)に対しては、多段切断機による中割りが行われる。得られたスポンジチタン片(小片)に対してはジョークラッシャーなどの破砕機による小割りが行われる。かくして、粒状のスポンジチタンが得られる。得られたスポンジチタン粒は分級工程を経て容器内に梱包される。   The titanium sponge lump from which the lower part has been removed is roughly divided by a press blade. The obtained sponge titanium piece (large piece) is divided by a multistage cutting machine. The obtained titanium sponge piece (small piece) is divided by a crusher such as a jaw crusher. Thus, granular sponge titanium is obtained. The obtained sponge titanium particles are packed in a container through a classification process.

本実施形態で重要なのは、スポンジチタン塊の外周部除去工程、特にスポンジチタン塊10の外周部のうち容器内面に接していた円柱部分11及び12を全周除去する工程である。スポンジチタン塊の外周部除去工程では、図3に示すように、スポンジチタン塊10が横に寝かされてローラ21,21上に回転可能に載置される。スポンジチタン塊10をローラ21,21上で回転させるために当該スポンジチタン塊10にチェーン22が下方から掛けられている。作業者は作業床20上で作業を行う。作業床20は篩を兼ねており、グレーチングのような機械的強度を有した縦材と横材の組合せ格子部材により構成されている。篩の目開きは10〜200mmが望ましく、15〜150mmがより望ましく、ここでは100mmに設定されている。   What is important in the present embodiment is a step of removing the outer periphery of the titanium sponge lump, particularly a step of removing the entire circumference of the cylindrical portions 11 and 12 that are in contact with the inner surface of the container in the outer peripheral portion of the sponge titanium lump 10. In the outer peripheral portion removal process of the sponge titanium lump, as shown in FIG. 3, the sponge titanium lump 10 is laid sideways and placed on the rollers 21 and 21 in a rotatable manner. In order to rotate the sponge titanium lump 10 on the rollers 21 and 21, a chain 22 is hung on the sponge titanium lump 10 from below. The worker performs work on the work floor 20. The work floor 20 also serves as a sieve, and is constituted by a combination lattice member of vertical members and cross members having mechanical strength such as grating. The sieve opening is preferably 10 to 200 mm, more preferably 15 to 150 mm, and here it is set to 100 mm.

そしてスポンジチタン塊の外周部除去工程のうち、特にスポンジチタン塊10の外周部のうち容器内面に接していた円柱部分11及び12を全周除去する工程では、作業者は作業床20上に立ち、機械工具、例えばチッパーと呼ばれる小型の削岩機などを使用して、ローラ21,21上に横に寝かされた円柱部分11及び12の上側半周部分を所定深さで除去する。上側半周部分の除去が終わると、チェーン22を駆動してスポンジチタン塊10をローラ21,21上で180度回転させる。これにより、未除去部分が上側になり、この部分の除去を行う。こうして、円柱部分11及び12の全周が所定深さで全周にわたって除去する。除去深さは平均で20mm程度である。   In the step of removing the outer peripheral portion of the titanium sponge lump, in particular, in the step of removing the entire circumference of the cylindrical portions 11 and 12 that were in contact with the inner surface of the outer periphery of the titanium sponge lump 10, the operator stands on the work floor 20. Then, using a machine tool, for example, a small rock drill called a chipper, the upper half circumferential portions of the cylindrical portions 11 and 12 lying on the rollers 21 and 21 are removed at a predetermined depth. When the removal of the upper half circumference is completed, the chain 22 is driven to rotate the sponge titanium lump 10 on the rollers 21 and 21 by 180 degrees. As a result, the unremoved portion is on the upper side, and this portion is removed. In this way, the entire circumference of the cylindrical portions 11 and 12 is removed over the entire circumference at a predetermined depth. The removal depth is about 20 mm on average.

