JP6893691B2 - Method and system for manufacturing multi-layer brittle material substrate - Google Patents

Method and system for manufacturing multi-layer brittle material substrate Download PDF

Info

Publication number
JP6893691B2
JP6893691B2 JP2017190287A JP2017190287A JP6893691B2 JP 6893691 B2 JP6893691 B2 JP 6893691B2 JP 2017190287 A JP2017190287 A JP 2017190287A JP 2017190287 A JP2017190287 A JP 2017190287A JP 6893691 B2 JP6893691 B2 JP 6893691B2
Authority
JP
Japan
Prior art keywords
brittle material
substrate
thickness
layer
material substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017190287A
Other languages
Japanese (ja)
Other versions
JP2019063818A (en
Inventor
山本 幸司
山本  幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2017190287A priority Critical patent/JP6893691B2/en
Priority to TW107116252A priority patent/TWI766993B/en
Priority to KR1020180083263A priority patent/KR20190038289A/en
Priority to CN201810982713.0A priority patent/CN109592889A/en
Publication of JP2019063818A publication Critical patent/JP2019063818A/en
Application granted granted Critical
Publication of JP6893691B2 publication Critical patent/JP6893691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser

Description

本発明は、複数枚の板状の脆性材料が積層されてなる脆性材料基板の作製に関し、特に、最下部および最上部を構成する脆性材料の厚みが中間部を構成する脆性材料の厚みよりも小さい複層脆性材料基板の作製に関する。 The present invention relates to the production of a brittle material substrate in which a plurality of plate-shaped brittle materials are laminated, and in particular, the thickness of the brittle material forming the lowermost portion and the uppermost portion is larger than the thickness of the brittle material forming the intermediate portion. The present invention relates to the production of a small multi-layer brittle material substrate.

複数枚の板状の脆性材料基板(例えば、ガラス基板)を接着・積層した構成を有する複層基板として、上下2枚の脆性材料基板を貼り合わせたいわゆる貼り合わせ基板がすでに広く知られている。上下の脆性材料基板の間に液晶が封入されることで構成された液晶ディスプレイなどがその一例である。また、複数のセラミックス基板を積層した積層セラミックス基板も知られている(例えば、特許文献1参照)。 As a multi-layer substrate having a structure in which a plurality of plate-shaped brittle material substrates (for example, glass substrates) are bonded and laminated, a so-called bonded substrate in which two upper and lower brittle material substrates are bonded is already widely known. .. An example is a liquid crystal display configured by enclosing a liquid crystal between the upper and lower brittle material substrates. Further, a laminated ceramic substrate in which a plurality of ceramic substrates are laminated is also known (see, for example, Patent Document 1).

また、所望のサイズの貼り合わせ基板を得るべく、あらかじめ作製されたその母基板を分断して個々の貼り合わせ基板に分離する技術として、カッターホイールやダイヤモンドカッターなどのツールを用いて母基板の表裏面それぞれにスクライブラインを形成し、係るスクライブラインからのクラック伸展によって分断を行うものがすでに公知である(例えば、特許文献1参照)。 In addition, as a technique for dividing a prefabricated mother substrate into individual bonded substrates in order to obtain a bonded substrate of a desired size, a tool such as a cutter wheel or a diamond cutter is used to surface the mother substrate. It is already known that a scribe line is formed on each of the back surfaces and the scribe line is divided by crack extension from the scribe line (see, for example, Patent Document 1).

特開2014−083808号公報Japanese Unexamined Patent Publication No. 2014-0838808

3枚以上の板状の脆性材料を接着・積層した複層基板を使用したいという一定のニーズがある。工業的な量産という観点からは、係る複層基板を母基板の分断によって得るのが好ましいが、特許文献1に開示されているような、母基板の表裏面に形成したスクライブラインからのクラック伸展によって分断するという手法は、最上部と最下部の基板を分断することは可能であるものの、両者に挟まれた中間部の基板にはクラックが伸展しにくい場合がある。 There is a certain need to use a multi-layer substrate in which three or more plate-shaped brittle materials are bonded and laminated. From the viewpoint of industrial mass production, it is preferable to obtain the multi-layer substrate by dividing the mother substrate, but as disclosed in Patent Document 1, crack extension from a scribe line formed on the front and back surfaces of the mother substrate. Although it is possible to divide the uppermost substrate and the lowermost substrate by the method of dividing by, cracks may not easily extend to the intermediate substrate sandwiched between the two.

また、ドリルやダイシングといった手法は、カーフロスが生じるほか、ドライ加工ができず、脆性材料の粉末が多量に発生するという問題がある。 Further, methods such as drilling and dicing have problems that carfloss occurs, dry processing cannot be performed, and a large amount of brittle material powder is generated.

一方、非接触な加工手法であるレーザー加工により分断を行うことも考えられる。しかしながら、COレーザーによりスクライブラインを形成し、係るクラックを伸展させるという手法は、ツールを用いた場合と同様、中間部の基板にはクラックが伸展しないために採用することができない。 On the other hand, it is also conceivable to perform division by laser processing, which is a non-contact processing method. However, the method of forming a scribe line with a CO 2 laser and extending the cracks cannot be adopted because the cracks do not extend on the substrate in the intermediate portion as in the case of using the tool.

これに対し、レーザー光の被照射部分において蒸発を生じさせるアブレーション加工の手法によれば分断は可能であるが、熱影響により、得られた脆性材料基板のエッジ強度が低下しやすい、という問題がある。 On the other hand, although it is possible to divide by the ablation processing method that causes evaporation in the irradiated portion of the laser beam, there is a problem that the edge strength of the obtained brittle material substrate tends to decrease due to the influence of heat. is there.

あるいは、レーザー光の被照射部分において局所的に融解を生じさせることで被照射部分を改質し、その後のブレイクにて分断を実現するという手法も考えられるが、ブレイク時にエッジ部分にチッピングが発生することがある。 Alternatively, it is conceivable to modify the irradiated portion by locally causing melting in the irradiated portion of the laser beam and realize the division at the subsequent break, but chipping occurs at the edge portion at the break. I have something to do.

また、そもそも、3枚以上の板状の脆性材料を接着・積層した複層基板を得るための母基板のうち、特に、最上部と最下部に位置する脆性材料の厚みが中間部に位置する脆性材料の厚みよりも小さいものについては、撓みが生じることに起因した貼り合わせや位置合わせなどの困難さから、それ自体を得ること自体が必ずしも容易ではない。 Further, among the mother substrates for obtaining a multi-layer substrate in which three or more plate-shaped brittle materials are adhered and laminated, the thickness of the brittle materials located at the uppermost portion and the lowermost portion is located in the middle portion. For materials smaller than the thickness of the brittle material, it is not always easy to obtain the material itself due to the difficulty of bonding and alignment due to the occurrence of bending.

