JP6887774B2 - アブレーション電流測定 - Google Patents

アブレーション電流測定 Download PDF

Info

Publication number
JP6887774B2
JP6887774B2 JP2016182762A JP2016182762A JP6887774B2 JP 6887774 B2 JP6887774 B2 JP 6887774B2 JP 2016182762 A JP2016182762 A JP 2016182762A JP 2016182762 A JP2016182762 A JP 2016182762A JP 6887774 B2 JP6887774 B2 JP 6887774B2
Authority
JP
Japan
Prior art keywords
ablation
amplitude
sensor
insertion tube
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182762A
Other languages
English (en)
Other versions
JP2017060758A (ja
Inventor
マイケル・レビン
アビ・レウベニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of JP2017060758A publication Critical patent/JP2017060758A/ja
Application granted granted Critical
Publication of JP6887774B2 publication Critical patent/JP6887774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00166Multiple lumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00964Features of probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明の実施形態は、心臓内アブレーション処置などのアブレーション処置、並びに関連システム及び装置に関する。
心臓内の低侵襲的なアブレーションは、各種不整脈の治療選択肢である。このような治療を実施するために、医師は、典型的には、血管系を介して心臓にカテーテルを挿入し、異常な電気的活動の区域においてカテーテルの遠位端を心筋組織と接触させ、続いて、組織壊死を生じさせるために、遠位端で又は遠位端の近傍で1つ若しくは2つ以上の電極に通電する。
その開示が、参照によって本明細書に組み込まれる、米国特許第6,059,780号は、ハンドピース、ハンドピース遠位端から延在する電極、プローブ、熱センサ、及びエネルギー源を含むアブレーション装置について記載している。電極は、遠位端並びにルーメン、冷却媒体流入導管、及び冷却媒体流出導管を含む。両方の導管は、電極ルーメンを通って、電極遠位端まで延在する。流入及び流出導管内を流れる冷却媒体から隔絶された側壁ポートが、電極に形成されている。プローブは、少なくとも一部が電極ルーメン内に配置可能であり、側壁開口内に進められ、側壁開口から引き戻されるように構成されている。熱センサは、プローブによって支持されている。電極は、エネルギー源に連結している。
その開示が、参照によって本明細書に組み込まれる、欧州特許出願第0566726号は、関連する電極アセンブリに送達された電流及び電圧を測定し、測定された電流及び電圧の信号を生成する、組織をアブレーションするためのシステムについて記載している。このシステムは、測定された電圧の信号を、測定された電流の信号によって除算し、測定された組織のインピーダンス信号を導出する。このシステムは、測定された組織のインピーダンス信号に基づいて、制御機能を実施する。
その開示が、参照によって本明細書に組み込まれる、国際特許出願第2013/156896号は、エネルギーを物体に印加するためのエネルギー印加装置について記載している。エネルギー印加部は、物体にエネルギーを印加し、このエネルギー印加部は、エネルギーを印加するために、電流を使用するよう適合されている。電流測定部は、エネルギー印加部によって使用された電流を測定し、測定された電流に基づいて、エネルギーが物体に印加されているかを示す信号を提供する。この信号は、エネルギー印加部と監視及び/又は表示部との間の直接通信を必要とすることなく、例えば、エネルギーが実際に印加されているかどうかの情報を使用する及び/又は指示するための監視部及び/又は表示部によって用いられ得る。