この除去作業においては、スポンジチタン塊10の円柱部分11及び12から様々な大きさの除去片が落下する。落下した除去片は篩を兼ねる作業床20上に落下し、その目開き寸法より大きい大粒径の除去片は作業床20上に残り、その目開き寸法より小さい小粒径の除去片は作業床20の下に落下する。これにより、大粒径の除去片は小粒径の除去片と混じり合うことなく小粒径の除去片から分離される。作業遊20上に残った大粒径の除去片は回収して展伸材原料として再使用する。作業床20の下に落下した除去片は鉄鋼Ti添加物用材料として回収する。   In this removal operation, removal pieces of various sizes fall from the cylindrical portions 11 and 12 of the sponge titanium lump 10. The removed removed pieces fall onto the work floor 20 which also serves as a sieve, the removed pieces having a larger particle size larger than the opening size remain on the working floor 20, and the removed particles having a smaller particle size smaller than the opening size are worked. Fall under the floor 20. As a result, the large particle size removal pieces are separated from the small particle size removal pieces without being mixed with the small particle size removal pieces. The removed piece having a large particle size remaining on the work play 20 is collected and reused as a wrought material. The removed pieces dropped under the work floor 20 are collected as steel Ti additive material.

篩上の大粒径の除去片のうちでも特に大きいものについては、容器内面との接触面近傍を薄く除去してFe濃度を更に低下させることができる。これにより展伸材原料、及びこれを使用する展伸材の品質を更に上げることができる。   Among the removal pieces having a large particle diameter on the sieve, particularly those having a large particle size can be further removed by thinly removing the vicinity of the contact surface with the inner surface of the container to further reduce the Fe concentration. Thereby, the quality of the wrought material and the wrought material using the wrought material can be further improved.

容器内面に接していなかったくびれ部分13の外周部除去工程では、窒化物が濃化した部分を作業者が目視で観察しながら機械工具、例えばチッパーと呼ばれる小型の削岩機などにより除去する。スポンジチタン塊10の円柱部分11及び12から除去されたFe濃化片に窒化物濃化片が混じるのは特に問題ない。   In the step of removing the outer peripheral portion of the constricted portion 13 that is not in contact with the inner surface of the container, the operator removes the portion where the nitride is concentrated with a machine tool, for example, a small rock drill called a chipper, while visually observing the portion. It is not particularly problematic that the nitride enriched pieces are mixed with the Fe enriched pieces removed from the cylindrical portions 11 and 12 of the sponge titanium lump 10.

クロール法により高級展伸材用スポンジチタン塊を実際に製造した(1バッチあたりのチタン生成量8ton、容器内径2000mm、高級展伸材におけるFe濃度は1000ppm以下)。高級展伸材用スポンジチタン塊が製造されると、これを、図3に示すように横に寝かしてローラ上に載せ、スポンジチタン塊の外周部のうち、還元反応容器内面と接していた上部及び下部を、作業者がチッパーと呼ばれる小型削岩機により平均20mmの厚みで全周にわたり除去した。除去量は250kgだった。   A sponge titanium lump for high-grade wrought material was actually produced by the crawl method (a titanium production amount per batch of 8 tons, a container inner diameter of 2000 mm, and the Fe concentration in the high-grade wrought material was 1000 ppm or less). When the sponge titanium lump for high-grade wrought material is produced, it is laid down on a roller as shown in FIG. 3, and the upper part of the outer periphery of the titanium sponge lump that is in contact with the inner surface of the reduction reaction vessel The lower part and the lower part were removed over the entire circumference with a thickness of 20 mm on average by an operator using a small rock drill called a chipper. The removal amount was 250 kg.

従来例として、除去された除去片の全てを鉄鋼Ti添加物用材料に使用した。すなわち、除去された除去片の展伸材への再使用は行わなかった。この方法で得たスポンジチタン粒を消耗電極に加工し、これを用いて真空溶解することにより高級展伸材用チタンインゴットを製造した。除去片の回収再使用を行っておらず、除去片の回収率(再使用率)は0%であるので、その高級展伸材用チタンインゴットの品質に問題はなかった。   As a conventional example, all of the removed strips were used for the steel Ti additive material. That is, the removed removed piece was not reused for the wrought material. The titanium sponge particles obtained by this method were processed into a consumable electrode and vacuum-dissolved using this to produce a titanium ingot for high-quality wrought material. The removal piece was not collected and reused, and the removal rate (reuse rate) of the removal piece was 0%. Therefore, there was no problem in the quality of the titanium ingot for high-quality wrought material.

