JP6887574B1 - Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method - Google Patents

Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method Download PDF

Info

Publication number
JP6887574B1
JP6887574B1 JP2020552050A JP2020552050A JP6887574B1 JP 6887574 B1 JP6887574 B1 JP 6887574B1 JP 2020552050 A JP2020552050 A JP 2020552050A JP 2020552050 A JP2020552050 A JP 2020552050A JP 6887574 B1 JP6887574 B1 JP 6887574B1
Authority
JP
Japan
Prior art keywords
ozone
water
dissolved
generation unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020552050A
Other languages
Japanese (ja)
Other versions
JPWO2021191997A1 (en
Inventor
佳史 林
佳史 林
英二 今村
英二 今村
野田 清治
清治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6887574B1 publication Critical patent/JP6887574B1/en
Publication of JPWO2021191997A1 publication Critical patent/JPWO2021191997A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

オゾンガスの溶解効率の低下を防ぐことができる膜洗浄装置および膜分離活性汚泥システム、並びに膜洗浄方法を得ることを目的とする。膜洗浄装置(40)は、オゾンガスをオゾン水生成部(9)に供給するオゾンガス供給部(10)と、被溶解水をオゾン水生成部(9)に供給する被溶解水供給部(8)と、オゾン水生成部(9)が貯留するオゾン水を分離膜(2)へ送水するオゾン水送水部(11)と、オゾンガス供給部(10)からオゾン水生成部(9)へのオゾンガスの供給をオゾンガス供給部(10)にさせている状態で、被溶解水供給部(8)からオゾン水生成部(9)への被溶解水の供給を被溶解水供給部(8)にさせるとともに、オゾン水生成部(9)から分離膜(2)へのオゾン水の送水をオゾン水送水部(11)にさせる制御を行う制御部(12)と、を備える。An object of the present invention is to obtain a membrane cleaning device, a membrane separation activated sludge system, and a membrane cleaning method capable of preventing a decrease in the dissolution efficiency of ozone gas. The membrane cleaning device (40) has an ozone gas supply unit (10) that supplies ozone gas to the ozone water generation unit (9) and a dissolved water supply unit (8) that supplies dissolved water to the ozone water generation unit (9). The ozone water supply unit (11) that sends the ozone water stored in the ozone water generation unit (9) to the separation membrane (2), and the ozone gas from the ozone gas supply unit (10) to the ozone water generation unit (9). In a state where the supply is supplied to the ozone gas supply unit (10), the solution water supply unit (8) is used to supply the dissolved water from the dissolved water supply unit (8) to the ozone water generation unit (9). A control unit (12) for controlling the water supply of ozone water from the ozone water generation unit (9) to the separation film (2) to the ozone water water supply unit (11) is provided.

Description

本願は、膜洗浄装置および膜分離活性汚泥システム、並びに膜洗浄方法に関する。 The present application relates to a membrane cleaning device, a membrane separation activated sludge system, and a membrane cleaning method.

MBR(Membrane Bio Reactor:膜分離活性汚泥装置)を用いた排水処理方法である膜分離活性汚泥法においては、排水と微生物を反応させ、発生した汚濁物質を汚泥として取り除く。発生した汚濁物質は、分離膜を用いた固液分離により排水から取り除かれる。この分離膜は、排水に含まれる汚濁物質をろ過して分離するものであるが、継続的な使用により表面および孔中に汚濁物質が付着し、目詰まりが生じ得る。目詰まりを起こした分離膜は、そのろ過性能、すなわち固液分離性能が低下してしまう。このため、オゾンなどの酸化剤を含有する洗浄水をろ過方向とは逆方向に注入する、「逆洗」と呼ばれる洗浄方法により、分離膜を洗浄することが従来より提案されている。従来の膜洗浄装置においては、半回分式にて被溶解水にオゾンガスを溶解させ、オゾン水を生成している。すなわち、被溶解水を貯留可能なオゾン水生成部に被溶解水を供給し、所定量に達した時点で被溶解水の供給を停止した後、所定量に保たれた被溶解水に対して連続的にオゾンガスを供給することで被溶解水からオゾン水を生成する。オゾン水生成部で生成したオゾン水を送水して分離膜を洗浄する際は、オゾン水の溶存オゾン濃度を維持するため、オゾン水生成部への被溶解水の送水は停止したまま、オゾンガスの供給は継続する(例えば、特許文献1参照)。 In the membrane separation activated sludge method, which is a wastewater treatment method using MBR (Membrane BioReactor), the wastewater reacts with microorganisms to remove the generated pollutants as sludge. The generated pollutants are removed from the wastewater by solid-liquid separation using a separation membrane. This separation membrane filters and separates pollutants contained in wastewater, but continuous use may cause pollutants to adhere to the surface and pores, resulting in clogging. A clogged separation membrane deteriorates its filtration performance, that is, solid-liquid separation performance. Therefore, it has been conventionally proposed to wash the separation membrane by a washing method called "backwashing" in which washing water containing an oxidizing agent such as ozone is injected in the direction opposite to the filtration direction. In the conventional membrane cleaning device, ozone gas is dissolved in the water to be dissolved in a semi-batch method to generate ozone water. That is, the dissolved water is supplied to the ozone water generation unit that can store the dissolved water, the supply of the dissolved water is stopped when the predetermined amount is reached, and then the dissolved water is maintained at the predetermined amount. Ozone water is generated from the water to be dissolved by continuously supplying ozone gas. When the ozone water generated by the ozone water generation section is sent to clean the separation membrane, in order to maintain the dissolved ozone concentration of the ozone water, the supply of the dissolved water to the ozone water generation section is stopped and the ozone gas The supply will continue (see, for example, Patent Document 1).

特許第6430091号公報Japanese Patent No. 6430091

しかしながら、上記のような膜洗浄装置では、分離膜の洗浄中はオゾン水生成部内の水量が減少し、オゾン水生成部内のオゾン水の水位が低下する。ここで、オゾン水生成部内のオゾン水に供給されたオゾンガスは水面に向かって上昇するため、オゾン水の水位が低いと気液の接触時間が短くなり、オゾンガスの溶解効率が低下してしまうという問題点がある。 However, in the membrane cleaning apparatus as described above, the amount of water in the ozone water generating section decreases during cleaning of the separation membrane, and the water level of ozone water in the ozone water generating section drops. Here, since the ozone gas supplied to the ozone water in the ozone water generation unit rises toward the water surface, if the ozone water level is low, the gas-liquid contact time will be shortened, and the ozone gas dissolution efficiency will decrease. There is a problem.

本願は、上記のような課題を解決するための技術を開示するものであり、オゾンガスの溶解効率の低下を防ぐことができる膜洗浄装置および膜分離活性汚泥システム、並びに膜洗浄方法を得ることを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and obtains a membrane cleaning device, a membrane separation active sludge system, and a membrane cleaning method capable of preventing a decrease in the dissolution efficiency of ozone gas. The purpose.

