JP6906432B2 - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP6906432B2
JP6906432B2 JP2017224953A JP2017224953A JP6906432B2 JP 6906432 B2 JP6906432 B2 JP 6906432B2 JP 2017224953 A JP2017224953 A JP 2017224953A JP 2017224953 A JP2017224953 A JP 2017224953A JP 6906432 B2 JP6906432 B2 JP 6906432B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
temperature side
storage tank
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017224953A
Other languages
Japanese (ja)
Other versions
JP2019095129A (en
Inventor
和茂 前田
和茂 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017224953A priority Critical patent/JP6906432B2/en
Publication of JP2019095129A publication Critical patent/JP2019095129A/en
Application granted granted Critical
Publication of JP6906432B2 publication Critical patent/JP6906432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池装置と、熱音響冷凍装置と、蓄熱媒体を用いて熱を蓄えることができる蓄熱タンクとを備える蓄熱システムに関する。 The present invention relates to a heat storage system including a fuel cell device, a thermoacoustic refrigeration device, and a heat storage tank capable of storing heat using a heat storage medium.

燃料電池装置を備えるコージェネレーションシステムは、燃料電池装置による発電時に発生する排熱(温熱)を有効利用することにより、システム全体での高い総合効率を実現している。このとき、燃料電池装置から排出される温熱を蓄熱タンクで蓄えておき、その蓄えた温熱を暖房装置などで消費するようなシステムがある。
但し、冬季の温熱需要に比べて他の季節、特に夏季の温熱需要は小さくなるので、蓄熱タンクで蓄えた温熱がそれほど消費されずに余ることも考えられる。その場合、燃料電池装置の排熱を有効利用できなくなる。
A cogeneration system equipped with a fuel cell device realizes high overall efficiency of the entire system by effectively utilizing the exhaust heat (heat) generated during power generation by the fuel cell device. At this time, there is a system in which the heat discharged from the fuel cell device is stored in a heat storage tank and the stored heat is consumed by a heating device or the like.
However, since the heat demand in other seasons, especially in summer, is smaller than the heat demand in winter, it is possible that the heat stored in the heat storage tank is not consumed so much. In that case, the exhaust heat of the fuel cell device cannot be effectively used.

特許文献1には、夏季等の冷熱需要が大きい時季には、燃料電池装置から排出された温熱を冷熱に変換して供給できるシステムが記載されている。具体的には、燃料電池装置から排出される温熱を、熱音響現象を利用した熱音響冷凍装置を用いて冷熱に変換するシステムが記載されている。 Patent Document 1 describes a system capable of converting hot heat discharged from a fuel cell device into cold heat and supplying it in a season such as summer when there is a large demand for cold heat. Specifically, a system that converts hot heat discharged from a fuel cell device into cold heat using a thermoacoustic refrigeration device that utilizes a thermoacoustic phenomenon is described.

特許第6133998号公報Japanese Patent No. 6133998

特許文献1に記載のシステムでは、燃料電池装置から排出された温熱を蓄熱タンクに蓄えることができるため、温熱需要が大きくなるタイミングであっても、温熱用途に十分な温熱を供給できる。しかし、冷熱を蓄えることはできないため、冷熱需要が大きくなるタイミングでは、燃料電池装置から冷房用途などに十分な冷熱を供給できない可能性がある。 In the system described in Patent Document 1, since the heat discharged from the fuel cell device can be stored in the heat storage tank, sufficient heat can be supplied for the heat application even at the timing when the heat demand becomes large. However, since cold heat cannot be stored, there is a possibility that sufficient cold heat cannot be supplied from the fuel cell device for cooling applications or the like at the timing when the cold heat demand increases.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、燃料電池装置から排出された熱を温熱及び冷熱の両方の状態で蓄えることができる蓄熱システムを提供する点にある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat storage system capable of storing heat discharged from a fuel cell device in both hot and cold states.

上記目的を達成するための本発明に係る蓄熱システムの特徴構成は、燃料電池装置と、熱音響冷凍装置と、蓄熱媒体を用いて熱を蓄えることができる蓄熱タンクとを備え、
前記熱音響冷凍装置は、環状に形成され、内部に作動媒体が充填されたループ管と、前記ループ管の途中に設けられ、低温側と前記燃料電池装置から排出された熱を保有する排熱媒体の熱エネルギーが供給される高温側との間の温度勾配により音響エネルギーを発生させる第1変換部と、前記ループ管の途中に設けられ、前記第1変換部から前記ループ管を通って伝搬された音響エネルギーが熱エネルギーに変換されることで低温側と高温側との間で生じる温度勾配を利用して、当該低温側から外部に冷熱を排出できる第2変換部とを有する蓄熱システムであって、
前記蓄熱タンクは、上方が相対的に高温で下方が相対的に低温になる温度成層を形成する状態で内部に前記蓄熱媒体を貯えることができ、前記蓄熱タンクの上方側に設けられる上方口と下方側に設けられる下方口とを介して前記蓄熱媒体を前記蓄熱タンクの内外に流動させることができるように構成され、
前記蓄熱タンクに相対的に高温の前記蓄熱媒体を新たに貯える温熱蓄積運転を行うとき、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を前記排熱媒体で加熱した後、当該蓄熱媒体を前記蓄熱タンクの前記上方口に戻すように流動させ、
前記蓄熱タンクに相対的に低温の前記蓄熱媒体を新たに貯える冷熱蓄積運転を行うとき、前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を前記熱音響冷凍装置の前記第2変換部で冷却した後、当該蓄熱媒体を前記蓄熱タンクの前記下方口に戻すように流動させ
流体が前記第1変換部と前記第2変換部との間で循環できる流体循環路を備え、
前記冷熱蓄積運転を行うとき、
前記流体循環路を通って前記第1変換部と前記第2変換部との間で流体を循環させ、
前記第1変換部の高温側を構成する第1高温側熱交換部に前記排熱媒体を供給することで当該第1高温側熱交換部を相対的に高温にさせ、前記第1変換部の低温側を構成する第1低温側熱交換部に前記流体循環路を循環する流体を供給することで当該第1低温側熱交換部を相対的に低温にさせ、前記第1高温側熱交換部及び前記第1低温側熱交換部によって生じる温度勾配により前記音響エネルギーを発生させ、
当該音響エネルギーが前記ループ管を通って前記第1変換部から前記第2変換部に伝搬された状態で、前記第2変換部の高温側を構成する第2高温側熱交換部に前記流体循環路を循環する流体を供給し、前記第2変換部の低温側を構成する第2低温側熱交換部に前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を供給して、前記作動媒体の音響エネルギーが熱エネルギーに変換されることで生じる温度勾配により、前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を前記第2低温側熱交換部で冷却する点にある。
The characteristic configuration of the heat storage system according to the present invention for achieving the above object includes a fuel cell device, a thermoacoustic refrigeration device, and a heat storage tank capable of storing heat using a heat storage medium.
The thermoacoustic refrigeration apparatus has a loop tube formed in an annular shape and filled with an operating medium inside, and exhaust heat that is provided in the middle of the loop tube and retains heat discharged from the low temperature side and the fuel cell apparatus. A first conversion unit that generates acoustic energy by a temperature gradient between the heat energy of the medium and the high temperature side to which the heat energy is supplied, and a first conversion unit that is provided in the middle of the loop tube and propagates from the first conversion unit through the loop tube. A heat storage system having a second conversion unit that can discharge cold heat from the low temperature side to the outside by utilizing the temperature gradient generated between the low temperature side and the high temperature side by converting the generated acoustic energy into heat energy. There,
The heat storage tank can store the heat storage medium inside in a state of forming a temperature stratification in which the upper part is relatively high temperature and the lower part is relatively low temperature, and the heat storage tank is provided with an upper port provided on the upper side of the heat storage tank. The heat storage medium is configured to flow inside and outside the heat storage tank via a lower port provided on the lower side.
When performing a heat storage operation for newly storing the heat storage medium having a relatively high temperature in the heat storage tank, the heat storage medium taken out from the lower port of the heat storage tank is heated by the exhaust medium, and then the heat storage medium is stored. Flowing so that it returns to the upper port of the heat storage tank,
When performing a cold heat storage operation in which the heat storage medium having a relatively low temperature is newly stored in the heat storage tank, the heat storage medium taken out from the upper port of the heat storage tank is cooled by the second conversion unit of the thermoacoustic refrigeration apparatus. After that, the heat storage medium is flowed so as to return to the lower port of the heat storage tank .
A fluid circulation path through which a fluid can circulate between the first conversion unit and the second conversion unit is provided.
When performing the cold heat storage operation
A fluid is circulated between the first conversion unit and the second conversion unit through the fluid circulation path.
By supplying the exhaust heat medium to the first high temperature side heat exchange unit constituting the high temperature side of the first conversion unit, the first high temperature side heat exchange unit is made relatively hot, and the first conversion unit By supplying the fluid circulating in the fluid circulation path to the first low temperature side heat exchange section constituting the low temperature side, the first low temperature side heat exchange section is relatively cooled, and the first high temperature side heat exchange section is used. And the acoustic energy is generated by the temperature gradient generated by the first low temperature side heat exchange unit.
In a state where the acoustic energy is propagated from the first conversion unit to the second conversion unit through the loop tube, the fluid circulation to the second high temperature side heat exchange unit constituting the high temperature side of the second conversion unit. The fluid circulating in the path is supplied, and the heat storage medium taken out from the upper port of the heat storage tank is supplied to the second low temperature side heat exchange section constituting the low temperature side of the second conversion section to supply the working medium. The point is that the heat storage medium taken out from the upper port of the heat storage tank is cooled by the second low temperature side heat exchange section due to the temperature gradient generated by converting the acoustic energy into heat energy .

