JP6896991B2 - Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents. - Google Patents

Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents. Download PDF

Info

Publication number
JP6896991B2
JP6896991B2 JP2019055205A JP2019055205A JP6896991B2 JP 6896991 B2 JP6896991 B2 JP 6896991B2 JP 2019055205 A JP2019055205 A JP 2019055205A JP 2019055205 A JP2019055205 A JP 2019055205A JP 6896991 B2 JP6896991 B2 JP 6896991B2
Authority
JP
Japan
Prior art keywords
composition
azeotropic
mol
cleaning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019055205A
Other languages
Japanese (ja)
Other versions
JP2019112649A (en
Inventor
井村 英明
英明 井村
高田 直門
直門 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015018341A external-priority patent/JP6503765B2/en
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2019055205A priority Critical patent/JP6896991B2/en
Publication of JP2019112649A publication Critical patent/JP2019112649A/en
Application granted granted Critical
Publication of JP6896991B2 publication Critical patent/JP6896991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は含フッ素オレフィンを含む新規組成物に関する。 The present invention relates to a novel composition containing a fluorine-containing olefin.

クロロフルオロカーボン類(以下CFC類と呼ぶ事がある)、ハイドロクロロフルオロカーボン類(HCFC類と呼ぶ事がある)、ハイドロフルオロカーボン類(以下HFC類と呼ぶ事がある)等の炭素数が1〜5の含フッ素アルカンは、揮発性、安定性、不燃性の特徴があるので、冷媒、作動流体、発泡剤、スプレー剤、洗浄剤、溶剤、溶媒等の用途で産業の発展に貢献してきた(これらはフロン類と呼ぶことがある)。また、複数の含フッ素アルカンをブレンドして用いることも広く行われてきた。例えば、アメリカ暖房冷凍空調学会(ASHRAE)の冷媒番号R502、R507A、R404A、R407C、R410Aなどが混合冷媒として広く使われている。これらの混合冷媒は、2種類以上のフロン類を特定の比率で混合することにより成績係数、冷凍サイクル、不燃性、地球温暖化係数等が改善されている。しかし、含フッ素アルカンは揮発性を有するため、混合物として使う場合、フロン類のいずれかが一方的に蒸発すると、使用時にその組成が変化して、物性が変わってしまう。そのため、液相と実質的に同じ組成で揮発する共沸、もしくは共沸様の組成が好ましい。例えば、前述のR502(R22とR115との混合冷媒)、R507A(R143aとR125との混合冷媒)は共沸組成であるので、気相部と液相部との組成が全く同じであり共沸冷媒として用いられている。R410Aについては、その構成成分であるR32とR125とは非共沸であるが、気相部と液相部との組成が実質的に同じであるため、実用上、共沸組成物と同様に取り扱うことができるので、共沸様冷媒として用いられている。冷媒用途以外でも、例えば含フッ素アルカンとアルコールをブレンドして水切り剤として使用したり、可燃性の炭化水素系溶剤に不燃性の含フッ素アルカンを添加して不燃化したり、洗浄力を制御した洗浄剤がある。洗浄剤や水切り剤の用途においても冷媒と同様に揮発した時の気相部と液相部の組成が実質的に同じである共沸または共沸様の組成物が好ましい。 Chlorofluorocarbons (hereinafter sometimes referred to as CFCs), hydrochlorofluorocarbons (sometimes referred to as HCFCs), hydrofluorocarbons (hereinafter sometimes referred to as HFCs), etc. have 1 to 5 carbon atoms. Since fluorocarbons have volatile, stable, and nonflammable characteristics, they have contributed to the development of the industry in applications such as refrigerants, working fluids, foaming agents, spray agents, cleaning agents, solvents, and solvents (these are). Freons). It has also been widely used by blending a plurality of fluorine-containing alkanes. For example, refrigerant numbers R502, R507A, R404A, R407C, R410A and the like of the American Society for Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are widely used as mixed refrigerants. The coefficient of performance, refrigeration cycle, nonflammability, global warming potential, etc. of these mixed refrigerants are improved by mixing two or more types of fluorocarbons in a specific ratio. However, since fluorine-containing alkanes are volatile, when used as a mixture, if any of the fluorocarbons evaporates unilaterally, the composition changes during use and the physical properties change. Therefore, an azeotropic or azeotropic composition that volatilizes with substantially the same composition as the liquid phase is preferable. For example, since the above-mentioned R502 (mixed refrigerant of R22 and R115) and R507A (mixed refrigerant of R143a and R125) have an azeotropic composition, the composition of the gas phase portion and the liquid phase portion is exactly the same and the azeotropic portion is formed. It is used as a refrigerant. Regarding R410A, its constituents R32 and R125 are non-azeotropic, but since the composition of the gas phase portion and the liquid phase portion is substantially the same, it is practically the same as the azeotropic composition. Since it can be handled, it is used as an azeotropic refrigerant. In addition to refrigerant applications, for example, a blend of fluorine-containing alkane and alcohol can be used as a drainage agent, or a nonflammable fluorine-containing alkane is added to a flammable hydrocarbon solvent to make it nonflammable, or cleaning with controlled detergency. There is an agent. Also in the use of detergents and drainers, azeotropic or azeotropic compositions having substantially the same composition of the vapor phase portion and the liquid phase portion when volatilized are preferable as in the case of the refrigerant.

上記のような含フッ素アルカンは大気中においても非常に安定であり、大気寿命が長く、地球温暖化の原因物質とされている。これに対し、近年、炭素数が2〜5の含フッ素オレフィン(ハイドロフルオロオレフィンやハイドロクロロフルオロオレフィン、クロロフルオロオレフィン、フルオロオレフィンを指す)が、上記含フッ素アルカンの代替品として提案されている。分子内に二重結合を有するこれらの含フッ素オレフィンは、二重結合の無い含フッ素アルカンと比較して、大気中のOHラジカルとの反応性が著しく大きくなる。現在、広く使用されているHFC−365mfc、HFC−245fa、HFC−43−10等の大気寿命は年単位であるのに対して、一般に含フッ素オレフィンの大気寿命は日単位であり、万一、大気に放出された場合でも速やかに分解するので、地球温暖化やオゾン層破壊への影響は低い。上記の含フッ素アルカンと類似の物性を有しているので冷媒、作動流体、発泡剤、噴霧剤、洗浄剤、溶剤、溶媒等の各種用途に使用可能であることが報告されている。 Fluorine-containing alkanes as described above are extremely stable even in the atmosphere, have a long atmospheric life, and are considered to be a causative substance of global warming. On the other hand, in recent years, fluorine-containing olefins having 2 to 5 carbon atoms (referring to hydrofluoroolefins, hydrochlorofluoroolefins, chlorofluoroolefins, and fluoroolefins) have been proposed as alternatives to the above-mentioned fluorine-containing alkanes. These fluorine-containing olefins having a double bond in the molecule have significantly higher reactivity with OH radicals in the atmosphere as compared with a fluorine-containing alkane without a double bond. Currently, the atmospheric lifespan of HFC-365mfc, HFC-245fa, HFC-43-10, etc., which are widely used, is on a yearly basis, whereas the atmospheric lifetime of fluorine-containing olefins is generally on a daily basis. Even if it is released into the atmosphere, it decomposes quickly, so its impact on global warming and ozone layer depletion is low. Since it has similar physical properties to the above-mentioned fluorine-containing alkane, it has been reported that it can be used in various applications such as a refrigerant, a working fluid, a foaming agent, a spray agent, a detergent, a solvent, and a solvent.

含フッ素オレフィンも含フッ素アルカンと同様に、他の化学種をブレンドすることによって性能が改善することがある。例えば、特許文献1には、(Z)−1−クロロ−3,3,3−トリフルオロプロペンと1,1,2,2−テトラフルオロ−1−メトキシエタンを混合すると、共沸様の二元系溶媒が形成され、該二元系溶媒の持つ各種油の洗浄性能が優れた水準にあることが報告されているが、このように具体的に含フッ素オレフィンを含む共沸もしくは共沸様の報告例は、含フッ素アルカンと比較して少ない。さらに、含フッ素オレフィン同士を組み合わせた共沸もしくは共沸様組成物の文献例はさらに少ない。 Like fluorine-containing alkanes, fluorine-containing olefins may improve their performance by blending with other chemical species. For example, Patent Document 1 states that when (Z) -1-chloro-3,3,3-trifluoropropene and 1,1,2,2-tetrafluoro-1-methoxyethane are mixed, they are azeotropic. It has been reported that the original solvent is formed and the cleaning performance of various oils of the binary solvent is at an excellent level. In this way, azeotrope or azeotrope specifically containing a fluorine-containing olefin is reported. There are few reported examples of fluorine-containing alkanes. Further, there are few literature examples of azeotropic or azeotropic compositions in which fluorine-containing olefins are combined.