その開示が、参照によって本明細書に組み込まれる、米国特許出願第2003/0187430号は、電極と、負荷が電極と基準装置との間に概ね位置するように、組織負荷に対して位置付けられるよう適合された電圧測定基準装置とについて記載する。第1のワイヤと第2のワイヤとが、電極に電気的に接続されている。電力制御システムは、RF電流を第1のワイヤを通して負荷に送達し、第2のワイヤと基準装置との間の負荷の両端の電圧を測定する。電力制御システムは、第1のワイヤを通してRF電流を測定し、測定された電流及び電圧を用いて、負荷に送達された電力を決定する。第1及び第2のワイヤは、それらが取り付けられている電極と組み合わせて熱電対を形成する、熱電対導線として機能する。電力制御システムは、導線全体の電圧を監視し、電流の送達中に、あるいは電流が送達されていない場合のいずれかで、電極において温度を決定する。
その開示が、参照によって本明細書に組み込まれる、米国特許出願第2014/0243813号は、病変形成に関するフィードバックを実時間で提供するためのアブレーションシステム及び方法について記載する。この方法及びシステムは、アブレーション電極と組織との間の電気的結合又は接触の程度に基づいて、組織の吸収率を評価する。吸収率は、続いて、生じている病変に関する実時間フィードバックを提供するために、電力レベル及び興奮時間を含む他の情報と共に用いられ得る。フィードバックは、例えば、推定された病変体積及び他の病変特性の形態で、提供されてもよい。この方法及びシステムは、所定の接触の程度、並びに生じている病変の深さについて、所望の病変特性を達成するために推定される処置時間を提供することができる。接触の程度は、位相角技術及び結合指数を含む種々の技術を用いて測定されてもよい。
本発明のいくつかの実施形態によって、アブレーション装置が提供される。この装置は、挿入管、該管の遠位端に配設されたアブレーション電極、導電素子、及びセンサを含む。導電素子は、アブレーション電流を、管の近位端からアブレーション電極まで伝達し、センサは、アブレーション電流の振幅を管の遠位端において測定する。
いくつかの実施形態では、センサは、アブレーション電流からエネルギーを採取するように更に構成されている。
いくつかの実施形態では、センサは、管の内部に配設されている。
いくつかの実施形態では、センサは、管の近位端に配設されている。
いくつかの実施形態では、管の外径は、4mm未満である。
いくつかの実施形態では、センサは、アブレーション電流によって生成される磁界により誘起された電圧の振幅を測定することによって、アブレーション電流の振幅を測定するように構成されている。
いくつかの実施形態では、このセンサは、
導電素子が中を通る磁気コアと、
コアの周りに巻かれたコイルと、
コイルに連結された回路であって、アブレーション電流によって生成されるコア内の磁界によってコイル内で誘起された電圧の振幅を測定することによって、アブレーション電流の振幅を測定するように構成されている、回路と、を含む。
いくつかの実施形態では、この装置は、磁気コアを通る、挿入管の近位端からアブレーション電極まで流体を送達するように構成された、流体送達管を更に含む。
いくつかの実施形態では、コアの外径は、2mm未満である。
いくつかの実施形態では、導電素子は、磁気コアの周りに1回又は2回以上巻かれている。
いくつかの実施形態では、センサは、誘起された電圧の測定された振幅を示すフィードバック信号を、導電素子で変調するように更に構成されている。
いくつかの実施形態では、この装置は、フィードバック信号から、誘起された電圧の振幅を確認するように構成された受信回路を更に含む。
いくつかの実施形態では、この装置は、誘起された電圧の振幅に基づいて、アブレーション電流の振幅を推定するように構成されたプロセッサを更に含む。
いくつかの実施形態では、このプロセッサは、この推定に応じて、アブレーション電流の発生器を制御するように更に構成されている。
更に、本発明のいくつかの実施形態によって、アブレーション電流の振幅を推定するための方法が提供される。挿入管、該管の遠位端に配設されたアブレーション電極、及びアブレーション電流を管の近位端からアブレーション電極まで伝達するように構成された導電素子が提供される。アブレーション電流が、導電素子に通され、管の遠位端位おいてアブレーション電流の振幅が測定される。
いくつかの実施形態では、この方法は、アブレーション電流を導電素子に通す前に、管を患者の心臓に挿入することを更に含む。
いくつかの実施形態では、アブレーション電流の振幅を測定することは、管の内部に配設されたセンサを用いて、振幅を測定することを含む。
いくつかの実施形態では、アブレーション電流の振幅を測定することは、アブレーション電流によって生成される磁界により誘起された電圧の振幅を測定することによって、アブレーション電流の振幅を測定することを含む。