上記特徴構成によれば、蓄熱システムにおいて、燃料電池装置から排出される熱を、温熱蓄積運転によって温熱の状態で蓄熱タンクに蓄えることができ、熱音響冷凍装置を用いた冷熱蓄積運転によって冷熱の状態で蓄熱タンクに蓄えることができる。
従って、燃料電池装置から排出された熱を温熱及び冷熱の両方の状態で蓄えることもできる蓄熱システムを提供できる。
さらに、上記特徴構成によれば、冷熱蓄積運転を行うとき、第1変換部では、その高温側を構成する第1高温側熱交換部に排熱媒体を供給することで第1高温側熱交換部を相対的に高温にさせ、その低温側を構成する第1低温側熱交換部に流体循環路を循環する流体を供給することで第1低温側熱交換部を相対的に低温にさせ、第1高温側熱交換部及び第1低温側熱交換部によって生じる温度勾配により前記音響エネルギーを発生させる。つまり、第1変換部において、熱エネルギーを音響エネルギーに変換できる。
また、冷熱蓄積運転を行うとき、第2変換部では、その音響エネルギーがループ管を通って第1変換部から第2変換部に伝搬された状態で、その高温側を構成する第2高温側熱交換部に流体循環路を循環する流体を供給し、その低温側を構成する第2低温側熱交換部に蓄熱タンクの上方口から取り出した蓄熱媒体を供給して、作動媒体の音響エネルギーが熱エネルギーに変換されることで生じる温度勾配により、蓄熱タンクの上方口から取り出した蓄熱媒体を第2低温側熱交換部で冷却し、冷熱を蓄熱タンクで蓄えることができる。
つまり、第2変換部において、音響エネルギーを熱エネルギーに変換できる。
According to the above characteristic configuration, in the heat storage system, the heat discharged from the fuel cell device can be stored in the heat storage tank in a hot state by the heat storage operation, and the cold heat is stored by the cold heat storage operation using the thermoacoustic refrigeration device. It can be stored in the heat storage tank in the state.
Therefore, it is possible to provide a heat storage system capable of storing the heat discharged from the fuel cell device in both hot and cold states.
Further, according to the above-mentioned feature configuration, when the cold heat storage operation is performed, the first conversion unit supplies the exhaust heat medium to the first high temperature side heat exchange unit constituting the high temperature side, thereby exchanging the first high temperature side heat. The first low temperature side heat exchange section is made relatively low temperature by supplying the fluid circulating in the fluid circulation path to the first low temperature side heat exchange section constituting the low temperature side. The acoustic energy is generated by the temperature gradient generated by the first high temperature side heat exchange section and the first low temperature side heat exchange section. That is, in the first conversion unit, thermal energy can be converted into acoustic energy.
Further, when the cold heat storage operation is performed, in the second conversion unit, the acoustic energy is propagated from the first conversion unit to the second conversion unit through the loop tube, and the second high temperature side constituting the high temperature side thereof is formed. A fluid circulating in the fluid circulation path is supplied to the heat exchange section, and a heat storage medium taken out from the upper port of the heat storage tank is supplied to the second low temperature side heat exchange section constituting the low temperature side, so that the acoustic energy of the working medium is generated. Due to the temperature gradient generated by the conversion into heat energy, the heat storage medium taken out from the upper port of the heat storage tank can be cooled by the second low temperature side heat exchange section, and the cold heat can be stored in the heat storage tank.
That is, in the second conversion unit, acoustic energy can be converted into thermal energy.

本発明に係る蓄熱システムの別の特徴構成は、前記燃料電池装置は、原燃料を水蒸気改質して燃料ガスを生成する改質部と、前記改質部で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池部と、前記燃料電池部での発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分を燃焼させる燃焼部とを有し、
前記温熱蓄積運転を行うとき、前記燃焼部から排出される燃焼排ガスを前記排熱媒体として、当該排熱媒体の熱エネルギーを、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を加熱するために消費し、
前記冷熱蓄積運転を行うとき、前記燃焼部から排出される前記燃焼排ガスを前記排熱媒体として、当該排熱媒体の熱エネルギーを、前記第1変換部の高温側を加熱するために消費し、
熱エネルギーが消費されて温度が低下した前記燃焼排ガス中から凝縮水を回収し、当該凝縮水を前記改質部での原燃料の水蒸気改質に用いる点にある。
Another characteristic configuration of the heat storage system according to the present invention is that the fuel cell device is supplied with a reforming unit that steam-reforms raw fuel to generate fuel gas and the fuel gas generated by the reforming unit. Combustion that burns the fuel component in the exhaust fuel gas discharged from the anode after being used in the power generation reaction in the fuel cell section and the fuel cell section having the anode and the cathode to which the oxygen gas is supplied. Has a part and
When the heat storage operation is performed, the combustion exhaust gas discharged from the combustion unit is used as the heat exhaust medium, and the heat energy of the heat storage medium is used to heat the heat storage medium taken out from the lower port of the heat storage tank. Consume and
When the cold heat storage operation is performed, the combustion exhaust gas discharged from the combustion unit is used as the exhaust heat medium, and the heat energy of the exhaust heat medium is consumed to heat the high temperature side of the first conversion unit.
The point is that condensed water is recovered from the combustion exhaust gas whose temperature has decreased due to heat energy consumption, and the condensed water is used for steam reforming of raw fuel in the reforming section.

上記特徴構成によれば、温熱蓄積運転を行うとき、燃料電池装置の燃焼部から排出される燃焼排ガスが保有する熱エネルギーを、蓄熱タンクから取り出した蓄熱媒体を加熱するために消費する。また、冷熱蓄積運転を行うとき、燃料電池装置の燃焼部から排出される燃焼排ガスが保有する熱エネルギーを、熱音響冷凍装置の第1変換部の高温側を加熱するために消費する。つまり、温熱蓄積運転を行うとき及び冷熱蓄積運転を行うときの何れでも、燃焼排ガスから熱エネルギーが奪われることで燃焼排ガスは冷却され、燃焼排ガスに含まれていた水分が凝縮する。その結果、その凝縮水を、改質部での原燃料の水蒸気改質に利用できる水として回収できる。 According to the above characteristic configuration, when the heat storage operation is performed, the heat energy possessed by the combustion exhaust gas discharged from the combustion part of the fuel cell device is consumed to heat the heat storage medium taken out from the heat storage tank. Further, when the cold heat storage operation is performed, the thermal energy possessed by the combustion exhaust gas discharged from the combustion portion of the fuel cell apparatus is consumed to heat the high temperature side of the first conversion portion of the thermoacoustic refrigeration apparatus. That is, in both the hot storage operation and the cold storage operation, the combustion exhaust gas is cooled by depriving the combustion exhaust gas of heat energy, and the water contained in the combustion exhaust gas is condensed. As a result, the condensed water can be recovered as water that can be used for steam reforming of the raw material and fuel in the reforming section.

本発明に係る蓄熱システムの更に別の特徴構成は、前記流体循環路の途中に、流体からの単位時間当たりの放熱量を調節できる放熱器を備える点にある。 Yet another characteristic configuration of the heat storage system according to the present invention is that a radiator capable of adjusting the amount of heat radiated from the fluid per unit time is provided in the middle of the fluid circulation path.

上記特徴構成によれば、流体循環路を流れる流体からの放熱量を調節して、流体の温度を低下させることができる。つまり、流体循環路を流れる流体が供給される第1低温側熱交換部の温度を低下させることで、第1変換部の低温側と高温側との温度差を十分に確保できる。また、流体循環路を流れる流体が供給される第2高温側熱交換部の温度を低下させることで、第2変換部の高温側の温度を低くして、第2変換部の低温側を構成する第2低温側熱交換部に供給される、蓄熱タンクの上方口から取り出した蓄熱媒体を低い温度に冷却できる。 According to the above characteristic configuration, the amount of heat radiated from the fluid flowing through the fluid circulation path can be adjusted to lower the temperature of the fluid. That is, by lowering the temperature of the first low temperature side heat exchange section to which the fluid flowing through the fluid circulation path is supplied, it is possible to sufficiently secure the temperature difference between the low temperature side and the high temperature side of the first conversion section. Further, by lowering the temperature of the second high temperature side heat exchange section to which the fluid flowing through the fluid circulation path is supplied, the temperature of the high temperature side of the second conversion section is lowered, and the low temperature side of the second conversion section is configured. The heat storage medium taken out from the upper port of the heat storage tank supplied to the second low temperature side heat exchange unit can be cooled to a low temperature.

本発明に係る蓄熱システムの更に別の特徴構成は、前記冷熱蓄積運転が行われているとき、前記放熱器は、前記第2低温側熱交換部の温度が0℃以上になるように、前記流体循環路を流れる流体からの単位時間当たりの放熱量を調節する点にある。 Yet another characteristic configuration of the heat storage system according to the present invention is that when the cold heat storage operation is performed, the radiator is used so that the temperature of the second low temperature side heat exchange unit becomes 0 ° C. or higher. The point is to adjust the amount of heat released per unit time from the fluid flowing through the fluid circulation path.

上記特徴構成によれば、流体循環路を流れる流体からの放熱量を放熱器によって調節して、その流体が供給される第1低温側熱交換部及び第2高温側熱交換部の温度を調節することができる。つまり、それらの温度に応じて変化する第2低温側熱交換部の温度も、放熱器の動作によって調節できる。従って、流体循環路を流れる流体からの単位時間当たりの放熱量を調節して、第2低温側熱交換部が0℃以上になるようにすることで、第2低温側熱交換部で水分が凍結することを回避できる。 According to the above characteristic configuration, the amount of heat radiated from the fluid flowing through the fluid circulation path is adjusted by the radiator, and the temperatures of the first low temperature side heat exchange section and the second high temperature side heat exchange section to which the fluid is supplied are adjusted. can do. That is, the temperature of the second low temperature side heat exchange unit, which changes according to those temperatures, can also be adjusted by the operation of the radiator. Therefore, by adjusting the amount of heat radiated from the fluid flowing through the fluid circulation path per unit time so that the temperature of the second low temperature side heat exchange section becomes 0 ° C. or higher, the water content in the second low temperature side heat exchange section is reduced. It is possible to avoid freezing.

本発明に係る蓄熱システムの更に別の特徴構成は、前記流体循環路を流れる流体の流速を調節できる流速調節器を備え、
前記冷熱蓄積運転が行われているとき、前記流速調節器は、前記第2低温側熱交換部の温度が0℃以上になるように、前記流体循環路を流れる流体の流速を調節する点にある。
Yet another characteristic configuration of the heat storage system according to the present invention includes a flow velocity regulator capable of adjusting the flow velocity of the fluid flowing through the fluid circulation path.
When the cold heat storage operation is being performed, the flow velocity regulator adjusts the flow velocity of the fluid flowing through the fluid circulation path so that the temperature of the second low temperature side heat exchange section becomes 0 ° C. or higher. be.

上記特徴構成によれば、流体循環路を流れる流体の流速を流速調節器によって調節して、その流体が供給される第1低温側熱交換部及び第2高温側熱交換部の温度も調節できる。従って、流速調節器の動作を調節して、第2低温側熱交換部が0℃以上になるようにすることで、第2低温側熱交換部で水分が凍結することを回避できる。 According to the above characteristic configuration, the flow velocity of the fluid flowing through the fluid circulation path can be adjusted by the flow velocity controller, and the temperatures of the first low temperature side heat exchange section and the second high temperature side heat exchange section to which the fluid is supplied can also be adjusted. .. Therefore, by adjusting the operation of the flow velocity regulator so that the second low temperature side heat exchange section becomes 0 ° C. or higher, it is possible to prevent the water from freezing in the second low temperature side heat exchange section.