本願に開示される膜洗浄装置は、被処理水に含まれる汚濁物質を被処理水から分離する分離膜を、オゾン水生成部に貯留したオゾン水で洗浄する膜洗浄装置において、オゾンガスをオゾン水生成部に供給するオゾンガス供給部と、外部から導入される水、または分離膜で処理された処理水を被溶解水として、被溶解水をオゾン水生成部に供給する被溶解水供給部と、オゾン水生成部が貯留するオゾン水を分離膜へ送水するオゾン水送水部と、オゾンガス供給部からオゾン水生成部へのオゾンガスの供給をオゾンガス供給部にさせている状態で、被溶解水供給部からオゾン水生成部への被溶解水の供給を被溶解水供給部にさせるとともに、オゾン水生成部から分離膜へのオゾン水の送水をオゾン水送水部にさせる制御を行う制御部と、を備え、制御部は、オゾン水の溶存オゾン濃度を取得するオゾン濃度取得部と、予め定められた第1の閾値および予め定められた第2の閾値を記憶する記憶部と、被溶解水およびオゾン水の送水の可否を決定する決定部とを備え、決定部は、溶存オゾン濃度が予め定められた第1の閾値以上である場合に、オゾンガス供給部からオゾン水生成部へのオゾンガスの供給をオゾンガス供給部にさせている状態で、被溶解水供給部からオゾン水生成部への被溶解水の供給を被溶解水供給部にさせるとともに、オゾン水生成部から分離膜へのオゾン水の送水をオゾン水送水部にさせ、かつ、溶存オゾン濃度が予め定められた第2の閾値未満である場合に、被溶解水供給部からオゾン水生成部への被溶解水の供給を被溶解水供給部に停止させるとともに、オゾン水生成部から分離膜へのオゾン水の送水をオゾン水送水部に停止させ、決定部は、被溶解水供給部からオゾン水生成部への被溶解水の供給、およびオゾン水生成部から分離膜へのオゾン水の送水を停止させた状態で、オゾンガス供給部からオゾン水生成部にオゾンガスを供給してオゾン水を生成する工程において、溶存オゾン濃度が予め定められた第1の閾値以上であるか否かを判定し、決定部は、オゾンガス供給部からオゾン水生成部へのオゾンガスの供給をオゾンガス供給部にさせている状態で、被溶解水供給部からオゾン水生成部への被溶解水の供給を被溶解水供給部にさせるとともに、オゾン水生成部から分離膜へのオゾン水の送水をオゾン水送水部にさせる工程において、溶存オゾン濃度が予め定められた第2の閾値未満であるか否かを判定するものである。 The film cleaning device disclosed in the present application is a film cleaning device that cleans a separation film that separates pollutants contained in the water to be treated from the water to be treated with ozone water stored in an ozone water generation unit, and uses ozone water for ozone gas. An ozone gas supply unit that supplies the ozone gas supply unit to the generation unit, and a water-dissolved water supply unit that supplies the dissolved water to the ozone water generation unit by using water introduced from the outside or treated water treated with a separation membrane as the dissolved water. The dissolved water supply unit is in a state where the ozone water supply unit that sends the ozone water stored in the ozone water generation unit to the separation membrane and the ozone gas supply unit supplies ozone gas from the ozone gas supply unit to the ozone water generation unit. A control unit that controls the supply of dissolved water from the ozone water generation unit to the dissolved water supply unit and the supply of ozone water from the ozone water generation unit to the separation membrane to the ozone water supply unit. The control unit includes an ozone concentration acquisition unit that acquires the dissolved ozone concentration of ozone water, a storage unit that stores a predetermined first threshold value and a predetermined second threshold value, and water to be dissolved and ozone. It is equipped with a determination unit that determines whether or not water can be sent, and the determination unit supplies ozone gas from the ozone gas supply unit to the ozone water generation unit when the dissolved ozone concentration is equal to or higher than a predetermined first threshold value. In the state where the ozone gas supply unit is used, the dissolved water supply unit is made to supply the dissolved water from the dissolved water supply unit to the ozone water generation unit, and the ozone water is sent from the ozone water generation unit to the separation membrane. Is supplied to the ozone water supply unit, and the dissolved water is supplied from the dissolved water supply unit to the ozone water generation unit when the dissolved ozone concentration is less than a predetermined second threshold value. In addition to stopping the water supply unit, the ozone water supply unit stops the ozone water supply from the ozone water generation unit to the separation membrane, and the determination unit supplies the dissolved water from the dissolved water supply unit to the ozone water generation unit. In the process of supplying ozone gas from the ozone gas supply unit to the ozone water generation unit to generate ozone water while the supply of ozone water from the ozone water generation unit to the separation membrane is stopped, the dissolved ozone concentration is predetermined. In addition, it is determined whether or not it is equal to or higher than the first threshold value, and the determination unit determines whether or not the ozone gas is supplied from the ozone gas supply unit to the ozone water generation unit to the ozone gas supply unit. The dissolved ozone concentration is predetermined in the step of causing the dissolved water supply unit to supply the dissolved water to the water generation unit and the ozone water supply unit to supply the ozone water from the ozone water generation unit to the separation membrane. Whether it is less than the second threshold It is shall be determined whether.

また、本願に開示される膜洗浄方法は、被処理水に含まれる汚濁物質を被処理水から分離する分離膜を、オゾン水生成部に貯留したオゾン水で洗浄する膜洗浄方法において、オゾン水生成部への被溶解水の供給、およびオゾン水生成部から分離膜へのオゾン水の送水を停止させた状態で、オゾンガスをオゾン水生成部に供給するオゾンガス供給工程と、外部から導入される水、または分離膜で処理された処理水を被溶解水として、前記被溶解水をオゾン水生成部に供給する被溶解水供給工程と、オゾン水生成部が貯留するオゾン水を分離膜へ送水するオゾン水送水工程と、オゾンガスをオゾン水生成部に供給しながら、被溶解水供給工程およびオゾン水送水工程を実施する連続運転工程と、を備え、オゾンガス供給工程を実施中にオゾン水の溶存オゾン濃度が予め定められた第1の閾値以上となった場合に、オゾン水送水工程を開始して、実施する工程を連続運転工程に切り替え、かつ、連続運転工程を実施中にオゾン水の溶存オゾン濃度が予め定められた第2の閾値未満となった場合に、オゾン水生成部への被溶解水の供給と分離膜へのオゾン水の送水を停止して、実施する工程をオゾンガス供給工程に切り替えるものである。 Also, membrane cleaning method disclosed in the present application, the membrane cleaning method for cleaning with ozone water separation membrane, which is stored in the ozone water generating unit for separating the pollutants contained in the treated water from the treated water, ozone water The ozone gas supply process of supplying ozone gas to the ozone water generation unit with the supply of dissolved water to the generation unit and the supply of ozone water from the ozone water generation unit to the separation membrane stopped, and the introduction from the outside. Water or treated water treated with a separation membrane is used as dissolved water, and the dissolved water supply step of supplying the dissolved water to the ozone water generation unit and the ozone water stored by the ozone water generation unit are sent to the separation membrane. It is equipped with an ozone water supply process and a continuous operation process in which the dissolved water supply process and the ozone water supply process are performed while supplying ozone gas to the ozone water generation unit, and the ozone water is dissolved during the ozone gas supply process. If the ozone concentration reaches a first threshold value than the predetermined, the start of the ozone water supply step, switching the step of performing a continuous operation process, and the dissolved ozone water while carrying out the continuous operation process When the ozone concentration becomes less than a predetermined second threshold value, the ozone gas supply step is a step of stopping the supply of the dissolved water to the ozone water generation unit and the supply of the ozone water to the separation membrane. It switches to.