いくつかの実施形態では、アブレーション電流を導電素子に通すことは、アブレーション電流を磁気コアに通し、アブレーション電流によって生成されるコア内の磁界により誘起された電圧の振幅を測定することによって、アブレーション電流の振幅を測定することを含む。
この方法は、いくつかの実施形態では、誘起された電圧の測定された振幅を示しているフィードバック信号を、導電素子で変調することを更に含む。
いくつかの実施形態では、この方法は、アブレーション電流の振幅を測定することに応じて、アブレーション電流の発生器を制御することを更に含む。
更に、本発明のいくつかの実施形態によって、アブレーション装置を製造するための方法が提供される。挿入管が提供され、アブレーション電極が該管の遠位端に配設されている。導電素子が、管の近位端とアブレーション電極との間に通され、導電素子は、アブレーション電流を管の近位端からアブレーション電極まで伝達するように構成されている。センサは、管の内部に置かれ、このセンサは、管の遠位端においてアブレーション電流の振幅を測定するように構成されている。
いくつかの実施形態では、センサは、磁気コアを含み、導電素子を、管の近位端とアブレーション電極との間に通すことは、導電素子を磁気コアに通すことを含む。
いくつかの実施形態では、この方法は、導電素子を、磁気コアの周りに1回又は2回以上巻き付けることを更に含む。
いくつかの実施形態では、この方法は、挿入管の近位端からアブレーション電極まで流体を送達するように構成された流体供給管を、磁気コアに通すことを更に含む。
本発明は、その実施形態の以下の詳細な説明を図面と併せ読むことによって、更に十分に理解されるであろう。
本発明の実施形態による、心臓アブレーション療法のためのシステムの概略的な図である。 本発明のいくつかの実施形態による、カテーテルの概略図である。 本発明のいくつかの実施形態による、カテーテルの概略図である。 本発明のいくつかの実施形態による、センサの概略図である。
概観
アブレーション処置を実施する場合、挿入管を備えるカテーテルが患者の心臓に挿入され、管の遠位端に配設されたアブレーション電極を、患者の心組織と接触させる。組織をアブレーションするために、続いて、アブレーション電流を、管の近位端における高周波(RF)発生器からアブレーション電極まで通す。
処置が安全かつ効果的に実施されるために、処置を行う医師が、アブレーション電流の振幅を監視することが有利である。1つの解決策は、センサを管の近位端に配置することであって、例えば、このようなセンサをRF発生器に組み込むことによって配置する。しかしながら、この解決策は、アブレーション電流が管の遠位端に向かって通ると、アブレーション電流の一部が寄生容量となって失われる可能性があり、これによって組織に実際に送達されるアブレーション電流の振幅が、管の近位端で測定される振幅よりも小さくなる場合があるという点で、準最適であり得る。
本発明の実施形態は、管の遠位端においてアブレーション電流の振幅が測定されることによる、異なる解決策を提供する。このような実施形態では、センサは、管の遠位端又はその近傍に、通常は、管の内部に配置されてもよい。このセンサは、例えば、磁気コア、コアの周りに巻かれたコイル、及びコイルに連結した回路を備えることができる。アブレーション電流をアブレーション電極に送達する導電素子(例えば、ワイヤ)が、磁気コアを通り、これにより、アブレーション電流によって、磁界がコア内に生成される。磁界がコイル内で電圧を誘起し、回路が誘起された電圧の振幅を測定する。続いて、アブレーション電流の振幅が、誘起された電圧の振幅に基づいて、推定され得る。
一般に、特許請求の範囲内及び本出願の説明で用いられるとき、アブレーション電流の測定に対するいかなる言及にも、直接又は間接測定のあらゆる形態がその範囲内に含まれ得る。例えば、上述の誘起された電圧の振幅に基づくアブレーション電流の振幅の推定は、アブレーション電流の測定と称されてもよい。
システムの説明
図1を参照すると、図1は、本発明の実施形態による、心臓アブレーション療法のためのシステム20の概略的な図である。手術者28(インターベンショナル心臓内科医など)は、患者26の脈管系を経由して患者の心臓24の室にカテーテル22などの体内プローブを挿入する。例えば、心房細動を治療するために、手術者はカテーテルを左心房に前進させて、カテーテルの遠位端におけるアブレーション電極30を、監視及び/又はアブレーションされる心筋組織と接触させてもよい。
カテーテル22は、ハンドル31にその近位端で接続され、ハンドル31は、次にコンソール32に接続される。コンソール32は、標的組織をアブレーションするために、アブレーション電極30に電力を供給する、高周波(RF)発生器34を備える。灌注ポンプ38は、カテーテル22を介してアブレーション電極30に、食塩水など灌注流体を供給する。(灌注流体は、続いて、血餅が形成することを防止することを補助するために、アブレーション処置中に、血液に送られる)。プロセッサ36は、RFエネルギー発生器34を、自動的に又は手術者28からの入力に応じてのいずれかで制御することによって、アブレーション電流を監視する及び/又はこの電流を制御するために用いられ得る。処置の前、処置中、及び/又は処置後に、心電図(ECG)記録装置60が、患者のECGを記録してもよい。