本発明に係る蓄熱システムの更に別の特徴構成は、前記蓄熱タンクから外部に取り出された前記蓄熱媒体が、前記第2低温側熱交換部を経由せず、前記第1高温側熱交換部を経由した後で前記蓄熱タンクに戻るまでの間に流れる温熱回収用流路と、
前記蓄熱タンクから外部に取り出された前記蓄熱媒体が、前記第1高温側熱交換部を経由せず、前記第2低温側熱交換部を経由した後で前記蓄熱タンクに戻るまでの間に流れる冷熱回収用流路とを備える点にある。
Yet another characteristic configuration of the heat storage system according to the present invention is that the heat storage medium taken out from the heat storage tank does not pass through the second low temperature side heat exchange section, but instead of the first high temperature side heat exchange section. The heat recovery flow path that flows after passing through and before returning to the heat storage tank,
The heat storage medium taken out from the heat storage tank does not pass through the first high temperature side heat exchange section, but flows through the second low temperature side heat exchange section until it returns to the heat storage tank. The point is that it is provided with a flow path for cold heat recovery.

上記特徴構成によれば、温熱蓄積運転を行うとき、蓄熱タンクから外部に取り出された蓄熱媒体を温熱回収用流路に流すことで、その途中の第1高温側熱交換部において蓄熱媒体を加熱できる。
また、冷熱蓄積運転を行うとき、蓄熱タンクから外部に取り出された蓄熱媒体を冷熱回収用流路に流すことで、その途中の第2低温側熱交換部において蓄熱媒体を冷却できる。
According to the above characteristic configuration, when the heat storage operation is performed, the heat storage medium taken out from the heat storage tank is flowed through the heat recovery flow path, so that the heat storage medium is heated in the first high temperature side heat exchange section in the middle. can.
Further, when the cold heat storage operation is performed, the heat storage medium taken out from the heat storage tank is allowed to flow through the cold heat recovery flow path, so that the heat storage medium can be cooled in the second low temperature side heat exchange section on the way.

本発明に係る蓄熱システムの更に別の特徴構成は、流体が前記第1変換部と前記第2変換部との間で循環できる流体循環路を備え、
前記温熱蓄積運転を行うとき、前記第1変換部の高温側を構成する第1高温側熱交換部で、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を前記排熱媒体で加熱した後、当該蓄熱媒体を前記蓄熱タンクの前記上方口に戻すように流動させる点にある。
Yet another characteristic configuration of the heat storage system according to the present invention includes a fluid circulation path through which a fluid can circulate between the first conversion unit and the second conversion unit.
When the heat storage operation is performed, the heat storage medium taken out from the lower port of the heat storage tank is heated by the exhaust medium in the first high temperature side heat exchange unit constituting the high temperature side of the first conversion unit. The point is to allow the heat storage medium to flow so as to return to the upper port of the heat storage tank.

上記特徴構成によれば、温熱蓄積運転を行うとき、第1変換部の高温側を構成する第1高温側熱交換部で、蓄熱タンクの前記下方口から取り出した蓄熱媒体を排熱媒体で加熱した後、その蓄熱媒体を蓄熱タンクの上方口に戻すように流動させることで、温熱を蓄熱タンクに蓄えることができる。 According to the above characteristic configuration, when the heat storage operation is performed, the heat storage medium taken out from the lower port of the heat storage tank is heated by the exhaust heat medium in the first high temperature side heat exchange unit constituting the high temperature side of the first conversion unit. After that, the heat storage medium can be flowed so as to return to the upper port of the heat storage tank, so that the heat can be stored in the heat storage tank.

本発明に係る蓄熱システムの更に別の特徴構成は、前記流体循環路の途中に、前記第1高温側熱交換部で熱交換を行った後の前記排熱媒体と、前記流体循環路を流れる流体との熱交換を行う熱交換部を備える点にある。 Yet another characteristic configuration of the heat storage system according to the present invention is that the heat exhaust medium after heat exchange is performed in the first high temperature side heat exchange section and the fluid circulation path flow in the middle of the fluid circulation path. The point is that it is provided with a heat exchange unit that exchanges heat with a fluid.

上記特徴構成によれば、燃料電池装置から排出された熱を保有する排熱媒体から、熱交換部を用いて更に熱を奪うことができる。つまり、この熱交換部を用いて排熱媒体を更に冷却できる。従って、排熱媒体が燃焼排ガスの場合には、その燃焼排ガス中に含まれる水分を十分に回収できるようになる。 According to the above-mentioned characteristic configuration, further heat can be taken from the heat exhaust medium holding the heat discharged from the fuel cell device by using the heat exchange unit. That is, the heat exhaust medium can be further cooled by using this heat exchange unit. Therefore, when the exhaust heat medium is a combustion exhaust gas, the water contained in the combustion exhaust gas can be sufficiently recovered.

蓄熱システムの構成を示す概略図である。It is the schematic which shows the structure of the heat storage system. 第1実施形態の蓄熱システムの構成を示す図である。It is a figure which shows the structure of the heat storage system of 1st Embodiment. 温熱蓄積運転を説明する図である。It is a figure explaining the thermal storage operation. 冷熱蓄積運転を説明する図である。It is a figure explaining the cold heat storage operation. 第2実施形態の蓄熱システムの構成を示す図である。It is a figure which shows the structure of the heat storage system of 2nd Embodiment. 参考形態の蓄熱システムでの温熱蓄積運転を説明する図である。It is a figure explaining the thermal storage operation in the heat storage system of a reference form. 参考形態の蓄熱システムでの冷熱蓄積運転を説明する図である。It is a figure explaining the cold heat storage operation in the heat storage system of a reference form. 別構成の熱音響冷凍装置を示す図である。It is a figure which shows the thermoacoustic refrigerating apparatus of another structure.

<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係る蓄熱システムについて説明する。
図1は、蓄熱システムの構成を示す概略図である。図2は、第1実施形態の蓄熱システムの構成を示す図である。図1に示すように、蓄熱システムは、燃料電池装置20と、熱音響冷凍装置30と、蓄熱媒体を用いて熱を蓄えることができる蓄熱タンク1とを備える。
<First Embodiment>
The heat storage system according to the first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing the configuration of a heat storage system. FIG. 2 is a diagram showing the configuration of the heat storage system of the first embodiment. As shown in FIG. 1, the heat storage system includes a fuel cell device 20, a thermoacoustic refrigerating device 30, and a heat storage tank 1 capable of storing heat using a heat storage medium.

燃料電池装置20は、発電を行う電源装置であると共に、熱を発生する熱源装置でもある。図2に示す燃料電池装置20は、改質部23と、アノード24及びカソード25を有する燃料電池部50と、燃焼部27とを有する。燃料電池部50では、アノード24とカソード25との間に電解質部26が設けられている。例えば、燃料電池部50は固体酸化物形の燃料電池である。図2に示す例では、都市ガスなどの炭化水素を含む原燃料ガスが原燃料供給路21を通って改質部23に供給される。また、改質部23には、凝縮水を貯える水タンク3から、水供給路22を通って改質用水が供給される。改質部23において原燃料ガスの水蒸気改質が行われ、生成された水素を主成分とする燃料ガスは、燃料電池部50のアノード24に供給される。また、燃料電池部50のカソード25には空気供給路28を通って酸素(空気)が供給される。尚、燃料電池部50での発電反応では、全ての水素が消費される訳ではなく、アノード24から排出される排出アノードガス中には燃料成分が残存している。その後、燃焼部27において、アノード24から排出される排出燃料ガス中の燃料成分を燃焼させる。そして、燃焼部27で発生した燃焼熱が例えば改質部23に供給される。燃料電池装置20が固体酸化物形の燃料電池部50を備える場合、燃焼排ガスの温度は例えば160℃などである。後述するように、本実施形態では、燃焼部27から排出される燃焼排ガスを冷却する(熱エネルギーを回収する)ことで燃焼排ガス中から凝縮水を回収し、その凝縮水を改質部23での原燃料の水蒸気改質に用いる。図2に示す例では、凝縮水は燃焼排ガス路29から分岐するように接続された水回収路2を通って水タンク3へと流れ込む。
燃料電池装置20の動作は制御装置Cが制御する。
The fuel cell device 20 is not only a power supply device that generates electric power but also a heat source device that generates heat. The fuel cell device 20 shown in FIG. 2 has a reforming unit 23, a fuel cell unit 50 having an anode 24 and a cathode 25, and a combustion unit 27. In the fuel cell unit 50, an electrolyte unit 26 is provided between the anode 24 and the cathode 25. For example, the fuel cell unit 50 is a solid oxide fuel cell. In the example shown in FIG. 2, a raw material fuel gas containing a hydrocarbon such as city gas is supplied to the reforming unit 23 through the raw material fuel supply path 21. Further, the reforming unit 23 is supplied with reforming water from the water tank 3 for storing condensed water through the water supply path 22. The raw fuel gas is steam reformed in the reforming section 23, and the generated hydrogen-based fuel gas is supplied to the anode 24 of the fuel cell section 50. Further, oxygen (air) is supplied to the cathode 25 of the fuel cell unit 50 through the air supply path 28. In the power generation reaction in the fuel cell unit 50, not all hydrogen is consumed, and the fuel component remains in the discharged anode gas discharged from the anode 24. After that, the combustion unit 27 burns the fuel component in the exhaust fuel gas discharged from the anode 24. Then, the combustion heat generated in the combustion unit 27 is supplied to, for example, the reforming unit 23. When the fuel cell device 20 includes the solid oxide fuel cell unit 50, the temperature of the combustion exhaust gas is, for example, 160 ° C. As will be described later, in the present embodiment, condensed water is recovered from the combustion exhaust gas by cooling the combustion exhaust gas discharged from the combustion unit 27 (recovering heat energy), and the condensed water is collected by the reforming unit 23. Used for steam reforming of raw materials and fuels. In the example shown in FIG. 2, the condensed water flows into the water tank 3 through the water recovery path 2 connected so as to branch from the combustion exhaust gas path 29.
The operation of the fuel cell device 20 is controlled by the control device C.