本発明は上記課題に鑑みてなされたものであり、最下部および最上部を構成する脆性材料の厚みが中間部を構成する脆性材料の厚みよりも小さい複層脆性材料基板を好適に作製できる方法を、提供することを目的とする。 The present invention has been made in view of the above problems, and is a method capable of suitably producing a multi-layer brittle material substrate in which the thickness of the brittle material constituting the lowermost portion and the uppermost portion is smaller than the thickness of the brittle material constituting the intermediate portion. The purpose is to provide.

上記課題を解決するため、本発明の複層脆性材料基板の作製方法は、板状の脆性材料が積層されてなり、最下部および最上部を構成する前記脆性材料の厚みが中間部を構成する前記脆性材料の厚みよりも小さい複層脆性材料基板を作製する方法であって、a)それぞれが前記複層脆性材料基板における前記最下部、前記最上部、および前記中間部を構成する脆性材料と同じ脆性材料にて構成された、前記複層脆性材料基板の最下部の狙い厚みよりも厚みの大きい最下部と、前記複層脆性材料基板の最上部の狙い厚みよりも厚みの大きい最上部と、前記複層脆性材料基板の中間部の狙い厚みと同じ厚みの中間部とを有し、かつ、前記複層脆性材料基板よりも平面サイズが大きい母基板を用意する工程と、b)前記母基板にレーザー光を照射することにより、前記母基板のあらかじめ定められた分断予定位置に、少なくとも前記中間部を横断し前記最下部および前記最上部に突出する改質領域を形成する工程と、c)前記工程b)を経た前記母基板を、当該母基板の前記最下部と前記最上部の厚みがそれぞれ前記複層脆性材料基板における前記最下部と前記最上部の狙い厚みと等しくなるように、エッチングする工程と、d)前記工程c)を経た前記母基板を前記中間部に残る前記改質領域に沿って分断する工程と、を備えることを特徴とする。 In order to solve the above problems, in the method for producing a multi-layer brittle material substrate of the present invention, plate-shaped brittle materials are laminated, and the thickness of the brittle material forming the lowermost portion and the uppermost portion constitutes an intermediate portion. A method for producing a multi-layer brittle material substrate smaller than the thickness of the brittle material, a) with the brittle material constituting the lowermost portion, the uppermost portion, and the intermediate portion of the multi-layer brittle material substrate, respectively. A bottom portion made of the same brittle material and having a thickness larger than the target thickness of the lowermost portion of the multi-layer brittle material substrate, and a top portion having a thickness larger than the target thickness of the uppermost portion of the multi-layer brittle material substrate. , A step of preparing a mother substrate having an intermediate portion having the same thickness as the target thickness of the intermediate portion of the intermediate portion of the multi-layer brittle material substrate and having a plane size larger than that of the multi-layer brittle material substrate, and b) the mother. A step of forming a modified region that crosses at least the intermediate portion and projects to the lowermost portion and the uppermost portion at a predetermined planned division position of the mother substrate by irradiating the substrate with laser light, and c. ) The mother substrate that has undergone the step b) is provided so that the thicknesses of the lowermost portion and the uppermost portion of the mother substrate are equal to the target thicknesses of the lowermost portion and the uppermost portion of the multi-layer brittle material substrate, respectively. It is characterized by including a step of etching and a step of dividing the mother substrate that has undergone d) the step c) along the modified region remaining in the intermediate portion.

前記工程a)において用意される前記母基板における前記最下部と前記最上部の厚みは前記中間部の厚みと等しいことができる。 The thickness of the lowermost portion and the uppermost portion of the mother substrate prepared in the step a) can be equal to the thickness of the intermediate portion.

前記工程c)はケミカルエッチングより行われることができる。 The step c) can be performed by chemical etching.

前記板状の脆性材料はガラス材料であることができる。 The plate-shaped brittle material can be a glass material.

本発明の複層脆性材料基板の作製システムは、板状の脆性材料が積層されてなり、最下部および最上部を構成する前記脆性材料の厚みが中間部を構成する前記脆性材料の厚みよりも小さい複層脆性材料基板を作製するためのシステムであって、それぞれが前記複層脆性材料基板における前記最下部、前記最上部、および前記中間部を構成する脆性材料と同じ脆性材料にて構成された、前記複層脆性材料基板の最下部の狙い厚みよりも厚みの大きい最下部と、前記複層脆性材料基板の最上部の狙い厚みよりも厚みの大きい最上部と、前記複層脆性材料基板の中間部の狙い厚みと同じ厚みの中間部とを有し、かつ、前記複層脆性材料基板よりも平面サイズが大きい母基板に、レーザー光を照射することにより、前記母基板のあらかじめ定められた分断予定位置に、少なくとも前記中間部を横断し前記最下部および前記最上部に突出する改質領域を形成するレーザー光照射手段と、前記改質領域を形成された前記母基板を、当該母基板の前記最下部と前記最上部の厚みがそれぞれ前記複層脆性材料基板における前記最下部と前記最上部の狙い厚みと等しくなるように、エッチングするエッチング手段と、前記エッチングされた前記母基板を前記中間部に残る前記改質領域に沿って分断する分断手段と、を備えることを特徴とする。 In the system for producing a multi-layer brittle material substrate of the present invention, plate-shaped brittle materials are laminated, and the thickness of the brittle material forming the lowermost portion and the uppermost portion is larger than the thickness of the brittle material forming the intermediate portion. A system for producing a small multi-layer brittle material substrate, each of which is composed of the same brittle material as the brittle material constituting the lowermost portion, the uppermost portion, and the intermediate portion of the multi-layer brittle material substrate. In addition, the bottom portion having a thickness larger than the target thickness of the lowermost portion of the multi-layer brittle material substrate, the uppermost portion having a thickness larger than the target thickness of the uppermost portion of the multi-layer brittle material substrate, and the multi-layer brittle material substrate. By irradiating a mother substrate having an intermediate portion having the same thickness as the target thickness of the intermediate portion of the above and having a plane size larger than that of the multi-layer brittle material substrate, the mother substrate is predetermined. The mother substrate is provided with a laser beam irradiation means for forming a modified region that crosses at least the intermediate portion and projects to the lowermost portion and the uppermost portion at a planned division position, and the mother substrate on which the modified region is formed. The etching means for etching and the etched mother substrate so that the thicknesses of the lowermost portion and the uppermost portion of the substrate are equal to the target thicknesses of the lowermost portion and the uppermost portion of the multi-layer brittle material substrate, respectively. It is characterized by comprising a dividing means for dividing along the modified region remaining in the intermediate portion.

本発明によれば、最下部と最上部の脆性材料の厚みが中間部の脆性材料の厚みに比して小さい複層脆性材料基板を、端部においてチッピングを生じさせることなく好適に得ることができる。 According to the present invention, it is possible to preferably obtain a multi-layer brittle material substrate in which the thickness of the brittle material at the bottom and the top is smaller than the thickness of the brittle material at the middle without causing chipping at the end. it can.