実施例1として、外周部除去作業を通常の作業床上で行った。作業床上の除去片を全て回収し、目開きが100mmの篩により分級し、篩上の大粒径除去片を粉末化して従来例と同様の方法により低級展伸材の製造に再使用した。再使用のために回収された除去片は約100kgであり、除去片の回収率(再使用率)は除去片の全発生量に対する重量比で40%である。低級展伸材におけるFe濃度は1500ppm以下である。製造された低級展伸材のFe濃度に問題はなかった。   As Example 1, the outer peripheral portion removing work was performed on a normal work floor. All the removed pieces on the work floor were collected, classified by a sieve having an opening of 100 mm, and the large particle size removed pieces on the sieve were pulverized and reused in the production of the lower wrought material by the same method as in the conventional example. The removed piece collected for reuse is about 100 kg, and the collection rate (reuse rate) of the removed piece is 40% by weight with respect to the total amount of the removed piece. The Fe concentration in the lower wrought material is 1500 ppm or less. There was no problem in the Fe concentration of the produced lower wrought material.

実施例2として、外周部除去作業を目開きが100mmの篩を兼ねる作業床上で行った。作業床上に合計量で約100kgの大粒径除去片が分離回収された。回収された大粒径除去片を粉末化して従来例と同様の方法により中級展伸材の製造に再使用した。除去片の回収率(再使用率)は40重量%である。中級展伸材におけるFe濃度は1300ppm以下である。製造された中級展伸材のFe濃度に問題はなかった。   As Example 2, the outer peripheral portion removing work was performed on a work floor that also served as a sieve having an opening of 100 mm. About 100 kg of large particle size-removed pieces were separated and collected in total on the work floor. The recovered large particle size-removed pieces were pulverized and reused in the production of intermediate wrought material by the same method as in the conventional example. The recovery rate (reuse rate) of the removed pieces is 40% by weight. The Fe concentration in the intermediate wrought material is 1300 ppm or less. There was no problem in the Fe concentration of the manufactured intermediate wrought material.

実施例3として、篩を兼ねる作業床上に回収された大粒径除去片のうら、容器内面と接していたものについてその接触面近傍をチッパーにより10mm程度の厚みで削除した。表面切削後の回収大粒径除去片を粉末化して従来例と同様の方法により高級展伸材の製造に再使用した。除去片の回収率(再使用率)は30重量%である。高級展伸材におけるFe濃度は1000ppm以下である。製造された高級展伸材のFe濃度に問題はなかった。   As Example 3, the vicinity of the contact surface of the large particle size removal piece collected on the work floor also serving as a sieve, which was in contact with the inner surface of the container, was deleted with a chipper to a thickness of about 10 mm. The recovered large particle size removed piece after surface cutting was pulverized and reused in the production of high-quality wrought material by the same method as in the conventional example. The recovery rate (reuse rate) of the removed pieces is 30% by weight. The Fe concentration in the high-quality wrought material is 1000 ppm or less. There was no problem in the Fe concentration of the manufactured high-quality wrought material.

比較例及び実施例1〜3における除去片再使用の有無、再使用に際しての分級の有無及び詳細、回収した除去片の使用可能な展伸材の最高グレード、除去片の回収率(再使用率)を整理して表1に示す。表1には又、除去片の再使用に要する工数を、実施例1の場合を100として示す。   Presence / absence of reuse of removed pieces in Comparative Example and Examples 1-3, presence / absence and details of classification upon reuse, highest grade of stretchable material that can be used for collected removed pieces, recovery rate of removed pieces (reuse rate) ) Are shown in Table 1. Table 1 also shows the number of man-hours required for reuse of the removed piece as 100 in the case of Example 1.