特許文献2において、炭素数3の含フッ素オレフィンと汎用溶剤の組成物が提案されている。当該文献の実施例4において1,2−ジクロロ−3,3,3−トリフルオロプロペンの単独の脱脂試験例が開示されているが、1,2−ジクロロ−3,3,3−トリフルオロプロペンの幾何異性体(E体、Z体)についての記載はない。特許文献3から7において、1,2−ジクロロ−3,3,3−トリフルオロプロペンの、レジスト剥離剤、バフ研磨剤、付着水除去用溶剤、ドライクリーニング用洗浄剤に関する記載があるが、特許文献2と同様に、幾何異性体に関する記載は見当たらない。 Patent Document 2 proposes a composition of a fluorine-containing olefin having 3 carbon atoms and a general-purpose solvent. Although Example 4 of the document discloses a single degreasing test example of 1,2-dichloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene is disclosed. There is no description about the geometric isomers (E-form, Z-form) of. Patent Documents 3 to 7 describe 1,2-dichloro-3,3,3-trifluoropropene as a resist stripping agent, a buff abrasive, a solvent for removing adhering water, and a cleaning agent for dry cleaning. Similar to Document 2, there is no description about geometric isomers.

特開2008−133438号公報Japanese Unexamined Patent Publication No. 2008-133438 特開平2−221388号公報Japanese Unexamined Patent Publication No. 2-221388 特開平2−221962号公報Japanese Unexamined Patent Publication No. 2-221962 特開平2−221389号公報Japanese Unexamined Patent Publication No. 2-221389 特開平2−222469号公報Japanese Unexamined Patent Publication No. 2-222469 特開平2−222496号公報Japanese Unexamined Patent Publication No. 2-22249 特開平2−222702号公報Japanese Unexamined Patent Publication No. 2-222702

しかしながら、このような揮発性の溶剤組成物においては、単純に複数の溶剤を調合して性能が改善されたとしても、各成分の揮発性によって、液組成が変動しやすいと言う問題は避けられない。例えば、二元系の液体組成物を超音波洗浄機に入れて洗浄工程に供したとき、一般に低沸点成分(蒸気圧が大きい成分)が優先的に揮発し、洗浄槽内には高沸点成分(蒸気圧が小さい成分)が濃縮される。例えば、洗浄力の高い低沸点成分と洗浄力の低い高沸点成分からなる組成物の場合、洗浄液における低沸点成分が経時的に減少して、洗浄不良を引き起こすことがある。また、使用済みの洗浄溶液は通常蒸留によって再生、再利用されるが、液相の組成と気相の組成が異なる組成物の場合は、回収した組成物の液組成を調整しなければならず効率的ではない。また、使用中に組成物が揮発して液の組成が変化すると、洗浄性能が変化するだけでなく、不燃性の組成物が可燃性の組成に変化することがありうる。 However, in such a volatile solvent composition, even if a plurality of solvents are simply mixed to improve the performance, the problem that the liquid composition is liable to fluctuate due to the volatility of each component can be avoided. Absent. For example, when a binary liquid composition is placed in an ultrasonic cleaner and subjected to a cleaning step, generally a low boiling point component (a component having a large vapor pressure) volatilizes preferentially, and a high boiling point component is contained in the washing tank. (Components with low vapor pressure) are concentrated. For example, in the case of a composition composed of a low boiling point component having a high detergency and a high boiling point component having a low detergency, the low boiling point component in the cleaning liquid may decrease with time, causing cleaning failure. In addition, the used washing solution is usually regenerated and reused by distillation, but if the composition of the liquid phase and the composition of the gas phase are different, the liquid composition of the recovered composition must be adjusted. Not efficient. Further, if the composition volatilizes during use and the composition of the liquid changes, not only the cleaning performance may change, but also the nonflammable composition may change to a flammable composition.

このようなことから、揮発時に気相部と液相部の組成が実質的に同じである共沸または共沸様の組成物が強く望まれている。本発明は、環境に優しい(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペンと(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペンを含み、揮発しても組成が変化しにくい、新規な共沸または共沸様組成物を提案することを課題とする。 For this reason, an azeotropic or azeotropic composition in which the composition of the gas phase portion and the liquid phase portion are substantially the same at the time of volatilization is strongly desired. The present invention comprises the environmentally friendly (Z) -1,2-dichloro-3,3,3-trifluoropropene and (E) -1,2-dichloro-3,3,3-trifluoropropene and is volatile. It is an object of the present invention to propose a new azeotropic or azeotropic composition whose composition does not change easily.

本発明者らは上記課題を解決するために鋭意、検討を行った。その結果、1,2−ジクロロ−3,3,3−トリフルオロプロペンのZ体(以下、HCFO−1223xd(Z)または1223Zと呼ぶことがある)が80モル%〜99.9999モル%と1,2−ジクロロ−3,3,3−トリフルオロプロペンのE体(以下、HCFO−1223xd(E)または1223Eと呼ぶことがある)が0.0001モル%〜20モル%の組成物は、実質的に気相部と液相部の組成が同一である共沸様組成物であり、消防法上の引火点を有しない不燃物(非危険物)であることが判明した。さらに、本発明の共沸様組成物は油脂等の除去剤(洗浄剤)として有用であることが確認され、本発明を完成するに至った。 The present inventors have diligently studied to solve the above problems. As a result, the Z form of 1,2-dichloro-3,3,3-trifluoropropene (hereinafter, may be referred to as HCFO-1223xd (Z) or 1223Z) is 80 mol% to 99.9999 mol%, which is 1 , 2-Dichloro-3,3,3-Trifluoropropene E-form (hereinafter sometimes referred to as HCFO-1223xd (E) or 1223E) in a composition of 0.0001 mol% to 20 mol% is substantial. It was found that it is an azeotropic composition having the same composition of the gas phase part and the liquid phase part, and is a non-combustible material (non-dangerous material) having no flash point under the Fire Service Law. Furthermore, it was confirmed that the azeotropic composition of the present invention is useful as a remover (cleaning agent) for fats and oils, and the present invention has been completed.

すなわち、本発明は次の各発明を含む。 That is, the present invention includes the following inventions.

[発明1]
(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペン(1223Z)と(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペン(1223E)からなる、共沸(様)組成物。
[Invention 1]
Azeotrope consisting of (Z) -1,2-dichloro-3,3,3-trifluoropropene (1223Z) and (E) -1,2-dichloro-3,3,3-trifluoropropene (1223E). (Like) composition.

[発明2]
80モル%〜99.9999モル%の1223Zと0.0001モル%〜20モル%の1223Eとからなる、発明1に記載の共沸(様)組成物。
[Invention 2]
The azeotropic composition according to Invention 1, which comprises 80 mol% to 99.9999 mol% of 1223Z and 0.0001 mol% to 20 mol% of 1223E.

[発明3]
90モル%〜99.9999モル%の1223Zと0.0001モル%〜10モル%の1223Eとからなる、発明1又は発明2に記載の共沸(様)組成物。
[Invention 3]
The azeotropic composition according to Invention 1 or Invention 2, which comprises 90 mol% to 99.9999 mol% of 1223Z and 0.0001 mol% to 10 mol% of 1223E.

[発明4]
発明1から発明3のいずれかに記載の共沸(様)組成物と、少なくとも一つの追加成分を含む液体組成物。
[Invention 4]
A liquid composition containing the azeotropic composition according to any one of Inventions 1 to 3 and at least one additional component.

[発明5]
発明1から発明3のいずれかに記載の共沸(様)組成物と、該共沸(様)組成物に対して、10ppm〜30質量%の追加成分を少なくとも一つ含む、液体組成物。
[Invention 5]
A liquid composition comprising the azeotropic (like) composition according to any one of Inventions 1 to 3 and at least one additional component of 10 ppm to 30% by mass with respect to the azeotropic (like) composition.

