JP6888776B2 - Ultrasonic processing equipment - Google Patents

Ultrasonic processing equipment Download PDF

Info

Publication number
JP6888776B2
JP6888776B2 JP2016232539A JP2016232539A JP6888776B2 JP 6888776 B2 JP6888776 B2 JP 6888776B2 JP 2016232539 A JP2016232539 A JP 2016232539A JP 2016232539 A JP2016232539 A JP 2016232539A JP 6888776 B2 JP6888776 B2 JP 6888776B2
Authority
JP
Japan
Prior art keywords
ultrasonic
dovetail groove
hozo
mounting surface
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016232539A
Other languages
Japanese (ja)
Other versions
JP2018089634A (en
Inventor
春隆 銘苅
春隆 銘苅
隆行 矢野
隆行 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Inter University Research Institute Corp National Institute of Natural Sciences filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016232539A priority Critical patent/JP6888776B2/en
Publication of JP2018089634A publication Critical patent/JP2018089634A/en
Application granted granted Critical
Publication of JP6888776B2 publication Critical patent/JP6888776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動エネルギーを効率良く伝達させるための共鳴体である超音波ホーンと、該超音波ホーンに取り付けられて、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドとを有する超音波加工装置に関する。 The present invention is an ultrasonic horn, which is a resonator for efficiently transmitting vibration energy, and an ultrasonic horn, which is attached to the ultrasonic horn, comes into direct contact with a work piece, and finally works with ultrasonic vibration. The present invention relates to an ultrasonic processing apparatus having a sound wave head.

超音波の産業利用には、魚群探知機や超音波探傷機、超音波診断装置等、超音波の波動を利用して各種測定を行う通信的応用と、超音波洗浄、超音波加工等、超音波振動の物理的作用を利用する動力的応用がある。特に工業的な利用では超音波加工が注目されており、超音波切削、超音波研削、超音波ボンディング、超音波ウエルダー、超音波インプリント等の装置や加工技術が広く利用されている。 For industrial use of ultrasonic waves, communication applications such as fish finder, ultrasonic flaw detector, ultrasonic diagnostic device, etc. that perform various measurements using ultrasonic waves, ultrasonic cleaning, ultrasonic processing, etc. There are dynamic applications that utilize the physical effects of ultrasonic vibrations. In particular, ultrasonic processing is attracting attention in industrial use, and devices and processing technologies such as ultrasonic cutting, ultrasonic grinding, ultrasonic bonding, ultrasonic welder, and ultrasonic imprint are widely used.

超音波加工装置では、超音波発生器によって生成した正弦波の電気的エネルギーを超音波振動子によって機械的な振動エネルギーに変換し、超音波ホーンと呼ばれる共鳴体を介して被加工物に伝達する。超音波切削では、超音波ホーンの先端に切削工具を固定することによって、刃先の被加工物への接触と離脱を高速且つ断続的に行い、離脱時に蓄えた振動エネルギーを接触に移り変わった瞬間に大きな加速度を伴って衝撃的に被加工物に放出するものである。このような加工サイクルを繰り返すことによって、切削抵抗を低減し、切削時の温度上昇も抑制できる特徴を持つ。また、ガラス等の硬脆材料と工具の間に研削液と砥粒を挿入し、超音波振動によって砥粒の被加工物への衝突を促し除去加工を行う超音波研削もある。超音波ボンディングは、2つの金属材料同士の接合に利用されており、超音波振動で接合面間の酸化被膜が取り除かれ、金属の結晶粒同士が強力な引力が働く原子間距離まで近づくことによって冶金結合する。超音波ウエルダーでは、2つの熱可塑性材料基板に振動エネルギーと荷重を同時に加えることにより、接合面において強力な摩擦熱を発生させ、被加工物を溶融し接合する。超音波振動印加中に発生する摩擦熱は、ヒーターから伝播した熱とは異なり、超音波振動の停止と同時に瞬時に消滅する。この特徴を活かして、モールドの微細凸構造を被加工物表面に押し当てながら超音波振動を印加し、局所的な摩擦熱を発生させて熱変形を促す超音波インプリントが提案されている。超音波インプリントは、紫外線やヒーターを使わない第三のインプリント技術として、様々なエンジニアリングプラスチックやガラスの表面をパターニングする方法としての有効性が報告されている。一方、インプリントでは、テンプレートやモールドは成形材料に接触するため、洗浄や取り替えのためにインプリント装置から脱着できる必要がある。 In an ultrasonic processing device, the electrical energy of a sine wave generated by an ultrasonic generator is converted into mechanical vibration energy by an ultrasonic vibrator and transmitted to a workpiece via a resonator called an ultrasonic horn. .. In ultrasonic cutting, by fixing a cutting tool to the tip of the ultrasonic horn, the cutting edge contacts and detaches from the workpiece at high speed and intermittently, and at the moment when the vibration energy stored at the time of detachment is transferred to contact. It is shockedly released to the work piece with a large acceleration. By repeating such a machining cycle, the cutting resistance can be reduced and the temperature rise during cutting can be suppressed. There is also ultrasonic grinding in which a grinding fluid and abrasive grains are inserted between a hard and brittle material such as glass and a tool, and ultrasonic vibration is used to promote collision of the abrasive grains with a work piece to remove the abrasive grains. Ultrasonic bonding is used to bond two metal materials together. By ultrasonic vibration, the oxide film between the bonding surfaces is removed, and the metal crystal grains approach the interatomic distance where a strong attractive force acts. Metallurgical bond. In the ultrasonic welder, strong frictional heat is generated on the joint surface by simultaneously applying vibration energy and a load to the two thermoplastic material substrates to melt and join the workpieces. The frictional heat generated during the application of ultrasonic vibration is different from the heat propagated from the heater, and is instantly extinguished at the same time as the ultrasonic vibration is stopped. Taking advantage of this feature, an ultrasonic imprint has been proposed in which ultrasonic vibration is applied while pressing the fine convex structure of the mold against the surface of the workpiece to generate local frictional heat to promote thermal deformation. Ultrasonic imprinting has been reported to be effective as a method for patterning the surfaces of various engineering plastics and glass as a third imprinting technique that does not use ultraviolet rays or heaters. On the other hand, in imprinting, the template or mold comes into contact with the molding material, so it needs to be removable from the imprinting device for cleaning or replacement.

超音波加工装置の構成は、超音波領域の周波数を有する電気信号を発生させる超音波発振器、高周波の電気的エネルギーを機械的な振動エネルギーに変換する超音波振動子、振幅を増幅させるブースター、共鳴体としての超音波ホーン、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドに分けられる。 The configuration of the ultrasonic processing equipment consists of an ultrasonic oscillator that generates an electric signal with a frequency in the ultrasonic region, an ultrasonic vibrator that converts high-frequency electrical energy into mechanical vibration energy, a booster that amplifies the amplitude, and resonance. It is divided into an ultrasonic horn as a body and an ultrasonic head that comes into direct contact with the work piece and finally works by ultrasonic vibration.

一般的な超音波加工装置においては、超音波振動が非常に強力であるために、超音波ヘッドを銀蝋付けによって超音波ホーンに固定することが多い。しかし、銀蝋付けされた超音波ヘッドを剥離するためには600℃以上に加熱しなければならず、清浄な表面を再現することは難しい。 In a general ultrasonic processing apparatus, the ultrasonic head is often fixed to the ultrasonic horn by silver waxing because the ultrasonic vibration is very strong. However, in order to peel off the silver-brazed ultrasonic head, it is necessary to heat it to 600 ° C. or higher, and it is difficult to reproduce a clean surface.

そこで、アクチュエーターで発生させた圧力によって超音波ホーンを超音波振動子に押し付けて固定する手段が特許文献1によって開示されている。この手法では周波数の上昇とともに超音波ホーンの挙動が超音波振動子に追随できなくなり、固定力向上のために圧力を増加させると超音波振動子自身の発振を妨げる虞がある。 Therefore, Patent Document 1 discloses a means for pressing and fixing the ultrasonic horn against the ultrasonic vibrator by the pressure generated by the actuator. In this method, the behavior of the ultrasonic horn cannot follow the ultrasonic vibrator as the frequency rises, and if the pressure is increased to improve the fixing force, the oscillation of the ultrasonic vibrator itself may be hindered.

超音波ボンディングのヘッド部に真空吸着によって電子部品等を固定する装置が特許文献2、3に開示されている。しかし、超音波ヘッドに吸着させる物体の重量が大きいほど吸着力は弱まるため、強固な固定力は期待できない。 Patent Documents 2 and 3 disclose an apparatus for fixing an electronic component or the like to a head portion of ultrasonic bonding by vacuum suction. However, the heavier the weight of the object to be attracted to the ultrasonic head, the weaker the suction force, so a strong fixing force cannot be expected.

工具ホルダーを介して超音波ホーンに超音波工具をネジ締結する手法が特許文献4、特許文献5で開示されている。これらの手法は超音波振動によってネジが緩む可能性がある。また、構成部品の剛性率の違いによって、超音波振動の波形が歪な形状で伝達されることが非特許文献1により明らかになっている。 Patent Document 4 and Patent Document 5 disclose a method of screwing an ultrasonic tool to an ultrasonic horn via a tool holder. In these methods, the screws may loosen due to ultrasonic vibration. Further, it has been clarified by Non-Patent Document 1 that the waveform of ultrasonic vibration is transmitted in a distorted shape due to the difference in the rigidity of the components.

さらに、超音波ノズル側の取り付け凸部を超音波ホーンに設けた取り付け凹部に外力を加えてその径が広がるように変形させて挿入し、超音波ホーンの材料の弾性力により締め付けて固定する手法が特許文献6で開示されている。しかし、弾性率の低い金属製の超音波ホーンを使用した場合、一度外力によって変形した取り付け凹部が脱離後に完全に元の形状に戻ることは期待できないため、脱着作業を繰り返すと急激にその締付力は劣化してゆくと考えられる。 Furthermore, a method in which the mounting convex portion on the ultrasonic nozzle side is deformed and inserted by applying an external force to the mounting concave portion provided on the ultrasonic horn so that its diameter is widened, and then tightened and fixed by the elastic force of the material of the ultrasonic horn. Is disclosed in Patent Document 6. However, when a metal ultrasonic horn with a low elastic modulus is used, it cannot be expected that the mounting recess once deformed by an external force will completely return to its original shape after desorption. It is thought that the elastic modulus will deteriorate.