複層脆性材料基板10の構成を模式的に示す図である。It is a figure which shows typically the structure of the multi-layer brittle material substrate 10. 母基板10Mから複層脆性材料基板10を得る手順を示す図である。It is a figure which shows the procedure which obtains the multi-layer brittle material substrate 10 from the mother substrate 10M. 複層脆性材料基板10の作製に供される母基板10Mの斜視図である。It is a perspective view of the mother substrate 10M used for manufacturing the multi-layer brittle material substrate 10. 母基板10Mにおいてx軸に垂直な分断予定位置Pに対しレーザー光LBを照射する様子を示す斜視図である。It is a perspective view which shows the state of irradiating the laser light LB with respect to the planned division position P perpendicular to the x-axis in the mother substrate 10M. レーザー光LBの照射により形成された改質領域RE1を示す母基板10Mのzx断面図である。FIG. 5 is a zx cross-sectional view of a mother substrate 10M showing a modified region RE1 formed by irradiation with laser light LB. エッチング処理について説明するための母基板10Mのzx断面図である。It is a zx cross-sectional view of the mother substrate 10M for demonstrating the etching process. エッチング処理後の母基板10Mのzx断面図である。It is a zx cross-sectional view of the mother substrate 10M after the etching process. 分割個片10αを模式的に示す図である。It is a figure which shows typically the divided piece 10α.

以降においては、複層脆性材料「基板」を得る場合を対象として、本実施の形態に係る方法およびシステムを説明するが、本実施の形態に係る方法およびシステムにより得られる複層脆性材料基板は、必ずしも一般的な「基板」としての使用に供されるものには限られない。 Hereinafter, the method and system according to the present embodiment will be described for the case of obtaining the multi-layer brittle material “substrate”, but the multi-layer brittle material substrate obtained by the method and system according to the present embodiment will be described. , Not necessarily limited to those used as a general "board".

図1は、本実施の形態に係る方法およびシステムを適用することで得られる複層脆性材料基板10の構成を模式的に示す図である。複層脆性材料基板10は、3枚の板状の脆性材料を接着・積層することで構成された、平面視矩形状の複層基板である。脆性材料は例えばガラス材料であるが、3枚の脆性材料が同じ材質である必要はない。 FIG. 1 is a diagram schematically showing the configuration of a multi-layer brittle material substrate 10 obtained by applying the method and system according to the present embodiment. The multi-layer brittle material substrate 10 is a multi-layer substrate having a rectangular shape in a plan view, which is formed by adhering and laminating three plate-shaped brittle materials. The brittle material is, for example, a glass material, but the three brittle materials do not have to be the same material.

より詳細には、複層脆性材料基板10は、所定の厚み(狙い厚み)t1の中間部1の2つの主面(表裏面)にそれぞれ、厚み(狙い厚み)t2の最下部2と厚み(狙い厚み)t3の最上部3とを接着させた構成を有する。ただし、好ましくは、少なくとも最下部2と最上部3とは同じ物質からなり、かつ、t2≒t3<t1である。例えばt1は数百μm〜数mm程度であり、t2、t3は数十μm〜数百μm程度である。あるいはさらに、中間部1についても同じ材質であってもよい。 More specifically, the multi-layer brittle material substrate 10 has two main surfaces (front and back surfaces) of an intermediate portion 1 having a predetermined thickness (target thickness) t1 and a bottom 2 and a thickness (target thickness) t2, respectively. Target thickness) It has a structure in which the uppermost portion 3 of t3 is adhered. However, preferably, at least the lowermost portion 2 and the uppermost portion 3 are made of the same substance, and t2≈t3 <t1. For example, t1 is about several hundred μm to several mm, and t2 and t3 are about several tens of μm to several hundred μm. Alternatively, the intermediate portion 1 may be made of the same material.

最下部2は接着層A1にて中間部1と接着されており、最上部3は接着層A2にて中間部1と接着されているが、接着層A1およびA2の厚みはt2、t3に比べて十分に小さく、数μm〜数十μm程度である。なお、最下部2と中間部1との間と、最上部3と中間部1との間の少なくとも一方に液晶等の他の物質が封止される態様であってもよいが、本実施の形態においては便宜上、係る場合も含めて接着層A1およびA2による接着がなされているものとする。 The lowermost portion 2 is adhered to the intermediate portion 1 by the adhesive layer A1, and the uppermost portion 3 is adhered to the intermediate portion 1 by the adhesive layer A2, but the thicknesses of the adhesive layers A1 and A2 are larger than those of t2 and t3. It is sufficiently small, and is about several μm to several tens of μm. In addition, although it may be in a mode in which another substance such as a liquid crystal is sealed between the lowermost portion 2 and the intermediate portion 1 and at least one between the uppermost portion 3 and the intermediate portion 1, the present embodiment may be performed. In the form, for convenience, it is assumed that the adhesive layers A1 and A2 are adhered to each other including such cases.

一方、複層脆性材料基板10の平面サイズは、その使用目的に応じて様々であり、数cm〜数m程度の範囲で適宜の寸法が選択される。 On the other hand, the plane size of the multi-layer brittle material substrate 10 varies depending on the purpose of use thereof, and appropriate dimensions are selected in the range of several cm to several m.

図2は、本実施の形態に係る方法およびシステムを利用して行う、母基板(複層母基板)10Mから複層脆性材料基板10を得る手順を示す図である。図2に示すように、母基板10Mから複層脆性材料基板10を分離するにあたってはまず、母基板10Mが用意される(ステップS1)。図3は、複層脆性材料基板10の作製に供される母基板10Mの斜視図である。 FIG. 2 is a diagram showing a procedure for obtaining a multi-layer brittle material substrate 10 from a mother substrate (multi-layer mother substrate) 10M, which is carried out by using the method and system according to the present embodiment. As shown in FIG. 2, in separating the multilayer brittle material substrate 10 from the mother substrate 10M, first, the mother substrate 10M is prepared (step S1). FIG. 3 is a perspective view of the mother substrate 10M used for producing the multi-layer brittle material substrate 10.

母基板10Mは、複層脆性材料基板10と同様、3枚の板状の脆性材料を接着・積層することで構成されている平面視矩形状の複層基板であるが、その平面サイズは脆性材料基板に比して十分に大きい。なお、図3においては、母基板10Mを平面視した際の2辺の延在方向をそれぞれx軸、y軸とし、積層方向をz軸とする、右手形のxyz座標を付している(図4においても同様)。 Like the multi-layer brittle material substrate 10, the mother substrate 10M is a multi-layer substrate having a rectangular shape in a plan view, which is formed by adhering and laminating three plate-shaped brittle materials, but its planar size is brittle. It is sufficiently large compared to the material substrate. In FIG. 3, the xyz coordinates of the right handprint are attached, with the extending directions of the two sides when the mother substrate 10M is viewed in a plan view as the x-axis and the y-axis, respectively, and the stacking direction as the z-axis (). The same applies to FIG. 4).