[発明6]
発明1から発明5のいずれかに記載の共沸(様)組成物ないし液体組成物を含む、洗浄用溶剤。
[Invention 6]
A cleaning solvent containing the azeotropic (like) composition or liquid composition according to any one of Inventions 1 to 5.

[発明7]
発明1から発明5のいずれかに記載の共沸(様)組成物ないし液体組成物を、被洗浄物体に接触させる工程を含む、該被洗浄物体を洗浄する方法。
[Invention 7]
A method for cleaning an object to be cleaned, which comprises a step of bringing the azeotropic (like) composition or liquid composition according to any one of Inventions 1 to 5 into contact with the object to be cleaned.

本発明により、新規の共沸(様)組成物が提供される。当該組成物は、開放条件にて使用しても組成が変化しにくいという効果を奏する。当該、共沸(様)組成物は、環境への負荷が少なく、消防法上の不燃物(非危険物)である。当該、共沸(様)組成物は、異物、油脂などの汚染物質を洗浄する溶媒(洗浄溶剤)として有用である。 The present invention provides a novel azeotropic composition. The composition has the effect that the composition does not easily change even when used under open conditions. The azeotropic composition has a small impact on the environment and is a non-combustible material (non-dangerous material) under the Fire Service Act. The azeotropic composition is useful as a solvent (cleaning solvent) for cleaning pollutants such as foreign substances and oils and fats.

(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペン(1223Z)と(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペン(1223E)の気液平衡図である。Vapor-liquid equilibrium diagram of (Z) -1,2-dichloro-3,3,3-trifluoropropene (1223Z) and (E) -1,2-dichloro-3,3,3-trifluoropropene (1223E) Is.

含フッ素オレフィンは種々の溶剤との相溶性が高いので、均一な組成物を調合することは比較的容易である。しかし、任意組成の組成物の場合、「液組成が変動しやすい」という問題が内在している。すなわち、仮に複数種類の液体を混合し、相溶性を確保できたとしても、各成分の揮発度の違いにより、液組成が変動しやすいという問題は避けられない。例えば、二元系の液体組成物を超音波洗浄機に入れて、洗浄剤として用いた場合、一般に揮発度の高い低沸点成分(蒸気圧の大きい成分)が優先的に揮発し、洗浄槽内に揮発度の低い高沸点成分が濃縮される。例えば、洗浄力の高い低沸点成分に洗浄力の低い高沸点成分の組成物の場合、洗浄液における低沸点成分濃度が経時的に減少して、洗浄不良を引き起こす恐れがある。特に、可燃性の溶剤に不燃性の溶剤をブレンドして不燃性組成物を調合した場合、不燃性成分が優先的に揮発すると洗浄液が可燃性組成物になることがある。 Since the fluorine-containing olefin has high compatibility with various solvents, it is relatively easy to formulate a uniform composition. However, in the case of a composition having an arbitrary composition, there is an inherent problem that the liquid composition is liable to fluctuate. That is, even if a plurality of types of liquids can be mixed and compatibility can be ensured, the problem that the liquid composition tends to fluctuate due to the difference in the volatility of each component cannot be avoided. For example, when a dual liquid composition is placed in an ultrasonic cleaner and used as a detergent, the low boiling point component (component with high vapor pressure), which generally has high volatility, volatilizes preferentially in the cleaning tank. High boiling point components with low volatility are concentrated. For example, in the case of a composition of a low boiling point component having a high detergency and a high boiling point component having a low detergency, the concentration of the low boiling point component in the cleaning liquid may decrease with time, causing cleaning failure. In particular, when a nonflammable solvent is blended with a flammable solvent to prepare a nonflammable composition, the cleaning liquid may become a flammable composition if the nonflammable component volatilizes preferentially.

また、洗浄溶媒は、使用後に蒸留等の操作によって回収、再利用するのが、環境保護の面からも経済面からも望ましいが、二成分系の液体の場合、一般に沸点の異なる二成分の液体を別々に回収せざるを得ず、回収・再利用を行うには、操作上の負荷がかかりやすい。 Further, it is desirable to recover and reuse the cleaning solvent by an operation such as distillation after use from the viewpoint of environmental protection and economy, but in the case of a two-component liquid, a two-component liquid having a different boiling point is generally used. Must be collected separately, and it is easy to impose an operational load to collect and reuse them.

熱力学サイクルの作動流体に用いる場合も、同様の問題がある。すなわち、熱力学サイクルの作動流体として用いる場合も、長時間で見れば液組成が変動する可能性がある。液組成が変動すれば、液体の持つ熱容量、粘度、或いは潤滑剤との親和性に変化が生じ、熱力学サイクルの作動性能が低下することがある。 There are similar problems when used as a working fluid for thermodynamic cycles. That is, even when used as a working fluid in a thermodynamic cycle, the liquid composition may fluctuate over a long period of time. If the liquid composition fluctuates, the heat capacity, viscosity, or affinity of the liquid with the lubricant may change, and the operating performance of the thermodynamic cycle may deteriorate.

このため、二元系(多元系)の液体組成物を洗浄剤や作動流体として使用する場合、頻繁に液組成を分析し、適正な組成範囲になるように、絶えず、適切な比率に調合して、揮発した成分を補充しなければならない。しかし、こうした液組成管理は作業上の大きな負荷となり得る。 For this reason, when a binary (multidimensional) liquid composition is used as a cleaning agent or working fluid, the liquid composition is frequently analyzed and constantly formulated in the appropriate ratio to the proper composition range. And the volatile components must be replenished. However, such liquid composition control can be a heavy work load.

これに対して、共沸組成物の場合、液組成と同じ組成で揮発するので、使用中に液組成が変化しない非常に好ましい組成である。本明細書において「共沸」とは熱力学的に厳密な意味での共沸を指す。例えば水/エタノールの混合物の場合、エタノール(96質量%)と水(4質量%)の組成物は共沸混合物(azeotrope)であって、これと気液平衡して存在する蒸気も「エタノール(96質量%):水(4質量%)」となり、液組成と完全に一致する。この現象を「共沸」と呼ぶ。特定の温度、圧力では共沸混合物の組成は、ただ1点となる。 On the other hand, in the case of the azeotropic composition, since it volatilizes with the same composition as the liquid composition, it is a very preferable composition in which the liquid composition does not change during use. As used herein, "azeotrope" refers to azeotrope in the strict thermodynamic sense. For example, in the case of a water / ethanol mixture, the composition of ethanol (96% by mass) and water (4% by mass) is an azeotropic mixture, and the vapor that exists in vapor-liquid equilibrium with this is also "ethanol ( 96% by mass): Water (4% by mass) ”, which completely matches the liquid composition. This phenomenon is called "azeotropic". At a particular temperature and pressure, the composition of the azeotropic mixture is only one point.

「共沸様」は、「擬共沸」とも呼ばれ、熱力学的に厳密な共沸ではないが、ある範囲の組成の液体については、その液組成と、平衡状態にある気体の組成が、実質的に等しいことがあり、そのような現象を指す。完全に気相部と液相部の組成が一致せずとも、実質的に気相部と液相物の組成が一致すれば、当業者は、共沸組成と同様に取り扱うことができる。このとき、気相部と液相部の気液平衡組成差は小さければ小さいほど良い。このように、実質的に気相部と液相部の気液平衡組成が一致する現象を共沸様または擬共沸と呼び、その組成を共沸様組成、または、擬共沸組成と呼ぶ。 "Azeotrope" is also called "pseudo-azeotrope" and is not thermodynamically strict azeotrope, but for a liquid with a certain range of composition, the liquid composition and the composition of the gas in equilibrium are , May be substantially equal and refer to such a phenomenon. Even if the compositions of the gas phase portion and the liquid phase portion do not completely match, those skilled in the art can handle the same as the azeotropic composition as long as the compositions of the gas phase portion and the liquid phase product substantially match. At this time, the smaller the difference in vapor-liquid equilibrium composition between the gas phase portion and the liquid phase portion, the better. Such a phenomenon in which the vapor-liquid equilibrium composition of the gas phase portion and the liquid phase portion substantially match is called an azeotropic or pseudo-azeotropic composition, and the composition is called an azeotropic composition or a pseudo azeotropic composition. ..