ここで図2A〜Bを参照すると、同図は本発明のいくつかの実施形態によるカテーテル22の概略図である。カテーテル22は、近位端及び遠位端を有する挿入管40を備える。アブレーション電極30は、管の遠位端に配設され、導電素子(例えば、ワイヤ)44は、アブレーション電流52を管の近位端からアブレーション電極まで伝達するように構成されている。例えば、図2Bに示されるように、挿入管は、ルーメン42を画定するように形作られてもよく、導電素子44は、ルーメン42の内部を近位遠位方向に走ってもよい。センサ23は、管の遠位端においてアブレーション電流52の振幅を測定するように構成されている。通常、センサ23は、管の遠位端又はその近傍に、通常は、管の内部に配設されている。センサ23は、図に示され、以降に説明されるように具体化されてもよい。あるいは、センサ23は、任意の他の適切な電流測定センサを含んでもよい。
図2A〜Bに示された特定の実施形態では、センサ23は、磁気コア46(例えば、フェライトなどの強磁性材料を含む)を備える。磁気コア46は、通常、管の遠位端の近傍で、管の内部に(例えば、ルーメン42の内部に)配設されており、導電素子44は、磁気コア46を通る。図2A〜Bに更に示されるように、センサ23は、コアの周りに巻かれているコイル48を更に備える。(通常、コイルは、コイルのインダクタンス及び寄生容量によって形成される共振回路の共振周波数が、アブレーション電流52の周波数よりも大幅に高いように巻かれる。)アブレーション電流52が、磁気コアを通ると、アブレーション電流は、コア内に磁界を生成し、これが、次には、コイル48内に電圧を誘起する。通常、コイルに連結している回路50が、誘起された電圧を測定する。
通常、管40の外径OD1は、4mm未満である。例えば、OD1は、2〜4mm、例えば約3mmであってもよい。本発明の実施形態は、コア46、コイル48、及び回路50を製造するための技術で、上記要素が、管内に嵌合するのに十分に小さいように製造する技術を提供する。例えば、コアの外径OD2は、2mm未満、例えば、1〜1.5mmであってもよい。本発明の範囲は、コアを円形、楕円形、又は任意の他の好適な形状に形作ること、及びコアを、管の長手方向軸に対して任意の好適な配向で整列させることを含む。
いくつかの実施形態では、挿入管40は、ルーメン42に加えて、1つ又は2つ以上のルーメンを画定するよう更に形作られる。例えば、挿入管は、潅注流体をポンプ38(図1)からアブレーション電極まで送達するように構成された、灌注流体ルーメン45を画定するよう形作られてもよい。挿入管は、1つ又は2つ以上の制御ワイヤ49がそれに沿って走行する、制御ワイヤルーメン43を画定するよう形作られてもよい。制御ワイヤ49は、ハンドル31を介して、カテーテルを操縦するよう、及び/又はそうでなければカテーテルを制御するように操作されてもよい。いくつかの実施形態では、カテーテルは、カテーテルの遠位端において、磁気式位置センサを更に備える。このような実施形態では、挿入管は、磁気式ナビゲーションセンサに接続されている、それに沿ってワイヤ51を走らす磁気式センサワイヤルーメン47を画定するように更に形作られてもよい。通常、磁気コア46は、位置センサから十分に遠く離れて、例えば、位置センサから少なくとも10mm離れて置かれ、これにより、磁気コア及び位置センサは、互いに妨害することはない。
いくつかの実施形態では、管は、専用の灌注流体ルーメンを画定するように形作られない。その代わりとして、灌注流体をポンプ38から送達する流体送達管が、磁気コアを通る。このような実施形態は、挿入管内の空間が、より効率的に用いられることを可能にする。
一般に、本発明の範囲は、任意の適切な数若しくはタイプのルーメン内に配設されたワイヤ、管、又は他の要素と共に、挿入管内に任意の適切な数の別個のルーメンを有することを含むことが留意される。
いくつかの実施形態では、導電素子44は、磁気コア46の周りに1回又は2回以上巻かれている。アブレーション電流の振幅を推定するために、誘起電圧の測定された振幅は、少なくとも(i)コアの周りの導電素子の巻き数と、(ii)コアの周りのコイル48の巻き数との関数である係数を掛けることができる。(導電素子44が、磁気コアの周りに巻かれない場合、用いられる(i)の値は、2分の1である。)