一方、超音波振動と焼き嵌め締結を組み合わせた事例として、焼き嵌めでロータに軸を挿入した後に超音波振動を加える手法が特許文献7に、超音波振動させながら切削加工工具を焼き嵌め締結する方法が特許文献8と9に開示されている。これらの手法では、焼き嵌め時の脱着を容易にするために超音波振動を援用しているため、必然的に嵌め込まれた軸や工具は超音波振動によって位置ずれを起こしてしまう。 On the other hand, as an example of combining ultrasonic vibration and shrink fit fastening, a method of applying ultrasonic vibration after inserting a shaft into a rotor by shrink fitting is described in Patent Document 7, where a cutting tool is shrink fit and fastened while ultrasonically vibrating. The method is disclosed in Patent Documents 8 and 9. In these methods, ultrasonic vibration is used to facilitate attachment / detachment at the time of shrink fitting, so that the fitted shaft or tool inevitably shifts due to ultrasonic vibration.

また、刀部を擁する超音波ホーンと工作機械の駆動軸を焼き嵌めまたは冷やし嵌めで嵌め合わせる構成が特許文献10に開示されている。これは超音波ホーンを高速で回転する工作機械の駆動軸に強固に固定するための構成を提案しており、超音波ヘッドを頻繁に脱着する用途としては想定していない。 Further, Patent Document 10 discloses a configuration in which an ultrasonic horn having a sword portion and a drive shaft of a machine tool are fitted by shrink fitting or cold fitting. This proposes a configuration for firmly fixing the ultrasonic horn to the drive shaft of a machine tool that rotates at high speed, and is not intended for applications in which the ultrasonic head is frequently attached and detached.

特許文献11では、超音波ホーンの凹部に焼き嵌めで工具を締結する方法が開示されているが、非特許文献1でも示されているとおり、超音波ホーンと超音波ヘッドの嵌め合い構造が取り付け面(接触面)の中央に一つしか存在しない場合は、嵌合に関与していない取り付け面間で叩き合いが発生し、そのために発生する摩擦熱によって温度上昇と振り遅れによる振動波形の乱れを引き起こす。 Patent Document 11 discloses a method of fastening a tool by shrink fitting into a recess of an ultrasonic horn, but as shown in Non-Patent Document 1, a fitting structure of an ultrasonic horn and an ultrasonic head is attached. If there is only one in the center of the surface (contact surface), the mounting surfaces that are not involved in the fitting will hit each other, and the frictional heat generated by this will cause the vibration waveform to be disturbed due to temperature rise and swing delay. cause.

特開2010―69492号公報JP-A-2010-69492 特開2003―45916号公報Japanese Unexamined Patent Publication No. 2003-459916 特開2004―319599号公報Japanese Unexamined Patent Publication No. 2004-319599 実開平07―3947号公報Jikkenhei 07-3947 Gazette 特開2000―61786号公報Japanese Unexamined Patent Publication No. 2000-61786 特開2003―209142号公報Japanese Unexamined Patent Publication No. 2003-209142 特開2016―007112号公報Japanese Unexamined Patent Publication No. 2016-007112 特開2009―241226号公報Japanese Unexamined Patent Publication No. 2009-241226 特開2007―098477号公報JP-A-2007-09847 特開2003―071683号公報Japanese Unexamined Patent Publication No. 2003-071683 特開2004―009206号公報Japanese Unexamined Patent Publication No. 2004-009206

H.Mekaru et al.,Microsyst.Technol.,dоi:10.1007/s00542−016−3028−7H. Mekaru et al. , Microsys. Technol. , Dоi: 10.1007 / s00542-016-3028-7

ところで、非特許文献1では、超音波ヘッドを、両面テープ貼付、接着剤塗布、ネジ止め、取り付け面(接触面)の中央部に単一のアリ溝部とホゾ部とから構成されるアリ構造を備えた冷やし嵌めの4種類の固定方法で超音波ホーンに固定し、振動エネルギーの損失比較を行った結果が開示されている。 By the way, in Non-Patent Document 1, the ultrasonic head is attached with double-sided tape, adhesive is applied, screwed, and an dovetail structure composed of a single dovetail groove portion and a hozo portion is provided at the center of the attachment surface (contact surface). The result of fixing to the ultrasonic horn by four kinds of fixing methods of cold fitting provided and comparing the loss of vibration energy is disclosed.

非特許文献1に開示した先行実験によると、超音波加工装置の無酸素銅製ヘッドを両面テープ貼付、接着剤塗布、ネジ止め、取り付け面(接触面)の中央部に単一のアリ構造を備えた冷やし嵌めの4種類の固定方法で、チタン製超音波ホーンに固定して振動エネルギーの損失比較を行ったところ、取り付け面の中央部に単一のアリ構造を備えた冷やし嵌めによる固定方法は、両面テープ貼付による固定方法に次いで発熱が大きく、伝播した超音波振動の振幅も最も増大することが明らかになった。 According to the previous experiment disclosed in Non-Patent Document 1, the oxygen-free copper head of the ultrasonic processing apparatus is provided with a single dovetail structure at the center of the double-sided tape attachment, adhesive application, screwing, and attachment surface (contact surface). When the loss of vibration energy was compared by fixing to a titanium ultrasonic horn using four types of fixing methods of cold fitting, the fixing method by cold fitting with a single dovetail structure in the center of the mounting surface was found. It was clarified that the heat generation was the second largest after the fixing method by attaching double-sided tape, and the amplitude of the transmitted ultrasonic vibration was also the largest.

この理由として、アリ構造が取り付け面の中央部に一つしかないために取り付け面端部が自由端となり、取り付け面端部に間隙が生じ、このことに起因して、超音波振動によって叩き合いが生じることが原因と考えられる。なお、ここでのアリ構造とは、アリ溝部とホゾ部とにより結合部材間の係合をもたらす構造であり、本明細書中においては、アリ構造が取り付け面内に複数個配置された場合を複アリ構造と称し、これと区別するために単一のアリ構造のみが配置されていることを意味する用語として単アリ構造と称することとする。 The reason for this is that since there is only one dovetail structure in the center of the mounting surface, the end of the mounting surface becomes a free end, and a gap is created at the end of the mounting surface. Is considered to be the cause. The dovetail structure here is a structure that brings about engagement between the coupling members by the dovetail groove portion and the hozo portion, and in the present specification, the case where a plurality of dovetail structures are arranged in the mounting surface is used. It is called a double ant structure, and to distinguish it from this, it is called a single ant structure as a term meaning that only a single ant structure is arranged.

本発明は上記のような課題に鑑み、振動エネルギーを効率良く伝達させるための共鳴体である超音波ホーンと、超音波ホーンに取り付けられて、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドとを有する超音波加工装置において、超音波ヘッドの超音波ホーンからの脱着が可能で、なお且つ、超音波ホーンと超音波ヘッドとの取り付け面端部に生じる間隙の叩き合いによる変形や摩擦熱の発生を抑制することでき、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の改善を図ることを可能としうる超音波加工装置を提供することを目的とする。 In view of the above problems, the present invention has an ultrasonic horn, which is a resonator for efficiently transmitting vibration energy, and an ultrasonic horn, which is attached to the ultrasonic horn and comes into direct contact with the workpiece, and finally ultrasonic waves. In an ultrasonic processing device having an ultrasonic head that works by vibration, the ultrasonic head can be attached to and detached from the ultrasonic horn, and a gap generated at the end of the mounting surface between the ultrasonic horn and the ultrasonic head. The purpose is to provide an ultrasonic processing device that can suppress deformation and frictional heat generation due to hitting each other and can improve the transmission efficiency of vibration energy from the ultrasonic horn to the ultrasonic head. To do.

請求項1に記載の発明によれば、振動エネルギーを効率良く伝達させるための共鳴体である超音波ホーンと、前記超音波ホーンに取り付けられて、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドとを有する超音波加工装置において、前記超音波ホーンと前記超音波ヘッドとは、それぞれの表面に形成された取り付け面を有し、前記超音波ホーンまたは前記超音波ヘッドのいずれか一方の取り付け面に複数のアリ溝部が配置され、他方の取り付け面に前記複数のアリ溝部に対応する複数のホゾ部が配置され、前記超音波ホーンと前記超音波ヘッドとは、前記複数のアリ溝部と前記複数のホゾ部とにより、前記超音波ホーンと前記超音波ヘッドとのそれぞれの取付け面が互いに接触して係合されるように形成され、前記複数のアリ溝部と前記複数のホゾ部とは、挿抜時の焼き嵌めによるアリ溝部の膨脹および冷やし嵌めによるホゾ部の収縮の少なくともいずれか一方により、互いに対する取り付け及び取り外しがなされうるように形成されている、ことを特徴とする超音波加工装置が提供される。 According to the invention of claim 1, an ultrasonic horn, which is a resonator for efficiently transmitting vibration energy, and an ultrasonic horn, which is attached to the ultrasonic horn and is in direct contact with a work piece, are finally super. In an ultrasonic processing apparatus having an ultrasonic head that works by ultrasonic vibration, the ultrasonic horn and the ultrasonic head have mounting surfaces formed on their respective surfaces, and the ultrasonic horn or the ultrasonic head A plurality of dovetail grooves are arranged on one of the mounting surfaces of the ultrasonic head, and a plurality of hozo portions corresponding to the plurality of dovetail grooves are arranged on the other mounting surface. The plurality of dovetail grooves and the plurality of hozo portions are formed so that the mounting surfaces of the ultrasonic horn and the ultrasonic head are in contact with each other and engaged with each other. The plurality of hozo portions are formed so that they can be attached to and detached from each other by at least one of expansion of the dovetail groove portion by shrink fitting at the time of insertion and removal and contraction of the hozo portion due to cold fitting. A featured ultrasonic processing apparatus is provided.