図1及び図2に示すように、熱音響冷凍装置30A(30)は、環状に形成され、内部に作動媒体が充填されたループ管39と、ループ管39の途中に設けられ、低温側と燃料電池装置20から排出された熱を保有する排熱媒体の熱エネルギーが供給される高温側との間の温度勾配により音響エネルギーを発生させる第1変換部34と、ループ管39の途中に設けられ、第1変換部34からループ管39を通って伝搬された音響エネルギーが熱エネルギーに変換されることで低温側と高温側との間で生じる温度勾配を利用して、その低温側から外部に冷熱を排出できる第2変換部38とを有する。本実施形態では、燃料電池装置20の燃焼部27から排出された燃焼排ガスが排熱媒体になる。ループ管39には、窒素、ヘリウムなどの不活性ガスが封入されている。 As shown in FIGS. 1 and 2, the thermoacoustic refrigerating apparatus 30A (30) is provided in a loop tube 39 formed in an annular shape and filled with an operating medium, and a low temperature side provided in the middle of the loop tube 39. A first conversion unit 34 that generates acoustic energy by a temperature gradient between the heat energy of the exhaust heat medium holding the heat discharged from the fuel cell device 20 and the high temperature side to which the heat energy is supplied is provided in the middle of the loop pipe 39. Then, the acoustic energy propagated from the first conversion unit 34 through the loop tube 39 is converted into heat energy, and the temperature gradient generated between the low temperature side and the high temperature side is used to from the low temperature side to the outside. It has a second conversion unit 38 capable of discharging cold heat. In the present embodiment, the combustion exhaust gas discharged from the combustion unit 27 of the fuel cell device 20 serves as a heat exhaust medium. The loop tube 39 is filled with an inert gas such as nitrogen or helium.

第1変換部34は、高温側を構成する第1高温側熱交換部31と、低温側を構成する第1低温側熱交換部33と、それら第1高温側熱交換部31及び第1低温側熱交換部33の間に設けられる第1スタック32とを有する。第2変換部38は、高温側を構成する第2高温側熱交換部35と、低温側を構成する第2低温側熱交換部37と、それら第2高温側熱交換部35及び第2低温側熱交換部37の間に設けられる第2スタック36とを有する。第1スタック32及び第2スタック36は、ループ管39内で、ステンレス鋼などで形成された複数の薄板が格子状やハニカム状などに微少間隔で設けられることにより、複数の微少通路が平行に形成された構造になっている。 The first conversion unit 34 includes a first high temperature side heat exchange unit 31 constituting a high temperature side, a first low temperature side heat exchange unit 33 constituting a low temperature side, a first high temperature side heat exchange unit 31 and a first low temperature. It has a first stack 32 provided between the side heat exchange portions 33. The second conversion unit 38 includes a second high temperature side heat exchange unit 35 constituting a high temperature side, a second low temperature side heat exchange unit 37 constituting a low temperature side, a second high temperature side heat exchange unit 35, and a second low temperature. It has a second stack 36 provided between the side heat exchange portions 37. In the first stack 32 and the second stack 36, a plurality of thin plates made of stainless steel or the like are provided in a loop pipe 39 at minute intervals in a lattice shape or a honeycomb shape, so that a plurality of minute passages are parallel to each other. It has a formed structure.

蓄熱タンク1は、上方が相対的に高温で下方が相対的に低温になる温度成層を形成する状態で内部に蓄熱媒体を貯えることができ、蓄熱タンク1の上方側に設けられる上方口40と下方側に設けられる下方口41,42とを介して蓄熱媒体を蓄熱タンク1の内外に流動させることができるように構成される。例えば、蓄熱タンク1には、蓄熱媒体としての水が蓄えられる。 The heat storage tank 1 can store the heat storage medium inside in a state of forming a temperature stratification in which the upper part is relatively high temperature and the lower part is relatively low temperature, and the heat storage tank 1 is provided with an upper port 40 provided on the upper side of the heat storage tank 1. It is configured so that the heat storage medium can flow inside and outside the heat storage tank 1 through the lower ports 41 and 42 provided on the lower side. For example, water as a heat storage medium is stored in the heat storage tank 1.

図2に示すように、蓄熱システムは、流体が第1変換部34と第2変換部38との間で循環できる流体循環路44を備える。本実施形態では、水を流体として用いる。加えて、流体循環路44の途中に、流体からの単位時間当たりの放熱量を調節できる放熱器45を備える。流体循環路44を流れる流体の流速を調節できる流速調節器としてのポンプP3を備える。放熱器45は放熱ファン45aを備え、その放熱ファン45aの回転速度を調節することで、流体からの単位時間当たりの放熱量を調節できる。
ポンプP3及び放熱器45の動作は制御装置Cが制御する。
As shown in FIG. 2, the heat storage system includes a fluid circulation path 44 through which a fluid can circulate between the first conversion unit 34 and the second conversion unit 38. In this embodiment, water is used as the fluid. In addition, a radiator 45 capable of adjusting the amount of heat radiated from the fluid per unit time is provided in the middle of the fluid circulation path 44. A pump P3 is provided as a flow velocity adjuster capable of adjusting the flow velocity of the fluid flowing through the fluid circulation path 44. The radiator 45 includes a heat radiating fan 45a, and by adjusting the rotation speed of the heat radiating fan 45a, the amount of heat radiated from the fluid per unit time can be adjusted.
The operation of the pump P3 and the radiator 45 is controlled by the control device C.

本実施形態の蓄熱システムでは、蓄熱タンク1に貯えられている蓄熱媒体は蓄熱媒体流路43を通って循環できる。蓄熱媒体流路43は、温熱回収用流路43aと冷熱回収用流路43bと共通流路43cとを有する。そして、蓄熱タンク1に貯えられている蓄熱媒体を、上方口40から取り出して下方口42に戻す流動状態、及び、下方口41から取り出して上方口40に戻す流動状態の何れかに切り替えることができる。 In the heat storage system of the present embodiment, the heat storage medium stored in the heat storage tank 1 can be circulated through the heat storage medium flow path 43. The heat storage medium flow path 43 has a heat recovery flow path 43a, a cold heat recovery flow path 43b, and a common flow path 43c. Then, the heat storage medium stored in the heat storage tank 1 can be switched between a flow state in which the heat storage medium is taken out from the upper port 40 and returned to the lower port 42 and a flow state in which the heat storage medium is taken out from the lower port 41 and returned to the upper port 40. can.

蓄熱タンク1に貯えられている蓄熱媒体を、上方口40から取り出して下方口42に戻す流動状態にするとき、三方弁V1がB−Cで流通できるように切り替えられ、且つ、ポンプP1が作動される。それにより、蓄熱タンク1の上方口40から共通流路43cへと取り出された蓄熱媒体は、三方弁V1を通って冷熱回収用流路43bに至り、第2低温側熱交換部37を経由して、蓄熱タンク1の下方口42に戻る。それに対して、蓄熱タンク1に貯えられている蓄熱媒体を、下方口41から取り出して上方口40に戻す流動状態にするとき、三方弁V1がA−Cで流通できるように切り替えられ、且つ、ポンプP2が作動される。それにより、蓄熱タンク1の下方口41から温熱回収用流路43aへと取り出された蓄熱媒体は、第1高温側熱交換部31を経由し、三方弁V1及び共通流路43cを通って蓄熱タンク1の上方口40に戻る。
ポンプP1及びポンプP2及び三方弁V1の動作は制御装置Cが制御する。
When the heat storage medium stored in the heat storage tank 1 is taken out from the upper port 40 and returned to the lower port 42, the three-way valve V1 is switched so that it can be circulated through BC, and the pump P1 operates. Will be done. As a result, the heat storage medium taken out from the upper port 40 of the heat storage tank 1 to the common flow path 43c reaches the cold heat recovery flow path 43b through the three-way valve V1 and passes through the second low temperature side heat exchange section 37. Then, it returns to the lower port 42 of the heat storage tank 1. On the other hand, when the heat storage medium stored in the heat storage tank 1 is taken out from the lower port 41 and returned to the upper port 40 in a flowing state, the three-way valve V1 is switched so that it can be distributed by AC and is also available. Pump P2 is activated. As a result, the heat storage medium taken out from the lower port 41 of the heat storage tank 1 to the heat recovery flow path 43a passes through the first high temperature side heat exchange section 31 and the three-way valve V1 and the common flow path 43c to store heat. Return to the upper port 40 of the tank 1.
The operation of the pump P1, the pump P2, and the three-way valve V1 is controlled by the control device C.

このように、本実施形態では、蓄熱タンク1から外部に取り出された蓄熱媒体が、第2低温側熱交換部37を経由せず、第1高温側熱交換部31を経由した後で蓄熱タンク1に戻るまでの間に流れる温熱回収用流路43aと、蓄熱タンク1から外部に取り出された蓄熱媒体が、第1高温側熱交換部31を経由せず、第2低温側熱交換部37を経由した後で蓄熱タンク1に戻るまでの間に流れる冷熱回収用流路43bとが別々に設けられている。 As described above, in the present embodiment, the heat storage medium taken out from the heat storage tank 1 does not pass through the second low temperature side heat exchange unit 37, but passes through the first high temperature side heat exchange unit 31, and then the heat storage tank. The heat recovery flow path 43a that flows before returning to 1 and the heat storage medium taken out from the heat storage tank 1 do not pass through the first high temperature side heat exchange unit 31, but the second low temperature side heat exchange unit 37. A cold heat recovery flow path 43b that flows before returning to the heat storage tank 1 after passing through the above is provided separately.

蓄熱タンク1では、後述するように温熱及び冷熱を蓄えることができるが、その温熱及び冷熱は、蓄熱システムの外部に出力できる。本実施形態では、蓄熱タンク1の上方側には上側接続路6が接続され、下方側には下側接続路7が接続されている。また、上側接続路6及び下側接続路7は共に給水路4及び熱出力路5に接続されている。具体的には、上側接続路6は給水路4b及び熱出力路5aに接続され、下側接続路7は給水路4a及び熱出力路5bに接続される。 The heat storage tank 1 can store hot and cold heat as described later, and the hot and cold heat can be output to the outside of the heat storage system. In the present embodiment, the upper connecting path 6 is connected to the upper side of the heat storage tank 1, and the lower connecting path 7 is connected to the lower side. Further, the upper connecting path 6 and the lower connecting path 7 are both connected to the water supply path 4 and the heat output path 5. Specifically, the upper connecting passage 6 is connected to the water supply passage 4b and the heat output passage 5a, and the lower connecting passage 7 is connected to the water supply passage 4a and the heat output passage 5b.