学術的には共沸現象と擬共沸現象(または共沸様)は区別すべきであるが、洗浄等の実務においては、共沸現象と共沸様現象(または擬共沸)を区別する必要は無く、全く同じように取り扱うことができるので、本明細書においては、共沸現象と共沸様現象(または擬共沸)を併せて“共沸(様)”と呼ぶ。また、そのときの組成を“共沸(様)組成”と呼ぶ。 Academically, azeotrope and quasi-azeotrope (or azeotrope) should be distinguished, but in practice such as cleaning, azeotrope and azeotrope (or azeotrope) should be distinguished. In this specification, the azeotrope phenomenon and the azeotrope-like phenomenon (or pseudo-azeotrope) are collectively referred to as "azeotrope" because they are not necessary and can be treated in exactly the same way. The composition at that time is called "azeotropic composition".

共沸(様)においては、共沸点の有無は問われない。実質的に気相部と液相部の気液平衡組成が一致すれば良い。 In azeotropic (like), the presence or absence of azeotropic point does not matter. It suffices that the vapor-liquid equilibrium composition of the gas phase portion and the liquid phase portion substantially match.

「共沸様」は理論的に導かれるものではなく、様々な液体の種類、組成比について気液
平衡を実験によって調査し、偶然、気相の組成と液相の組成が実質的に一致した時に、初めて見出せるものである。本発明においては、1,2−ジクロロ−3,3,3−トリフルオロプロペンのZ体(1223Z)とE体(1223E)において、特定の領域で質的に気液の組成が同一である共沸様組成を見出すことが出来た。特に、1223Zと123Eは沸点および極性が著しく異なるので、これらが共沸様になると類推することは非に困難である。それぞれの化合物の沸点と極性(ダイポールモーメント(B3LYP/6−311+G**計算値))は、下記の通りである。
"Azeotrope" is not theoretically derived, and the vapor-liquid equilibrium was investigated experimentally for various liquid types and composition ratios, and by chance, the composition of the gas phase and the composition of the liquid phase were substantially the same. Sometimes it can be found for the first time. In the present invention, the Z-form (1223Z) and E-form (1223E) of 1,2-dichloro-3,3,3-trifluoropropene have the same gas-liquid composition in a specific region. We were able to find a boiling-like composition. In particular, since 1223Z and 123E have significantly different boiling points and polarities, it is extremely difficult to infer that they are azeotropic. The boiling point and polarity (dipole moment (B3LYP / 6-311 + G ** calculated value)) of each compound are as follows.

Figure 0006896991
Figure 0006896991

Figure 0006896991
Figure 0006896991

1223Zと1223Eの製造方法は特許文献(特開2014−210765公報、WO2014/046250公報、WO2014/046251公報)に記載されている。すなわち、1−クロロ−3,3,3−トリフルオロプロペンを気相中で塩素と反応させることによって1223Zと1223Eとを、通常、両者が平衡状態もしくはそれに近い状態で存在する混合物として得ることができる。 Methods for producing 1223Z and 1223E are described in Patent Documents (Japanese Unexamined Patent Publication No. 2014-210765, WO2014 / 046250, WO2014 / 046251). That is, by reacting 1-chloro-3,3,3-trifluoropropene with chlorine in the gas phase, 1223Z and 1223E can usually be obtained as a mixture in which both are present in equilibrium or close to equilibrium. it can.

1,2−ジクロロ−3,3,3−トリフルオロプロペンとして1223Zと1223Eの両方が生成した場合、各々の成分を含む混合物を精製処理に付し、高純度化することが可能である。例えば、理論段数30段〜300段の蒸留塔で精密蒸留することが可能である。段数が多い蒸留塔の方が、一回の操作で収率良く高純度化が可能であるが、例えば、50段の蒸留塔を用いて、純分の高いフラクションを再蒸留することによって、実質的に相互の異性体を含まない留分を得ることができる。精密蒸留の前に予め予備蒸留することも有効である。 When both 1223Z and 1223E are produced as 1,2-dichloro-3,3,3-trifluoropropene, the mixture containing each component can be subjected to a purification treatment to be highly purified. For example, precision distillation can be performed in a distillation column having 30 to 300 theoretical plates. A distillation column with a large number of stages can achieve high purity with good yield in a single operation. However, for example, by redistilling a fraction having a high pure content using a distillation column with 50 stages, it is substantially realized. Distillations that do not contain mutual isomers can be obtained. It is also effective to pre-distill in advance before precision distillation.

精密蒸留によって得られた高純度の1223Zのフラクションを、活性炭、ゼオライト等を用いて吸着処理し、さらに精製することも可能である。具体的には、蒸留工程によって、99.9%以上に1223Zを濃縮し、かかる後に前記吸着処理を行うことが好ましい。1223Zと1233Eの反応性の違いや極性の違いを用いた、既存の分離精製方法を用いることも可能である。例えば、不純物を含む1223Zを、塩基性水溶液または硫酸に接触させ、攪拌することにより、不純物を分解できることがある。特に、塩基性水溶液と攪拌する場合は、相関移動触媒を共存させると、特に効率的である。これらの精製法を組み合わせも有効である。 It is also possible to adsorb and further purify the high-purity 1223Z fraction obtained by precision distillation using activated carbon, zeolite or the like. Specifically, it is preferable to concentrate 1223Z to 99.9% or more by a distillation step, and then perform the adsorption treatment. It is also possible to use an existing separation and purification method using the difference in reactivity and the difference in polarity between 1223Z and 1233E. For example, impurities may be decomposed by bringing 1223Z containing impurities into contact with a basic aqueous solution or sulfuric acid and stirring the mixture. In particular, when stirring with a basic aqueous solution, it is particularly efficient to coexist with a phase transfer catalyst. A combination of these purification methods is also effective.

他成分を実質的に含まない1223Zと1223Eを単離後、各々を所定の比率で混合すれば、本発明の「1223Zと1223Eとからなる共沸(様)組成物」を得ることができる。この方法によれば、例えば、1223Zが99.9999モル%、1223Eが0.0001モル%の共沸(様)組成物を調製することもできる。 After isolating 1223Z and 1223E which do not substantially contain other components, if each is mixed at a predetermined ratio, the "azeotropic (like) composition consisting of 1223Z and 1223E" of the present invention can be obtained. According to this method, for example, an azeotropic composition in which 1223Z is 99.9999 mol% and 1223E is 0.0001 mol% can be prepared.

また、上記とは別の方法として、1223Zと1223Eがほぼ平衡状態で共存する混合物(1223Eが主成分、1223Zが少量成分の組成物)を、例えば50〜100段程度の精密蒸留に付して、1223Z濃度が80mol%以上(1223Eが20mol%以下)の留分を得ることもできる。この場合、所望の組成の留出液を得られるように、蒸留条件(特に蒸留段数)を適宜調節すればよく、上記の方法とは違って、純粋な1223Zと1223Eどうしを混合し直すプロセスは要しない。 Further, as another method from the above, a mixture in which 1223Z and 1223E coexist in a substantially equilibrium state (composition in which 1223E is the main component and 1223Z is a small amount component) is subjected to precision distillation of, for example, about 50 to 100 steps. , A fraction having a 1223Z concentration of 80 mol% or more (1223E is 20 mol% or less) can also be obtained. In this case, the distillation conditions (particularly the number of distillation stages) may be appropriately adjusted so that a distillate having a desired composition can be obtained, and unlike the above method, the process of remixing pure 1223Z and 1223E is performed. I don't need it.

尤も、100段程度の精密蒸留を行った結果、「1223Zが80mol%を有意に超える(1223Eが20mol%を有意に下回る)組成物」を得た後、それを「1223Zが80mol%を有意に下回る(1223Eが20mol%を有意に上回る)組成物」と混合して、全体として「1223Z濃度が80mol%以上(1223Eが20mol%以下)の組成物」に調製し直すことも、妨げられるものではない。 However, as a result of performing precision distillation of about 100 steps, after obtaining "a composition in which 1223Z significantly exceeds 80 mol% (1223E is significantly lower than 20 mol%)", "1223Z significantly exceeds 80 mol%". It is also possible to mix with a composition having a concentration of less than 20 mol% (1223E significantly more than 20 mol%) and re-prepare as a whole to a composition having a concentration of 1223Z of 80 mol% or more (1223E is 20 mol% or less). Absent.