すなわち、請求項1に記載の発明では、超音波ホーンと超音波ヘッドとのそれぞれの表面に取り付け面を配置し、超音波ホーンまたは超音波ヘッドのいずれか一方の取り付け面に複数のアリ溝部を配置し、他方の取り付け面に複数のアリ溝部に対応する複数のホゾ部を配置し、複数のアリ溝部と複数のホゾ部とにより、超音波ホーンと超音波ヘッドとのそれぞれの取付け面が互いに接触して係合されるように、超音波ホーンと超音波ヘッドとを形成することで、超音波ヘッドの超音波ホーンからの脱着を可能としつつ、なお且つ、取り付け面端部に生じる間隙を狭め、該間隙間の叩き合いによる変形や摩擦熱の発生を抑制することによって、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の改善を図ることを可能とする。 That is, in the invention according to claim 1, mounting surfaces are arranged on the respective surfaces of the ultrasonic horn and the ultrasonic head, and a plurality of dovetail grooves are provided on the mounting surface of either the ultrasonic horn or the ultrasonic head. A plurality of hozo portions corresponding to a plurality of dovetail grooves are arranged on the other mounting surface, and the plurality of dovetail grooves and the plurality of hoso portions allow the mounting surfaces of the ultrasonic horn and the ultrasonic head to be attached to each other. By forming the ultrasonic horn and the ultrasonic head so that they are in contact with each other, the ultrasonic head can be attached to and detached from the ultrasonic horn, and a gap generated at the end of the mounting surface is formed. By narrowing and suppressing deformation and generation of frictional heat due to striking between the gaps, it is possible to improve the transmission efficiency of vibration energy from the ultrasonic horn to the ultrasonic head.

請求項2に記載の発明によれば、前記複数のアリ溝部は、前記取り付け面の中央部に配置される中央アリ溝部と、前記取り付け面の中央部の外側に配置される少なくとも一つの外側アリ溝部とを含み、前記複数のホゾ部は、前記中央アリ溝部に対応する中央ホゾ部と、前記外側アリ溝部に対応する少なくとも一つの外側ホゾ部とを含む、ことを特徴とする請求項1に記載の超音波加工装置が提供される。 According to the second aspect of the invention, the plurality of dovetail groove portions are a central dovetail groove portion arranged in the central portion of the mounting surface and at least one outer dovetail groove portion arranged outside the central portion of the mounting surface. The first aspect of the present invention includes a groove portion, and the plurality of hozo portions include a central hozo portion corresponding to the central dovetail groove portion and at least one outer hozo portion corresponding to the outer dovetail groove portion. The described ultrasonic processing apparatus is provided.

請求項3に記載の発明によれば、前記中央アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部が、ともに傾斜を有した斜辺部とされるような台形形状であり、前記中央ホゾ部は、断面視して、前記中央アリ溝部に対応する台形形状であり、前記外側アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部の内の、取り付け面中央部に対して遠位側の対辺部が傾斜を有した斜辺部とされるような台形形状であり、前記外側ホゾ部は、断面視して、前記外側アリ溝部に対応する台形形状である、ことを特徴とする請求項2に記載の超音波加工装置が提供される。 According to the invention of claim 3, the central trapezoidal groove portion has an opening as an upper bottom portion and a lower bottom portion longer than the upper bottom portion in a cross-sectional view, and is a set connecting the upper bottom portion and the lower bottom portion. The opposite side portion of the above is a trapezoidal shape such that both are inclined side portions, and the central hozo portion is a trapezoidal shape corresponding to the central dovetail groove portion in a cross-sectional view, and the outer dovetail groove portion is In cross-sectional view, the opening is the upper bottom, the lower bottom is longer than the upper bottom, and it is distal to the central part of the mounting surface in the pair of opposite sides connecting the upper bottom and the lower bottom. The claim is characterized in that the opposite side portion has a trapezoidal shape such that the opposite side portion has an inclined side portion, and the outer hozo portion has a trapezoidal shape corresponding to the outer dovetail groove portion in a cross-sectional view. The ultrasonic processing apparatus according to Item 2 is provided.

請求項4に記載の発明によれば、前記複数のアリ溝部及び前記複数のホゾ部は、前記外側アリ溝部と前記外側ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスが、前記中央アリ溝部と前記中央ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスよりも大きくなるように形成されている、ことを特徴とする請求項3に記載の超音波加工装置が提供される。 According to the invention of claim 4, the plurality of dovetail groove portions and the plurality of hozo portions have a clearance in a direction parallel to the mounting surface between the outer dovetail groove portion and the outer hozo portion. The ultrasonic processing apparatus according to claim 3, wherein the ultrasonic processing apparatus is formed so as to be larger than a clearance in a direction parallel to the mounting surface between the central dovetail groove portion and the central hozo portion. Will be done.

請求項5に記載の発明によれば、前記外側アリ溝部及び前記外側ホゾ部は、前記取り付け面中央部からの離間距離が大きくなるほど、前記外側アリ溝部と前記外側ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスが大きくなるように形成されている、ことを特徴とする請求項4に記載の超音波加工装置が提供される。 According to the invention of claim 5, the outer dovetail groove portion and the outer hozo portion are attached between the outer dovetail groove portion and the outer hozo portion as the distance from the central portion of the mounting surface increases. The ultrasonic processing apparatus according to claim 4, wherein the ultrasonic processing apparatus is formed so as to have a large clearance in a direction parallel to the surface.

請求項6に記載の発明によれば、前記外側アリ溝部及び前記外側ホゾ部は、挿入後に前記超音波ホーン及び前記超音波ヘッドの温度が室温に戻るのに伴い、前記外側アリ溝部の斜辺部であって取り付け面中央部に対して遠位側の斜辺部と前記外側ホゾ部の対応斜辺部であって取り付け面中央部に対して遠位側の対応斜辺部とが接触するように形成されている、ことを特徴とする請求項5に記載の超音波加工装置が提供される。 According to the invention of claim 6, the outer dovetail groove portion and the outer dovetail groove portion have a hypotenuse portion of the outer dovetail groove portion as the temperature of the ultrasonic horn and the ultrasonic head returns to room temperature after insertion. The hypotenuse portion on the distal side with respect to the central portion of the mounting surface is formed so as to be in contact with the corresponding hypotenuse portion on the distal side with respect to the central portion of the mounting surface, which is the corresponding hypotenuse portion of the outer hozo portion. The ultrasonic processing apparatus according to claim 5, wherein the ultrasonic processing apparatus is provided.

請求項7に記載の発明によれば、前記外側アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部の内の、取り付け面中央部に対して遠位側の対辺部が傾斜を有した斜辺部とされ、取り付け面中央部に対して近位側の対辺部が、上底部と下底部とに対して直交する直交辺部とされるような台形形状であり、前記外側ホゾ部は、断面視して、前記外側アリ溝部に対応する台形形状である、ことを特徴とする請求項6に記載の超音波加工装置が提供される。 According to the invention of claim 7, the outer dovetail groove portion has an opening as an upper bottom portion and a lower bottom portion longer than the upper bottom portion in a cross-sectional view, and is a set connecting the upper bottom portion and the lower bottom portion. Of the opposite sides of the mounting surface, the opposite side on the distal side with respect to the central part of the mounting surface is an inclined side portion, and the opposite side portion on the proximal side with respect to the central part of the mounting surface is the upper bottom part and the lower bottom part. 6. The claim 6 is characterized in that the outer hozo portion has a trapezoidal shape such that it has an orthogonal side portion orthogonal to the above, and the outer hozo portion has a trapezoidal shape corresponding to the outer dovetail groove portion in a cross-sectional view. The ultrasonic processing apparatus described in the above is provided.

各請求項に記載の発明によれば、振動エネルギーを効率良く伝達させるための共鳴体である超音波ホーンと、超音波ホーンに取り付けられて、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドとを有する超音波加工装置において、超音波ヘッドの超音波ホーンからの脱着を可能としつつ、なお且つ、取り付け面端部に生じる間隙を狭め、該間隙間の叩き合いによる変形や摩擦熱の発生を抑制することによって、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の改善を図ることを可能とする、という共通の効果を奏する。 According to the invention described in each claim, an ultrasonic horn, which is a resonator for efficiently transmitting vibration energy, and an ultrasonic horn, which is attached to the ultrasonic horn and comes into direct contact with a work piece, and finally an ultrasonic wave. In an ultrasonic processing apparatus having an ultrasonic head that works by vibration, the gap between the gaps is narrowed while allowing the ultrasonic head to be attached and detached from the ultrasonic horn, and the gap between the gaps is tapped. By suppressing deformation and frictional heat generation due to fitting, it is possible to improve the transmission efficiency of vibration energy from the ultrasonic horn to the ultrasonic head, which is a common effect.

アリ構造による超音波ヘッドと超音波ホーンとの固定構造であって、(a)単アリ構造と(b)複アリ構造との固定構造の一実施形態を説明する図である。It is a figure explaining one Embodiment of the fixed structure of the ultrasonic head and the ultrasonic horn by the dovetail structure, (a) the single dovetail structure and (b) the double dovetail structure. 本発明の実施形態を説明する図である。It is a figure explaining the embodiment of this invention. 本発明の原理確認実験における測定機器の配置図である。It is a layout drawing of the measuring device in the principle confirmation experiment of this invention. 本発明の原理確認実験に使用した超音波ホーンと超音波ヘッドの側面図と底面図である。It is a side view and the bottom view of the ultrasonic horn and the ultrasonic head used in the principle confirmation experiment of this invention. 本発明の原理確認実験において、レーザードップラー振動計で測定した理想嵌合状態と、単アリ構造及び複アリ構造で嵌合した篏合状態とにおける超音波ヘッド底面内での振幅の分布を示す図である。The figure which shows the distribution of the amplitude in the bottom surface of the ultrasonic head in the ideal fitting state measured by the laser Doppler vibrometer and the fitting state which was fitted by the single ant structure and the double ant structure in the principle confirmation experiment of this invention. Is. 本発明の原理確認実験において、超音波振動の印加時間が10分を経過した際の(a)単アリ構造と(b)複アリ構造とにおける、赤外線サーモグラフィーで計測した超音波ホーンと超音波ヘッドの嵌合部の側面温度と超音波ヘッドの底面温度と示す図である。In the principle confirmation experiment of the present invention, an ultrasonic horn and an ultrasonic head measured by infrared thermography in (a) a single dovetail structure and (b) a double dovetail structure when the application time of ultrasonic vibration has passed 10 minutes. It is a figure which shows the side surface temperature of the fitting part of, and the bottom surface temperature of an ultrasonic head. 本発明の原理確認実験において、赤外線サーモグラフィーで計測した(a)単アリ構造と(b)複アリ構造とにおける、超音波ホーンと超音波ヘッドの嵌合部側面の中心部の温度変化と最高温度の変化と示す図である。In the principle confirmation experiment of the present invention, the temperature change and the maximum temperature at the center of the side surface of the fitting portion of the ultrasonic horn and the ultrasonic head in (a) single-ant structure and (b) double-ant structure measured by infrared thermography. It is a figure which shows the change of. 本発明の原理確認実験において、赤外線サーモグラフィーで計測した(a)単アリ構造と(b)複アリ構造とにおける、超音波ヘッド底面の中心部の温度変化と最高温度の変化を示す図である。It is a figure which shows the temperature change and the change of the maximum temperature of the central part of the bottom surface of an ultrasonic head in (a) a single dovetail structure and (b) a double dovetail structure measured by infrared thermography in the principle confirmation experiment of the present invention.