本願に開示される膜洗浄装置および膜洗浄方法によれば、オゾンガスの溶解効率の低下を防ぐことができる。 According to the membrane cleaning apparatus and the membrane cleaning method disclosed in the present application, it is possible to prevent a decrease in the dissolution efficiency of ozone gas.

実施の形態1における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、被溶解水供給工程を説明する図である。It is a block diagram which shows the membrane separation activated sludge system and the membrane cleaning apparatus in Embodiment 1, and is the figure explaining the process of supplying water to be dissolved. 実施の形態1における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、オゾンガス供給工程を説明する図である。It is a block diagram which shows the membrane separation activated sludge system and the membrane cleaning apparatus in Embodiment 1, and is the figure explaining the ozone gas supply process. 実施の形態1における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、連続運転工程を説明する図である。It is a block diagram which shows the membrane separation activated sludge system and the membrane cleaning apparatus in Embodiment 1, and is the figure explaining the continuous operation process. 実施の形態1に係る制御部の構成例を示す図である。It is a figure which shows the structural example of the control part which concerns on Embodiment 1. FIG. 実施の形態1における膜洗浄装置の動作を示すフロー図である。It is a flow figure which shows the operation of the membrane cleaning apparatus in Embodiment 1. FIG. 実施の形態2における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、オゾンガス供給工程を説明する図である。It is a block diagram which shows the membrane separation activated sludge system and the membrane cleaning apparatus in Embodiment 2, and is the figure explaining the ozone gas supply process. 実施の形態2における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、連続運転工程を説明する図である。It is a block diagram which shows the membrane separation activated sludge system and the membrane cleaning apparatus in Embodiment 2, and is the figure explaining the continuous operation process. 実施の形態1に係る制御部のハードウエア構成の例を示す図である。It is a figure which shows the example of the hardware composition of the control part which concerns on Embodiment 1. FIG.

以下、添付図面を参照して、本願が開示する膜分離活性汚泥システムおよび膜洗浄装置の実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例である。 Hereinafter, embodiments of the membrane separation activated sludge system and the membrane cleaning device disclosed in the present application will be described in detail with reference to the accompanying drawings. The embodiment shown below is an example.

実施の形態1.
実施の形態1を図1Aから図3に基づいて説明する。図1Aから図1Cは、実施の形態1における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、図1Aが被溶解水供給工程を、図1Bがオゾンガス供給工程を、図1Cが連続運転工程をそれぞれ説明する図となっている。なお、各配管に矢印が付されている場合は、その配管内を流通する流体が矢印の方向に流れていることを示す。矢印が付されていない場合、その工程では流れがないことを示す。膜分離活性汚泥システム100は、図1Aに示すように、膜分離槽1および分離膜2を有する膜分離活性汚泥装置20と、分離膜2を洗浄する膜洗浄装置40とを備える。膜分離槽1には、排水などが流れる配管部材である流入配管5が接続されており、流入配管5を介して排水などが膜分離槽1に流入する。膜分離槽1に流入した排水などは、被処理水6として膜分離槽1に貯留される。
Embodiment 1.
The first embodiment will be described with reference to FIGS. 1A to 3. 1A to 1C are configuration diagrams showing the membrane separation activated sludge system and the membrane cleaning device according to the first embodiment, FIG. 1A is a water to be dissolved supply step, FIG. 1B is an ozone gas supply step, and FIG. 1C is continuous. It is a figure explaining each operation process. When an arrow is attached to each pipe, it indicates that the fluid flowing in the pipe is flowing in the direction of the arrow. If no arrow is attached, it indicates that there is no flow in the process. As shown in FIG. 1A, the membrane separation active sludge system 100 includes a membrane separation active sludge device 20 having a membrane separation tank 1 and a separation membrane 2, and a membrane cleaning device 40 for cleaning the separation membrane 2. An inflow pipe 5 which is a piping member through which drainage or the like flows is connected to the membrane separation tank 1, and drainage or the like flows into the membrane separation tank 1 through the inflow pipe 5. The wastewater that has flowed into the membrane separation tank 1 is stored in the membrane separation tank 1 as water to be treated 6.

膜分離槽1は、側面および底面がコンクリートにより構成されており、膜分離槽1内の水漏れが防がれている。膜分離槽1内に貯留された被処理水6の中には、汚濁物質に加え、汚濁物質を捕らえる微生物(以下、活性汚泥と呼ぶ)も含まれている。このため、被処理水6中の汚濁物質は、活性汚泥中に捕らえられた状態で被処理水6中に含まれていることとなる。 The side surface and the bottom surface of the membrane separation tank 1 are made of concrete to prevent water leakage in the membrane separation tank 1. The water to be treated 6 stored in the membrane separation tank 1 contains not only pollutants but also microorganisms that catch pollutants (hereinafter referred to as activated sludge). Therefore, the pollutant substance in the water to be treated 6 is contained in the water to be treated 6 in a state of being caught in the activated sludge.

分離膜2は、例えば中空糸膜などの膜で各面が構成された直方体状の膜部材であり、上記各面で仕切られた直方体状の空間の外側から内側に向かう方向が分離膜2のろ過方向となっている。分離膜2は、膜分離槽1内に配置され、被処理水6に浸漬されている。また、分離膜2の内側にはろ過水配管3aの一端が挿入されている。ろ過水配管3aは、分離膜2でろ過された被処理水6を処理水7として系外に排出する配管部材であり、圧力を利用して処理水7を吸引するろ過ポンプ4が設けられている。ろ過ポンプ4が稼働することにより、分離膜2の内側の処理水7がろ過水配管3aに流入するとともに、分離膜2の外側の被処理水6が分離膜2の内側に流れ込む。この際、分離膜2を流通する被処理水6がろ過され、被処理水6中の活性汚泥が分離膜2により分離される。上述したように、活性汚泥は被処理水6中の汚濁物質を捕らえているため、被処理水6中の活性汚泥が分離されることにより、被処理水6に含まれる汚濁物質も分離される。被処理水6から分離された活性汚泥および汚濁物質は、分離膜2に付着する。このようにして汚濁物質が除去された被処理水6は処理水7となり、上述したようにろ過ポンプ4に吸引され、ろ過水配管3aを流れてろ過水配管3aの他端から系外に排出される。なお、分離膜2を構成する膜としては、上記した中空糸膜に限られるものではなく、平膜などを適用してもよい。また、分離膜2は活性汚泥を含有する被処理水6中の固体と液体とを分離できる膜部材であればよいので、限外ろ過(UF)膜、精密ろ過(MF)膜などを分離膜2として用いることもできる。 The separation membrane 2 is a rectangular parallelepiped membrane member whose surfaces are composed of a membrane such as a hollow fiber membrane, and the direction from the outside to the inside of the rectangular parallelepiped space partitioned by the respective surfaces is the direction of the separation membrane 2. It is the filtration direction. The separation membrane 2 is arranged in the membrane separation tank 1 and is immersed in the water to be treated 6. Further, one end of the filtered water pipe 3a is inserted inside the separation membrane 2. The filtered water pipe 3a is a piping member that discharges the treated water 6 filtered by the separation film 2 to the outside of the system as the treated water 7, and is provided with a filtration pump 4 that sucks the treated water 7 by using pressure. There is. When the filtration pump 4 operates, the treated water 7 inside the separation membrane 2 flows into the filtered water pipe 3a, and the water to be treated 6 outside the separation membrane 2 flows into the inside of the separation membrane 2. At this time, the water to be treated 6 flowing through the separation membrane 2 is filtered, and the activated sludge in the water to be treated 6 is separated by the separation membrane 2. As described above, since the activated sludge captures the pollutants in the water to be treated 6, the pollutants contained in the water to be treated 6 are also separated by separating the activated sludge in the water to be treated 6. .. The activated sludge and pollutants separated from the water to be treated 6 adhere to the separation membrane 2. The water to be treated 6 from which pollutants have been removed in this manner becomes treated water 7, is sucked into the filtration pump 4 as described above, flows through the filtered water pipe 3a, and is discharged from the other end of the filtered water pipe 3a to the outside of the system. Will be done. The membrane constituting the separation membrane 2 is not limited to the hollow fiber membrane described above, and a flat membrane or the like may be applied. Further, since the separation membrane 2 may be a membrane member capable of separating the solid and the liquid in the water to be treated 6 containing activated sludge, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane and the like can be separated. It can also be used as 2.