また、母基板10Mは、複層脆性材料基板10と同様、中間部1Mの2つの主面(表裏面)にそれぞれ、最下部2Mと最上部3Mとを接着させた構成を有する。中間部1M、最下部2M、および最上部3Mの材質はそれぞれ、複層脆性材料基板10の中間部1、最下部2、および最上部3の材質と同じである。 Further, the mother substrate 10M has a configuration in which the lowermost portion 2M and the uppermost portion 3M are adhered to the two main surfaces (front and back surfaces) of the intermediate portion 1M, respectively, like the multilayer brittle material substrate 10. The materials of the intermediate portion 1M, the lowermost portion 2M, and the uppermost portion 3M are the same as those of the intermediate portion 1, the lowermost portion 2, and the uppermost portion 3 of the multi-layer brittle material substrate 10, respectively.

ただし、中間部1Mの厚みT1は複層脆性材料基板10の中間部1の厚みt1と同じであるのに対し、最下部2Mの厚みT2は複層脆性材料基板10の最下部2の厚みt2よりも大きく、最上部3Mの厚みT3は複層脆性材料基板10の最上部3の厚みt3よりも大きくなっている。すなわち、厚みT1〜T3はいずれも、数百μm〜数mm程度である。好ましくは、T2=T3であるが、さらにT2=T3=T1であってもよい。すなわち、3つの部分が同じ厚みであってもよい。 However, the thickness T1 of the intermediate portion 1M is the same as the thickness t1 of the intermediate portion 1 of the multi-layer brittle material substrate 10, whereas the thickness T2 of the lowermost portion 2M is the thickness t2 of the lowermost portion 2 of the multilayer brittle material substrate 10. The thickness T3 of the uppermost portion 3M is larger than the thickness t3 of the uppermost portion 3 of the multi-layer brittle material substrate 10. That is, the thicknesses T1 to T3 are all about several hundred μm to several mm. Preferably, T2 = T3, but T2 = T3 = T1 may be further obtained. That is, the three portions may have the same thickness.

また、最下部2Mと中間部1Mとを接着する接着層A1Mと、最上部3Mと中間部1Mとを接着する接着層A2Mはそれぞれ、最終的に複層脆性材料基板10が得られたときに接着層A1、A2となる層である。 Further, the adhesive layer A1M that adheres the lowermost portion 2M and the intermediate portion 1M and the adhesive layer A2M that adheres the uppermost portion 3M and the intermediate portion 1M are each when the multi-layer brittle material substrate 10 is finally obtained. It is a layer to be the adhesive layers A1 and A2.

係る構成を有する母基板10Mに対しては、x軸方向およびy軸方向のそれぞれについてあらかじめ、所定のピッチpa、pbにて、分断予定位置P(P1、P2)が設定されている。なお、図3においては、分断予定位置Pは最上部3Mの上面を横断する一点鎖線にて示されているが、より詳細には、分断予定位置Pは、係る一点鎖線を通りかつz軸方向に沿った面である。そして、x軸方向において隣り合う2つの分断予定位置P(P1)と、y軸方向において隣り合う2つの分断予定位置P(P2)との全4つの分断予定位置Pにて区画された領域が、最終的に1つの複層脆性材料基板10として母基板10Mから分離されることになる。換言すれば、ピッチpa、pbは概ね、4つの分断予定位置Pにおける分断を経て最終的に得られる複層脆性材料基板10の互いに直交する方向の平面サイズに相当する。 With respect to the mother substrate 10M having such a configuration, planned division positions P (P1, P2) are set in advance at predetermined pitches pa and pb in each of the x-axis direction and the y-axis direction. In FIG. 3, the planned division position P is indicated by a alternate long and short dash line crossing the upper surface of the uppermost portion 3M. More specifically, the planned division position P passes through the alternate long and short dash line and is in the z-axis direction. It is a surface along. Then, the area partitioned by all four scheduled division positions P, that is, two adjacent planned division positions P (P1) in the x-axis direction and two adjacent planned division positions P (P2) in the y-axis direction, is formed. Finally, it will be separated from the mother substrate 10M as one multi-layer brittle material substrate 10. In other words, the pitches pa and pb generally correspond to the plane sizes of the multi-layer brittle material substrate 10 finally obtained through the division at the four planned division positions P in the directions orthogonal to each other.

ただし、図3においては、x軸方向、y軸方向にそれぞれ2箇所の分断予定位置P(P1、P2)が示されているが、これはあくまで図示の都合によるものである。実際には、十分に大きな平面サイズを有する母基板10Mに対して多くの分断予定位置Pを設定することにより、1つの母基板10Mから多数個の複層脆性材料基板10を得ることが予定される。 However, in FIG. 3, two planned division positions P (P1, P2) are shown in the x-axis direction and the y-axis direction, respectively, but this is for convenience of illustration only. In practice, it is planned to obtain a large number of multi-layer brittle material substrates 10 from one mother substrate 10M by setting a large number of planned division positions P for the mother substrate 10M having a sufficiently large planar size. To.

母基板10Mが用意されると、係る母基板10Mに対しレーザー光LBが照射されることにより、分断予定位置Pのうち少なくとも母基板10Mの内部に位置する部分が(より詳細には、当該部分の近傍を含む領域が)改質される(ステップS2)。図4は、母基板10Mにおいてx軸に垂直な分断予定位置P(P1)に対しレーザー光LBを照射する様子を示す斜視図である。また、図5は、レーザー光LBの照射により形成された改質領域RE1を示す母基板10Mのzx断面図である。ただし、図5においては便宜上、分断予定位置Pを、母基板10Mの外部にまで延在する一点鎖線として示している(図6および図7においても同様)。 When the mother substrate 10M is prepared, the laser beam LB is irradiated to the mother substrate 10M, so that at least a portion of the planned division position P located inside the mother substrate 10M is (more specifically, the portion). The region including the vicinity of is modified (step S2). FIG. 4 is a perspective view showing a state in which the laser beam LB is irradiated to the planned division position P (P1) perpendicular to the x-axis on the mother substrate 10M. Further, FIG. 5 is a zx cross-sectional view of the mother substrate 10M showing the modified region RE1 formed by irradiation with the laser beam LB. However, in FIG. 5, for convenience, the planned division position P is shown as a alternate long and short dash line extending to the outside of the mother substrate 10M (the same applies to FIGS. 6 and 7).