図1は、アリ溝部とホゾ部とから構成されるアリ構造2による超音波ホーン1と超音波ヘッド3との固定構造であって、従来技術となる(a)単アリ構造の固定構造と、本発明の(b)複アリ構造との一実施形態を説明する図である。 FIG. 1 shows a fixed structure of an ultrasonic horn 1 and an ultrasonic head 3 by a dovetail structure 2 composed of a dovetail groove portion and a hozo portion, which is a prior art (a) fixed structure of a single dovetail structure. It is a figure explaining one Embodiment with (b) a compound ant structure of this invention.

図1(a)から理解されうる如く、単アリ構造の固定構造は、取り付け面中央部(接触面中央部)に一つのみのアリ構造が配置される固定構造である。上述したように、非特許文献1に開示した先行実験によると、超音波加工装置の無酸素銅製ヘッドを両面テープ貼付、接着剤塗布、ネジ止め、取り付け面(接触面)の中央部に単一のアリ溝部とホゾ部とから構成されるアリ構造を備えた冷やし嵌めの4種類の固定方法でチタン製超音波ホーンに固定して振動エネルギーの損失比較を行ったところ、単アリ構造における冷やし嵌めによる固定方法は、両面テープ貼付による固定方法に次いで発熱が大きく、伝播した超音波振動の振幅も最も増大することが明らかになった。この理由として、アリ構造が取り付け面中央部に一つしかないために取り付け面端部(接触面端部)が自由端となり、アリ構造の付け根部と取り付け面端部との間に、図1(a)に示される間隙δが生じることが原因と考えられる。 As can be understood from FIG. 1A, the fixed structure of the single dovetail structure is a fixed structure in which only one dovetail structure is arranged in the central portion of the mounting surface (central portion of the contact surface). As described above, according to the prior experiment disclosed in Non-Patent Document 1, the oxygen-free copper head of the ultrasonic processing apparatus is attached to the double-sided tape, adhesively applied, screwed, and single at the center of the mounting surface (contact surface). When the loss of vibration energy was compared by fixing to a titanium ultrasonic horn by four types of fixing methods of cold fitting with a dovetail structure consisting of a dovetail groove and a hozo part, it was found that the cold fit in a single dovetail structure was used. It was clarified that the fixing method by the method generates the largest amount of heat after the fixing method by attaching the double-sided tape, and the amplitude of the transmitted ultrasonic vibration also increases the most. The reason for this is that since there is only one dovetail structure in the center of the mounting surface, the mounting surface end (contact surface end) becomes a free end, and between the base of the dovetail structure and the mounting surface end, FIG. The cause is considered to be the occurrence of the gap δ shown in (a).

そこで、本発明は、図1(b)に示されるように、超音波ヘッドと超音波ホーンとの固定構造を複アリ構造とすることで、すなわち、取り付け面に複数の配置することで、アリ構造の付け根部と取り付け面端部との間に生じる間隙δ’を狭め、該間隙間の叩き合いによる変形や摩擦熱の発生を抑制することによって、超音波ヘッドの超音波ホーンからの脱着を可能としつつ、なお且つ、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の改善を図ることを可能とする。尚、図1(b)に示される実施形態においては、超音波ホーンにアリ溝部を配置し、超音波ヘッドにホゾ部を配置しているが、実用上は、超音波ホーンにホゾ部を配置し、超音波ヘッドにアリ溝部を配置し、超音波ホーンを冷却、もしくは超音波ヘッドを加熱するものとして構成してもよい。また、図1(b)には、取り付け面の中央部とその両側にアリ構造が配置される複アリ構造の一実施形態が示されているが、これに限定されることはなく、取り付け面に対する複数のアリ構造の配置は、設計仕様などに応じてアレンジされうる。 Therefore, in the present invention, as shown in FIG. 1 (b), the fixed structure of the ultrasonic head and the ultrasonic horn is made into a double dovetail structure, that is, by arranging a plurality of dovetails on the mounting surface. By narrowing the gap δ'generated between the base of the structure and the end of the mounting surface and suppressing deformation and frictional heat generation due to the striking between the gaps, the ultrasonic head can be attached and detached from the ultrasonic horn. While making it possible, it is possible to improve the transmission efficiency of vibration energy from the ultrasonic horn to the ultrasonic head. In the embodiment shown in FIG. 1B, the dovetail groove portion is arranged in the ultrasonic horn and the hozo portion is arranged in the ultrasonic head, but in practice, the hozo portion is arranged in the ultrasonic horn. However, a dovetail groove may be arranged in the ultrasonic head to cool the ultrasonic horn or heat the ultrasonic head. Further, FIG. 1B shows an embodiment of a double dovetail structure in which the dovetail structure is arranged at the center of the mounting surface and on both sides thereof, but the mounting surface is not limited to this. The arrangement of a plurality of dovetail structures can be arranged according to the design specifications and the like.

また、取り付け面に複数のアリ構造を配置し、該複数のアリ構造部に対する挿抜時の焼き嵌めおよび冷やし嵌めの少なくともいずれか一方により、超音波ホーンと超音波ヘッドとの互いに対する取り付け及び取り外しを行うようにする構成においては、個々のアリ構造の焼き嵌めによる膨張、もしくは冷やし嵌めによる収縮の他に、超音波ホーン全体や超音波ヘッド全体の膨張や収縮の影響を考慮することも必要となる場合がある。 Further, a plurality of dovetail structures are arranged on the mounting surface, and the ultrasonic horn and the ultrasonic head can be attached to and detached from each other by at least one of shrink fitting and cold fitting at the time of insertion and removal to the plurality of dovetail structures. In the configuration to be performed, it is necessary to consider the influence of expansion and contraction of the entire ultrasonic horn and the entire ultrasonic head, in addition to the expansion due to shrink fitting of individual dovetail structures or the contraction due to cold fitting. In some cases.

図2(a)は、図中で上側に配置された超音波ホーンに凹み状の複数のアリ溝部を、下側に配置された超音波ヘッドに凸状の複数のホゾ部を配置した一実施形態を示す。図2(a)で示される実施形態においては、取り付け面に配置される全てのアリ溝部が、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部が、ともに傾斜を有した斜辺部(すなわち、逆テーパー状側壁部)とされるような台形形状とされ、また、全てのホゾ部が、断面視して、アリ溝部に対応する台形形状であるものとされる。取り付け面(接触面)の中央部を基準に考えると、取り付け面中央部(接触面中央部)に配置されたアリ構造は超音波ホーン全体の膨張、もしくは超音波ヘッド全体の収縮の影響を受けにくいが、取り付け面端部(接触面端部)に配置されたアリ構造では、その影響は無視できない場合がある。 FIG. 2A shows an embodiment in which a plurality of concave groove portions are arranged on the ultrasonic horn arranged on the upper side in the drawing, and a plurality of convex hozo portions are arranged on the ultrasonic head arranged on the lower side. Shows the morphology. In the embodiment shown in FIG. 2A, all the dovetail grooves arranged on the mounting surface have an opening as an upper bottom portion and a lower bottom portion longer than the upper bottom portion in a cross-sectional view. The pair of opposite sides connecting the bottom and the bottom has a trapezoidal shape so that both sides have an inclined side (that is, a reverse tapered side wall), and all the hozo parts are cross-sectionally viewed. Therefore, it is assumed that the trapezoidal shape corresponds to the dovetail groove. Considering the central part of the mounting surface (contact surface) as a reference, the dovetail structure arranged at the central part of the mounting surface (central part of the contact surface) is affected by the expansion of the entire ultrasonic horn or the contraction of the entire ultrasonic head. Although it is difficult, the effect may not be negligible in the dovetail structure arranged at the end of the mounting surface (end of the contact surface).

一般的に、取り付け面中央部からn−1番目に配置されたアリ構造に比べて、より取り付け面端部側になる中央部からn番目に配置されたアリ構造の方が、取り付け面に対して平行方向(水平方向)の位置ズレが大きくなる。その結果、アリ構造の取り付け面中央部に対して近位側の逆テーパー状側壁部の物理的干渉幅は、n−1番目に配置されたアリ構造の干渉幅(ζn−1)よりも、n番目に配置されたアリ構造の干渉幅(ζn)の方が大きくなり(ζn−1≦ζn)、アリ構造の配列を増やせば増やすほど、焼き嵌めや冷やし嵌めによる嵌合は困難となる場合がある。 In general, the dovetail structure arranged nth from the center, which is closer to the end of the mounting surface, has an dovetail structure that is n-1th from the center of the mounting surface. The position shift in the parallel direction (horizontal direction) becomes large. As a result, the physical interference width of the reverse tapered side wall portion proximal to the central portion of the mounting surface of the dovetail structure is larger than the interference width (ζ n-1) of the dovetail structure arranged at the n-1th position. When the interference width (ζ n) of the n-th arranged dovetail structure becomes larger (ζ n-1 ≦ ζ n), and the more the dovetail structure arrangement is increased, the more difficult it is to fit by shrink fitting or cold fitting. There is.