そして、三方弁V2がA−Cで流通できるように切り替えられ、三方弁V3がA−Cで流通できるように切り替えられているとき、給水路4を通って供給される水は、三方弁V3を経由して給水路4aに至り、その後、下側接続路7を通って蓄熱タンク1の下方から、蓄熱タンク1の内部に流入する。また、蓄熱タンク1の内部の水は、上側接続路6を通って取り出され、熱出力路5a及び三方弁V2を経由して、熱出力路5から熱負荷装置(図示せず)に向けて供給される。
それに対して、三方弁V2がB−Cで流通できるように切り替えられ、三方弁V2がB−Cで流通できるように切り替えられているとき、給水路4を通って供給される水は、三方弁V3を経由して給水路4bに至り、その後、上側接続路6を通って蓄熱タンク1の上方から、蓄熱タンク1の内部に流入する。また、蓄熱タンク1の内部の水は、下側接続路7を通って取り出され、熱出力路5b及び三方弁V2を経由して、熱出力路5から熱負荷装置(図示せず)に向けて供給される。
三方弁V2及び三方弁V3の動作は制御装置Cが制御する。
Then, when the three-way valve V2 is switched so that it can be circulated through AC and the three-way valve V3 is switched so that it can be circulated through AC, the water supplied through the water supply channel 4 is the three-way valve V3. It reaches the water supply channel 4a via the above, and then flows into the inside of the heat storage tank 1 from below the heat storage tank 1 through the lower connecting path 7. Further, the water inside the heat storage tank 1 is taken out through the upper connecting path 6, and is directed from the heat output path 5 toward the heat load device (not shown) via the heat output path 5a and the three-way valve V2. Be supplied.
On the other hand, when the three-way valve V2 is switched so that it can be circulated through BC and the three-way valve V2 is switched so that it can be circulated through BC, the water supplied through the water supply channel 4 is three-way. It reaches the water supply channel 4b via the valve V3, and then flows into the inside of the heat storage tank 1 from above the heat storage tank 1 through the upper connecting path 6. Further, the water inside the heat storage tank 1 is taken out through the lower connecting path 7, and is directed from the heat output path 5 to the heat load device (not shown) via the heat output path 5b and the three-way valve V2. Is supplied.
The operation of the three-way valve V2 and the three-way valve V3 is controlled by the control device C.

〔温熱蓄積運転〕
図3は、温熱蓄積運転を説明する図であり、ガスや各媒体の流動を太線で強調表示している。蓄熱タンク1に相対的に高温の蓄熱媒体を新たに貯える温熱蓄積運転を行うとき、蓄熱タンク1の下方口41から取り出した蓄熱媒体を排熱媒体で加熱した後、その蓄熱媒体を蓄熱タンク1の上方口40に戻すように流動させる。
つまり、温熱蓄積運転を行うとき、燃焼部27から排出される燃焼排ガスを排熱媒体として、その排熱媒体の熱エネルギーを、蓄熱タンク1の下方口41から取り出した蓄熱媒体を加熱するために消費する。具体的には、温熱蓄積運転を行うとき、流体循環路44で流体を循環させず、第1変換部34の高温側を構成する第1高温側熱交換部31で、蓄熱タンク1の下方口41から取り出した蓄熱媒体を排熱媒体(燃焼排ガス)で加熱した後、その蓄熱媒体を蓄熱タンク1の上方口40に戻すように流動させる。このように、第1高温側熱交換部31では、排熱媒体(燃焼排ガス)を用いて、蓄熱媒体の昇温が行われる。その結果、排熱媒体である燃焼排ガスの温度は低下し、燃焼排ガスに含まれる水分が凝縮水となる。そして、その凝縮水は燃焼排ガス路29から分岐するように接続された水回収路2を通って水タンク3へと流れ込む。
[Heat accumulation operation]
FIG. 3 is a diagram for explaining the thermal storage operation, and the flow of gas and each medium is highlighted with a thick line. When performing a heat storage operation in which a relatively high temperature heat storage medium is newly stored in the heat storage tank 1, the heat storage medium taken out from the lower port 41 of the heat storage tank 1 is heated by the exhaust heat medium, and then the heat storage medium is stored in the heat storage tank 1. It is made to flow so as to return to the upper port 40 of.
That is, when performing the heat storage operation, the combustion exhaust gas discharged from the combustion unit 27 is used as an exhaust heat medium, and the heat energy of the exhaust heat medium is used to heat the heat storage medium taken out from the lower port 41 of the heat storage tank 1. Consume. Specifically, during the heat storage operation, the lower port of the heat storage tank 1 is the first high temperature side heat exchange unit 31 that does not circulate the fluid in the fluid circulation path 44 and constitutes the high temperature side of the first conversion unit 34. After the heat storage medium taken out from 41 is heated by the exhaust heat medium (combustion exhaust gas), the heat storage medium is fluidized so as to return to the upper port 40 of the heat storage tank 1. In this way, in the first high temperature side heat exchange unit 31, the heat storage medium is heated by using the exhaust heat medium (combustion exhaust gas). As a result, the temperature of the combustion exhaust gas, which is the exhaust heat medium, decreases, and the water contained in the combustion exhaust gas becomes condensed water. Then, the condensed water flows into the water tank 3 through the water recovery path 2 connected so as to branch off from the combustion exhaust gas path 29.

〔冷熱蓄積運転〕
図4は、冷熱蓄積運転を説明する図であり、ガスや各媒体の流動を太線で強調表示している。蓄熱タンク1に相対的に低温の蓄熱媒体を新たに貯える冷熱蓄積運転を行うとき、蓄熱タンク1の上方口40から取り出した蓄熱媒体を熱音響冷凍装置30Aの第2変換部38(第2低温側熱交換部37)で冷却した後、その蓄熱媒体を蓄熱タンク1の下方口42に戻すように流動させる。つまり、冷熱蓄積運転を行うとき、燃焼部27から排出される燃焼排ガスを排熱媒体として、その排熱媒体の熱エネルギーを、第1変換部34の高温側を加熱するために消費する。具体的には、冷熱蓄積運転を行うとき、流体循環路44を通って第1変換部34と第2変換部38との間で流体を循環させ、第1変換部34の高温側を構成する第1高温側熱交換部31に排熱媒体を供給することで第1高温側熱交換部31を相対的に高温にさせ、第1変換部34の低温側を構成する第1低温側熱交換部33に流体循環路44を循環する流体を供給することでその第1低温側熱交換部33を相対的に低温にさせ、第1高温側熱交換部31及び第1低温側熱交換部33によって生じる温度勾配により音響エネルギーを発生させ、その音響エネルギーがループ管39を通って第1変換部34から第2変換部38に伝搬された状態で、第2変換部38の高温側を構成する第2高温側熱交換部35に流体循環路44を循環する流体を供給し、第2変換部38の低温側を構成する第2低温側熱交換部37に蓄熱タンク1の上方口40から取り出した蓄熱媒体を供給して、作動媒体の音響エネルギーが熱エネルギーに変換されることで生じる温度勾配により、蓄熱タンク1の上方口40から取り出した蓄熱媒体を第2低温側熱交換部37で冷却する。
[Cold heat storage operation]
FIG. 4 is a diagram for explaining the cold heat storage operation, and the flow of gas and each medium is highlighted with a thick line. When performing a cold heat storage operation in which a relatively low temperature heat storage medium is newly stored in the heat storage tank 1, the heat storage medium taken out from the upper port 40 of the heat storage tank 1 is taken out from the second conversion unit 38 (second low temperature) of the thermoacoustic refrigeration apparatus 30A. After cooling by the side heat exchange unit 37), the heat storage medium is flowed so as to return to the lower port 42 of the heat storage tank 1. That is, when the cold heat storage operation is performed, the combustion exhaust gas discharged from the combustion unit 27 is used as an exhaust heat medium, and the heat energy of the exhaust heat medium is consumed to heat the high temperature side of the first conversion unit 34. Specifically, when the cold heat storage operation is performed, the fluid is circulated between the first conversion unit 34 and the second conversion unit 38 through the fluid circulation path 44 to form the high temperature side of the first conversion unit 34. By supplying the exhaust heat medium to the first high temperature side heat exchange unit 31, the first high temperature side heat exchange unit 31 is made relatively hot, and the first low temperature side heat exchange constituting the low temperature side of the first conversion unit 34 By supplying the fluid circulating in the fluid circulation path 44 to the unit 33, the first low temperature side heat exchange unit 33 is made relatively low temperature, and the first high temperature side heat exchange unit 31 and the first low temperature side heat exchange unit 33 are made. Acoustic energy is generated by the temperature gradient generated by the above, and the acoustic energy is propagated from the first conversion unit 34 to the second conversion unit 38 through the loop tube 39, and constitutes the high temperature side of the second conversion unit 38. The fluid circulating in the fluid circulation path 44 is supplied to the second high temperature side heat exchange unit 35, and the second low temperature side heat exchange unit 37 constituting the low temperature side of the second conversion unit 38 is taken out from the upper port 40 of the heat storage tank 1. The heat storage medium taken out from the upper port 40 of the heat storage tank 1 is cooled by the second low temperature side heat exchange unit 37 due to the temperature gradient generated by supplying the heat storage medium and converting the acoustic energy of the working medium into heat energy. do.

尚、冷熱蓄積運転を行っているとき、第2低温側熱交換部37に霜が付き故障の原因となる恐れがある。そこで、本実施形態では、冷熱蓄積運転が行われているとき、制御装置Cによる制御の下で、放熱器45は、第2低温側熱交換部37の温度が0℃以上になるように、流体循環路44を流れる流体からの単位時間当たりの放熱量を調節する。或いは、冷熱蓄積運転が行われているとき、制御装置Cによる制御の下で、流速調節器としてのポンプP3は、第2低温側熱交換部37の温度が0℃以上になるように、流体循環路44を流れる流体の流速を調節する。また或いは、冷熱蓄積運転が行われているとき、制御装置Cによる制御の下で、第2低温側熱交換部37の温度が0℃以上になるように、第2低温側熱交換部37で冷却される、蓄熱タンク1の上方口40から取り出した蓄熱媒体の単位時間当たりの流量を調節する。尚、上述のような運転は予め設定された期間だけ行えばよい。 During the cold heat storage operation, frost may form on the second low temperature side heat exchange unit 37, which may cause a failure. Therefore, in the present embodiment, when the cold heat storage operation is being performed, under the control of the control device C, the radiator 45 is set so that the temperature of the second low temperature side heat exchange unit 37 becomes 0 ° C. or higher. The amount of heat released per unit time from the fluid flowing through the fluid circulation path 44 is adjusted. Alternatively, when the cold heat storage operation is being performed, under the control of the control device C, the pump P3 as the flow velocity regulator is fluid so that the temperature of the second low temperature side heat exchange unit 37 becomes 0 ° C. or higher. The flow velocity of the fluid flowing through the circulation path 44 is adjusted. Alternatively, when the cold heat storage operation is being performed, the second low temperature side heat exchange unit 37 controls the second low temperature side heat exchange unit 37 so that the temperature of the second low temperature side heat exchange unit 37 becomes 0 ° C. or higher under the control of the control device C. The flow rate per unit time of the heat storage medium taken out from the upper port 40 of the heat storage tank 1 to be cooled is adjusted. It should be noted that the above-mentioned operation may be performed only for a preset period.