なお、上述のような高度な精密蒸留を行う場合には、1223Zと1223Eは相互に分離できるが、通常の条件(つまり1段程度の蒸留条件)では、1223Zの濃度(含有量)が上がっていくにつれ、相互の分離が行いにくくなり、「1223Zが80mol%(1223Eが20mol%)の組成物」に到達すると、それ以上の濃度変化が実質的に生じなくなる。すなわち、実施例で示す気液平衡組成図から明らかな通り、第一の成分である1223Zが80モル%〜99.9999モル%と第2の成分である1223Eが0.0001モル%〜20モル%からなる組成物は気相部と液相部の組成が実質的に同じである共沸(様)組成物である。ここで、前記mol%の値は、1223Zのモル数と1223Eのモル数の合計値を100としたときの、各成分のモル数の%(すなわち、2成分間の相対的モル%)を表す。この範囲の組成であれば、実務上、液体組成物を開放系で取り扱っても、さらには単蒸留による回収操作をおこなっても、組成変動が起こりにくい。 When performing advanced precision distillation as described above, 1223Z and 1223E can be separated from each other, but under normal conditions (that is, distillation conditions of about one stage), the concentration (content) of 1223Z increases. As it becomes difficult to separate from each other, when the composition reaches "composition of 80 mol% of 1223Z (20 mol% of 1223E)", no further change in concentration occurs substantially. That is, as is clear from the vapor-liquid equilibrium composition diagram shown in the examples, the first component 1223Z is 80 mol% to 99.9999 mol% and the second component 1223E is 0.0001 mol% to 20 mol. The composition consisting of% is an azeotropic (like) composition in which the composition of the gas phase portion and the liquid phase portion is substantially the same. Here, the value of mol% represents% of the number of moles of each component (that is, relative mol% between the two components) when the total value of the number of moles of 1223Z and the number of moles of 1223E is 100. .. With a composition within this range, in practice, even if the liquid composition is handled in an open system or even if a recovery operation is performed by simple distillation, the composition is unlikely to fluctuate.

中でも、第一の成分である1223Zが90モル%〜99.9999モル%と第2の成分である1223Eが0.0001モル%〜10モル%からなる組成範囲は、気相部と液相部の組成が一層近接しているために、特に好ましい組成物と言える。 Among them, the composition range in which the first component 1223Z is 90 mol% to 99.9999 mol% and the second component 1223E is 0.0001 mol% to 10 mol% is the gas phase part and the liquid phase part. It can be said that the composition is particularly preferable because the compositions of the above are closer to each other.

さらに、第一の成分である1223Zが95モル%〜99.9999モル%と第2の成分である1223Eが0.0001モル%〜5モル%からなる組成範囲は、気相部と液相部の組成がさらに一層近接しているために、濃度変動が一層生じにくく、特に好ましい組成物と言える。 Further, the composition range in which the first component 1223Z is 95 mol% to 99.9999 mol% and the second component 1223E is 0.0001 mol% to 5 mol% is the gas phase part and the liquid phase part. Since the compositions of the above are even closer to each other, the concentration fluctuation is less likely to occur, and it can be said that the composition is particularly preferable.

なお、上記は好ましい組成範囲の例であるが、上記の組成範囲以外の共沸様組成物を用いることは妨げない。被洗浄物の種類、要求される洗浄精度、洗浄手法、洗浄条件、洗浄機の形状によって、当業者が許容できる組成変化ならば、実質的に気相分と液相部の組成が近接している共沸様組成とみなすことができる。 Although the above is an example of a preferable composition range, it does not prevent the use of an azeotropic composition other than the above composition range. If the composition changes tolerable by those skilled in the art depending on the type of the object to be cleaned, the required cleaning accuracy, the cleaning method, the cleaning conditions, and the shape of the cleaning machine, the composition of the gas phase component and the composition of the liquid phase portion are substantially close to each other. It can be regarded as an azeotropic composition.

本発明の共沸(様)組成物は、不純物が実質的に混入していない、高純度のものが好ましい態様の1つであることは言うまでもない。しかし、用途によっては、それほど高い純度の液体組成物を要求されない場合もある。そのような場合には、第1の成分である1223Zや、第2の成分である1223Eを合成するための原料物質や、副生成物が少量(通常各成分とも、該共沸(様)組成物に対して通常1重量%未満)、残存したものを用いることもできる。 It goes without saying that the azeotropic (like) composition of the present invention is preferably one having a high purity and is substantially free of impurities. However, depending on the application, a liquid composition having such a high purity may not be required. In such a case, a small amount of a raw material for synthesizing 1223Z, which is the first component, and 1223E, which is the second component, and a small amount of by-products (usually, each component has the azeotropic composition). It is also possible to use the remaining one (usually less than 1% by weight).

所望により、共沸(様)組成物の性能を改善するために追加成分を添加し、「本発明の共沸(様)組成物と、少なくとも一つの追加成分を含む液体組成物」とすることもできる。追加成分としては、洗浄力強化剤(界面活性剤)、安定剤(受酸剤、酸化防止剤)、等が例示される。 If desired, additional ingredients may be added to improve the performance of the azeotropic composition to give "the azeotropic composition of the invention and a liquid composition containing at least one additional ingredient". You can also. Examples of additional components include detergency enhancers (surfactants), stabilizers (acid acceptants, antioxidants), and the like.

界面活性剤としては、具体的には、ソルビタンモノオレエート、ソルビタントリオレエート等のソルビタン脂肪族エステル類;ポリオキシエチレンのソルビットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エステル類;ポリオキシエチレンモノラウレート等のポリエチレングリコール脂肪酸エステル類;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;ポリオキシエチレンオレイン酸アミド等のポリオキシエチレンアルキルアミン脂肪酸アミド類等のノニオン系界面活性剤が挙げられる。これらの界面活性剤は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。相乗的に洗浄力及び界面作用を改善する目的で、これらのノニオン系界面活性剤に加えてカチオン系界面活性剤やアニオン系界面活性剤を本発明の共沸様組成物を含む洗浄剤に添加してもよい。界面活性剤の使用量は、その種類により異なるが、共沸様組成物の共沸様の性質に支障のない程度であればよく、通常、共沸様組成物中0.1質量%以上30質量%以下程度であり、0.3質量%以上5質量%以下程度とすることが好ましい。 Specific examples of the surfactant include sorbitan aliphatic esters such as sorbitan monooleate and sorbitan trioleate; polyoxyethylene sorbit fatty acid esters such as sorbit tetraoleate of polyoxyethylene; polyoxyethylene monolaure. Polyethylene glycol fatty acid esters such as rates; Polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether; Polyoxyethylene alkylphenyl ethers such as polyoxyethylene nonylphenyl ether; Polyoxyethylene such as polyoxyethylene oleic acid amide Examples thereof include nonionic surfactants such as alkylamine fatty acid amides. These surfactants may be used alone or in combination of two or more. In addition to these nonionic surfactants, cationic surfactants and anionic surfactants are added to the detergents containing the co-boiling-like composition of the present invention for the purpose of synergistically improving the detergency and the interfacial action. You may. The amount of the surfactant used varies depending on the type, but it is sufficient as long as it does not interfere with the azeotropic properties of the azeotropic composition, and is usually 0.1% by mass or more in the azeotropic composition 30. It is about mass% or less, and is preferably about 0.3% by mass or more and 5% by mass or less.

安定剤としては、その種類は特に限定されないが、ニトロ化合物、エポキシ化合物、フェノール類、イミダゾール類、アミン類、炭化水素類等が挙げられる。このような安定剤を添加した該液体組成物は、過酷な条件で使用する場合に、特に有用である。 The type of stabilizer is not particularly limited, and examples thereof include nitro compounds, epoxy compounds, phenols, imidazoles, amines, and hydrocarbons. The liquid composition to which such a stabilizer is added is particularly useful when used under harsh conditions.

ニトロ化合物としては、公知の化合物を好適に用いることができ)、脂肪族及び/または芳香族ニトロ化合物が挙げられる。脂肪族ニトロ化合物として、例えば、ニトロメタン、ニトロエタン、1−ニトロプロパン、2−ニトロプロパン等が挙げられる。芳香族ニトロ化合物として、例えば、ニトロベンゼン、o−、m−又はp−ジニトロベンゼン、トリニトロベンゼン、o−、m−又はp−ニトロトルエン、o−、m−又はp−エチルニトロベンゼン、2,3−、2,4−、2,5−、2,6−、3,4−又は3,5−ジメチルニトロベンゼン、o−、m−又はp−ニトロアセトフェノン、o−、m−又はp−ニトロフェノール、o−、m−又はp−ニトロアニソール等が挙げられる。 As the nitro compound, known compounds can be preferably used), and examples thereof include aliphatic and / or aromatic nitro compounds. Examples of the aliphatic nitro compound include nitromethane, nitroethane, 1-nitropropane, 2-nitropropane and the like. Aromatic nitro compounds include, for example, nitrobenzene, o-, m- or p-dinitrobenzene, trinitrobenzene, o-, m- or p-nitrotoluene, o-, m- or p-ethylnitrobenzene, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dimethylnitrobenzene, o-, m- or p-nitroacetophenone, o-, m- or p-nitrophenol, o -, M- or p-nitroanisole and the like can be mentioned.