そこで、本発明の一実施形態においては、複数のアリ溝部は、取り付け面の中央部に配置される中央アリ溝部と、取り付け面の中央部の外側に配置される少なくとも一つの外側アリ溝部とを含むものとし、複数のホゾ部は、中央アリ溝部に対応する中央ホゾ部と、外側アリ溝部に対応する少なくとも一つの外側ホゾ部とを含むものとし、中央アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部が、ともに傾斜を有した斜辺部(すなわち、逆テーパー状側壁部)とされるような台形形状であり、また、中央ホゾ部は、断面視して、中央アリ溝部に対応する台形形状であるものとされる。その一方で、外側アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部の内の、取り付け面中央部に対して遠位側の対辺部(すなわち、アリ構造の取り付け面中央部に対して遠位側の側壁部)が、傾斜を有した斜辺部(すなわち、逆テーパー状側壁部)とされ、取り付け面中央部に対して近位側の対辺部(すなわち、アリ構造の取り付け面中央部に対して近位側の側壁部)が、上底部と下底部とに対して直交する直交辺部(垂直側面)とされるような台形形状であり、また、外側ホゾ部は、断面視して、外側アリ溝部に対応する台形形状であるものとされる。 Therefore, in one embodiment of the present invention, the plurality of dovetail groove portions include a central dovetail groove portion arranged in the central portion of the mounting surface and at least one outer dovetail groove portion arranged outside the central portion of the mounting surface. The plurality of hozo portions shall include a central hozo portion corresponding to the central dovetail groove portion and at least one outer hozo portion corresponding to the outer dovetail groove portion, and the central dovetail groove portion shall include an opening in a cross-sectional view. The upper bottom portion, the lower bottom portion is longer than the upper bottom portion, and the pair of opposite side portions connecting the upper bottom portion and the lower bottom portion are both inclined side portions (that is, reverse tapered side wall portions). It has a trapezoidal shape, and the central hozo portion has a trapezoidal shape corresponding to the central dovetail groove portion in a cross-sectional view. On the other hand, the outer dovetail groove is attached in a pair of opposite sides connecting the upper bottom and the lower bottom, with the opening as the upper bottom and the lower bottom longer than the upper bottom in cross-sectional view. The opposite side portion distal to the central portion of the surface (that is, the side wall portion distal to the central portion of the mounting surface of the trapezoidal structure) is the inclined side portion (that is, the reverse tapered side wall portion). The opposite side portion proximal to the central portion of the mounting surface (that is, the side wall portion proximal to the central portion of the mounting surface of the trapezoidal structure) is an orthogonal side orthogonal to the upper bottom portion and the lower bottom portion. It has a trapezoidal shape such that it is a portion (vertical side surface), and the outer hozo portion has a trapezoidal shape corresponding to the outer dovetail groove portion in a cross-sectional view.

図2を参照しながら、このような本発明の一実施形態について説明する。図2(a)で示した超音波ホーン全体の膨張もしくは収縮、あるいは超音波ヘッド全体の収縮もしくは膨張により発生する菱形の物理的干渉箇所4、5において、図2(b)に示したように、菱形下辺の鋭角頂点を通る垂直線の取り付け面中央部に対して近位側のアリ構造を削除した、取り付け面中央部に対して近位側の片側面のみが垂直側面となっているアリ溝部6とホゾ部7とを配置する。 Such an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 2B, at the diamond-shaped physical interference points 4 and 5 generated by the expansion or contraction of the entire ultrasonic horn shown in FIG. 2A or the contraction or expansion of the entire ultrasonic head. , The ant structure on the proximal side to the central part of the mounting surface of the vertical line passing through the acute-angled apex of the lower side of the rhombus has been deleted. The groove portion 6 and the hozo portion 7 are arranged.

図2(b)に示される実施形態においては、物理的干渉箇所4、5が予め取り除かれているため、超音波ホーン全体の膨張もしくは収縮、あるいは超音波ヘッド全体の収縮もしくは膨張の影響を受けず、取り付け面に複数個配置されたホゾ部が、アリ溝部に滞りなく挿入されることを可能とする。尚、図2(b)に示される本実施形態においては、取り付け面中央部に対して近位側の外側アリ溝部の全ての対辺部および外側ホゾ部の全ての対応対辺部が、上底部と下底部とに対して直交する直交辺部(垂直側面)とされているが、これに限定されることはなく、取り付け面に複数個配置されたホゾ部が、アリ溝部に滞りなく挿入されることが可能であるものとされるのであれば、例えば、取り付け面中央部に対して近位側の外側アリ溝部の一部の対辺部および外側ホゾ部の一部の対応対辺部が上底部と下底部とに対して直交する直交辺部(垂直側面)とされ、その他の取り付け面中央部に対して近位側の外側アリ溝部の対辺部および外側ホゾ部の対応対辺部が傾斜を有した斜辺部とされるなどの種々のアレンジがなされてもよい。 In the embodiment shown in FIG. 2B, since the physical interference points 4 and 5 are removed in advance, they are affected by the expansion or contraction of the entire ultrasonic horn or the contraction or expansion of the entire ultrasonic head. Instead, a plurality of hozo portions arranged on the mounting surface can be smoothly inserted into the dovetail groove portion. In the present embodiment shown in FIG. 2B, all the opposite side portions of the outer dovetail groove portion proximal to the central portion of the mounting surface and all the corresponding opposite side portions of the outer hozo portion are the upper bottom portion. It is considered to be an orthogonal side portion (vertical side surface) orthogonal to the lower bottom portion, but the present invention is not limited to this, and a plurality of hozo portions arranged on the mounting surface are smoothly inserted into the dovetail groove portion. If it is possible, for example, the opposite side of a part of the outer dovetail groove portion proximal to the central part of the mounting surface and the corresponding opposite side part of the outer hozo part are the upper bottom part. It is an orthogonal side portion (vertical side surface) orthogonal to the lower bottom portion, and the opposite side portion of the outer dovetail groove portion on the proximal side with respect to the center portion of the other mounting surface and the corresponding opposite side portion of the outer hozo portion have an inclination. Various arrangements such as an oblique side portion may be made.

また、図2(b)に示される実施形態においては、多くのアリ構造が取り付け面に配置された場合においても、より確実にアリ溝部と対応ホゾ部との係合をもたらしうるように、複数のアリ溝部及び複数のホゾ部は、外側アリ溝部と外側ホゾ部との間の取り付け面に対して平行方向におけるクリアランス(すなわち、外側アリ溝部と外側ホゾ部との間のクリアランスであって、取り付け面に対して平行方向におけるクリアランス)が、中央アリ溝部と中央ホゾ部との間の取り付け面に対して平行方向におけるクリアランス(すなわち、中央アリ溝部と中央ホゾ部との間のクリアランスであって、取り付け面に対して平行方向におけるクリアランス)よりも大きくなるように形成され、さらに、外側アリ溝部及び外側ホゾ部は、取り付け面中央部からの離間距離が大きくなるほど、外側アリ溝部と外側ホゾ部との間の取り付け面に対して平行方向におけるクリアランスが大きくなるように形成されている。 Further, in the embodiment shown in FIG. 2B, even when many dovetail structures are arranged on the mounting surface, a plurality of dovetail grooves can be more reliably engaged with the corresponding hoso portions. The dovetail groove and the plurality of hozo portions are clearances in a direction parallel to the mounting surface between the outer dovetail groove portion and the outer hozo portion (that is, the clearance between the outer dovetail groove portion and the outer hozo portion, and are attached. The clearance in the direction parallel to the surface is the clearance in the direction parallel to the mounting surface between the central dovetail groove and the central hozo (that is, the clearance between the central dovetail groove and the central hozo). It is formed so as to be larger than the clearance in the direction parallel to the mounting surface), and the outer dovetail groove portion and the outer hozo portion are formed so as to increase the separation distance from the central portion of the mounting surface. It is formed so that the clearance in the direction parallel to the mounting surface between the two is large.

さらに、図2(b)に示される実施形態においては、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の、更なる効果的な改善を図りうるようにするために、外側アリ溝部及び外側ホゾ部が、外側アリ溝部に対する外側ホゾ部の挿入後、超音波ホーン及び超音波ヘッドの温度が室温に戻るのに伴い、外側アリ溝部の斜辺部と外側ホゾ部の対応斜辺部とが接触するように形成されている。このように外側アリ溝部及び外側ホゾ部を形成することで、超音波ホーン全体の膨張もしくは収縮、あるいは超音波ヘッド全体の収縮もしくは膨張の影響を受けず、取り付け面に複数個配置されたホゾ部が、アリ溝部に滞りなく挿入された後に、超音波ホーン及び超音波ヘッドの温度が室温に戻るのに伴い、直交辺部(垂直側面)とは反対側の逆テーパー状の斜辺部にてホゾ部とアリ溝部とが接触し、アリ溝部の収縮もしくはホゾ部の膨張、もしくはその両方の効果により、逆テーパー形状の斜辺部表面間で滑りが生じ、超音波ホーンの取り付け面が超音波ヘッドの取り付け面に強固に押し付けられ、超音波ホーンと超音波ヘッド間が強固に嵌合することを可能とし、超音波ホーンから超音波ヘッドへの振動エネルギーの伝達効率の、更なる効果的な改善を図りうることを可能とする。 Further, in the embodiment shown in FIG. 2B, the outer dovetail groove portion and the outer dovetail groove portion and the outer dovetail groove portion and the outer dovetail groove portion and in order to be able to further effectively improve the transmission efficiency of the vibration energy from the ultrasonic horn to the ultrasonic head. As the temperature of the ultrasonic horn and the ultrasonic head returns to room temperature after the outer hozo portion is inserted into the outer dovetail groove portion, the oblique side portion of the outer dovetail groove portion and the corresponding oblique side portion of the outer dovetail portion come into contact with each other. It is formed to do. By forming the outer dovetail groove portion and the outer hozo portion in this way, a plurality of hozo portions arranged on the mounting surface are not affected by the expansion or contraction of the entire ultrasonic horn or the contraction or expansion of the entire ultrasonic head. However, as the temperature of the ultrasonic horn and the ultrasonic head returns to room temperature after being inserted into the dovetail groove without any delay, the hozo is on the opposite tapered side of the side opposite to the orthogonal side (vertical side surface). The portion and the dovetail groove come into contact with each other, and the shrinkage of the dovetail groove portion, the expansion of the hozo portion, or both of them cause slippage between the surfaces of the diagonal side portion having a reverse taper shape, and the mounting surface of the ultrasonic horn is the ultrasonic head. It is firmly pressed against the mounting surface, enabling the ultrasonic horn and the ultrasonic head to fit tightly, further effectively improving the efficiency of transmitting vibration energy from the ultrasonic horn to the ultrasonic head. It makes it possible to plan.