図4に示すように、母基板10Mが、図3と同様に最上部3Mの上面がz軸方向に垂直となる姿勢にある場合、レーザー光LBは、最上部3Mの鉛直上方側から分断予定位置Pに向けて(つまりはz軸負方向に)照射され、かつ、矢印AR1にて示すように、分断予定位置Pに沿って(図4に示す場合であればy軸負方向に)走査される。 As shown in FIG. 4, when the mother substrate 10M is in a posture in which the upper surface of the uppermost portion 3M is perpendicular to the z-axis direction as in FIG. 3, the laser beam LB is scheduled to be divided from the vertically upper side of the uppermost portion 3M. It is irradiated toward the position P (that is, in the negative direction of the z-axis) and scanned along the planned division position P (in the negative direction of the y-axis in the case shown in FIG. 4) as shown by the arrow AR1. Will be done.

ただし、レーザー光LBは、図5に示すように最下部2Mから最上部3Mに渡って改質領域RE1が形成される条件にて照射される。すなわち、改質領域RE1は、分断予定位置Pを含んで所定の幅wを有し、かつ、少なくとも、中間部1Mを横断する部分と、係る横断部分から最下部2Mに対してz軸負方向に突出する部分と、最上部3Mに対してz軸正方向に突出する部分とを有するように形成される。より詳細には、改質領域RE1は、最下部2Mへの突出部分の高さ(深さ)d2と、最上部3Mへの突出部分の高さ(深さ)d3とについて、d2≧t2、d3≧t3がみたされるように形成される。好ましくは、d2=t2(d2≒t2)、d3=t3(d3≒t3)となるように形成される。 However, as shown in FIG. 5, the laser beam LB is irradiated under the condition that the modified region RE1 is formed from the lowermost portion 2M to the uppermost portion 3M. That is, the modified region RE1 has a predetermined width w including the planned division position P, and at least the portion crossing the intermediate portion 1M and the z-axis negative direction from the crossing portion to the lowermost 2M. It is formed so as to have a portion protruding in the z-axis direction with respect to the uppermost portion 3M. More specifically, the modified region RE1 has d2 ≧ t2, with respect to the height (depth) d2 of the protruding portion to the lowermost portion 2M and the height (depth) d3 of the protruding portion to the uppermost portion 3M. It is formed so that d3 ≧ t3 is satisfied. Preferably, it is formed so that d2 = t2 (d2≈t2) and d3 = t3 (d3≈t3).

レーザー光LBとしては、可視光レーザーやIRレーザーなどの種々のものが利用可能である。具体的なレーザー光LBの照射条件(例えばレーザー波長、エネルギー、ビームスポット径、焦点位置、走査速度など)については、母基板10Mおよび複層脆性材料基板10の各部の材質、厚みなどを鑑みて適宜に定められればよい。母基板10Mの厚みによっては、焦点位置を違えた複数回の照射がなされる態様であってもよい。 As the laser light LB, various lasers such as a visible light laser and an IR laser can be used. Specific laser light LB irradiation conditions (for example, laser wavelength, energy, beam spot diameter, focal position, scanning speed, etc.) are determined in consideration of the material and thickness of each part of the mother substrate 10M and the multi-layer brittle material substrate 10. It may be determined as appropriate. Depending on the thickness of the mother substrate 10M, a plurality of irradiations at different focal positions may be performed.

また、改質領域RE1が中間部1Mのみならず、最下部2Mおよび最上部3Mを横断するように形成される態様(すなわちd2≒T2、d3≒T3)であってもよいが、アブレーションは生じないようにすることが必要である。 Further, the modified region RE1 may be formed so as to cross not only the intermediate portion 1M but also the lowermost portion 2M and the uppermost portion 3M (that is, d2≈T2, d3≈T3), but ablation occurs. It is necessary not to.

以上のように改質領域RE1が形成された母基板10Mは、続いて、エッチング処理に供される。 The mother substrate 10M on which the modified region RE1 is formed as described above is subsequently subjected to an etching treatment.

図6は、エッチング処理について説明するための母基板10Mのzx断面図である。図7は、エッチング処理後の母基板10Mのzx断面図である。 FIG. 6 is a zx cross-sectional view of the mother substrate 10M for explaining the etching process. FIG. 7 is a zx cross-sectional view of the mother substrate 10M after the etching treatment.

エッチングは、図6において矢印AR2およびAR3にて示すように、最下部2Mおよび最上部3Mの一部を除去する目的で行われる。具体的には、最下部2Mおよび最上部3Mの表面が、エッチング後には少なくとも、図6において破線にて示す最下部2Mおよび最上部3Mにおける改質領域RE1の端部位置に到達するように、行われる(ステップS3)。 The etching is performed for the purpose of removing a part of the lowermost portion 2M and the uppermost portion 3M as shown by arrows AR2 and AR3 in FIG. Specifically, the surfaces of the bottom 2M and the top 3M reach at least the end positions of the modified region RE1 in the bottom 2M and the top 3M shown by the broken line in FIG. 6 after etching. It is performed (step S3).

エッチングの具体的手法としては、ケミカルエッチングを採用することが好ましい。エッチング剤の具体的成分やエッチング条件は、母基板10Mおよび複層脆性材料基板10の各部の材質、厚みなどを鑑みて適宜に選択されてよい。 As a specific etching method, it is preferable to adopt chemical etching. The specific components of the etching agent and the etching conditions may be appropriately selected in consideration of the material, thickness, and the like of each part of the mother substrate 10M and the multi-layer brittle material substrate 10.

より厳密には、エッチングは、エッチング後の最下部2Mの厚みが複層脆性材料基板10の最下部2の厚みt2と同じとなり、最上部3Mの厚みが複層脆性材料基板10の最上部3の厚みt3と同じとなるように、行われる必要がある。それゆえ、d2>t2、d3>t3の場合には、最下部2Mおよび最上部3Mの表面が上述の端部位置に到達した後もさらに、厚みt2、t3に相当する位置まで、エッチングが行われる。 Strictly speaking, in the etching, the thickness of the lowermost portion 2M after etching is the same as the thickness t2 of the lowermost portion 2 of the multi-layer brittle material substrate 10, and the thickness of the uppermost portion 3M is the thickness of the uppermost portion 3 of the multi-layer brittle material substrate 10. It needs to be done so as to be the same as the thickness t3 of. Therefore, in the case of d2> t2 and d3> t3, even after the surfaces of the lowermost portion 2M and the uppermost portion 3M reach the above-mentioned end positions, etching is further performed to positions corresponding to the thicknesses t2 and t3. It is said.

換言すれば、最下部2Mの表面(母基板10Mの裏面)からのエッチング深さe2と、最上部3Mの表面(母基板10Mの表面)からのエッチング深さe3はそれぞれ、e2=T2−t2、e3=T3−t3と表される。 In other words, the etching depth e2 from the lowermost 2M surface (back surface of the mother substrate 10M) and the etching depth e3 from the uppermost 3M surface (front surface of the mother substrate 10M) are e2 = T2-t2, respectively. , E3 = T3-t3.