エポキシ化合物としては、例えば、エチレンオキサイド、1,2−ブチレンオキサイド、プロピレンオキサイド、スチレンオキサイド、シクロヘキセンオキサイド、グリシドール、エピクロルヒドリン、グリシジルメタアクリレート、フェニルグリシジルエーテル、アリルグリシジルエーテル、メチルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル等のモノエポキシ系化合物、ジエポキシブタン、ビニルシクロヘキセンジオキサイド、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチロールプロパントルグリシジルエーテル等のポリエポキシ系化合物等が挙げられる。 Examples of the epoxy compound include ethylene oxide, 1,2-butylene oxide, propylene oxide, styrene oxide, cyclohexene oxide, glycidol, epichlorohydrin, glycidyl methacrylate, phenylglycidyl ether, allyl glycidyl ether, methyl glycidyl ether, and butyl glycidyl ether. Monoepoxy compounds such as 2-ethylhexyl glycidyl ether, polyepoxy compounds such as diepoxybutane, vinylcyclohexendioxide, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, glycerin polyglycidyl ether, and trimethylolpropanthrglycidyl ether. Examples include compounds.

フェノール類としては、フェノール性水酸基以外にアルキル基、アルケニル基、アルコキシ基、カルボキシル基、カルボニル基、ハロゲン等各種の置換基を含んでいても良い。例えば、2,6−ジ−t−ブチル−p−クレゾール、o−クレゾール、m−クレゾール、p−クレゾール、チモル、p−t−ブチルフェノール、o−メトキシフェノール、m−メトキシフェノール、p−メトキシフェノール、オイゲノール、イソオイゲノール、ブチルヒドロキシアニソール、フェノール、キシレノール等の1価のフェノールあるいはt−ブチルカテコール、2,5−ジ−t−アミノハイドロキノン、2,5−ジ−t−ブチルハイドロキノン等の2価のフェノール等が挙げられる。 The phenols may contain various substituents such as an alkyl group, an alkenyl group, an alkoxy group, a carboxyl group, a carbonyl group and a halogen in addition to the phenolic hydroxyl group. For example, 2,6-di-t-butyl-p-cresol, o-cresol, m-cresol, p-cresol, timol, pt-butylphenol, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol. , Eugenol, Isoeugenol, Butylhydroxyanisole, Phenol, Xylenol and other monovalent phenols or t-butylcatechol, 2,5-di-t-aminohydroquinone, 2,5-di-t-butylhydroquinone and the like. Phenol and the like can be mentioned.

イミダゾール類としては、炭素数1以上18以下の直鎖もしくは分岐を有するアルキル基、シクロアルキル基、またはアリール基をN位の置換基とするイミダゾール類が好ましい。そのようなイミダゾール類としては、1−メチルイミダゾール、1−n−ブチルイミダゾール、1−フェニルイミダゾール、1−ベンジルイミダゾール、1−(β−オキシエチル)イミダゾール、1−メチル−2−プロピルイミダゾール、1−メチル−2−イソブチルイミダゾール、1−n−ブチル−2−メチルイミダゾール、1,2−ジメチルイミダゾール、1,4−ジメチルイミダゾール、1,5−ジメチルイミダゾール、1,2,5−トリメチルイミダゾール、1,4,5−トリメチルイミダゾール、1−エチル−2−メチルイミダゾール等が挙げられる。これらの化合物は単独で使用されてもよく、2種以上の化合物が併用されてもよい。 As the imidazoles, imidazoles having a linear or branched alkyl group having 1 or more and 18 or less carbon atoms, a cycloalkyl group, or an aryl group as a substituent at the N-position are preferable. Examples of such imidazoles include 1-methylimidazole, 1-n-butyl imidazole, 1-phenyl imidazole, 1-benzyl imidazole, 1- (β-oxyethyl) imidazole, 1-methyl-2-propyl imidazole, 1-. Methyl-2-isobutylimidazole, 1-n-butyl-2-methylimidazole, 1,2-dimethylimidazole, 1,4-dimethylimidazole, 1,5-dimethylimidazole, 1,2,5-trimethylimidazole, 1, Examples thereof include 4,5-trimethylimidazole and 1-ethyl-2-methylimidazole. These compounds may be used alone or in combination of two or more compounds.

アミン類としては、ペンチルアミン、ヘキシルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ−n−プロピルアミン、ジアリルアミン、トリエチルアミン、N−メチルアニリン、ピリジン、モルホリン、N−メチルモルホリン、トリアリルアミン、アリルアミン、α―メチルベンジルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、プロピルアミン、イソプロピルアミン、ジプロピルアミン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジベンチルアミン、トリベンチルアミン、2−エチルヘキシルアミン、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ベンジルアミン、ジベンジルアミン、ジフェニルアミン、ジエチルヒドロキシルアミン等が挙げられる。これらは単独で用いられてもよく、2種以上の化合物が併用されてもよい。 Examples of amines include pentylamine, hexylamine, diisopropylamine, diisobutylamine, di-n-propylamine, diallylamine, triethylamine, N-methylaniline, pyridine, morpholine, N-methylmorpholin, triallylamine, allylamine, α-methyl. Benzylamine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, propylamine, isopropylamine, dipropylamine, butylamine, isobutylamine, dibutylamine, tributylamine, diventylamine, triventylamine, 2-ethylhexylamine, aniline , N, N-dimethylaniline, N, N-diethylaniline, ethylenediamine, propylenediamine, diethylenetriamine, tetraethylenepentamine, benzylamine, dibenzylamine, diphenylamine, diethylhydroxylamine and the like. These may be used alone or in combination of two or more compounds.

炭化水素類としては、α―メチルスチレンやp−イソプロペニルトルエン、イソプレン類、プロパジエン類、テルペン類等が挙げられる。これらは単独で用いてもよく、2種以上の化合物が併用されてもよい。 Examples of hydrocarbons include α-methylstyrene, p-isopropenyltoluene, isoprenes, propadiens, terpenes and the like. These may be used alone or in combination of two or more compounds.

<洗浄剤あるいは溶剤としての使用>
本発明の共沸(様)組成物(あるいは、該共沸(様)組成物を含む液体組成物)は、精密機械部品、電子材料(プリント基板、液晶表示器、磁気記録部品、半導体材料等)、樹脂加工部品、光学レンズ、衣料品などから異物、油脂、グリース、ワックス、フラックス、インキ等を除去するのに好適である。前述の通り、本発明の共沸(様)組成物は不燃性であり、適度な流動性や溶解性を有するので、異物(パーティクルなど)を洗い流したり、又は溶解したりして、除去できる。洗浄の手法は特に限定されないが、精密機械部品、電子材料などに本発明の共沸(様)組成物(あるいは、該共沸(様)組成物を含む液体組成物)を浸漬して汚れを洗い流す、ウェスでふき取る、スプレー洗浄を行う、などの方法が挙げられ、これらを組み合わせて使用しても良い。超音波洗浄機内に当該共沸(様)組成物を入れ、その液中に洗浄対象の物品を浸漬させ、超音波洗浄処理することは、特に好ましい態様の1つである。
<Use as a cleaning agent or solvent>
The azeotropic composition (or liquid composition containing the azeotropic composition) of the present invention includes precision mechanical parts, electronic materials (printed circuit boards, liquid crystal displays, magnetic recording parts, semiconductor materials, etc.). ), Resin processed parts, optical lenses, clothing, etc., suitable for removing foreign substances, oils and fats, grease, wax, flux, ink and the like. As described above, since the azeotropic composition of the present invention is nonflammable and has appropriate fluidity and solubility, foreign substances (particles and the like) can be washed away or dissolved to be removed. The cleaning method is not particularly limited, but the azeotropic (like) composition of the present invention (or the liquid composition containing the azeotropic (like) composition) of the present invention is immersed in precision machine parts, electronic materials, etc. to remove stains. Methods such as rinsing, wiping with a waste cloth, and spray washing may be mentioned, and these may be used in combination. It is one of the particularly preferable embodiments that the azeotropic (like) composition is placed in an ultrasonic cleaner, the article to be cleaned is immersed in the liquid, and the ultrasonic cleaning treatment is performed.