Figure 0005796882
Figure 0005796882

表1から分かるように、スポンジチタン塊の外周部のうち、還元反応容器内面と接していた部分から生じた除去片は、分級により大粒径片を選別回収することにより再使用が可能となり、これによる歩留り向上はいうまでもない。再使用による純度低下は生じるものの、適用対象である展伸材のグレートを下げることにより再使用は可能となる。回収した大粒径除去片の容器内面と接する表面近傍を除去した場合は、同一グレードの展伸材の製造に使用可能となる。篩を兼ねる作業床上で低級部位の除去を行った場合は分級に手数がかからず、しかも比較的ハイグレードの除去片が回収される。   As can be seen from Table 1, of the outer peripheral portion of the titanium sponge lump, the removed pieces generated from the portion that was in contact with the inner surface of the reduction reaction vessel can be reused by sorting and collecting the large particle size pieces by classification, Needless to say, this improves yield. Although the purity is reduced by reuse, it can be reused by lowering the grade of the wrought material to be applied. When the vicinity of the surface in contact with the inner surface of the container of the collected large particle size removal piece is removed, it can be used for producing a wrought material of the same grade. When the lower part is removed on the working floor that also serves as a sieve, the classification is not troublesome, and relatively high-grade removed pieces are collected.

比較例及び実施例1〜3は高級展伸材用スポンジチタン塊を製造する場合を示しているが、中級展伸材用スポンジチタン塊を製造する場合も傾向は同じであり、篩を兼ねる作業床上に回収された大粒径除去片は低級展伸材の製造への使用が可能であり、その大粒径除去片の容器内面と接していた表面近傍を除去した場合は中級展伸材の製造への使用が可能となる。同じように、低級展伸材用スポンジチタン塊を製造する場合は、篩を兼ねる作業床上に回収された大粒径除去片の容器内面と接していた表面近傍を除去することにより低級展伸材の製造への使用が可能となる。   Comparative Examples and Examples 1 to 3 show the case of producing a sponge titanium lump for high-grade wrought material, but the tendency is the same when producing a sponge titanium lump for intermediate-grade wrought material. The large particle size-removed pieces collected on the floor can be used for the production of the lower wrought material. If the surface of the large particle size-removed piece that is in contact with the inner surface of the container is removed, It can be used for manufacturing. Similarly, when producing a sponge titanium lump for a lower wrought material, the lower wrought material is removed by removing the vicinity of the surface that was in contact with the inner surface of the container of the large particle size removal piece collected on the work floor that also serves as a sieve. Can be used for manufacturing.

10 スポンジチタン塊
11,12 円柱部分
13 くびれ部分
14 底部
20 篩を兼ねる作業床
21 ローラ
22 チェーン
DESCRIPTION OF SYMBOLS 10 Titanium sponge lump 11,12 Cylindrical part 13 Constricted part 14 Bottom part 20 Work floor which also serves as a sieve 21 Roller 22 Chain

Claims (2)

還元反応容器内でクロール法により製造され当該反応容器から取り出されたスポンジチタン塊を切断破砕してスポンジチタン粒を製造する際に、前記スポンジチタン塊の外周部の少なくとも還元反応容器内面と接していた低級部位を除去し、且つ還元反応容器内面と接していた低級部位から除去された除去片を目開きが10〜200mmの篩により分級して大粒径の除去片を他の除去片から分離回収すると共に、分級により分離回収された大粒径の除去片の一部又は全部について、還元反応容器内面との接触面近傍を除去し、しかる後にその大粒径の除去片を展伸材原料として再使用し、他の除去片については不良品として処分するか、鉄鋼用Ti添加材として回収するするスポンジチタン粒の製造方法。 When producing a titanium sponge particle by cutting and crushing a sponge titanium mass produced by a crawl method in a reduction reaction vessel and taken out from the reaction vessel, at least the inner surface of the sponge titanium mass is in contact with the inner surface of the reduction reaction vessel. The removed part removed from the lower part that was in contact with the inner surface of the reduction reaction vessel was classified with a sieve having an opening of 10 to 200 mm to separate the removed part having a large particle size from other removed parts. is recovered, for some or all of the removed pieces of large particle size separated recovered by classification, to remove the contact surface near the reduction reaction vessel inner surface, wrought material removed pieces of the large grain size thereafter As a method for producing titanium sponge particles, the other removed pieces are disposed of as defective products or recovered as Ti additive for steel. 請求項1に記載のスポンジチタン粒の製造方法において、還元反応容器内面と接していた低級部位の除去作業を篩上で行うスポンジチタン粒の製造方法。   2. The method for producing sponge titanium particles according to claim 1, wherein the removal of the lower part in contact with the inner surface of the reduction reaction vessel is performed on a sieve.
JP2011025636A 2011-02-09 2011-02-09 Method for producing sponge titanium particles Active JP5796882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025636A JP5796882B2 (en) 2011-02-09 2011-02-09 Method for producing sponge titanium particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025636A JP5796882B2 (en) 2011-02-09 2011-02-09 Method for producing sponge titanium particles