以上のように、本実施形態の蓄熱システムでは、燃料電池装置20から排出される熱を、温熱蓄積運転によって温熱の状態で蓄熱タンク1に蓄えることができ、熱音響冷凍装置30を用いた冷熱蓄積運転によって冷熱の状態で蓄熱タンク1に蓄えることができる。従って、燃料電池装置20から排出された熱を温熱及び冷熱の両方の状態で蓄えることもできる蓄熱システムを提供できる。 As described above, in the heat storage system of the present embodiment, the heat discharged from the fuel cell device 20 can be stored in the heat storage tank 1 in a hot state by the heat storage operation, and the cold heat using the thermoacoustic refrigeration device 30 can be stored. By the storage operation, it can be stored in the heat storage tank 1 in a cold state. Therefore, it is possible to provide a heat storage system capable of storing the heat discharged from the fuel cell device 20 in both hot and cold states.

<第2実施形態>
第2実施形態の蓄熱システムは、燃料電池装置20から排出された熱を保有する排熱媒体からの熱回収の態様が上記実施形態と異なっている。以下に第2実施形態の蓄熱システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
<Second Embodiment>
The heat storage system of the second embodiment is different from the above-described embodiment in the mode of heat recovery from the exhaust heat medium holding the heat discharged from the fuel cell device 20. The heat storage system of the second embodiment will be described below, but the description of the same configuration as that of the above embodiment will be omitted.

図5は、第2実施形態の蓄熱システムの構成を示す図である。図示するように、この蓄熱システムは、流体循環路44の途中に、第1高温側熱交換部31で熱交換を行った後の排熱媒体(燃焼排ガス)と、流体循環路44を流れる流体との熱交換を行う熱交換部47を備える。蓄熱システムは、この熱交換部47を備えることで、排熱媒体(燃焼排ガス)から第1実施形態よりも多くの熱を回収できる。つまり、燃焼排ガスをより低温にできるので、燃焼排ガス中に含まれている水分をより多く凝縮させて水タンク3に回収できる。 FIG. 5 is a diagram showing the configuration of the heat storage system of the second embodiment. As shown in the figure, in this heat storage system, in the middle of the fluid circulation path 44, the exhaust heat medium (combustion exhaust gas) after heat exchange is performed by the first high temperature side heat exchange section 31, and the fluid flowing through the fluid circulation path 44. It is provided with a heat exchange unit 47 that exchanges heat with and from. By providing the heat exchange unit 47, the heat storage system can recover more heat from the exhaust heat medium (combustion exhaust gas) than in the first embodiment. That is, since the combustion exhaust gas can be cooled to a lower temperature, more water contained in the combustion exhaust gas can be condensed and recovered in the water tank 3.

参考形態>
本願の権利範囲に入るものではないが、参考形態の蓄熱システムは、燃料電池装置20から排出された熱を保有する排熱媒体からの熱回収の態様が上記実施形態と異なっている。以下に参考形態の蓄熱システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
< Reference form>
Although not within the scope of rights of the present application, the heat storage system of the reference embodiment differs from the above embodiment in the mode of heat recovery from the exhaust heat medium holding the heat discharged from the fuel cell device 20. The heat storage system of the reference embodiment will be described below, but the description of the same configuration as that of the above embodiment will be omitted.

図6及び図7は、参考形態の蓄熱システムの構成を示す図である。具体的には、図6は温熱蓄積運転を説明する図であり、図7は冷熱蓄積運転を説明する図である。図示するように、本参考形態の蓄熱システムにおいて、蓄熱タンク1は、温熱回収用蓄熱タンク1Bと冷熱回収用蓄熱タンク1Aとを有して構成される。また、蓄熱システムは、第1高温側熱交換部31で熱交換を行った後の排熱媒体(燃焼排ガス)と、温熱回収用蓄熱タンク1Bから外部に取り出された蓄熱媒体との熱交換を行う温熱回収用熱交換部46とを備える。蓄熱システムは、温熱回収用蓄熱タンク1Bから外部に取り出された蓄熱媒体が、第2低温側熱交換部37を経由せず、第1高温側熱交換部31を経由した後で温熱回収用蓄熱タンク1Bに戻るまでの間に流れる温熱回収用流路43aと、冷熱回収用蓄熱タンク1Aから外部に取り出された蓄熱媒体が、第1高温側熱交換部31を経由せず、第2低温側熱交換部37を経由した後で冷熱回収用蓄熱タンク1Aに戻るまでの間に流れる冷熱回収用流路43bとを備える。 6 and 7 are diagrams showing the configuration of the heat storage system of the reference form. Specifically, FIG. 6 is a diagram for explaining the heat storage operation, and FIG. 7 is a diagram for explaining the cold heat storage operation. As shown in the figure, in the heat storage system of the present reference embodiment, the heat storage tank 1 includes a heat storage tank 1B for heat recovery and a heat storage tank 1A for cold heat recovery. Further, the heat storage system exchanges heat between the exhaust heat medium (combustion exhaust gas) after heat exchange in the first high temperature side heat exchange unit 31 and the heat storage medium taken out from the heat recovery tank 1B for heat recovery. It is provided with a heat exchange unit 46 for heat recovery. In the heat storage system, the heat storage medium taken out from the heat recovery tank 1B does not pass through the second low temperature side heat exchange unit 37, but passes through the first high temperature side heat exchange unit 31, and then the heat storage medium for heat recovery. The heat recovery flow path 43a flowing before returning to the tank 1B and the heat storage medium taken out from the cold heat recovery heat storage tank 1A do not pass through the first high temperature side heat exchange section 31 and are on the second low temperature side. It is provided with a cold heat recovery flow path 43b that flows after passing through the heat exchange unit 37 and before returning to the cold heat recovery heat storage tank 1A.

〔温熱蓄積運転〕
図6は、温熱蓄積運転を説明する図であり、ガスや各媒体の流動を太線で強調表示している。この場合、温熱回収用蓄熱タンク1Bから外部に取り出された蓄熱媒体が、温熱回収用流路43aを通って、第2低温側熱交換部37を経由せず、温熱回収用熱交換部46を経由した後で温熱回収用蓄熱タンク1Bに戻る。そして、温熱蓄積運転を行うとき、温熱回収用熱交換部46で、温熱回収用蓄熱タンク1Bの下方口41から取り出した蓄熱媒体を、第1高温側熱交換部31で熱交換を行った後の排熱媒体(燃焼排ガス)で加熱した後、その蓄熱媒体を温熱回収用蓄熱タンク1Bの上方口40に戻すように流動させる。これにより、温熱回収用蓄熱タンク1Bに温熱が蓄えられる。
[Heat accumulation operation]
FIG. 6 is a diagram for explaining the thermal storage operation, and the flow of gas and each medium is highlighted with a thick line. In this case, the heat storage medium taken out from the heat recovery tank 1B passes through the heat recovery flow path 43a and does not pass through the second low temperature side heat exchange section 37, but instead passes through the heat recovery section 46. After passing through, it returns to the heat storage tank 1B for heat recovery. Then, when the heat storage operation is performed, the heat storage medium taken out from the lower port 41 of the heat recovery heat storage tank 1B by the heat recovery heat exchange unit 46 is heat-exchanged by the first high temperature side heat exchange unit 31. After heating with the exhaust heat medium (combustion exhaust gas) of the above, the heat storage medium is flowed so as to return to the upper port 40 of the heat recovery tank 1B for heat recovery. As a result, heat is stored in the heat storage tank 1B for heat recovery.

〔冷熱蓄積運転〕
図7は、冷熱蓄積運転を説明する図であり、ガスや各媒体の流動を太線で強調表示している。この場合、冷熱回収用蓄熱タンク1Aから外部に取り出された蓄熱媒体が、冷熱回収用流路43bを通って、第1高温側熱交換部31を経由せず、第2低温側熱交換部37を経由した後で冷熱回収用蓄熱タンク1Aに戻る。そして、冷熱蓄積運転を行うとき、流体循環路44を通って第1変換部34と第2変換部38との間で流体を循環させ、第1変換部34の高温側を構成する第1高温側熱交換部31に排熱媒体を供給することでその第1高温側熱交換部31を相対的に高温にさせ、第1変換部34の低温側を構成する第1低温側熱交換部33に流体循環路44を循環する流体を供給することでその第1低温側熱交換部33を相対的に低温にさせ、第1高温側熱交換部31及び第1低温側熱交換部33によって生じる温度勾配により音響エネルギーを発生させ、その音響エネルギーがループ管39を通って第1変換部34から第2変換部38に伝搬された状態で、第2変換部38の高温側を構成する第2高温側熱交換部35に流体循環路44を循環する流体を供給し、第2変換部38の低温側を構成する第2低温側熱交換部37に冷熱回収用蓄熱タンク1Aの上方口40から取り出した蓄熱媒体を供給して、作動媒体の音響エネルギーが熱エネルギーに変換されることで生じる温度勾配により、冷熱回収用蓄熱タンク1Aの上方口40から取り出した蓄熱媒体を第2低温側熱交換部37で冷却する。これにより、冷熱回収用蓄熱タンク1Aに冷熱が蓄えられる。
[Cold heat storage operation]
FIG. 7 is a diagram for explaining the cold heat storage operation, and the flow of gas and each medium is highlighted with a thick line. In this case, the heat storage medium taken out from the cold heat recovery heat storage tank 1A passes through the cold heat recovery flow path 43b and does not pass through the first high temperature side heat exchange section 31, but the second low temperature side heat exchange section 37. After passing through, the process returns to the heat storage tank 1A for cold heat recovery. Then, when the cold heat storage operation is performed, the fluid is circulated between the first conversion unit 34 and the second conversion unit 38 through the fluid circulation path 44, and the first high temperature constituting the high temperature side of the first conversion unit 34 is formed. By supplying the exhaust heat medium to the side heat exchange unit 31, the first high temperature side heat exchange unit 31 is heated to a relatively high temperature, and the first low temperature side heat exchange unit 33 constituting the low temperature side of the first conversion unit 34. By supplying the fluid circulating in the fluid circulation path 44, the first low temperature side heat exchange section 33 is made relatively low temperature, and the first high temperature side heat exchange section 31 and the first low temperature side heat exchange section 33 generate the heat exchange section 33. Acoustic energy is generated by the temperature gradient, and the acoustic energy is propagated from the first conversion unit 34 to the second conversion unit 38 through the loop tube 39, and the second conversion unit 38 constitutes the high temperature side. The fluid circulating in the fluid circulation path 44 is supplied to the high temperature side heat exchange section 35, and the second low temperature side heat exchange section 37 constituting the low temperature side of the second conversion section 38 is supplied from the upper port 40 of the cold heat recovery heat storage tank 1A. The heat storage medium taken out from the upper port 40 of the cold heat recovery heat storage tank 1A is exchanged for heat on the second low temperature side due to the temperature gradient generated by supplying the taken out heat storage medium and converting the acoustic energy of the working medium into heat energy. It is cooled by the part 37. As a result, cold heat is stored in the heat storage tank 1A for cold heat recovery.