既に述べた通り、本発明の共沸(様)組成物は、開放系で使用しても、組成の変動はほとんど起こらないため、さほど頻繁に組成管理をしなくても安定した洗浄力を発揮し、これは実務上の大きなメリットである。 As described above, the azeotropic composition of the present invention exhibits stable detergency even when used in an open system, because the composition hardly fluctuates, and the composition is not controlled very frequently. However, this is a great practical advantage.

洗浄に用いた洗浄液は、回収した上で、蒸留操作を付せば、油脂や異物(パーティクル)を分離除去でき、本発明の共沸(様)組成物を回収できる。一般的な洗浄剤用の蒸留再生装置は単蒸留方式なので、第一の成分である1223Zが80モル%〜99.9999モル%と第2の成分である1223Eが0.0001モル%〜20モル%からなる共沸様組成物の場合は、市販の蒸留再生装置で、実質的に組成変化なく再生可能である。 If the cleaning liquid used for cleaning is recovered and then subjected to a distillation operation, fats and oils and foreign substances (particles) can be separated and removed, and the azeotropic (like) composition of the present invention can be recovered. Since the distillation regeneration device for a general cleaning agent is a simple distillation method, the first component 1223Z is 80 mol% to 99.9999 mol% and the second component 1223E is 0.0001 mol% to 20 mol. In the case of an azeotropic composition consisting of%, it can be regenerated with a commercially available distillation regeneration device without substantially changing the composition.

蒸留操作を行う際、1223Zと1223Eの2種類の液体成分は、共沸(様)組成物としての性質を維持するので、回収液体は、その後、大掛かりな組成調整を経ることなく、再び洗浄溶剤として使用できる。なお、上記「追加成分」が使われていた場合には、これら「追加成分」は蒸留によって除去されてしまう場合もあるので、その場合は別途補うことが望ましい。 During the distillation operation, the two liquid components, 1223Z and 1223E, maintain their properties as an azeotropic composition, so that the recovered liquid is then re-cleaned without major composition adjustments. Can be used as. If the above "additional components" are used, these "additional components" may be removed by distillation. In that case, it is desirable to supplement them separately.

本発明を実施例によって説明する。 The present invention will be described by way of examples.

<実施例1>
セプタム、攪拌子、−10℃の冷媒が流せるジムロートを備えた50mL三つ口フラスコに、表1記載のモル濃度になるように1223Zと1223Eを合わせて25mL仕込んだ。ジムロート上部には合成ゼオライト管を取り付けた。フラスコをオイルバスに浸し、攪拌しながら還流するまで加熱した。還流が開始してから一時間以上経過して組成が安定した後、セプタムからガスタイトシリンジで気相部をサンプリングして、ガスクロマトグラフィー分析した。液相部は同様に注射針を備えたポリプロピレン製シリンジを用いて、約1mLをサンプリングし、予め氷水で冷却した2mLバイアル瓶に移した後、ガスクロマトグラフィー分析を実施した。表1においては予め作成した検量線を用いてモル%表記とした。また、図1は横軸に1223Zの液相部組成、縦軸に1223Zの気相部組成をとり、表1の結果をプロットした。特に、第一成分の1223Zが80モル%〜99.9999モル%、第二成分の1223Eが0.0001〜20モル%の範囲において、気相部と液相部の組成が実質的に変化しない共沸様組成物であることが明らかとなった。
<Example 1>
25 mL of 1223Z and 1223E were charged in a 50 mL three-necked flask equipped with a septum, a stir bar, and a Dimroth condenser capable of flowing a refrigerant at −10 ° C. so as to have the molar concentrations shown in Table 1. A synthetic zeolite tube was attached to the upper part of the Dimroth. The flask was immersed in an oil bath and heated to reflux with stirring. After one hour or more had passed since the start of reflux and the composition was stabilized, the gas phase part was sampled from Septam with a gas tight syringe and analyzed by gas chromatography. For the liquid phase part, about 1 mL was sampled using a polypropylene syringe similarly equipped with an injection needle, transferred to a 2 mL vial previously cooled with ice water, and then gas chromatography analysis was performed. In Table 1, the calibration curve prepared in advance was used and expressed in mol%. In FIG. 1, the horizontal axis represents the liquid phase composition of 1223Z and the vertical axis represents the gas phase composition of 1223Z, and the results in Table 1 are plotted. In particular, the composition of the gas phase portion and the liquid phase portion does not substantially change in the range of 80 mol% to 99.9999 mol% of the first component 1223Z and 0.0001 to 20 mol% of the second component 1223E. It became clear that it was an azeotropic composition.

Figure 0006896991
Figure 0006896991

<実施例2>
日本工業規格JIS K2265−1「引火点の求め方−第1部:タグ密閉法」に準拠して、1223Zと1223Eの混合液体の引火点をそれぞれ測定した。引火点測定には、自動引火点測定器atg−8l(田中科学機器製作株式会社)を使用した。各組成における測定結果を表2に示す。1223Zと1223Eの共沸または共沸様組成物の範囲において、大気圧力条件下で引火点がないことが観測された。
<Example 2>
The flash point of the mixed liquid of 1223Z and 1223E was measured in accordance with Japanese Industrial Standard JIS K2265-1 "How to determine the flash point-Part 1: Tag sealing method". An automatic flash point measuring device atg-8l (Tanaka Scientific Instruments Manufacturing Co., Ltd.) was used for the flash point measurement. The measurement results for each composition are shown in Table 2. In the range of azeotropic or azeotropic compositions of 1223Z and 1223E, it was observed that there was no flash point under atmospheric pressure conditions.

Figure 0006896991
Figure 0006896991

<実施例3>
<洗浄試験>
市販の25mLメスシリンダーを11mLの目盛り線で切断し、液体の気化が起こりやすい条件を設定した。直径:約7.2mm×長さ:約40mmの清浄なガラス棒の質量を測定後、表記載のオイルに2分間浸漬し、10分間立てて液切した(過剰についたオイルを除去した)後、質量(ガラス棒+初期付着オイル)を測定後、前記のメスシリンダーに入れた。
<Example 3>
<Washing test>
A commercially available 25 mL graduated cylinder was cut with an 11 mL scale line to set conditions under which liquid vaporization was likely to occur. After measuring the mass of a clean glass rod of diameter: about 7.2 mm x length: about 40 mm, soak it in the oil shown in the table for 2 minutes, stand for 10 minutes and drain it (remove excess oil). After measuring the mass (glass rod + initial adhering oil), it was placed in the above-mentioned measuring cylinder.

続いて、以下の表3に記載の通り、「1233Z 95.4545モル%、1223E 4.5455モル%の共沸様組成物」を10mLの液面まで仕込み、20℃の水を満たした小型超音波洗浄機(シチズン製SW5800)の中央部に立てた。超音波を照射すると時間と共に該共沸様組成物が揮発し、8mLの目盛り線になった時点で、メスシリンダー内の液をガスクロマトグラフで分析した。その結果、実施例3−1〜3−5の全ての実験例において、2mL揮発したにも関わらず、洗浄前後の液組成は実質的に同一であった。すなわち、実機洗浄において、実施例3で用いた共沸様組成物は、部分的に揮発しても残液の組成が実質的に変化しない共沸様組成であることが示された。次にガラス棒を乾燥させて質量(ガラス棒と残存オイルとの総質量)を測定して、油除去率(残存オイルの質量÷初期付着オイルの質量×100[%])を求めると共に、拡大鏡でガラスの表面を観察した。その結果、全ての実施例において油除去率が100%であり、拡大鏡観察結果においても、油分の残存が認められなかったため、「良好」と判断した。結果を以下の表3に示す。 Subsequently, as shown in Table 3 below, "1233Z 95.4545 mol%, 1223E 4.5455 mol% azeotropic composition" was charged to a liquid level of 10 mL, and was filled with water at 20 ° C. It was erected in the center of a ultrasonic cleaner (SW5800 manufactured by Citizen). When the azeotropic composition volatilized with time when irradiated with ultrasonic waves and reached a scale line of 8 mL, the liquid in the graduated cylinder was analyzed by gas chromatography. As a result, in all the experimental examples of Examples 3-1 to 3-5, the liquid composition before and after washing was substantially the same even though 2 mL was volatilized. That is, it was shown that the azeotropic composition used in Example 3 in the actual washing had an azeotropic composition in which the composition of the residual liquid did not substantially change even if it was partially volatilized. Next, the glass rod is dried and the mass (total mass of the glass rod and residual oil) is measured to obtain the oil removal rate (mass of residual oil ÷ mass of initially adhered oil × 100 [%]) and expanded. The surface of the glass was observed with a mirror. As a result, the oil removal rate was 100% in all the examples, and no residual oil was observed in the magnifying glass observation result, so that the result was judged to be "good". The results are shown in Table 3 below.