分離膜2による被処理水6中の固体と液体との分離を継続した場合、言い換えると、分離膜2の外側にある被処理水6をろ過するろ過処理を継続した場合、分離膜2の表面または分離膜2の孔中に被処理水6中の活性汚泥および汚濁物質が付着して目詰まりが生じる虞がある。目詰まりが生じた場合、分離膜2によるろ過速度が低下し、被処理水6の処理速度が低下する虞がある。このように、分離膜2の継続使用は、膜分離活性汚泥システム100の水処理効率を低下させる虞がある。このため、分離膜2を適宜洗浄し、目詰まりなどを防ぐ必要がある。 When the separation of the solid and the liquid in the water to be treated 6 by the separation membrane 2 is continued, in other words, when the filtration treatment for filtering the water to be treated 6 outside the separation membrane 2 is continued, the surface of the separation membrane 2 is continued. Alternatively, the active sludge and pollutants in the water to be treated 6 may adhere to the pores of the separation membrane 2 to cause clogging. When clogging occurs, the filtration rate by the separation membrane 2 may decrease, and the treatment rate of the water to be treated 6 may decrease. As described above, continuous use of the separation membrane 2 may reduce the water treatment efficiency of the membrane separation activated sludge system 100. Therefore, it is necessary to appropriately wash the separation membrane 2 to prevent clogging and the like.

膜洗浄装置40は、分離膜2を洗浄する洗浄装置である。膜洗浄装置40は、被溶解水をオゾン水生成部9に供給する被溶解水供給部8と、被溶解水にオゾンガスを溶解させてオゾン水を生成するオゾン水生成部9と、オゾンガスをオゾン水生成部9に供給するオゾンガス供給部10と、オゾン水生成部9で生成されたオゾン水を分離膜2の内側に注入するオゾン水送水部11と、被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11の動作を工程に応じて制御する制御部12とを備えている。被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11と制御部12とは、信号線50a、50b、および50cを介してそれぞれ接続されている。図1Aから図1Cにおいて、信号線50aから50cにおける矢印は、各図が示す工程において制御部12が対象の機能部を動作させていることを示す。例えば図1Aの被溶解水供給工程では、被溶解水供給部8は動作しているがオゾンガス供給部10およびオゾン水送水部11は停止している。また制御部12は、オゾン水生成部9の溶存オゾンセンサ9b、すなわち濃度測定部と信号線51を介して接続されている。 The membrane cleaning device 40 is a cleaning device that cleans the separation membrane 2. The membrane cleaning device 40 uses the dissolved water supply unit 8 that supplies the dissolved water to the ozone water generation unit 9, the ozone water generation unit 9 that dissolves ozone gas in the dissolved water to generate ozone water, and the ozone gas as ozone. The ozone gas supply unit 10 that supplies the water to the water generation unit 9, the ozone water supply unit 11 that injects the ozone water generated by the ozone water generation unit 9 into the inside of the separation film 2, the water to be dissolved unit 8, and the ozone gas supply unit. 10 and a control unit 12 that controls the operation of the ozone water supply unit 11 according to the process are provided. The water to be dissolved water supply unit 8, the ozone gas supply unit 10, the ozone water water supply unit 11, and the control unit 12 are connected to each other via signal lines 50a, 50b, and 50c, respectively. In FIGS. 1A to 1C, the arrows in the signal lines 50a to 50c indicate that the control unit 12 is operating the target functional unit in the process shown in each figure. For example, in the dissolved water supply step of FIG. 1A, the dissolved water supply unit 8 is operating, but the ozone gas supply unit 10 and the ozone water supply unit 11 are stopped. Further, the control unit 12 is connected to the dissolved ozone sensor 9b of the ozone water generation unit 9, that is, the concentration measurement unit via a signal line 51.

被溶解水供給部8は、被溶解水供給配管3cを介してオゾン水生成部9と接続されている。被溶解水は、オゾン水生成部9においてオゾンガスが溶解してオゾン水となるものであり、被溶解水供給配管3cを通って被溶解水供給部8からオゾン水生成部9に供給される。被溶解水供給部8は、制御部12からの制御信号に応じてオゾン水生成部9への被溶解水の供給を開始または停止する。被溶解水は、特に限定されるものではなく、例えば水道水または工業用水、分離膜2でろ過した処理水7を用いることができる。処理水7を被溶解水として用いる場合、ろ過水配管3aから処理水7を被溶解水供給部8に送水する配管および処理水7の送水を行うポンプが必要となるが、外部から水を新たに導入する必要がないため、洗浄に要するコストを削減することができる。 The water-dissolved water supply unit 8 is connected to the ozone water generation unit 9 via the water-dissolved water supply pipe 3c. The ozone water is dissolved in the ozone water generation unit 9 to become ozone water, and is supplied from the dissolved water supply unit 8 to the ozone water generation unit 9 through the dissolved water supply pipe 3c. The water-dissolved water supply unit 8 starts or stops the supply of the water to be dissolved to the ozone water generation unit 9 in response to a control signal from the control unit 12. The water to be dissolved is not particularly limited, and for example, tap water, industrial water, or treated water 7 filtered through the separation membrane 2 can be used. When the treated water 7 is used as the water to be dissolved, a pipe for sending the treated water 7 from the filtered water pipe 3a to the water to be dissolved supply 8 and a pump for sending the treated water 7 are required, but water is newly added from the outside. Since it is not necessary to introduce it into the water, the cost required for cleaning can be reduced.