ここで図3を更に参照すると、同図は本発明のいくつかの実施形態による回路50の概略図である。回路50は、図2A〜Bで示されるように、コイル48の2つの端部を受容するように構成された、入力部70a及び70bを備える。回路50は、コイル内の誘起された電圧を測定するように構成された、測定部62を更に備える。例えば、測定部62は、抵抗器64の両端の誘起された電圧を測定するように構成された電圧計を備えてもよい。(測定部内の回路の精密な構成は、図3には示されていない。)
通常、測定部62は、ST(商標)からのSTM32L151RE(商標)マイクロコントローラなどの、コントローラ(CTRL)66を更に備える。スイッチ68(例えば、バイポーラMOSFETスイッチ)を制御することによって、コントローラ66は、誘起された電圧の測定された振幅を表示するために、導電素子44上で電流を、アブレーション電流の周波数とは異なる周波数で変調する。このようにして、センサは、誘起された電圧の測定された振幅を示しているフィードバック信号を、導電素子で変調する。
通常、この変調は、受信回路72によって検出される。受信回路72は、図2Aに示す、ハンドル31内、又はコンソール32内(図1)などの、カテーテルの近位端に配設され得る。受信回路は、フィードバック信号から、誘起された電圧の振幅を確認する。通常、受信回路72は、次いで、誘起された電圧の振幅をプロセッサ36(図1)に通信し、プロセッサ36は、誘起された電圧の振幅に基づいて、アブレーション電流の振幅を推定する。この推定に応じて、プロセッサは、次いで、例えば、発生器によって供給される電力を増加又は減少させることによって、RF発生器34を制御してもよい。代替的に又は付加的に、プロセッサは、推定を示す出力を生成してもよく、手術者28(図1)は、それに応じて、発生器を制御してもよい。
通常、回路50は、例えば、Linear Technology(商標)からのLTC3330(商標)ユニット、又はMAXTM(商標)からのMAX17710(商標)などのエネルギー採取部56を更に備える。エネルギー採取部56は、誘起された交流(AC)電圧を整流し、整流された直流(DC)電圧を用いて蓄積キャパシター58を充電し、蓄積キャパシターが、続いて測定部62に電力を供給することによって、アブレーション電流からエネルギーを採取する。このような実施形態では、アブレーション電流から採取されたエネルギーが、センサに電力を供給するのに十分であり得るために、センサに電池又は他の専用の電源を必ずしも供給しなくてもよい。(アブレーション電流から採取されたエネルギーは、通常、アブレーション電流によって供給される総エネルギーの一部分に過ぎず、これにより、アブレーション電流からのエネルギーの採取は、アブレーション処置の効力を低下させることはない。)
通常、受信回路は、例えば、前置増幅器、復調器、デコーダー、及び/又は他の電子部品を含む回路74を備えている交流器を備える。前置増幅器は、復調器用に受信信号を増幅し、復調器は、続いて、受信信号からアブレーション電流周波数をフィルター処理する。通常、前述のSTM32L151RE(商標)コントローラなどのマイクロコントローラを備えるデコーダーは、続いて、誘起された電圧の振幅を確認し、頭書に記載したプロセッサと通信する。
代替実施形態では、受信回路よりはむしろプロセッサが、フィードバック信号から誘起された電圧の振幅を確認する。
いくつかの実施形態では、センサは、受信回路にフィードバックを提供するために、上述の方法とは異なる方法を用いる。例えば、センサは、別々の導電素子上にフィードバック信号を送信するために静電結合を用いてもよい。
当業者であれば、本発明が上記で具体的に図示及び記載されたものに限定されない点を理解するであろう。それよりもむしろ、本発明の範囲は、上述した様々な特徴の組み合わせ及び部分的組み合わせ、並びに上述の説明を読むことで当業者が想到するであろう、従来技術にはない特徴の変形及び修正を含む。参照により本特許出願に組み込まれた文書は、本出願の一体部分と見なされるべきであるが、但し、これらの組み込まれた文書におけるいずれかの用語が、本明細書において明示的又は暗示的になされた定義と相反するように定義されている限りにおいて、本明細書における定義のみが検討されるべきである。
〔実施の態様〕
(1) アブレーション装置であって、
挿入管と、
前記管の遠位端に配設されたアブレーション電極と、
アブレーション電流を、前記管の近位端から前記アブレーション電極まで伝達するように構成された、導電素子と、
前記管の前記遠位端において前記アブレーション電流の振幅を測定するように構成された、センサと、を備えるアブレーション装置。
(2) 前記センサが、前記アブレーション電流からエネルギーを採取するように更に構成されている、実施態様1に記載の装置。
(3) 前記センサが、前記管の内部に配設されている、実施態様1に記載の装置。
(4) 前記センサが、前記管の前記遠位端に配設されている、実施態様3に記載の装置。