<別実施形態>
<1>
上記実施形態では、蓄熱システムの構成について具体例を挙げて説明したが、その構成は適宜変更可能である。
例えば、図8に示す熱音響冷凍装置30B(30)のように、ループ管51が、第1変換部34を通る第1ループ管51aと、第2変換部38を通る第2ループ管51bとを備える構成にしてもよい。
他にも、上記実施形態では、流体循環路44を閉鎖された流路としているが、その途中を大気開放してもよい。例えば、流体循環路44の途中に膨張タンクを設け、その膨張タンクを待機開放する構成を採用してもよい。
<Another Embodiment>
<1>
In the above embodiment, the configuration of the heat storage system has been described with specific examples, but the configuration can be changed as appropriate.
For example, as in the thermoacoustic refrigerating apparatus 30B (30) shown in FIG. 8, the loop pipe 51 has a first loop pipe 51a passing through the first conversion unit 34 and a second loop pipe 51b passing through the second conversion unit 38. It may be configured to include.
In addition, although the fluid circulation path 44 is a closed flow path in the above embodiment, the fluid circulation path 44 may be opened to the atmosphere in the middle of the flow path. For example, an expansion tank may be provided in the middle of the fluid circulation path 44, and the expansion tank may be opened on standby.

<2>
上記実施形態において、蓄熱タンク1に貯える蓄熱媒体、流体循環路44を流れる流体の種類は上述した具体例に限定されず、適宜変更可能である。
<2>
In the above embodiment, the type of the heat storage medium stored in the heat storage tank 1 and the fluid flowing through the fluid circulation path 44 is not limited to the above-mentioned specific example, and can be changed as appropriate.

<3>
上記実施形態において、冷熱蓄積運転を行っている間の設定タイミングで温熱蓄積運転を行ってもよい。例えば、図2及び図5などに示した蓄熱システムにおいて、冷熱蓄積運転を行っている間の設定タイミングで、所定期間だけ温熱蓄積運転を行い、その後、再び冷熱蓄積運転を行ってもよい。このような運転を行うと、蓄熱タンク1の上部(上方口40の近傍)には温熱蓄積運転によって相対的に温度の高い蓄熱媒体が貯えられる。そして、再び冷熱蓄積運転が開始されると、その相対的に温度の高い蓄熱媒体が第2低温側熱交換部37に供給されて、第2低温側熱交換部37の温度が上昇する。その結果、冷熱蓄積運転を行っている間に第2低温側熱交換部37に霜が付いたとしても、その霜が溶けることを期待できる。
ここで、冷熱蓄積運転を行っている間のどのようなタイミングで温熱蓄積運転を行うのかは適宜設定可能である。例えば、冷熱蓄積運転の連続期間が所定期間以上になったことや第2低温側熱交換部37の温度が所定温度以下になったことなどの所定の条件を満たした場合に、所定期間だけ温熱蓄積運転を行うことができる。
<3>
In the above embodiment, the heat storage operation may be performed at the set timing during the cold heat storage operation. For example, in the heat storage system shown in FIGS. 2 and 5, the heat storage operation may be performed for a predetermined period at the set timing during the cold heat storage operation, and then the cold heat storage operation may be performed again. When such an operation is performed, a heat storage medium having a relatively high temperature is stored in the upper part of the heat storage tank 1 (near the upper port 40) by the heat storage operation. Then, when the cold heat storage operation is started again, the heat storage medium having a relatively high temperature is supplied to the second low temperature side heat exchange unit 37, and the temperature of the second low temperature side heat exchange unit 37 rises. As a result, even if frost is formed on the second low temperature side heat exchange unit 37 during the cold heat storage operation, it can be expected that the frost will melt.
Here, the timing at which the hot storage operation is performed during the cold heat storage operation can be appropriately set. For example, when a predetermined condition is satisfied such that the continuous period of the cold heat storage operation is longer than the predetermined period or the temperature of the second low temperature side heat exchange unit 37 is lower than the predetermined temperature, the heat is heated for a predetermined period. Accumulation operation can be performed.

<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<4>
The configurations disclosed in the above embodiment (including other embodiments, the same shall apply hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and are disclosed in the present specification. The embodiment is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、燃料電池装置から排出された熱を温熱及び冷熱の両方の状態で蓄えることができる蓄熱システムに利用できる。 The present invention can be used in a heat storage system capable of storing the heat discharged from the fuel cell device in both hot and cold states.

1 蓄熱タンク
1A 冷熱回収用蓄熱タンク
1B 温熱回収用蓄熱タンク
20 燃料電池装置
23 改質部
24 アノード
25 カソード
27 燃焼部
30 熱音響冷凍装置
30A 熱音響冷凍装置
30B 熱音響冷凍装置
31 第1高温側熱交換部
33 第1低温側熱交換部
34 第1変換部
35 第2高温側熱交換部
37 第2低温側熱交換部
38 第2変換部
39 ループ管
40 上方口
41 下方口
42 下方口
43a 温熱回収用流路(蓄熱媒体流路)
43b 冷熱回収用流路(蓄熱媒体流路)
44 流体循環路
45 放熱器
46 温熱回収用熱交換部
47 熱交換部
50 燃料電池部
51 ループ管
1 Heat storage tank 1A Heat storage tank for cold heat recovery 1B Heat storage tank for hot heat recovery 20 Fuel cell device 23 Remodeling unit 24 Anode 25 Cathode 27 Burning unit 30 Thermal acoustic refrigeration device 30A Thermal acoustic refrigeration device 30B Thermal acoustic refrigeration device 31 First high temperature side Heat exchange unit 33 1st low temperature side heat exchange unit 34 1st conversion unit 35 2nd high temperature side heat exchange unit 37 2nd low temperature side heat exchange unit 38 2nd conversion unit 39 Loop tube 40 Upper port 41 Lower port 42 Lower port 43a Heat recovery channel (heat storage medium channel)
43b Cold heat recovery flow path (heat storage medium flow path)
44 Fluid circulation path 45 Heat sink 46 Heat exchange section for heat recovery 47 Heat exchange section 50 Fuel cell section 51 Loop pipe

Claims (8)