オゾン水生成部9は、オゾン水送水配管3b1を介してオゾン水送水部11と接続されている。オゾン水生成部9は、内部に液体を貯留可能に構成されており、被溶解水供給部8から供給された被溶解水および被溶解水から生成されたオゾン水を貯留可能である。オゾン水生成部9内の底部には、オゾンガス供給配管3dを介してオゾンガス供給部10に接続された散気部9aが設けられている。オゾンガス供給部10から供給されるオゾンガスは、散気部9aから気泡として放出されることにより、オゾン水生成部9内の被溶解水に注入される。オゾン水生成部9と被溶解水供給配管3cの接続部(図示なし)はオゾン水生成部9の一方の側壁に設けられ、オゾン水生成部9とオゾン水送水配管3b1の接続部(図示なし)はオゾン水生成部9の他方の側壁に設けられている。また、オゾン水生成部9と被溶解水供給配管3cの接続部は、オゾン水生成部9とオゾン水送水配管3b1の接続部よりも高い位置に設けられている。また、オゾン水生成部9の上部には、オゾン水生成部9の外部に連通する排オゾンガス配管3eが設けられている。排オゾンガス配管3eは、オゾン水生成部9において溶解しなかったオゾンガスを排オゾンガスとして系外に排出するものである。 The ozone water generation unit 9 is connected to the ozone water water supply unit 11 via the ozone water water supply pipe 3b1. The ozone water generation unit 9 is configured to be able to store a liquid inside, and can store the dissolved water supplied from the dissolved water supply unit 8 and the ozone water generated from the dissolved water. An air diffuser 9a connected to the ozone gas supply unit 10 via the ozone gas supply pipe 3d is provided at the bottom of the ozone water generation unit 9. The ozone gas supplied from the ozone gas supply unit 10 is discharged as bubbles from the air diffuser 9a and is injected into the dissolved water in the ozone water generation unit 9. The connection between the ozone water generation unit 9 and the dissolved water supply pipe 3c (not shown) is provided on one side wall of the ozone water generation unit 9, and the connection between the ozone water generation unit 9 and the ozone water supply pipe 3b1 (not shown). ) Is provided on the other side wall of the ozone water generation unit 9. Further, the connection portion between the ozone water generation unit 9 and the dissolved water supply pipe 3c is provided at a position higher than the connection portion between the ozone water generation unit 9 and the ozone water water supply pipe 3b1. Further, an exhaust ozone gas pipe 3e communicating with the outside of the ozone water generation unit 9 is provided above the ozone water generation unit 9. The exhaust ozone gas pipe 3e discharges the ozone gas that has not been dissolved in the ozone water generation unit 9 to the outside of the system as exhaust ozone gas.

なお、散気部9aの設置位置はオゾン水生成部9の底部に限られるものではないが、散気部9aから放出されるオゾンガスの気泡は被溶解水の水面に向かって上方に流れることから、なるべく下方に散気部9aを設けることが好ましい。散気部9aを下方に設けることにより、被溶解水とオゾンガスの接触時間を延ばし、溶解効率を向上させることができる。また、オゾン水生成部9と被溶解水供給配管3cの接続部の位置と、オゾン水生成部9とオゾン水送水配管3b1の接続部の位置は特に限定されるものではないが、両者の間の距離はできるだけ大きくする方が好ましい。また、上述したように被溶解水供給配管3cとの接続部をオゾン水送水配管3b1との接続部よりも高い位置に設けることにより、オゾンガスの溶解効率を向上させることができる。何故ならば、この場合は高い位置から被溶解水が流入するため被溶解水の流れが下降流となり、被溶解水の流れとオゾンガスの流れが対向流となるためである。この場合、被溶解水とオゾンガスとの間で対向流接触が起こり、溶解効率が向上する。 The installation position of the air diffuser 9a is not limited to the bottom of the ozone water generation unit 9, but the bubbles of ozone gas released from the air diffuser 9a flow upward toward the surface of the dissolved water. It is preferable to provide the air diffuser 9a as downward as possible. By providing the air diffuser 9a below, the contact time between the water to be dissolved and the ozone gas can be extended and the dissolution efficiency can be improved. Further, the position of the connection portion between the ozone water generation unit 9 and the dissolved water supply pipe 3c and the position of the connection portion between the ozone water generation unit 9 and the ozone water water supply pipe 3b1 are not particularly limited, but between the two. It is preferable that the distance between the two is as large as possible. Further, as described above, the dissolution efficiency of ozone gas can be improved by providing the connection portion with the water to be dissolved supply pipe 3c at a position higher than the connection portion with the ozone water water supply pipe 3b1. This is because, in this case, since the water to be dissolved flows in from a high position, the flow of the water to be dissolved becomes a downward flow, and the flow of the water to be dissolved and the flow of ozone gas become a countercurrent. In this case, countercurrent contact occurs between the water to be dissolved and the ozone gas, and the dissolution efficiency is improved.

オゾン水生成部9には、溶存オゾンセンサ9bが設けられている。溶存オゾンセンサ9bは、オゾン水生成部9内のオゾン水(被溶解水が混合している場合も含む。以下同じ)の溶存オゾン濃度を連続的または断続的に測定するものであり、信号線51を介して測定結果を制御部12に送信する。 The ozone water generation unit 9 is provided with a dissolved ozone sensor 9b. The dissolved ozone sensor 9b continuously or intermittently measures the dissolved ozone concentration of the ozone water (including the case where the dissolved water is mixed; the same applies hereinafter) in the ozone water generation unit 9, and is a signal line. The measurement result is transmitted to the control unit 12 via 51.

オゾン水生成部は、オゾンガスを被溶解水に溶解させてオゾン水を生成し得る構造であれば特に限定されない。実施の形態1のオゾン水生成部9では被溶解水を貯留可能とし、被溶解水を貯留する機能と被溶解水にオゾンガスを溶解させる機能を併せ持ったオゾン水生成部としているが、被溶解水を貯留する貯留槽と、この貯留槽に貯留した被溶解水にオゾンガスを溶解させる溶解機構を分けてもよい。被溶解水にオゾンガスを溶解させる方法としては、オゾン水生成部9内に散気部9aを設ける方法(散気式)以外にも、エジェクタ式または溶解膜式などのオゾンガス溶解方法を用いることができる。 The ozone water generating unit is not particularly limited as long as it has a structure capable of generating ozone water by dissolving ozone gas in dissolved water. The ozone water generation unit 9 of the first embodiment is an ozone water generation unit that can store the dissolved water and has a function of storing the dissolved water and a function of dissolving ozone gas in the dissolved water. A storage tank for storing the water and a dissolution mechanism for dissolving ozone gas in the dissolved water stored in the storage tank may be separated. As a method for dissolving ozone gas in the water to be dissolved, in addition to the method of providing the air diffuser 9a in the ozone water generation unit 9 (air diffuser type), an ozone gas dissolution method such as an ejector type or a dissolution film type can be used. it can.