(5) 前記管の外径が4mm未満である、実施態様3に記載の装置。
(6) 前記センサが、前記アブレーション電流によって生成される磁界により誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定するように構成されている、実施態様1に記載の装置。
(7) 前記センサが、
前記導電素子が中を通る磁気コアと、
前記コアの周りに巻かれたコイルと、
前記コイルに連結された回路であって、前記アブレーション電流によって生成される前記コア内の磁界により、前記コイル内で誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定するように構成されている、回路と、を備える、実施態様6に記載の装置。
(8) 前記挿入管の前記近位端から前記アブレーション電極まで流体を送達するように構成され、前記磁気コアを通る、流体送達管を更に備える、実施態様7に記載の装置。
(9) 前記コアの外径が、2mm未満である、実施態様7に記載の装置。
(10) 前記導電素子が、前記磁気コアの周りに1回又は2回以上巻かれている、実施態様7に記載の装置。
(11) 前記センサが、前記誘起された電圧の前記測定された振幅を示しているフィードバック信号を、前記導電素子で変調するように更に構成されている、実施態様6に記載の装置。
(12) 前記フィードバック信号から、前記誘起された電圧の前記振幅を確認するように構成された受信回路を更に備える、実施態様11に記載の装置。
(13) 前記誘起された電圧の前記振幅に基づいて、前記アブレーション電流の前記振幅を推定するように構成されたプロセッサを更に備える、実施態様6に記載の装置。
(14) 前記プロセッサが、前記推定に応じて、前記アブレーション電流の発生器を制御するように更に構成されている、実施態様13に記載の装置。
(15) アブレーション電流の振幅を推定するための方法であって、
(i)挿入管と、(ii)前記管の遠位端に配設されたアブレーション電極と、(iii)アブレーション電流を前記管の近位端から前記アブレーション電極まで伝達するように構成された導電素子と、を提供することと、
前記アブレーション電流を前記導電素子に通すことと、
前記管の前記遠位端において前記アブレーション電流の振幅を測定することと、を含む、方法。
(16) 前記アブレーション電流を前記導電素子に通す前に、前記管を患者の心臓に挿入することを更に含む、実施態様15に記載の方法。
(17) 前記アブレーション電流の前記振幅を測定することが、前記管の内部に配設されたセンサを用いて、前記振幅を測定することを含む、実施態様15に記載の方法。
(18) 前記アブレーション電流の前記振幅を測定することが、前記アブレーション電流により生成される磁界によって誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定することを含む、実施態様15に記載の方法。
(19) 前記アブレーション電流を前記導電素子に通すことが、前記アブレーション電流を磁気コアに通すことを含み、前記アブレーション電流の前記振幅を測定することが、前記アブレーション電流によって生成される前記コア内の磁界により誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定することを含む、実施態様18に記載の方法。
(20) 前記誘起された電圧の前記測定された振幅を示しているフィードバック信号を、前記導電素子で変調することを更に含む、実施態様18に記載の方法。
(21) 前記アブレーション電流の前記振幅を測定することに応じて、前記アブレーション電流の発生器を制御することを更に含む、実施態様15に記載の方法。
(22) アブレーション装置を製造する方法であって、
挿入管を提供することであって、アブレーション電極が前記管の遠位端に配設されている、提供することと、
導電素子を、前記管の近位端と前記アブレーション電極との間に通すことであって、前記導電素子が、アブレーション電流を前記管の前記近位端から前記アブレーション電極まで伝達するように構成される、通すことと、
センサを前記管の内部に置くことであって、前記センサが、前記管の前記遠位端において前記アブレーション電流の振幅を測定するように構成される、置くことと、を含む、方法。
(23) 前記センサが、磁気コアを含み、前記導電素子を、前記管の前記近位端と前記アブレーション電極との間に通すことが、前記導電素子を前記磁気コアに通すことを含む、実施態様22に記載の方法。
(24) 前記導電素子を、前記磁気コアの周りに1回又は2回以上巻き付けることを更に含む、実施態様23に記載の方法。
(25) 前記挿入管の前記近位端から前記アブレーション電極まで流体を送達するように構成された流体送達管を、前記磁気コアに通すことを更に含む、実施態様23に記載の方法。