その際、超音波ホーン全体もしくは超音波ヘッド全体の収縮あるいは膨張の結果生じた、符号8、9で示された空隙ηは取り付け面中央部からの離間距離に比例して大きさが異なる。一般的に、取り付け面中央部部からn−1番目に配置されたアリ構造内の空隙ηn−1に比べて、より取り付け面端部側になる中央からn番目に配置されたアリ構造内の空隙ηnが大きいため、ηn−1≦ηnとなる。 At that time, the voids η represented by reference numerals 8 and 9 generated as a result of the contraction or expansion of the entire ultrasonic horn or the entire ultrasonic head differ in size in proportion to the distance from the central portion of the mounting surface. Generally, in the dovetail structure arranged nth from the center, which is closer to the end of the mounting surface, as compared with the void ηn-1 in the dovetail structure arranged n-1th from the central part of the mounting surface. Since the gap ηn is large, ηn-1 ≦ ηn.

尚、図2(a)、(b)に示される実施形態においては、超音波ホーンにアリ溝部配置、超音波ヘッドにホゾ部を配置しているが、実用上は、超音波ホーンにホゾ部を、超音波ヘッドにアリ溝部を配置し、超音波ホーンを冷却、もしくは超音波ヘッドを加熱するものとして構成してもよい。また、本明細書においては、特定の実施形態が図示かつ記述されたが、権利請求された主題の精神及び有効範囲から逸脱せずに、他の種々の変更及び改変が為され得ることを理解すべきである。更に、本明細書においては、権利請求された主題の種々の見地が記述されたが、斯かる見地は、組み合わせて利用される必要はない。故に、添付の各請求項は、権利請求された主題の有効範囲内である斯かる変更及び改変の全てを網羅することが意図される。 In the embodiments shown in FIGS. 2A and 2B, the dovetail groove portion is arranged in the ultrasonic horn and the hozo portion is arranged in the ultrasonic head, but in practice, the hozo portion is arranged in the ultrasonic horn. May be configured such that a dovetail groove is arranged in the ultrasonic head to cool the ultrasonic horn or heat the ultrasonic head. Also, although specific embodiments have been illustrated and described herein, it is understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Should. Further, although various viewpoints of the claimed subject matter have been described herein, such viewpoints need not be used in combination. Therefore, each claim attached is intended to cover all such changes and modifications within the scope of the claimed subject matter.

[実施例1:超音波振動の伝達振幅と摩擦熱による温度変化]
図3を参照しながら、冷やし嵌めを用いた本発明の原理確認実験について説明する。本実験では、周波数と最大振幅がそれぞれ16kHzと10nmの中型超音波加工機UМ―500DA(日本電子工業製)を用いた。本装置は超音波振動の出力割合を0〜100%の範囲で調整することによって、超音波振動の振幅を制御することができる。超音波ホーン10と超音波ヘッド11との取り付け面に対する超音波波動の振動方向は、該取り付け面に対して直交する方向(垂直な方向)とする。
[Example 1: Temperature change due to transmission amplitude of ultrasonic vibration and frictional heat]
The principle confirmation experiment of the present invention using the chilled fit will be described with reference to FIG. In this experiment, a medium-sized ultrasonic processing machine UМ-500DA (manufactured by JEOL Ltd.) having a frequency and a maximum amplitude of 16 kHz and 10 nm, respectively, was used. This device can control the amplitude of ultrasonic vibration by adjusting the output ratio of ultrasonic vibration in the range of 0 to 100%. The vibration direction of the ultrasonic wave with respect to the mounting surface of the ultrasonic horn 10 and the ultrasonic head 11 is a direction orthogonal to the mounting surface (direction perpendicular to the mounting surface).

振動エネルギーの伝達効率を比較するため、図4に示した3種類の超音波ホーン15と超音波ヘッド16を用意した。超音波ホーンは、最大直径が38mm、最小直径が24mm、長さが191もしくは181mmの円筒形状をしており、M10のボルトによって超音波加工機の超音波振動子に接続される。超音波ホーンの材質は、内部減衰率(0.002)が小さく、縦弾性係数/密度(E/ρ)の値が比較的大きいチタン(24.4×10cm)を選択した。 In order to compare the transmission efficiency of vibration energy, three types of ultrasonic horns 15 and ultrasonic heads 16 shown in FIG. 4 were prepared. The ultrasonic horn has a cylindrical shape with a maximum diameter of 38 mm, a minimum diameter of 24 mm, and a length of 191 or 181 mm, and is connected to the ultrasonic transducer of the ultrasonic processing machine by an M10 bolt. The material of the ultrasonic horn, internal damping factor (0.002) is small, the value of the modulus of longitudinal elasticity / density (E / [rho) selects a relatively large titanium (24.4 × 10 7 cm).

一方、超音波ヘッドの形状は、直径38mmで厚みが10mmの円筒形状をしており、その材質は無酸素銅である。無酸素銅の縦弾性係数/密度は13.1×10cmであり、チタンに比べて低い値となっているが、内部減衰率が0.0045(銅単結晶の内部減衰率を参照)とチタンの内部減衰率に近い値となっているので選択した。また、無酸素銅は、通常の銅よりも冷間圧接に適している利点もある。 On the other hand, the shape of the ultrasonic head is a cylindrical shape having a diameter of 38 mm and a thickness of 10 mm, and the material thereof is oxygen-free copper. Modulus / density of oxygen-free copper is 13.1 × 10 7 cm, but has a lower value than the titanium, internal damping rate 0.0045 (see internal damping of the copper single crystal) Since the value is close to the internal damping factor of titanium, it was selected. Oxygen-free copper also has the advantage of being more suitable for cold pressure welding than ordinary copper.

図4(b)と4(c)に示したアリ構造付の超音波ホーンには、取り付け面中央部に逆テーパー側壁を有する開口幅5mm、底幅15mm、深さ5mmの単アリ溝が加工されている。さらに図4(c)に示した複アリ構造には、上記の単アリ構造の片側半分を切り落とした楔形のアリ溝部を取り付け面中心から左右約9mmの位置に一つずつ配置した。これらの形状に対応するように、超音波ヘッドにも少なくとも片側が逆テーパー形状となっているホゾ部を形成し、3〜8μmのクリアランスを設けてホゾ部(アリ型構造)がアリ溝部(アリ溝構造)よりも若干大きくなるように製作した。 The ultrasonic horn with a dovetail structure shown in FIGS. 4 (b) and 4 (c) is machined with a single dovetail groove having an opening width of 5 mm, a bottom width of 15 mm, and a depth of 5 mm, which has a reverse tapered side wall at the center of the mounting surface. Has been done. Further, in the double dovetail structure shown in FIG. 4 (c), wedge-shaped dovetail groove portions cut off from one half of the single dovetail structure are arranged one by one at positions about 9 mm to the left and right from the center of the mounting surface. In order to correspond to these shapes, the ultrasonic head also has a dovetail portion having a reverse taper shape on at least one side, and a clearance of 3 to 8 μm is provided so that the dovetail portion (ant type structure) has an dovetail groove portion (antite structure). It was manufactured so that it was slightly larger than the groove structure).

超音波ホーンと超音波ヘッドの嵌合には、熱線膨張係数の違い(チタン:8.4×10−6/K、無酸素銅:1.7×10−5/K)を利用して、無酸素銅製超音波ヘッドを液体窒素に漬けて約77Kまで冷却することでホゾ部を収縮させ、チタン製超音波ホーンのアリ溝部に挿入した。その後、超音波ヘッドを室温まで自然に戻すことによって、超音波ヘッドを超音波ホーンに強固に嵌合した。また、図4(a)に示したように、超音波ホーンと超音波ヘッド間に繋ぎ目が存在しない理想的な嵌合状態として、チタン製の超音波ホーン・超音波ヘッド一体型も用意した。 For the fitting of the ultrasonic horn and the ultrasonic head, the difference in the coefficient of linear thermal expansion (titanium: 8.4 × 10-6 / K, oxygen-free copper: 1.7 × 10-5 / K) is used. The oxygen-free copper ultrasonic head was immersed in liquid nitrogen and cooled to about 77 K to contract the hozo portion, and the ultrasonic head was inserted into the dovetail groove portion of the titanium ultrasonic horn. Then, by returning the ultrasonic head to room temperature naturally, the ultrasonic head was firmly fitted to the ultrasonic horn. Further, as shown in FIG. 4A, a titanium ultrasonic horn / ultrasonic head integrated type is also prepared as an ideal fitting state in which there is no joint between the ultrasonic horn and the ultrasonic head. ..

振動エネルギーの伝達効率を比較するために、図3に示すように、超音波ホーン10と超音波ヘッド11との間の取り付け面を、符号12で示される赤外線サーモグラフィーR300(日本アビオニクス製)によって観察した。また、超音波ホーン10と超音波ヘッド11との間の取り付け面で発生した摩擦熱が超音波ヘッド底部表面に伝導し、超音波加工に与える影響を把握するために、金蒸着ミラー13を用いることで超音波ヘッド11の底面の温度分布を赤外線サーモグラフィー12で観察した。さらに、水平方向から入射したHe−Neガスレーザーを金蒸着ミラーによって垂直方向に反射させ、無酸素銅製の超音波ヘッド11の底面に照射した後、反射した光が逆向きの光路を辿って、符号14で示されたレーザードップラー振動計AT0023+AT3700(グラフテック製)によって検出されるように配置し、超音波ヘッド底面での振動周波数と振幅を計測した。計測ポイントは、図4に示したように、取り付け面中央部(位置1)、取り付け面に対して平行方向(水平方向)に中心から9mm離れた中間部(位置2)、取り付け面に対して平行方向(水平方向)に中心から18mm離れた端部(位置3)の3箇所である。 In order to compare the transmission efficiency of vibration energy, as shown in FIG. 3, the mounting surface between the ultrasonic horn 10 and the ultrasonic head 11 is observed by infrared thermography R300 (manufactured by Nippon Avionics) indicated by reference numeral 12. did. Further, in order to grasp the influence of the frictional heat generated on the mounting surface between the ultrasonic horn 10 and the ultrasonic head 11 on the bottom surface of the ultrasonic head and the ultrasonic processing, the gold vapor deposition mirror 13 is used. Therefore, the temperature distribution on the bottom surface of the ultrasonic head 11 was observed by infrared thermography 12. Further, a He-Ne gas laser incident from the horizontal direction is vertically reflected by a gold vapor deposition mirror to irradiate the bottom surface of the ultrasonic head 11 made of oxygen-free copper, and then the reflected light follows an optical path in the opposite direction. It was arranged so as to be detected by a laser Doppler vibrometer AT0023 + AT3700 (manufactured by Graftech) indicated by reference numeral 14, and the vibration frequency and amplitude at the bottom surface of the ultrasonic head were measured. As shown in FIG. 4, the measurement points are the central portion of the mounting surface (position 1), the intermediate portion (position 2) 9 mm away from the center in the parallel direction (horizontal direction) with respect to the mounting surface, and the mounting surface. There are three locations at the ends (position 3) 18 mm away from the center in the parallel direction (horizontal direction).