オゾンガス供給部10は、オゾンガス供給配管3dを介してオゾン水生成部9内の散気部9aにオゾンガスを供給するものである。オゾンガス供給部10は、制御部12からの制御信号に応じてオゾン水生成部9へのオゾンガスの供給を開始または停止する。オゾンガス供給部10は、原料ガス供給部(図示なし)および原料ガス供給部から供給される酸素を原料にしてオゾンガスを生成するオゾンガス発生器(図示なし)によって構成されている。原料ガス生成部としては、例えば液体酸素ボンベ、VPSA(Vacuum Pressure Swing Adsorption)を利用した酸素発生装置が用いられるが、酸素を供給可能な装置であれば、特に限定されるものではない。オゾンガス発生器としては、例えば放電式のオゾンガス発生器を用いることができる。 The ozone gas supply unit 10 supplies ozone gas to the air diffuser 9a in the ozone water generation unit 9 via the ozone gas supply pipe 3d. The ozone gas supply unit 10 starts or stops the supply of ozone gas to the ozone water generation unit 9 in response to a control signal from the control unit 12. The ozone gas supply unit 10 is composed of a raw material gas supply unit (not shown) and an ozone gas generator (not shown) that generates oxygen gas from oxygen supplied from the raw material gas supply unit as a raw material. As the raw material gas generating unit, for example, an oxygen generator using a liquid oxygen cylinder or VPSA (Vacuum Pressure Swing Adsorption) is used, but the device is not particularly limited as long as it can supply oxygen. As the ozone gas generator, for example, a discharge type ozone gas generator can be used.

なお、被溶解水供給部8またオゾン水生成部9にpH調整手段を設け、オゾン水または被溶解水、もしくは両方のpHを2から6に調整してもよい。オゾンの自己分解はpHが低いほど起きにくくなるため、被溶解水のpHを上記のように調整することによりオゾンの自己分解を抑制し、効率的にオゾン水を生成できる。オゾン水のpHを調整する場合も同様の効果がある。これらの場合、必要なオゾンガスの量を低減できるので、洗浄に要するコストを削減することができる。また、被溶解水供給部8またはオゾン水生成部9、もしくは両方に温度調整手段を設け、オゾン水および被溶解水の水温を一定以下に調整してもよい。オゾンの溶解度は水温が低いほど大きいため、水温を一定以下に調整することにより、より高濃度のオゾン水を生成し、オゾン水による洗浄効果を向上させる。この場合、被溶解水の必要量を低減することができるので、洗浄に要するコストを削減することができる。 The pH adjusting means may be provided in the water to be dissolved supply unit 8 and the ozone water generation unit 9, and the pH of ozone water, water to be dissolved, or both may be adjusted from 2 to 6. Since the lower the pH, the more difficult the self-decomposition of ozone occurs, the self-decomposition of ozone can be suppressed by adjusting the pH of the dissolved water as described above, and ozone water can be efficiently generated. The same effect can be obtained when adjusting the pH of ozone water. In these cases, the amount of ozone gas required can be reduced, so that the cost required for cleaning can be reduced. Further, the temperature adjusting means may be provided in the dissolved water supply unit 8 and / or the ozone water generating unit 9 to adjust the temperature of the ozone water and the dissolved water to a certain level or less. Since the solubility of ozone increases as the water temperature decreases, adjusting the water temperature below a certain level produces higher-concentration ozone water and improves the cleaning effect of ozone water. In this case, the required amount of water to be dissolved can be reduced, so that the cost required for cleaning can be reduced.

オゾン水送水部11は、オゾン水送水配管3b1を介してオゾン水生成部9と接続されるとともに、オゾン水送水配管3b2を介してろ過水配管3aと接続されている。オゾン水送水部11は、オゾン水生成部9で生成されたオゾン水をオゾン水生成部9から送水し、ろ過配管3aを介して分離膜2の内側に注入するものである。オゾン水送水部11により分離膜2の内側にオゾン水が送水されると、分離膜2の内側から外側(ろ過方向とは逆方向)にオゾン水が流通し、分離膜2の逆洗が行われる。これにより、分離膜2に付着している汚濁物質および汚泥が分離膜2が分離されて分離膜2が洗浄される。オゾン水送水部11は、制御部12からの制御信号に応じて分離膜2へのオゾン水の送水を開始または停止する。 The ozone water water supply unit 11 is connected to the ozone water generation unit 9 via the ozone water water supply pipe 3b1 and is connected to the filtered water pipe 3a via the ozone water water supply pipe 3b2. The ozone water water supply unit 11 sends the ozone water generated by the ozone water generation unit 9 from the ozone water generation unit 9 and injects it into the separation membrane 2 via the filtration pipe 3a. When ozone water is sent to the inside of the separation membrane 2 by the ozone water supply unit 11, ozone water flows from the inside to the outside of the separation membrane 2 (in the direction opposite to the filtration direction), and the separation membrane 2 is backwashed. It is said. As a result, the pollutants and sludge adhering to the separation membrane 2 are separated from the separation membrane 2, and the separation membrane 2 is washed. The ozone water supply unit 11 starts or stops the ozone water supply to the separation membrane 2 in response to the control signal from the control unit 12.

制御部12は、被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11に制御信号を送信し、実施する工程を切り替える制御を行う。すなわち、制御部12の制御信号は、実施する工程を切り替える切替信号としての機能を有する。実施の形態1において実施される工程には、「被溶解水供給工程」「オゾンガス供給工程」「オゾン水送水工程」および「連続運転工程」がある。「被溶解水供給工程」は、被溶解水供給部8からオゾン水生成部9に被溶解水を供給する工程である。図1Aに示すように、被溶解水供給工程においては制御部12からの制御信号により被溶解水供給部8が動作し、被溶解水供給配管3c内を被溶解水供給部8からオゾン水生成部9に被溶解水が流れる。一方、オゾンガス供給部10は停止しているのでオゾンガス供給配管3d内のオゾンガスの流れは無く、排オゾンガス配管3eからの排オゾンガスの排出も無い。また、オゾン水送水部11も停止しているので、オゾン水送水配管3b1、3b1内のオゾン水の流れも無い。なお、被溶解水供給工程においては膜分離活性汚泥装置20による被処理水6の処理も並行して実施できる。図1Aでは、流入配管5を流れて被処理水6が膜分離槽1に流入するとともに、ろ過ポンプ4により吸引された処理水7がろ過水配管3aを流れて系外に排出されることが示されている。 The control unit 12 transmits a control signal to the dissolved water supply unit 8, the ozone gas supply unit 10, and the ozone water water supply unit 11 to control switching between steps to be performed. That is, the control signal of the control unit 12 has a function as a switching signal for switching the steps to be performed. The steps implemented in the first embodiment include a "dissolved water supply step", an "ozone gas supply step", a "ozone water supply step", and a "continuous operation step". The "dissolved water supply step" is a step of supplying the dissolved water from the dissolved water supply unit 8 to the ozone water generation unit 9. As shown in FIG. 1A, in the dissolved water supply step, the dissolved water supply unit 8 operates according to the control signal from the control unit 12, and ozone water is generated from the dissolved water supply unit 8 in the dissolved water supply pipe 3c. Water to be dissolved flows in part 9. On the other hand, since the ozone gas supply unit 10 is stopped, there is no flow of ozone gas in the ozone gas supply pipe 3d, and there is no discharge of exhaust ozone gas from the exhaust ozone gas pipe 3e. Further, since the ozone water water supply unit 11 is also stopped, there is no flow of ozone water in the ozone water water supply pipes 3b1 and 3b1. In the water to be dissolved supply step, the treatment of the water to be treated 6 by the membrane separation activated sludge device 20 can also be carried out in parallel. In FIG. 1A, the treated water 6 flows through the inflow pipe 5 and flows into the membrane separation tank 1, and the treated water 7 sucked by the filtration pump 4 flows through the filtered water pipe 3a and is discharged to the outside of the system. It is shown.