Claims (16)

  1. アブレーション装置であって、
    挿入管と、
    前記挿入管の遠位端に配設されたアブレーション電極と、
    アブレーション電流を、前記挿入管の近位端から前記アブレーション電極まで伝達するように構成された、導電素子と、
    前記挿入管の前記遠位端において前記アブレーション電流の振幅を測定するように構成された、センサと、を備え、
    前記センサが、前記アブレーション電流によって生成される磁界により誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定するように構成され、
    前記センサが、前記誘起された電圧の前記測定された振幅を示しているフィードバック信号を、前記導電素子で変調するように更に構成されているアブレーション装置。
  2. 前記センサが、前記アブレーション電流からエネルギーを採取するように更に構成されている、請求項1に記載の装置。
  3. 前記センサが、前記挿入管の内部に配設されている、請求項1に記載の装置。
  4. 前記センサが、前記挿入管の前記遠位端に配設されている、請求項3に記載の装置。
  5. 前記挿入管の外径が4mm未満である、請求項3に記載の装置。
  6. 前記センサが、
    前記導電素子が中を通る磁気コアと、
    前記磁気コアの周りに巻かれたコイルと、
    前記コイルに連結された回路であって、前記アブレーション電流によって生成される前記磁気コア内の磁界により、前記コイル内で誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定するように構成されている、回路と、を備える、請求項1に記載の装置。
  7. 前記挿入管の前記近位端から前記アブレーション電極まで流体を送達するように構成され、前記磁気コアを通る、流体送達管を更に備える、請求項6に記載の装置。
  8. 前記磁気コアの外径が、2mm未満である、請求項6に記載の装置。
  9. 前記導電素子が、前記磁気コアの周りに1回又は2回以上巻かれている、請求項6に記載の装置。
  10. 前記フィードバック信号から、前記誘起された電圧の前記振幅を確認するように構成された受信回路を更に備える、請求項9に記載の装置。
  11. 前記誘起された電圧の前記振幅に基づいて、前記アブレーション電流の前記振幅を推定するように構成されたプロセッサを更に備える、請求項1に記載の装置。
  12. 前記プロセッサが、前記推定に応じて、前記アブレーション電流の発生器を制御するように更に構成されている、請求項11に記載の装置。
  13. アブレーション装置を製造する方法であって、
    前記方法は、
    挿入管を提供することであって、アブレーション電極が前記挿入管の遠位端に配設されている、提供することと、
    導電素子を、前記挿入管の近位端と前記アブレーション電極との間に通すことであって、前記導電素子が、アブレーション電流を前記挿入管の前記近位端から前記アブレーション電極まで伝達するように構成される、通すことと、
    センサを前記挿入管の内部に置くことと、を含み、
    前記アブレーション装置は、前記挿入管と、前記導電素子と、前記センサとを備え、
    前記センサが、前記挿入管の前記遠位端において前記アブレーション電流の振幅を測定するように構成され、
    前記センサが、前記アブレーション電流によって生成される磁界により誘起された電圧の振幅を測定することによって、前記アブレーション電流の前記振幅を測定するように構成され、
    前記センサが、前記誘起された電圧の前記測定された振幅を示しているフィードバック信号を、前記導電素子で変調するように更に構成される方法。
  14. 前記センサが、磁気コアを含み、前記導電素子を、前記挿入管の前記近位端と前記アブレーション電極との間に通すことが、前記導電素子を前記磁気コアに通すことを含む、請求項13に記載の方法。
  15. 前記導電素子を、前記磁気コアの周りに1回又は2回以上巻き付けることを更に含む、請求項14に記載の方法。
  16. 前記挿入管の前記近位端から前記アブレーション電極まで流体を送達するように構成された流体送達管を、前記磁気コアに通すことを更に含む、請求項14に記載の方法。
JP2016182762A 2015-09-21 2016-09-20 アブレーション電流測定 Active JP6887774B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/860,034 2015-09-21
US14/860,034 US10357309B2 (en) 2015-09-21 2015-09-21 Ablation current measurement