図5は、超音波ヘッド底面で計測された超音波振動の経過時間と振幅の関係を示している。取り付け面中央部、中間部、端部での計測結果を図5(a)、5(b)、5(c)にそれぞれ示した。 FIG. 5 shows the relationship between the elapsed time and the amplitude of the ultrasonic vibration measured on the bottom surface of the ultrasonic head. The measurement results at the central portion, the intermediate portion, and the end portion of the mounting surface are shown in FIGS. 5 (a), 5 (b), and 5 (c), respectively.

超音波発信器の出力は、超音波ヘッド一体型チタン製超音波ホーンが発振可能な最大出力180Wに統一した。印加した超音波振動の周波数は16kHzなので、周期は62.5μsと算出される。実際の計測値は、超音波ヘッド一体型チタン製超音波ホーン(理想嵌合状態)で58μs、アリ構造で嵌合した超音波ホーンと超音波ヘッドでは61μsとなっており、一体型の場合の周波数の方が若干高くなっている。 The output of the ultrasonic transmitter is unified to a maximum output of 180W that can oscillate an ultrasonic horn made of titanium with an integrated ultrasonic head. Since the frequency of the applied ultrasonic vibration is 16 kHz, the period is calculated to be 62.5 μs. The actual measured values are 58 μs for the ultrasonic head integrated titanium ultrasonic horn (ideal mating state) and 61 μs for the ultrasonic horn and ultrasonic head fitted with the dovetail structure. The frequency is slightly higher.

一方、振幅は、中央部では±約2μmとなっており差異はほとんど無いが、中間部では複アリ構造が理想嵌合状態と同じ振幅±2μmを維持しているのに対して、単アリ構造では±4μmまで増大している。この傾向は、取り付け面端部でより顕著となっており、取り付け面端部での超音波振動の振幅は、理想嵌合状態が±2μm、複アリ構造が±4μm、単アリ構造では±約8μmと大幅に増大している。複アリ構造において、取り付け面端部と片側面が垂直側面となったアリ構造の逆テーパー形状側面の根元までの距離が8mmであるのに対して、単アリ構造の取り付け面端部とアリ構造の逆テーパー形状側面の根元までの距離は16.5mmと約2倍の長さがある。 On the other hand, the amplitude is ± about 2 μm in the central part, and there is almost no difference, but in the middle part, the double dovetail structure maintains the same amplitude of ± 2 μm as in the ideal mating state, whereas the single dovetail structure Then it has increased to ± 4 μm. This tendency is more remarkable at the end of the mounting surface, and the amplitude of ultrasonic vibration at the end of the mounting surface is ± 2 μm in the ideal fitting state, ± 4 μm in the double dovetail structure, and ± about ± in the single dovetail structure. It has increased significantly to 8 μm. In the double dovetail structure, the distance to the base of the inverted tapered side surface of the dovetail structure in which the end of the mounting surface and one side surface are vertical sides is 8 mm, whereas the end of the mounting surface and the dovetail structure of the single dovetail structure The distance to the base of the reverse taper shape side surface is 16.5 mm, which is about twice as long.

ここで、アリ構造の逆テーパー形状側面の根元を固定端と考えた片持ち梁を考えると、自由端である取り付け面端部(接触面端部)の変位は梁の長さに比例することから、単アリ構造と複アリ構造の取り付け面端部での振幅の差が2倍であることも理解できる。取り付け面端部での振幅をより小さく抑えるならば、アリ構造の位置を、より取り付け面端部側に近づけ、片持ち梁の長さを短くすれば解決する。 Here, considering a cantilever beam in which the base of the inverted tapered side surface of the dovetail structure is considered as a fixed end, the displacement of the mounting surface end (contact surface end), which is a free end, is proportional to the length of the beam. Therefore, it can be understood that the difference in amplitude between the single-beam structure and the double-beam structure at the end of the mounting surface is doubled. If the amplitude at the end of the mounting surface is suppressed to be smaller, the solution is to move the position of the dovetail structure closer to the end of the mounting surface and shorten the length of the cantilever.

取り付け面端部での振幅の増大は、摩擦熱による温度上昇につながる。つまり、振動エネルギーは熱エネルギーとして損失するのである。図6は、超音波ホーンと超音波ヘッドの嵌合側壁と超音波ヘッド底部に黒染スプレー(東美化学製)を塗布した後、放射率を1に設定して赤外線サーモグラフィーで観察した熱的イメージ図である。図中において十字で示された画面中央部の温度と、画面内の最高温度を読み取り、超音波振動の印加時間と嵌合箇所側面の温度変化を図7に、超音波ヘッド底面の温度変化を図8に、それぞれ示した。 The increase in amplitude at the end of the mounting surface leads to an increase in temperature due to frictional heat. That is, the vibration energy is lost as heat energy. FIG. 6 shows the thermal observed by infrared thermography with the emissivity set to 1 after applying black dye spray (manufactured by Tobi Kagaku) to the fitting side wall of the ultrasonic horn and the ultrasonic head and the bottom of the ultrasonic head. It is an image diagram. The temperature at the center of the screen indicated by a cross in the figure and the maximum temperature in the screen are read, the application time of ultrasonic vibration and the temperature change on the side surface of the mating part are shown in FIG. 7, and the temperature change on the bottom surface of the ultrasonic head is shown in FIG. Each is shown in FIG.

画面中央部の温度と画面内最高温度にはそれほど大きな差異は認められない。嵌合箇所側面と超音波ヘッド底面のいずれの測定箇所でも、超音波振動の印加時間が長くなればなるほど摩擦熱発生による温度上昇は顕著となる。本実験での超音波振動の最長印加時間は10分であったが、単アリ構造では嵌合箇所側面で最高99.1℃、超音波ヘッド底面で79.0℃まで発熱した。しかし、複アリ構造での最高温度は側面で66.9℃、底面で62.8℃であり、この結果は側面で32%、底面で21%の温度上昇が抑制されたことを意味する。したがって、アリ構造の複数化が取り付け面端部でのばたつきによる摩擦熱の発生を抑制し、超音波振動の面内分布の改善に効果があることが判明した。 There is not much difference between the temperature in the center of the screen and the maximum temperature in the screen. The longer the application time of ultrasonic vibration is, the more remarkable the temperature rise due to the generation of frictional heat is at both the measurement points on the side surface of the fitting portion and the bottom surface of the ultrasonic head. The maximum application time of ultrasonic vibration in this experiment was 10 minutes, but in the single dovetail structure, heat was generated up to 99.1 ° C on the side surface of the fitting portion and 79.0 ° C on the bottom surface of the ultrasonic head. However, the maximum temperature in the double dovetail structure was 66.9 ° C. on the side surface and 62.8 ° C. on the bottom surface, and this result means that the temperature rise of 32% on the side surface and 21% on the bottom surface was suppressed. Therefore, it was found that the pluralization of the dovetail structure suppresses the generation of frictional heat due to flapping at the end of the mounting surface and is effective in improving the in-plane distribution of ultrasonic vibration.

本発明によれば、超音波切削、超音波ボンディング、超音波ウエルダー、超音波インプリント等の超音波振動を利用した様々な超音波加工装置において、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドを超音波ホーンから脱着可能にすることによって、摩耗や用途変更に伴う交換作業を超音波ヘッドのみに留め、高価な超音波ホーンの流用を可能にできる。また、本発明によれば、パターン形状に合わせて最適化した接合や成形、材料に合わせた基板間の接合等が可能となり、半導体製造での配線や化学・バイオチップでの流路形成において極めて有用である。 According to the present invention, in various ultrasonic processing devices using ultrasonic vibration such as ultrasonic cutting, ultrasonic bonding, ultrasonic welder, and ultrasonic imprint, the work piece is in direct contact with the work piece, and finally ultra-ultrasonic. By making the ultrasonic head that works by ultrasonic vibration removable from the ultrasonic horn, it is possible to limit the replacement work due to wear and change of use to the ultrasonic head only, and to divert an expensive ultrasonic horn. Further, according to the present invention, it is possible to perform bonding and molding optimized according to the pattern shape, bonding between substrates according to the material, etc., and it is extremely in wiring in semiconductor manufacturing and flow path formation in chemical / biochip. It is useful.