Publications (2)

Publication Number Publication Date
JP2012162785A JP2012162785A (en) 2012-08-30
JP5796882B2 true JP5796882B2 (en) 2015-10-21

Family

ID=46842451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025636A Active JP5796882B2 (en) 2011-02-09 2011-02-09 Method for producing sponge titanium particles

Country Status (1)

Country Link
JP (1) JP5796882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014375B (en) * 2012-12-26 2014-06-04 遵义钛业股份有限公司 Device for taking sponge titanium lumps out of reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2915779B2 (en) * 1994-03-24 1999-07-05 株式会社住友シチックス尼崎 Method for producing high purity titanium material for thin film formation
JP2863469B2 (en) * 1995-10-06 1999-03-03 株式会社住友シチックス尼崎 Manufacturing method of high purity titanium material
WO2003020992A1 (en) * 2001-09-03 2003-03-13 Sumitomo Titanium Corporation Reaction vessel for use in producing titanium sponge, heat shielding plate provided therein, and method for producing titanium sponge
JP4841801B2 (en) * 2003-04-24 2011-12-21 株式会社大阪チタニウムテクノロジーズ Manufacturing method of high purity titanium ingot
JP3782415B2 (en) * 2003-09-25 2006-06-07 住友チタニウム株式会社 High purity sponge titanium material and method for producing titanium ingot

Also Published As

Publication number Publication date
JP2012162785A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5675531B2 (en) Polycrystalline silicon and manufacturing method thereof
US7549600B2 (en) Apparatus and method for the low-contamination, automatic crushing of silicon fragments
JPH0372689B2 (en)
KR20190107733A (en) Titanium coble manufacturing method and manufacturing apparatus
JP5796882B2 (en) Method for producing sponge titanium particles
WO2018155658A1 (en) Method for producing ti-al alloy
JP6924120B2 (en) Manufacturing method of titanium sponge
JP2921790B2 (en) Method for producing low oxygen titanium material and low oxygen titanium dissolving material
JP6914081B2 (en) Manufacturing method of titanium sponge
JP2012087373A (en) Method for storing high purity sponge-titanium particle, and method for producing high purity titanium ingot using the same
JP3782415B2 (en) High purity sponge titanium material and method for producing titanium ingot
JP6908412B2 (en) Manufacturing method of titanium sponge
JP6756078B2 (en) Manufacturing method of Ti—Al alloy
JP4203039B2 (en) Titanium sponge hopper and blending method using the same
JP4841801B2 (en) Manufacturing method of high purity titanium ingot
JP4489826B2 (en) Processing method for massive sponge titanium
JP4309675B2 (en) Method for producing titanium alloy
JPH0681051A (en) Production of metal by reduction reaction of metal halide
KR20130078282A (en) Method for scrap metal recovery
JP7318539B2 (en) Method for producing nickel chloride solution and method for producing nickel sulfide
CN214937737U (en) Bowl-shaped aluminum block
CN106435248B (en) A kind of method that mortar generated in silicon chip cutting prepares high property copper alloy
JP3453310B2 (en) Sponge titanium crushing and sizing machine and sizing method
CN102974831A (en) Recycling and reusing method of waste tungsten steel tool
RU2532735C2 (en) Method of producing calcium granules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5796882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250