実際には、以上のような態様にてエッチング処理が行われると、図7に示すように、改質領域RE1のうち最下部2Mおよび最上部3Mに突出していた部分は消失し、当該部分が存在していた箇所には溝部G2、G3がそれぞれに形成される。そして、中間部1Mにのみ改質領域RE2が残存する。これは、改質領域RE1の材料強度が周囲の最下部2Mおよび最上部3Mの材料強度に比して弱くなっており、それゆえエッチングレートが周囲に比して大きくなっていることによるものと考えられる。なお、図7においては図示の都合上、溝部G2、G3と母基板10Mの表面とのなすエッジ部分が角張っているように図示されているが、当該部分はミクロには曲面形状をなしている。いわば、面取された状態となっている。また、図7においては中間部1Mを横断する態様にて改質領域RE2が存在しているが、係る改質領域RE2に入り込むかたちで溝部G2、G3が形成される態様であってもよい。 Actually, when the etching treatment is performed in the above manner, as shown in FIG. 7, the portion of the modified region RE1 that protrudes to the lowermost portion 2M and the uppermost portion 3M disappears, and the portion concerned disappears. Grooves G2 and G3 are formed in the existing portions, respectively. Then, the modified region RE2 remains only in the intermediate portion 1M. This is because the material strength of the modified region RE1 is weaker than the material strength of the lowermost 2M and the uppermost 3M of the surroundings, and therefore the etching rate is higher than that of the surroundings. Conceivable. In FIG. 7, for convenience of illustration, the edge portion formed by the groove portions G2 and G3 and the surface of the mother substrate 10M is shown to be angular, but the portion is microscopically curved. .. So to speak, it is in a chamfered state. Further, in FIG. 7, the modified region RE2 exists in a manner crossing the intermediate portion 1M, but the groove portions G2 and G3 may be formed so as to enter the modified region RE2.

エッチング処理が完了すると、母基板10Mは、改質領域RE2に沿って分断される。図7に示す場合であれば、母基板10Mは、改質領域RE2を挟んで対向する2つの部分10A、10Bに分断される(ステップS4)。 When the etching process is completed, the mother substrate 10M is divided along the modified region RE2. In the case shown in FIG. 7, the mother substrate 10M is divided into two portions 10A and 10B facing each other with the modified region RE2 in between (step S4).

これは、それら2つの部分10A、10Bに対し、矢印AR4にて示すように、相反する向きの応力を印加することで実現される。改質領域RE2の材料強度が周囲の中間部1Mの材料強度に比して弱くなっていることから、係る応力の印加により、2つの部分10A、10Bは容易に、改質領域RE2のところで互いに分離される。これにより、2つの部分10A、10Bは品質よく分離される。なお、応力の印加は、部分10A、10Bを水平面内にて相反する向きに引っ張ることでなされてもよいし、いわゆる3点曲げの手法を適用することによりなされてもよい。 This is achieved by applying stresses in opposite directions to the two portions 10A and 10B, as shown by arrows AR4. Since the material strength of the modified region RE2 is weaker than the material strength of the surrounding intermediate portion 1M, the application of such stress makes it easy for the two portions 10A and 10B to each other at the modified region RE2. Be separated. As a result, the two portions 10A and 10B are separated with good quality. The stress may be applied by pulling the portions 10A and 10B in opposite directions in the horizontal plane, or by applying a so-called three-point bending method.

係る場合において、実際に分離の対象となるのは、中間部1Mを横断する態様にて存在する改質領域RE2のみである。部分10Aと10Bの最下部2Mおよび最上部3Mはそれぞれ、すでに離隔した状態にある。それゆえ、分離の際に最下部2Mおよび最上部3Mにおいてチッピングが生じることはない。 In such a case, only the modified region RE2 existing in a manner crossing the intermediate portion 1M is actually targeted for separation. The bottom 2M and top 3M of portions 10A and 10B are already separated from each other. Therefore, chipping does not occur at the bottom 2M and the top 3M during separation.

図8は、係る分断・分離を、図3に示した4つの分断予定位置P(P1、P2)のそれぞれの箇所に形成された改質領域のところで行うことによって得られる、分割個片10αを模式的に示す図である。なお、より詳細には、分断後の分割個片10αにおいてはその端面Fに改質領域RE1に存在していた物質が残存するが、当該物質は適宜の洗浄処理等にて除去される。 FIG. 8 shows the divided pieces 10α obtained by performing the division / separation at the modified region formed at each of the four planned division positions P (P1, P2) shown in FIG. It is a figure which shows typically. More specifically, in the divided piece 10α after the division, the substance existing in the modified region RE1 remains on the end face F, but the substance is removed by an appropriate cleaning treatment or the like.

係る分割個片10αは、厚みt1の中間部1αの2つの主面(表裏面)にそれぞれ、厚みt2の最下部2αと厚みt3の最上部3αとを接着させた構成を有する。すなわち、分割個片10αは、厚み方向において図1に示した複層脆性材料基板10と同じ構成を有する。それゆえ、上述のように分断予定位置Pのピッチを複層脆性材料基板10の平面サイズに一致させるようにすれば、図2に示した手順にて複層脆性材料基板10が得られることになる。 The divided piece 10α has a configuration in which a lowermost portion 2α having a thickness t2 and an uppermost portion 3α having a thickness t3 are adhered to two main surfaces (front and back surfaces) of an intermediate portion 1α having a thickness t1. That is, the divided piece 10α has the same structure as the multilayer brittle material substrate 10 shown in FIG. 1 in the thickness direction. Therefore, if the pitch of the planned division position P is made to match the plane size of the multi-layer brittle material substrate 10 as described above, the multi-layer brittle material substrate 10 can be obtained by the procedure shown in FIG. Become.

なお、厳密にいえば、端面Fの形状は、図1に示した複層脆性材料基板10の端部形状と若干異なっているが、分割個片10αのエッジ部分は上述のようにエッチング処理がなされた時点で面取りされた状態となっているので、端面強度の確保という点ではむしろ好ましい形状となっている。 Strictly speaking, the shape of the end face F is slightly different from the shape of the end of the multi-layer brittle material substrate 10 shown in FIG. 1, but the edge portion of the divided piece 10α is etched as described above. Since it is in a chamfered state at the time of etching, it has a rather preferable shape in terms of ensuring end face strength.

また、分割個片10αの作製に際しては改質領域RE1の形成が必須であるが、これを見越して分断予定位置Pのピッチサイズを定めることで、分割個片の10αの平面サイズは所望する複層脆性材料基板10の平面サイズと一致させることは可能である。 Further, the formation of the modified region RE1 is indispensable when producing the divided piece 10α, but by determining the pitch size of the planned division position P in anticipation of this, the plane size of the divided piece 10α can be a desired multiple. It is possible to match the plane size of the layer brittle material substrate 10.