Figure 0006896991
Figure 0006896991

Claims (10)

81.4374モル%以上99.9996モル%以下の(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペンと0.0004モル%以上18.5626モル%以下の(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペン、または
0.0001モル%以上8.0892モル%以下の(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペンと91.9108モル%以上99.9999モル%以下の(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペンからなる(ただし90.5モル%の(Z)−1,2−ジクロロ−3,3,3−トリフルオロプロペンと9.5モル%の(E)−1,2−ジクロロ−3,3,3−トリフルオロプロペンからなる組成物を除く)共沸(様)組成物。
81.4374 mol% or more and 99.9996 mol% or less (Z) -1,2-dichloro-3,3,3-trifluoropropene and 0.0004 mol% or more and 18.5626 mol% or less (E)- With 1,2-dichloro-3,3,3-trifluoropropene, or with (Z) -1,2-dichloro-3,3,3-trifluoropropene of 0.0001 mol% or more and 8.0892 mol% or less. Consists of (E) -1,2-dichloro-3,3,3-trifluoropropene of 91.9108 mol% or more and 99.9999 mol% or less (however, 90.5 mol% of (Z) -1,2- Azeotropic composition (excluding compositions consisting of dichloro-3,3,3-trifluoropropene and 9.5 mol% (E) -1,2-dichloro-3,3,3-trifluoropropene) Stuff.
請求項1に記載の前記共沸(様)組成物、および
安定剤を含む液体組成物。
The liquid composition containing the azeotropic (like) composition according to claim 1 and a stabilizer.
前記安定剤の濃度は、前記共沸(様)組成物に対して0.1質量%以上30質量%である、請求項2に記載の液体組成物。 The liquid composition according to claim 2, wherein the concentration of the stabilizer is 0.1% by mass or more and 30% by mass with respect to the azeotropic (like) composition. 請求項1に記載の前記共沸(様)組成物、および
界面活性剤を含む液体組成物。
The azeotropic (like) composition according to claim 1, and a liquid composition containing a surfactant.
前記界面活性剤の濃度は、前記共沸(様)組成物に対して0.1質量%以上30質量%以下である、請求項4に記載の液体組成物。 The liquid composition according to claim 4, wherein the concentration of the surfactant is 0.1% by mass or more and 30% by mass or less with respect to the azeotropic (like) composition. 請求項1に記載の前記共沸(様)組成物、または請求項2から5のいずれかに記載の前記液体組成物を含む洗浄用溶剤。 A cleaning solvent containing the azeotropic composition according to claim 1 or the liquid composition according to any one of claims 2 to 5. 請求項1に記載の前記共沸(様)組成物を用意すること、および前記共沸(様)組成物に安定剤または界面活性剤を加えることを含む、洗浄用溶剤の製造方法。 A method for producing a cleaning solvent, which comprises preparing the azeotropic composition according to claim 1 and adding a stabilizer or a surfactant to the azeotropic composition. 請求項1に記載の前記共沸(様)組成物、または請求項2から5のいずれかに記載の前記液体組成物を用いて洗浄対象物品を洗浄することを含む、洗浄対象物品の洗浄方法。 A method for cleaning an article to be cleaned, which comprises cleaning the article to be cleaned with the azeotropic composition according to claim 1 or the liquid composition according to any one of claims 2 to 5. .. 前記洗浄を開放系で行う、請求項8に記載の洗浄方法。 The cleaning method according to claim 8, wherein the cleaning is performed in an open system. 請求項1に記載の前記共沸(様)組成物、または請求項2から5のいずれかに記載の前記液体組成物を用いて、洗浄対象物品を洗浄すること、および
洗浄に用いた洗浄液を蒸留することを含む、洗浄用溶剤の回収方法。
Using the azeotropic composition according to claim 1 or the liquid composition according to any one of claims 2 to 5, the article to be washed is washed, and the washing liquid used for washing is used. A method of recovering a cleaning solvent, including distillation.
JP2019055205A 2015-02-02 2019-03-22 Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents. Active JP6896991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055205A JP6896991B2 (en) 2015-02-02 2019-03-22 Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018341A JP6503765B2 (en) 2015-02-02 2015-02-02 An azeotrope-like composition containing fluorine-containing olefin as a component
JP2019055205A JP6896991B2 (en) 2015-02-02 2019-03-22 Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015018341A Division JP6503765B2 (en) 2015-02-02 2015-02-02 An azeotrope-like composition containing fluorine-containing olefin as a component

Publications (2)

Publication Number Publication Date
JP2019112649A JP2019112649A (en) 2019-07-11
JP6896991B2 true JP6896991B2 (en) 2021-06-30

Family

ID=67222336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055205A Active JP6896991B2 (en) 2015-02-02 2019-03-22 Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents.

Country Status (1)

Country Link
JP (1) JP6896991B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222496A (en) * 1989-02-23 1990-09-05 Asahi Glass Co Ltd Cleaning agent for dry cleaning
US8985106B2 (en) * 2009-06-05 2015-03-24 Resmed Limited Methods and devices for the detection of hypopnoea
JP5581858B2 (en) * 2009-07-21 2014-09-03 セントラル硝子株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
JP2013087187A (en) * 2011-10-18 2013-05-13 Central Glass Co Ltd Working medium for heat cycle
JP6183370B2 (en) * 2012-09-21 2017-08-23 セントラル硝子株式会社 Process for producing 1,2-dichloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
JP2019112649A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6432306B2 (en) Azeotropic-like composition comprising fluorine-containing olefin as a constituent
JP6503765B2 (en) An azeotrope-like composition containing fluorine-containing olefin as a component
JP5381272B2 (en) Azeotropic-like composition comprising 1,1,1,3,3-pentafluorobutane
WO2017104738A1 (en) Cleaning agent composition, rinsing agent composition and cleaning method
CA2857495C (en) Cleaning compositions and methods
WO2020022474A1 (en) Azeotrope(-like) composition
JP4556669B2 (en) Solvent composition
JP6942528B2 (en) Detergent composition, rinse composition and cleaning method
TW201604325A (en) Solvent vapor phase degreasing and defluxing compositions, methods, devices and systems
JP7189448B2 (en) Azeotrope-like composition containing Z-1,2-dichloro-3,3,3-trifluoropropene as a component
WO2016067933A1 (en) Fluorine-containing olefin composition and cleaning method using same
JP6520178B2 (en) An azeotrope-like composition containing fluorine-containing olefin as a component
JP6896991B2 (en) Compositions, liquid compositions, cleaning solvents, methods for producing and recovering them, and cleaning methods using cleaning solvents.
CN109706008B (en) Halogenated hydrocarbon combined solvent containing octafluoropentyl olefin ether and application thereof
RU2401297C2 (en) Method of cleaning finished article
KR100346677B1 (en) Mixed solvent composition
CS51391A2 (en) Azeotropic solvents&#39; mixture
JP2021059501A (en) Hydrofluoroether, composition comprising hydrofluoroether, and coating film forming method and article cleaning method using hydrofluoroether
JP2010001319A (en) Azeotropic solvent composition, pseudoazeotropic solvent composition, and mixed-solvent composition
EP2746380A1 (en) Non-flammable ternary compositions and use of these compositions
JP2005281326A (en) Solvent composition
JP2003527446A (en) Azeotropic and azeotropic compositions of 1-bromopropane and dichloropentafluoropropane
JP2021116323A (en) Azeotrope-like composition and liquid composition
Basu et al. An alternative solvent with low global warming potential
JPH09111295A (en) Pseudoazeotropic solvent copmosition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210523

R150 Certificate of patent or registration of utility model

Ref document number: 6896991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150