1 超音波ホーン
2 アリ構造
3 超音波ヘッド
4 物理的干渉箇所
5 物理的干渉箇所
6 アリ溝部
7 ホゾ部
1 Ultrasonic horn 2 Dovetail structure 3 Ultrasonic head 4 Physical interference point 5 Physical interference point 6 Dovetail groove part 7 Hozo part

Claims (7)

振動エネルギーを効率良く伝達させるための共鳴体である超音波ホーンと、
前記超音波ホーンに取り付けられて、被加工物に直接接触し、最終的に超音波振動で仕事をする超音波ヘッドと、を有する超音波加工装置において、
前記超音波ホーンと前記超音波ヘッドとは、それぞれの表面に形成された取り付け面を有し、前記超音波ホーンまたは前記超音波ヘッドのいずれか一方の取り付け面に複数のアリ溝部が配置され、他方の取り付け面に前記複数のアリ溝部に対応する複数のホゾ部が配置され、前記超音波ホーンと前記超音波ヘッドとは、前記複数のアリ溝部と前記複数のホゾ部とにより、前記超音波ホーンと前記超音波ヘッドとのそれぞれの取付け面が互いに接触して係合されるように形成され、
前記複数のアリ溝部と前記複数のホゾ部とは、挿抜時の焼き嵌めによるアリ溝部の膨脹および冷やし嵌めによるホゾ部の収縮の少なくともいずれか一方により、互いに対する取り付け及び取り外しがなされうるように形成されている、
ことを特徴とする超音波加工装置。
An ultrasonic horn, which is a resonator for efficiently transmitting vibration energy,
In an ultrasonic processing apparatus having an ultrasonic head attached to the ultrasonic horn, which comes into direct contact with an workpiece and finally works by ultrasonic vibration.
The ultrasonic horn and the ultrasonic head have mounting surfaces formed on their respective surfaces, and a plurality of dovetail grooves are arranged on the mounting surface of either the ultrasonic horn or the ultrasonic head. A plurality of hozo portions corresponding to the plurality of dovetail portions are arranged on the other mounting surface, and the ultrasonic horn and the ultrasonic head are formed by the plurality of dovetail groove portions and the plurality of hozo portions. The mounting surfaces of the horn and the ultrasonic head are formed so as to be in contact with each other and engaged with each other.
The plurality of dovetail grooves and the plurality of hoso portions are formed so that they can be attached to and detached from each other by at least one of expansion of the dovetail groove portion due to shrink fitting at the time of insertion and removal and contraction of the hozo portion due to cold fitting. Has been
An ultrasonic processing device characterized by this.
前記複数のアリ溝部は、前記取り付け面の中央部に配置される中央アリ溝部と、前記取り付け面の中央部の外側に配置される少なくとも一つの外側アリ溝部とを含み、
前記複数のホゾ部は、前記中央アリ溝部に対応する中央ホゾ部と、前記外側アリ溝部に対応する少なくとも一つの外側ホゾ部とを含む、
ことを特徴とする請求項1に記載の超音波加工装置。
The plurality of dovetail grooves include a central dovetail groove portion arranged in the central portion of the mounting surface and at least one outer dovetail groove portion arranged outside the central portion of the mounting surface.
The plurality of hozo portions include a central hozo portion corresponding to the central dovetail groove portion and at least one outer hozo portion corresponding to the outer dovetail groove portion.
The ultrasonic processing apparatus according to claim 1.
前記中央アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部が、ともに傾斜を有した斜辺部とされるような台形形状であり、前記中央ホゾ部は、断面視して、前記中央アリ溝部に対応する台形形状であり、
前記外側アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部の内の、取り付け面中央部に対して遠位側の対辺部が傾斜を有した斜辺部とされるような台形形状であり、前記外側ホゾ部は、断面視して、前記外側アリ溝部に対応する台形形状である、
ことを特徴とする請求項2に記載の超音波加工装置。
In a cross-sectional view, the central dovetail groove portion has an opening as an upper bottom portion, a lower bottom portion longer than the upper bottom portion, and a pair of opposite side portions connecting the upper bottom portion and the lower bottom portion are hypotenuses having an inclination. It has a trapezoidal shape that can be regarded as a portion, and the central hozo portion has a trapezoidal shape corresponding to the central dovetail groove portion when viewed in cross section.
The outer dovetail groove portion has an opening as an upper bottom portion and a lower bottom portion longer than the upper bottom portion in a cross-sectional view, and is a central portion of a mounting surface in a set of opposite sides connecting the upper bottom portion and the lower bottom portion. It has a trapezoidal shape such that the opposite side portion on the distal side is a hypotenuse portion having an inclination, and the outer hozo portion has a trapezoidal shape corresponding to the outer dovetail groove portion when viewed in cross section.
The ultrasonic processing apparatus according to claim 2.
前記複数のアリ溝部及び前記複数のホゾ部は、前記外側アリ溝部と前記外側ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスが、前記中央アリ溝部と前記中央ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスよりも大きくなるように形成されている、ことを特徴とする請求項3に記載の超音波加工装置。 The plurality of dovetail groove portions and the plurality of hozo portions have a clearance in a direction parallel to the mounting surface between the outer dovetail groove portion and the outer hozo portion, and the clearance between the central dovetail groove portion and the central hozo portion. The ultrasonic processing apparatus according to claim 3, wherein the ultrasonic processing apparatus is formed so as to be larger than a clearance in a direction parallel to the mounting surface of the above. 前記外側アリ溝部及び前記外側ホゾ部は、前記取り付け面中央部からの離間距離が大きくなるほど、前記外側アリ溝部と前記外側ホゾ部との間の前記取り付け面に対して平行方向におけるクリアランスが大きくなるように形成されている、ことを特徴とする請求項4に記載の超音波加工装置。 The greater the distance between the outer dovetail groove portion and the outer hozo portion from the central portion of the mounting surface, the greater the clearance in the direction parallel to the mounting surface between the outer dovetail groove portion and the outer hozo portion. The ultrasonic processing apparatus according to claim 4, wherein the ultrasonic processing apparatus is formed in such a manner. 前記外側アリ溝部及び前記外側ホゾ部は、挿入後前記超音波ホーン及び前記超音波ヘッドの温度が室温に戻るのに伴い、前記外側アリ溝部の斜辺部であって取り付け面中央部に対して遠位側の斜辺部と前記外側ホゾ部の対応斜辺部であって取り付け面中央部に対して遠位側の対応斜辺部とが接触するように形成されている、ことを特徴とする請求項5に記載の超音波加工装置。 The outer dovetail groove and the outer hozo are hypotenuses of the outer dovetail groove and far from the center of the mounting surface as the temperatures of the ultrasonic horn and the ultrasonic head return to room temperature after insertion. The fifth aspect of the present invention is characterized in that the hypotenuse portion on the position side and the corresponding hypotenuse portion on the outer hozo portion are formed so as to be in contact with the corresponding hypotenuse portion on the distal side with respect to the central portion of the mounting surface. The ultrasonic processing apparatus described in. 前記外側アリ溝部は、断面視して、開口部を上底部とし、下底部が上底部より長いものとされ、上底部と下底部とを結ぶ一組の対辺部の内の、取り付け面中央部に対して遠位側の対辺部が傾斜を有した斜辺部とされ、取り付け面中央部に対して近位側の対辺部が、上底部と下底部とに対して直交する直交辺部とされるような台形形状であり、前記外側ホゾ部は、断面視して、前記外側アリ溝部に対応する台形形状である、ことを特徴とする請求項6に記載の超音波加工装置。 The outer dovetail groove portion has an opening as an upper bottom portion and a lower bottom portion longer than the upper bottom portion in a cross-sectional view, and is a central portion of a mounting surface in a set of opposite sides connecting the upper bottom portion and the lower bottom portion. The opposite side of the distal side is a hypotenuse with an inclination, and the opposite side of the proximal side with respect to the central part of the mounting surface is an orthogonal side portion orthogonal to the upper bottom and the lower bottom. The ultrasonic processing apparatus according to claim 6, wherein the outer hozo portion has a trapezoidal shape corresponding to the outer dovetail groove portion in a cross-sectional view.
JP2016232539A 2016-11-30 2016-11-30 Ultrasonic processing equipment Active JP6888776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016232539A JP6888776B2 (en) 2016-11-30 2016-11-30 Ultrasonic processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232539A JP6888776B2 (en) 2016-11-30 2016-11-30 Ultrasonic processing equipment

Publications (2)

Publication Number Publication Date
JP2018089634A JP2018089634A (en) 2018-06-14
JP6888776B2 true JP6888776B2 (en) 2021-06-16

Family

ID=62564178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232539A Active JP6888776B2 (en) 2016-11-30 2016-11-30 Ultrasonic processing equipment

Country Status (1)

Country Link
JP (1) JP6888776B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000062029A (en) * 1998-08-17 2000-02-29 Sony Corp Ultrasonic welded horn
JP4158427B2 (en) * 2002-06-06 2008-10-01 ブラザー工業株式会社 Ultrasonic machining apparatus and ultrasonic vibrator / tool assembly used therefor
JP5573109B2 (en) * 2009-11-05 2014-08-20 三菱電機株式会社 Permanent magnet motor rotor
JP5755859B2 (en) * 2010-09-03 2015-07-29 旭化成イーマテリアルズ株式会社 Large pellicle frame, large pellicle, and method for manufacturing large pellicle frame

Also Published As

Publication number Publication date
JP2018089634A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2009125748A1 (en) Support device for resonator
US3329408A (en) Transducer mounting arrangement
Neppiras Ultrasonic welding of metals
JP5583179B2 (en) Bonding equipment
JP6553061B2 (en) Ultrasonic sonotrode for transducers aligned side by side
Tan et al. A novel ultrasonic elliptical vibration cutting device based on a sandwiched and symmetrical structure
US3529660A (en) Solid horn with cooling means
JP6888776B2 (en) Ultrasonic processing equipment
JPWO2007114034A1 (en) Cutting device, processing device, molding die, optical element, and cutting method
US20020152851A1 (en) Elliptical vibration cutting method and elliptical vibration cutting apparatus
JPH0574874A (en) Ultrasonic connection method of metallic fine wiring and device
JP2007038620A (en) Disc-like blade and cutting apparatus
Mekaru et al. Detachable expansion fit ultrasonic head with multiple dovetail structures
Imai et al. Finding the optimum parameters for ultrasonic welding of aluminum alloys
TW202012098A (en) Ultrasonic cutting device
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JP2008128875A (en) Ultrasonic vibration body
Patel et al. Analysis of Different Shaped Sonotrodes used for Plastic Welding
JP2006198758A (en) Ultrasonic vibration table
Zheng et al. Experimental study of the relationship between in-process signals and cut quality in gas-assisted laser cutting
JP2007168061A (en) Bite holder
JP6885804B2 (en) Ultrasonic bonding device
JP2007288289A (en) Ultrasonic transducer and ultrasonic cleaner
JP2006110673A (en) Cutting method, cut product, and accessory
Isobe et al. Effect of Vibration Direction of Ultrasonic Vibrating Cutting Edge on Internal Stress Fluctuation of Workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210511

R150 Certificate of patent or registration of utility model

Ref document number: 6888776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150