「オゾンガス供給工程」は、所定量貯留された被溶解水に対してオゾンガスを連続的に供給する半回分式にてオゾン水を生成する工程である。図1Bに示すように、オゾンガス供給工程においては制御部12からの制御信号によりオゾンガス供給部10が動作し、オゾンガス供給配管3d内をオゾンガス供給部10からオゾン水生成部9にオゾンガスが流れる。また、排オゾンガス配管3eから排オゾンガスの排出が排出される。一方、被溶解水供給部8は停止しているので被溶解水供給配管3a内の被溶解水の流れは無い。また、オゾン水送水部11も停止しているので、オゾン水送水配管3b1、3b1内のオゾン水の流れも無い。なお、オゾンガス供給工程においても被溶解水供給工程と同様に、膜分離活性汚泥装置20による被処理水6の処理を並行して実施できる。 The "ozone gas supply step" is a step of generating ozone water in a semi-batch system in which ozone gas is continuously supplied to the dissolved water stored in a predetermined amount. As shown in FIG. 1B, in the ozone gas supply process, the ozone gas supply unit 10 operates according to the control signal from the control unit 12, and ozone gas flows from the ozone gas supply unit 10 to the ozone water generation unit 9 in the ozone gas supply pipe 3d. Further, the exhausted ozone gas is discharged from the exhausted ozone gas pipe 3e. On the other hand, since the dissolved water supply unit 8 is stopped, there is no flow of the dissolved water in the dissolved water supply pipe 3a. Further, since the ozone water water supply unit 11 is also stopped, there is no flow of ozone water in the ozone water water supply pipes 3b1 and 3b1. In the ozone gas supply step as well, the treatment of the water to be treated 6 by the membrane separation activated sludge device 20 can be carried out in parallel as in the water supply step to be dissolved.

「オゾン水送水工程」は、オゾン水生成部9が貯留するオゾン水を分離膜2へ送水して分離膜2の洗浄を行う工程である。また「連続運転工程」は、オゾンガス供給部10からオゾン水生成部9にオゾンガスを供給させている状態で、被溶解水供給部8からオゾン水生成部9に被溶解水を供給し、かつ、オゾン水送水部11から分離膜2にオゾン水を送水する連続式にてオゾン水の生成するとともに、分離膜2にオゾン水を送水して分離膜2の洗浄を行う工程である。換言すると、連続運転工程ではオゾン水生成部9から分離膜2にオゾン水が送水すると同時に新たな被溶解水をオゾン水生成部9に供給することで、オゾン水による分離膜2の洗浄と連続式によるオゾン水の生成が並行して行われる。すなわち、実施の形態1の「連続運転工程」は、オゾンガスをオゾン水生成部9に供給しながら、被溶解水供給工程およびオゾン水送水工程を実施する工程である。図1Cに示すように、連続運転工程においては制御部12からの制御信号により被溶解水供給部8、オゾンガス供給部10、オゾン水送水部11が動作する。これにより、被溶解水供給配管3c内を被溶解水供給部8からオゾン水生成部9に被溶解水が流れ、オゾンガス供給配管3d内をオゾンガス供給部10からオゾン水生成部9にオゾンガスが流れる。また、排オゾンガス配管3eから排オゾンガスが排出される。また、オゾン水送水配管3b1内をオゾン水生成部9からオゾン水送水部11にオゾン水が流れ、オゾン水送水配管3b2内をオゾン水送水部11からろ過水配管3aにオゾン水が流れる。ろ過水配管3aに流れたオゾン水は、分離膜2の内側に流入し、上述したように分離膜2の逆洗が行われる。なお、連続運転工程においてはろ過水配管3aを介して分離膜2にオゾン水を流す必要があるため、膜分離活性汚泥装置20による被処理水6の処理は行われない。 The "ozone water supply step" is a step of sending the ozone water stored in the ozone water generation unit 9 to the separation membrane 2 to clean the separation membrane 2. Further, in the "continuous operation process", the dissolved water is supplied from the dissolved water supply unit 8 to the ozone water generation unit 9 while the ozone gas supply unit 10 is supplying the ozone water to the ozone water generation unit 9. This is a step of continuously generating ozone water from the ozone water supply unit 11 to the separation membrane 2 and sending ozone water to the separation membrane 2 to clean the separation membrane 2. In other words, in the continuous operation process, ozone water is sent from the ozone water generation unit 9 to the separation membrane 2, and at the same time, new dissolved water is supplied to the ozone water generation unit 9, so that the separation membrane 2 is continuously washed with ozone water. Ozone water is generated by the formula in parallel. That is, the "continuous operation step" of the first embodiment is a step of carrying out the dissolved water supply step and the ozone water supply step while supplying ozone gas to the ozone water generation unit 9. As shown in FIG. 1C, in the continuous operation process, the dissolved water supply unit 8, the ozone gas supply unit 10, and the ozone water water supply unit 11 operate according to the control signal from the control unit 12. As a result, the dissolved water flows from the dissolved water supply unit 8 to the ozone water generation unit 9 in the dissolved water supply pipe 3c, and the ozone gas flows from the ozone gas supply unit 10 to the ozone water generation unit 9 in the ozone gas supply pipe 3d. .. Further, the exhausted ozone gas is discharged from the exhausted ozone gas pipe 3e. Further, ozone water flows from the ozone water generation unit 9 to the ozone water supply unit 11 in the ozone water supply pipe 3b1, and ozone water flows from the ozone water supply unit 11 to the filtered water pipe 3a in the ozone water supply pipe 3b2. The ozone water flowing through the filtered water pipe 3a flows into the separation membrane 2, and the separation membrane 2 is backwashed as described above. In the continuous operation step, ozone water needs to flow through the separation membrane 2 through the filtered water pipe 3a, so that the membrane separation activated sludge device 20 does not treat the water to be treated 6.

制御部12の具体的な構成について説明する。図2は、実施の形態1に係る制御部の構成例を示す図である。制御部12は、オゾン濃度受信部13、記憶部14、決定部15、および制御信号送信部16を備える。オゾン濃度受信部13と決定部15は信号線52aを介して接続されている。記憶部14と決定部15は信号線52bを介して接続されている。また、決定部15と制御信号送信部16は信号線52cを介して接続されている。オゾン濃度受信部13は、信号線51を介して溶存オゾンセンサ9bと接続されており、溶存オゾンセンサ9bの測定結果である溶存オゾン濃度のデータを信号線51を介して受信する。オゾン濃度受信部13は、受信した溶存オゾン濃度のデータを信号線52aを介して決定部15に送信する。記憶部14は、予め定められた閾値となる溶存オゾン濃度が記憶されている。記憶部14に記憶される閾値は、連続運転工程の切り替えの可否を判定するための閾値である。オゾン濃度受信部13は、オゾン濃度取得部に相当する。 A specific configuration of the control unit 12 will be described. FIG. 2 is a diagram showing a configuration example of the control unit according to the first embodiment. The control unit 12 includes an ozone concentration receiving unit 13, a storage unit 14, a determination unit 15, and a control signal transmitting unit 16. The ozone concentration receiving unit 13 and the determining unit 15 are connected via a signal line 52a. The storage unit 14 and the determination unit 15 are connected to each other via a signal line 52b. Further, the determination unit 15 and the control signal transmission unit 16 are connected via a signal line 52c. The ozone concentration receiving unit 13 is connected to the dissolved ozone sensor 9b via the signal line 51, and receives the data of the dissolved ozone concentration which is the measurement result of the dissolved ozone sensor 9b via the signal line 51. The ozone concentration receiving unit 13 transmits the received dissolved ozone concentration data to the determining unit 15 via the signal line 52a. The storage unit 14 stores the dissolved ozone concentration, which is a predetermined threshold value. The threshold value stored in the storage unit 14 is a threshold value for determining whether or not the continuous operation process can be switched. The ozone concentration receiving unit 13 corresponds to an ozone concentration acquiring unit.