燃料電池装置と、熱音響冷凍装置と、蓄熱媒体を用いて熱を蓄えることができる蓄熱タンクとを備え、
前記熱音響冷凍装置は、環状に形成され、内部に作動媒体が充填されたループ管と、前記ループ管の途中に設けられ、低温側と前記燃料電池装置から排出された熱を保有する排熱媒体の熱エネルギーが供給される高温側との間の温度勾配により音響エネルギーを発生させる第1変換部と、前記ループ管の途中に設けられ、前記第1変換部から前記ループ管を通って伝搬された音響エネルギーが熱エネルギーに変換されることで低温側と高温側との間で生じる温度勾配を利用して、当該低温側から外部に冷熱を排出できる第2変換部とを有する蓄熱システムであって、
前記蓄熱タンクは、上方が相対的に高温で下方が相対的に低温になる温度成層を形成する状態で内部に前記蓄熱媒体を貯えることができ、前記蓄熱タンクの上方側に設けられる上方口と下方側に設けられる下方口とを介して前記蓄熱媒体を前記蓄熱タンクの内外に流動させることができるように構成され、
前記蓄熱タンクに相対的に高温の前記蓄熱媒体を新たに貯える温熱蓄積運転を行うとき、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を前記排熱媒体で加熱した後、当該蓄熱媒体を前記蓄熱タンクの前記上方口に戻すように流動させ、
前記蓄熱タンクに相対的に低温の前記蓄熱媒体を新たに貯える冷熱蓄積運転を行うとき、前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を前記熱音響冷凍装置の前記第2変換部で冷却した後、当該蓄熱媒体を前記蓄熱タンクの前記下方口に戻すように流動させ
流体が前記第1変換部と前記第2変換部との間で循環できる流体循環路を備え、
前記冷熱蓄積運転を行うとき、
前記流体循環路を通って前記第1変換部と前記第2変換部との間で流体を循環させ、
前記第1変換部の高温側を構成する第1高温側熱交換部に前記排熱媒体を供給することで当該第1高温側熱交換部を相対的に高温にさせ、前記第1変換部の低温側を構成する第1低温側熱交換部に前記流体循環路を循環する流体を供給することで当該第1低温側熱交換部を相対的に低温にさせ、前記第1高温側熱交換部及び前記第1低温側熱交換部によって生じる温度勾配により前記音響エネルギーを発生させ、
当該音響エネルギーが前記ループ管を通って前記第1変換部から前記第2変換部に伝搬された状態で、前記第2変換部の高温側を構成する第2高温側熱交換部に前記流体循環路を循環する流体を供給し、前記第2変換部の低温側を構成する第2低温側熱交換部に前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を供給して、前記作動媒体の音響エネルギーが熱エネルギーに変換されることで生じる温度勾配により、前記蓄熱タンクの前記上方口から取り出した前記蓄熱媒体を前記第2低温側熱交換部で冷却する蓄熱システム。
It is equipped with a fuel cell device, a thermoacoustic refrigeration device, and a heat storage tank that can store heat using a heat storage medium.
The thermoacoustic refrigeration apparatus has a loop tube formed in an annular shape and filled with an operating medium inside, and exhaust heat that is provided in the middle of the loop tube and retains heat discharged from the low temperature side and the fuel cell apparatus. A first conversion unit that generates acoustic energy by a temperature gradient between the heat energy of the medium and the high temperature side to which the heat energy is supplied, and a first conversion unit that is provided in the middle of the loop tube and propagates from the first conversion unit through the loop tube. A heat storage system having a second conversion unit that can discharge cold heat from the low temperature side to the outside by utilizing the temperature gradient generated between the low temperature side and the high temperature side by converting the generated acoustic energy into heat energy. There,
The heat storage tank can store the heat storage medium inside in a state of forming a temperature stratification in which the upper part is relatively high temperature and the lower part is relatively low temperature, and the heat storage tank is provided with an upper port provided on the upper side of the heat storage tank. The heat storage medium is configured to flow inside and outside the heat storage tank via a lower port provided on the lower side.
When performing a heat storage operation for newly storing the heat storage medium having a relatively high temperature in the heat storage tank, the heat storage medium taken out from the lower port of the heat storage tank is heated by the exhaust medium, and then the heat storage medium is stored. Flowing so that it returns to the upper port of the heat storage tank,
When performing a cold heat storage operation in which the heat storage medium having a relatively low temperature is newly stored in the heat storage tank, the heat storage medium taken out from the upper port of the heat storage tank is cooled by the second conversion unit of the thermoacoustic refrigeration apparatus. After that, the heat storage medium is flowed so as to return to the lower port of the heat storage tank .
A fluid circulation path through which a fluid can circulate between the first conversion unit and the second conversion unit is provided.
When performing the cold heat storage operation
A fluid is circulated between the first conversion unit and the second conversion unit through the fluid circulation path.
By supplying the exhaust heat medium to the first high temperature side heat exchange unit constituting the high temperature side of the first conversion unit, the first high temperature side heat exchange unit is made relatively hot, and the first conversion unit By supplying the fluid circulating in the fluid circulation path to the first low temperature side heat exchange section constituting the low temperature side, the first low temperature side heat exchange section is relatively cooled, and the first high temperature side heat exchange section is used. And the acoustic energy is generated by the temperature gradient generated by the first low temperature side heat exchange unit.
In a state where the acoustic energy is propagated from the first conversion unit to the second conversion unit through the loop tube, the fluid circulation to the second high temperature side heat exchange unit constituting the high temperature side of the second conversion unit. A fluid circulating in the path is supplied, and the heat storage medium taken out from the upper port of the heat storage tank is supplied to the second low temperature side heat exchange section constituting the low temperature side of the second conversion section to supply the working medium. A heat storage system in which the heat storage medium taken out from the upper port of the heat storage tank is cooled by the second low temperature side heat exchange unit by a temperature gradient generated by converting acoustic energy into heat energy.
前記燃料電池装置は、原燃料を水蒸気改質して燃料ガスを生成する改質部と、前記改質部で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池部と、前記燃料電池部での発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分を燃焼させる燃焼部とを有し、
前記温熱蓄積運転を行うとき、前記燃焼部から排出される燃焼排ガスを前記排熱媒体として、当該排熱媒体の熱エネルギーを、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を加熱するために消費し、
前記冷熱蓄積運転を行うとき、前記燃焼部から排出される前記燃焼排ガスを前記排熱媒体として、当該排熱媒体の熱エネルギーを、前記第1変換部の高温側を加熱するために消費し、
熱エネルギーが消費されて温度が低下した前記燃焼排ガス中から凝縮水を回収し、当該凝縮水を前記改質部での原燃料の水蒸気改質に用いる請求項1に記載の蓄熱システム。
The fuel cell device includes a reforming unit for steam reforming raw fuel to generate fuel gas, an anode to which the fuel gas generated in the reforming unit is supplied, and a cathode to which oxygen gas is supplied. It has a fuel cell unit having a fuel cell unit, and a combustion unit that burns fuel components in the exhaust fuel gas discharged from the anode after being used in a power generation reaction in the fuel cell unit.
When the heat storage operation is performed, the combustion exhaust gas discharged from the combustion unit is used as the heat exhaust medium, and the heat energy of the heat storage medium is used to heat the heat storage medium taken out from the lower port of the heat storage tank. Consume and
When the cold heat storage operation is performed, the combustion exhaust gas discharged from the combustion unit is used as the exhaust heat medium, and the heat energy of the exhaust heat medium is consumed to heat the high temperature side of the first conversion unit.
The heat storage system according to claim 1, wherein the condensed water is recovered from the combustion exhaust gas whose temperature has been lowered due to heat energy consumption, and the condensed water is used for steam reforming of raw fuel in the reforming section.
前記流体循環路の途中に、流体からの単位時間当たりの放熱量を調節できる放熱器を備える請求項1又は2に記載の蓄熱システム。 The heat storage system according to claim 1 or 2, further comprising a radiator capable of adjusting the amount of heat radiated from the fluid per unit time in the middle of the fluid circulation path. 前記冷熱蓄積運転が行われているとき、前記放熱器は、前記第2低温側熱交換部の温度が0℃以上になるように、前記流体循環路を流れる流体からの単位時間当たりの放熱量を調節する請求項1〜3の何れか一項に記載の蓄熱システム。 When the cold heat storage operation is being performed, the radiator dissipates heat from the fluid flowing through the fluid circulation path per unit time so that the temperature of the second low temperature side heat exchange unit becomes 0 ° C. or higher. The heat storage system according to any one of claims 1 to 3. 前記流体循環路を流れる流体の流速を調節できる流速調節器を備え、
前記冷熱蓄積運転が行われているとき、前記流速調節器は、前記第2低温側熱交換部の温度が0℃以上になるように、前記流体循環路を流れる流体の流速を調節する請求項1〜4の何れか一項に記載の蓄熱システム。
A flow velocity controller capable of adjusting the flow velocity of the fluid flowing through the fluid circulation path is provided.
The claim that the flow velocity regulator adjusts the flow velocity of the fluid flowing through the fluid circulation path so that the temperature of the second low temperature side heat exchange section becomes 0 ° C. or higher when the cold heat storage operation is performed. The heat storage system according to any one of 1 to 4.
前記蓄熱タンクから外部に取り出された前記蓄熱媒体が、前記第2低温側熱交換部を経由せず、前記第1高温側熱交換部を経由した後で前記蓄熱タンクに戻るまでの間に流れる温熱回収用流路と、
前記蓄熱タンクから外部に取り出された前記蓄熱媒体が、前記第1高温側熱交換部を経由せず、前記第2低温側熱交換部を経由した後で前記蓄熱タンクに戻るまでの間に流れる冷熱回収用流路とを備える請求項1〜5の何れか一項に記載の蓄熱システム。
The heat storage medium taken out from the heat storage tank does not pass through the second low temperature side heat exchange section, but flows through the first high temperature side heat exchange section until it returns to the heat storage tank. A flow path for heat recovery and
The heat storage medium taken out from the heat storage tank does not pass through the first high temperature side heat exchange section, but flows through the second low temperature side heat exchange section until it returns to the heat storage tank. The heat storage system according to any one of claims 1 to 5, further comprising a flow path for cold heat recovery.
流体が前記第1変換部と前記第2変換部との間で循環できる流体循環路を備え、
前記温熱蓄積運転を行うとき、前記第1変換部の高温側を構成する第1高温側熱交換部で、前記蓄熱タンクの前記下方口から取り出した前記蓄熱媒体を前記排熱媒体で加熱した後、当該蓄熱媒体を前記蓄熱タンクの前記上方口に戻すように流動させる請求項1〜6の何れか一項に記載の蓄熱システム。
A fluid circulation path through which a fluid can circulate between the first conversion unit and the second conversion unit is provided.
When the heat storage operation is performed, the heat storage medium taken out from the lower port of the heat storage tank is heated by the exhaust medium in the first high temperature side heat exchange unit constituting the high temperature side of the first conversion unit. The heat storage system according to any one of claims 1 to 6, wherein the heat storage medium is allowed to flow so as to return to the upper port of the heat storage tank.
前記流体循環路の途中に、前記第1高温側熱交換部で熱交換を行った後の前記排熱媒体と、前記流体循環路を流れる流体との熱交換を行う熱交換部を備える請求項1〜7の何れか一項に記載の蓄熱システム。 Claimed to include a heat exchange unit in the middle of the fluid circulation path, which exchanges heat between the exhaust heat medium after heat exchange in the first high temperature side heat exchange unit and the fluid flowing through the fluid circulation path. The heat storage system according to any one of 1 to 7.
JP2017224953A 2017-11-22 2017-11-22 Heat storage system Active JP6906432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224953A JP6906432B2 (en) 2017-11-22 2017-11-22 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224953A JP6906432B2 (en) 2017-11-22 2017-11-22 Heat storage system

Publications (2)

Publication Number Publication Date
JP2019095129A JP2019095129A (en) 2019-06-20
JP6906432B2 true JP6906432B2 (en) 2021-07-21

Family

ID=66972808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224953A Active JP6906432B2 (en) 2017-11-22 2017-11-22 Heat storage system

Country Status (1)

Country Link
JP (1) JP6906432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797663A (en) * 2021-02-26 2021-05-14 天津城建大学 Building distributed energy supply system based on hydrogen fuel cell and operation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496855A (en) * 1978-01-14 1979-07-31 Matsushita Electric Works Ltd Heat and cold accumulators
JP4554374B2 (en) * 2005-01-07 2010-09-29 学校法人同志社 Heat exchanger and thermoacoustic apparatus using the heat exchanger
RU2520003C2 (en) * 2009-08-25 2014-06-20 Данфосс А/С Thermal storage system
CN104508888B (en) * 2012-08-07 2017-07-14 京瓷株式会社 Hybrid system
EP3051228B1 (en) * 2013-09-27 2019-05-29 Kyocera Corporation Cooling and heating device

Also Published As

Publication number Publication date
JP2019095129A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
KR101843380B1 (en) Cooling and heating device
JP2005061711A (en) Exhaust heat recovering water heater
JP4776391B2 (en) Waste heat utilization system
US20220228271A1 (en) Hydrogen production system and method for producing hydrogen in a hydrogen production system
JP2012007796A (en) Heat storage system
JP2007132612A (en) Cogeneration system, its control method, and program
WO2017017734A1 (en) Power supply system and method for controlling same
JP6906432B2 (en) Heat storage system
WO2010109790A1 (en) Fuel cell system and method for operating fuel cell system
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
JP4128054B2 (en) Fuel cell system and operating method thereof
JP7022487B2 (en) Solar power generation hot water supply system
JP4273640B2 (en) Cogeneration system
US10483571B2 (en) Fuel cell system
JP2007052981A (en) Fuel cell power generation system and its operation method
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
JP2006105452A (en) Cogeneration system and its control method
JP2007132613A (en) Cogeneration system
JP4304601B2 (en) Storage water heater and cogeneration system
JP2013057435A (en) Heat supply system
JP2018527699A (en) Fuel cell system
JP2004247084A (en) Fuel cell power generation system
JP2016207581A (en) Fuel cell cogeneration system
JP2008128527A (en) Hot water supply system and method
JP2004053151A (en) Hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150