以上説明したように、本実施の形態によれば、3枚の板状の脆性材料を接着・積層することで構成された複層脆性材料基板であって、最下部と最上部の脆性材料の厚みが中間部の脆性材料の厚みに比して小さい複層脆性材料基板を、端部においてチッピングを生じさせることなく好適に得ることができる。 As described above, according to the present embodiment, it is a multi-layer brittle material substrate formed by adhering and laminating three plate-shaped brittle materials, and is a bottom and top brittle material. A multi-layer brittle material substrate having a thickness smaller than the thickness of the brittle material in the intermediate portion can be suitably obtained without causing chipping at the end portion.

なお、最下部2Mと最上部3Mをなす脆性材料をあらかじめ、厚みt2、t3としたうえで中間部1Mをなす脆性材料に貼り合わせることで得られる母基板10Mを分断の対象とする対応も考えられるが、一般に、平面サイズが大きくかつ厚みの小さい脆性材料ほど、その撓みのために貼り合わせは難しくなる。また、仮に係る態様での貼り合わせが行われ、引き続いて分断予定位置での分断が行われたとしても、その端部を面取り加工することは難しい。上述した方法およびシステムは、これらを容易になし得るという点において優れているといえる。 It should be noted that the mother substrate 10M obtained by preliminarily setting the thicknesses of the brittle material forming the lowermost portion 2M and the uppermost portion 3M to the brittle material forming the middle portion 1M is considered to be the target of division. However, in general, the larger the plane size and the smaller the thickness of the brittle material, the more difficult it is to bond due to its bending. Further, even if the bonding is performed in such a mode and the division is subsequently performed at the planned division position, it is difficult to chamfer the end portion thereof. It can be said that the methods and systems described above are excellent in that they can be easily performed.

<変形例>
上述した実施の形態では、中間部をなす板状の脆性材料は1枚であったが、中間部をなす脆性材料が複数枚存在していても、上述の実施の形態の手法は適用が可能である。係る場合、母基板を用意するに際しては、例えば、最下部および最上部をなす脆性材料の厚みを、中間部をなす一つの脆性材料の厚みと同じようにすればよい。
<Modification example>
In the above-described embodiment, the number of plate-shaped brittle materials forming the intermediate portion is one, but the method of the above-described embodiment can be applied even if there are a plurality of brittle materials forming the intermediate portion. Is. In such a case, when preparing the mother substrate, for example, the thickness of the brittle material forming the lowermost portion and the uppermost portion may be the same as the thickness of one brittle material forming the intermediate portion.

1 (複層脆性材料基板の)中間部
1M (母基板の)中間部
2 (複層脆性材料基板の)最下部
2M (母基板の)最下部
3 (複層脆性材料基板の)最上部
3M (母基板の)最上部
10 複層脆性材料基板
10α 分割個片
10M 母基板
A1、A2 (複層脆性材料基板の)接着層
A1M、A2M (母基板の)接着層
F 端面
G2、G3 溝部
LB レーザー光
P(P1、P2) 分断予定位置
RE1、RE2 改質領域
1 Intermediate part (of multi-layer brittle material substrate) 1M Intermediate part (of mother substrate) 2M Bottom part (of multi-layer brittle material substrate) 2M Bottom part (of mother substrate) 3 (Top part 3M of multi-layer brittle material substrate) Top 10 (of mother substrate) Multi-layer brittle material substrate 10α Divided piece 10M Mother substrate A1, A2 Adhesive layer A1M, A2M (of mother substrate) Adhesive layer F End face G2, G3 Groove LB Laser light P (P1, P2) Scheduled division position RE1, RE2 Modified region

Claims (2)

板状の脆性材料が積層されてなり、最下部および最上部を構成する前記脆性材料の厚みが中間部を構成する前記脆性材料の厚みよりも小さい複層脆性材料基板を作製する方法であって、
a)それぞれが前記複層脆性材料基板における前記最下部、前記最上部、および前記中間部を構成する脆性材料と同じ脆性材料にて構成された、前記複層脆性材料基板の最下部の狙い厚みよりも厚みの大きい最下部と、前記複層脆性材料基板の最上部の狙い厚みよりも厚みの大きい最上部と、前記複層脆性材料基板の中間部の狙い厚みと同じ厚みの中間部とを有し、かつ、前記複層脆性材料基板よりも平面サイズが大きい母基板を用意する工程と、
b)前記母基板にレーザー光を照射することにより、前記母基板のあらかじめ定められた分断予定位置に、少なくとも前記中間部を横断し前記最下部および前記最上部に突出する改質領域を形成する工程と、
c)前記工程b)を経た前記母基板を、当該母基板の前記最下部と前記最上部の厚みがそれぞれ前記複層脆性材料基板における前記最下部と前記最上部の狙い厚みと等しくなるように、エッチングする工程と、
d)前記工程c)を経た前記母基板を前記中間部に残る前記改質領域に沿って分断する工程と、
を備えることを特徴とする、複層脆性材料基板の作製方法。
A method for producing a multi-layer brittle material substrate in which plate-shaped brittle materials are laminated and the thickness of the brittle material forming the lowermost portion and the uppermost portion is smaller than the thickness of the brittle material forming the intermediate portion. ,
a) The target thickness of the lowermost part of the multi-layered brittle material substrate, each of which is made of the same brittle material as the brittle material constituting the lowermost part, the uppermost part, and the intermediate part of the multi-layered brittle material substrate. A bottom portion having a thickness larger than that of the multi-layer brittle material substrate, an uppermost portion having a thickness larger than the target thickness of the uppermost portion of the multi-layer brittle material substrate, and an intermediate portion having the same thickness as the target thickness of the intermediate portion of the multi-layer brittle material substrate. A step of preparing a mother substrate having a larger plane size than the multi-layer brittle material substrate.
b) By irradiating the mother substrate with a laser beam, a modified region is formed at a predetermined planned division position of the mother substrate so as to cross at least the intermediate portion and project to the lowermost portion and the uppermost portion. Process and
c) In the mother substrate that has undergone the step b), the thicknesses of the lowermost portion and the uppermost portion of the mother substrate are equal to the target thicknesses of the lowermost portion and the uppermost portion of the multi-layer brittle material substrate, respectively. , Etching process and
d) A step of dividing the mother substrate that has undergone the step c) along the modified region remaining in the intermediate portion, and a step of dividing the mother substrate.
A method for producing a multi-layer brittle material substrate.
板状の脆性材料が積層されてなり、最下部および最上部を構成する前記脆性材料の厚みが中間部を構成する前記脆性材料の厚みよりも小さい複層脆性材料基板を作製するためのシステムであって、
a)それぞれが前記複層脆性材料基板における前記最下部、前記最上部、および前記中間部を構成する脆性材料と同じ脆性材料にて構成された、前記複層脆性材料基板の最下部の狙い厚みよりも厚みの大きい最下部と、前記複層脆性材料基板の最上部の狙い厚みよりも厚みの大きい最上部と、前記複層脆性材料基板の中間部の狙い厚みと同じ厚みの中間部とを有し、かつ、前記複層脆性材料基板よりも平面サイズが大きい母基板に、レーザー光を照射することにより、前記母基板のあらかじめ定められた分断予定位置に、少なくとも前記中間部を横断し前記最下部および前記最上部に突出する改質領域を形成するレーザー光照射手段と、
前記改質領域を形成された前記母基板を、当該母基板の前記最下部と前記最上部の厚みがそれぞれ前記複層脆性材料基板における前記最下部と前記最上部の狙い厚みと等しくなるように、エッチングするエッチング手段と、
前記エッチングされた前記母基板を前記中間部に残る前記改質領域に沿って分断する分断手段と、
を備えることを特徴とする、複層脆性材料基板の作製システム。
A system for producing a multi-layer brittle material substrate in which plate-shaped brittle materials are laminated and the thickness of the brittle material forming the lowermost portion and the uppermost portion is smaller than the thickness of the brittle material forming the intermediate portion. There,
a) Aimed thickness of the bottom of the multi-layer brittle material substrate, each of which is made of the same brittle material as the brittle material constituting the bottom, top, and intermediate of the multi-layer brittle material substrate. A bottom portion having a thickness larger than that of the multi-layer brittle material substrate, an uppermost portion having a thickness larger than the target thickness of the uppermost portion of the multi-layer brittle material substrate, and an intermediate portion having the same thickness as the target thickness of the intermediate portion of the multi-layer brittle material substrate. By irradiating the mother substrate, which has and has a larger plane size than the multi-layer brittle material substrate, with laser light, at least the intermediate portion is crossed at a predetermined predetermined division position of the mother substrate. A laser beam irradiating means for forming a modified region protruding from the lowermost portion and the uppermost portion, and
The thickness of the lowermost portion and the uppermost portion of the mother substrate on which the modified region is formed is equal to the target thickness of the lowermost portion and the uppermost portion of the multi-layer brittle material substrate, respectively. Etching means to etch,
A dividing means for dividing the etched mother substrate along the modified region remaining in the intermediate portion, and
A system for producing a multi-layer brittle material substrate.
JP2017190287A 2017-09-29 2017-09-29 Method and system for manufacturing multi-layer brittle material substrate Active JP6893691B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017190287A JP6893691B2 (en) 2017-09-29 2017-09-29 Method and system for manufacturing multi-layer brittle material substrate
TW107116252A TWI766993B (en) 2017-09-29 2018-05-14 Manufacturing method and manufacturing system of multilayer brittle material substrate
KR1020180083263A KR20190038289A (en) 2017-09-29 2018-07-18 Method and system for manufacturing multi-layer brittle material substrate
CN201810982713.0A CN109592889A (en) 2017-09-29 2018-08-27 The production method and manufacturing system of multilayer brittle material substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190287A JP6893691B2 (en) 2017-09-29 2017-09-29 Method and system for manufacturing multi-layer brittle material substrate