Publications (2)

Publication Number Publication Date
JP2017060758A JP2017060758A (ja) 2017-03-30
JP6887774B2 true JP6887774B2 (ja) 2021-06-16

Family

ID=56979427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182762A Active JP6887774B2 (ja) 2015-09-21 2016-09-20 アブレーション電流測定

Country Status (7)

Country Link
US (1) US10357309B2 (ja)
EP (1) EP3143957B1 (ja)
JP (1) JP6887774B2 (ja)
CN (1) CN106821491B (ja)
AU (1) AU2016216555A1 (ja)
CA (1) CA2940949A1 (ja)
IL (1) IL247434B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US9693832B2 (en) 2012-05-21 2017-07-04 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
WO2018164179A1 (ja) 2017-03-08 2018-09-13 株式会社小糸製作所 車両用灯具

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977844A (ja) * 1982-10-28 1984-05-04 持田製薬株式会社 電気メス用安全装置
CA2106408A1 (en) 1991-11-08 1993-05-09 Stuart D. Edwards Systems and methods for ablating tissue while monitoring tissue impedance
US6161543A (en) * 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US6059780A (en) 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US20030187430A1 (en) 2002-03-15 2003-10-02 Vorisek James C. System and method for measuring power at tissue during RF ablation
EP2197377B1 (en) 2007-11-16 2017-11-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Device for real-time lesion estimation during ablation
US8100897B2 (en) 2008-03-27 2012-01-24 Bovie Medical Corporation Laparoscopic electrosurgical electrical leakage detection
US8979834B2 (en) * 2008-03-27 2015-03-17 Bovie Medical Corporation Laparoscopic electrosurgical electrical leakage detection
WO2011029018A2 (en) * 2009-09-03 2011-03-10 Verivolt, Llc Voltage conversion and/or electrical measurements from 400 volts upwards
CN101969720B (zh) * 2010-09-15 2013-09-18 成都芯源系统有限公司 Led旁路控制电路和控制方法
GB201021032D0 (en) * 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
US9044244B2 (en) * 2010-12-10 2015-06-02 Biosense Webster (Israel), Ltd. System and method for detection of metal disturbance based on mutual inductance measurement
EP2604121A1 (de) 2011-12-14 2013-06-19 CaseTech GmbH Lebensmittelhülle auf Basis von Cellulose mit fungizider Ausstattung sowie Verfahren zum Schutz von Lebensmittelhüllen auf Basis von Cellulose vor Schimmelbefall
US9084539B2 (en) * 2012-02-02 2015-07-21 Volcano Corporation Wireless pressure wire system with integrated power
CN103326393B (zh) * 2012-03-22 2016-03-30 张家港智电柔性输配电技术研究所有限公司 一种h桥级联变流器的冗余供电电源
JP6574131B2 (ja) 2012-04-19 2019-09-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. エネルギー付与装置
US9116179B2 (en) * 2012-12-17 2015-08-25 Covidien Lp System and method for voltage and current sensing
JP6122206B2 (ja) 2013-03-12 2017-04-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 神経調節システム
JP6180634B2 (ja) * 2013-11-07 2017-08-16 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 接触力感知用先端を有する医療デバイス

Also Published As

Publication number Publication date
AU2016216555A1 (en) 2017-04-06
EP3143957B1 (en) 2021-05-12
JP2017060758A (ja) 2017-03-30
IL247434B (en) 2020-04-30
CN106821491B (zh) 2021-06-11
US20170079712A1 (en) 2017-03-23
IL247434A0 (en) 2016-12-29
US10357309B2 (en) 2019-07-23
CN106821491A (zh) 2017-06-13
CA2940949A1 (en) 2017-03-21
EP3143957A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6887774B2 (ja) アブレーション電流測定
EP2797535B1 (en) Device for renal nerve modulation monitoring
CA2798973C (en) Contact assessment based on phase measurement
US9216050B2 (en) Detection of microbubble formation during catheter ablation
CN104582619B (zh) 用于检测消融期间组织接触的系统
US20140249524A1 (en) System and method for performing renal nerve modulation
CN116867451A (zh) 一种接触质量系统和方法
US9510905B2 (en) Systems and methods for high-resolution mapping of tissue
JP6673598B2 (ja) ペーシングを伴う組織の高分解能マッピング
JP2019076731A (ja) 送信コイルを備えた食道プローブ
RU2669745C2 (ru) Устройство подачи энергии
CN109276310B (zh) 消融电源
RU2764828C1 (ru) Управление абляцией при необратимой электропорации с использованием фокального катетера, имеющего датчики усилия контакта и температуры
US9814521B2 (en) Ablation catheter arrangement and method for treatment of a cardiac arrhythmia
EP2840997A1 (en) Detection of microbubble formation during an ablation procedure
JP2024039644A (ja) 複合アブレーションモダリティのためのカテーテル、システム、及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210519

R150 Certificate of patent or registration of utility model

Ref document number: 6887774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150