Publications (2)

Publication Number Publication Date
JP2019063818A JP2019063818A (en) 2019-04-25
JP6893691B2 true JP6893691B2 (en) 2021-06-23

Family

ID=65956761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190287A Active JP6893691B2 (en) 2017-09-29 2017-09-29 Method and system for manufacturing multi-layer brittle material substrate

Country Status (4)

Country Link
JP (1) JP6893691B2 (en)
KR (1) KR20190038289A (en)
CN (1) CN109592889A (en)
TW (1) TWI766993B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015169A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Scribing formation method, scribing formation apparatus, and multilayer substrate
JP2009202218A (en) * 2008-02-29 2009-09-10 Seiko Epson Corp Substrate dividing method and display manufacturing method
WO2010044217A1 (en) * 2008-10-17 2010-04-22 株式会社リンクスタージャパン Method for cutting mother glass substrate for display and brittle material substrate and method for manufacturing display
JP5574866B2 (en) * 2010-07-26 2014-08-20 浜松ホトニクス株式会社 Laser processing method
TWI457191B (en) * 2011-02-04 2014-10-21 Mitsuboshi Diamond Ind Co Ltd Laser scribing method and laser processing apparatus
JP5536713B2 (en) * 2011-05-19 2014-07-02 三星ダイヤモンド工業株式会社 Processing method of brittle material substrate
JP6040705B2 (en) 2012-10-25 2016-12-07 三星ダイヤモンド工業株式会社 Method for dividing laminated ceramic substrate
EP2964416B1 (en) * 2013-04-04 2023-07-19 LPKF Laser & Electronics SE Method for separating a substrate
US20150034613A1 (en) * 2013-08-02 2015-02-05 Rofin-Sinar Technologies Inc. System for performing laser filamentation within transparent materials
US9701563B2 (en) * 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US20150165563A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
JP6410152B2 (en) * 2015-09-11 2018-10-24 東芝メモリ株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
TW201919882A (en) 2019-06-01
KR20190038289A (en) 2019-04-08
CN109592889A (en) 2019-04-09
JP2019063818A (en) 2019-04-25
TWI766993B (en) 2022-06-11

Similar Documents

Publication Publication Date Title
JP4907984B2 (en) Laser processing method and semiconductor chip
JP4917257B2 (en) Laser processing method
US10941069B2 (en) Processing a plate-like workpiece having a transparent, glass, glass-like, ceramic and/or crystalline layer
JP5822873B2 (en) Laser processing method, cutting method, and method for dividing structure having multilayer substrate
JP4776994B2 (en) Processing object cutting method
JP4938998B2 (en) Substrate and laminate cutting method, and laminate production method
KR101283294B1 (en) Laser processing method
JP5162163B2 (en) Wafer laser processing method
JP2009124077A (en) Semiconductor chip and its production process
JP2007142001A (en) Laser beam machine and laser beam machining method
WO2006101091A1 (en) Laser machining method
TW201101388A (en) Method and apparatus for processing substrates
JPWO2005098916A1 (en) Laser processing method and semiconductor chip
JP2013247147A (en) Processing object cutting method, processing object, and semiconductor element
JP2007118009A (en) Method for machining laminated body
TW201223346A (en) Multi-piece wiring substrate and method for manufacturing the same
JP2016193814A (en) Cutting method of brittle substrate
JP2007015169A (en) Scribing formation method, scribing formation apparatus, and multilayer substrate
JP6893691B2 (en) Method and system for manufacturing multi-layer brittle material substrate
KR102155737B1 (en) Substrate cutting apparatus and method for manufacturing display apparatus using the same
JP6288260B2 (en) Method for dividing brittle substrate
KR20180068862A (en) Method of manufacturing a interposer
TWI583522B (en) Disassembly method of laminated ceramic substrate
CN112427812A (en) Method for realizing separation of ultrathin workpieces through spacing ultrafine laser through holes
JP2021108344A (en) Method of manufacturing semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6893691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150