決定部15は、膜洗浄装置40が実施する工程を決定する。決定部15は、オゾン水生成部9内のオゾン水の溶存オゾン濃度の測定値のデータをオゾン濃度受信部13から取得し、溶存オゾン濃度の測定値を記憶部14に記憶された閾値と比較する。溶存オゾン濃度の測定値が閾値以上である場合、実施する工程を連続運転工程に決定する。溶存オゾン濃度の測定値が閾値未満である場合、実施する工程をオゾンガス供給工程に決定する。このように、決定部15は、オゾン水生成部9内のオゾン水の溶存オゾン濃度に基づいてオゾンガス供給工程と連続運転工程との間で実施する工程の切り替えの可否を判定する。 The determination unit 15 determines the steps to be performed by the membrane cleaning device 40. The determination unit 15 acquires the data of the measured value of the dissolved ozone concentration of the ozone water in the ozone water generation unit 9 from the ozone concentration receiving unit 13, and compares the measured value of the dissolved ozone concentration with the threshold value stored in the storage unit 14. To do. When the measured value of the dissolved ozone concentration is equal to or higher than the threshold value, the step to be carried out is determined to be a continuous operation step. If the measured value of the dissolved ozone concentration is less than the threshold value, the step to be carried out is determined to be the ozone gas supply step. In this way, the determination unit 15 determines whether or not the process to be performed between the ozone gas supply process and the continuous operation process can be switched based on the dissolved ozone concentration of the ozone water in the ozone water generation unit 9.

決定された工程と現在実施されている工程が異なる場合、決定部15は、実施する工程を切り替えるための制御信号を生成し、生成した制御信号を信号線52cを介して制御信号送信部に送信する。制御信号送信部16は、決定部15から受信した制御信号を、信号線50a、50b、および50cを介して被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11にそれぞれ送信する。 When the determined process and the currently executed process are different, the determination unit 15 generates a control signal for switching the process to be performed, and transmits the generated control signal to the control signal transmission unit via the signal line 52c. To do. The control signal transmission unit 16 transmits the control signal received from the determination unit 15 to the dissolved water supply unit 8, the ozone gas supply unit 10, and the ozone water water supply unit 11 via the signal lines 50a, 50b, and 50c, respectively. ..

例えばオゾンガス供給工程から連続運転工程に切り替える場合、被溶解水供給部8への制御信号として送水開始の制御信号を生成するとともに、オゾン水送水部11への制御信号として送水開始の制御信号を生成する。オゾンガス供給部10は工程の切替前後で動作が変わらない(オゾンガスの供給を継続する)ので、この場合はオゾンガス供給部10への制御信号は生成されない。 For example, when switching from the ozone gas supply process to the continuous operation process, a water supply start control signal is generated as a control signal to the dissolved water supply unit 8, and a water supply start control signal is generated as a control signal to the ozone water supply unit 11. To do. Since the operation of the ozone gas supply unit 10 does not change before and after the process is switched (the supply of ozone gas is continued), the control signal to the ozone gas supply unit 10 is not generated in this case.

図5は、制御部12を実現するハードウエア構成の一例を示す図である。上述した制御部12の各機能部は、プロセッサ71がメモリ72またはハードディスク73に記憶されたプログラムを実行することで実現される。また、複数のプロセッサ71および複数のメモリ72またはハードディスク73が連携して制御部12の各機能を実現してもよい。また、制御部12は受信回路74を備え、受信回路74を介して溶存オゾンセンサ9bからのデータを受信する。溶存オゾンセンサ9bから受信した溶存オゾン濃度のデータ、プロセッサ71による演算の結果、および上記した予め定められた閾値は、メモリ72またはハードディスク73に記憶される。また、制御部12は送信回路75を備え、送信回路75を介して被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11に制御信号を送信する。 FIG. 5 is a diagram showing an example of a hardware configuration that realizes the control unit 12. Each functional unit of the control unit 12 described above is realized by the processor 71 executing a program stored in the memory 72 or the hard disk 73. Further, the plurality of processors 71 and the plurality of memories 72 or the hard disk 73 may cooperate to realize each function of the control unit 12. Further, the control unit 12 includes a receiving circuit 74, and receives data from the dissolved ozone sensor 9b via the receiving circuit 74. The dissolved ozone concentration data received from the dissolved ozone sensor 9b, the result of calculation by the processor 71, and the predetermined threshold value described above are stored in the memory 72 or the hard disk 73. Further, the control unit 12 includes a transmission circuit 75, and transmits a control signal to the dissolved water supply unit 8, the ozone gas supply unit 10, and the ozone water water supply unit 11 via the transmission circuit 75.

次に、動作について説明する。図3は、実施の形態1における膜洗浄装置の動作を示すフロー図である。まず、オゾン水生成部9に所定量の被溶解水が貯留されているかをチェックする(ステップST001)。オゾン水生成部9に所定量の被溶解水が貯留されている場合、ステップST003に進む。 Next, the operation will be described. FIG. 3 is a flow chart showing the operation of the membrane cleaning device according to the first embodiment. First, it is checked whether a predetermined amount of water to be dissolved is stored in the ozone water generation unit 9 (step ST001). When a predetermined amount of water to be dissolved is stored in the ozone water generation unit 9, the process proceeds to step ST003.

オゾン水生成部9に所定量の被溶解水が貯留されていない場合、オゾン水生成部9に被溶解水を供給する(ステップST002、被溶解水供給工程)。まず、制御部12により、実施する工程を被溶解供給工程に切り替える。具体的には、制御部12が送水開始の制御信号を被溶解水供給部8に送信し、被溶解水の送水を開始させる。被溶解水供給部8から送水される被溶解水は被溶解水供給配管3cを介してオゾン水生成部9に流れ、オゾン水生成部9に被溶解水が供給される。被溶解水の供給の開始後、定期的にステップST001を実施し、オゾン水生成部9に貯留されている被溶解水をチェックする。所定量の被溶解水がオゾン水生成部9に貯留されたらステップST003に進む。 When a predetermined amount of dissolved water is not stored in the ozone water generating unit 9, the dissolved water is supplied to the ozone water generating unit 9 (step ST002, dissolved water supply step). First, the control unit 12 switches the process to be performed to the process to be dissolved and supplied. Specifically, the control unit 12 transmits a control signal for starting water supply to the water to be dissolved supply unit 8 to start water supply to be dissolved. The dissolved water sent from the dissolved water supply unit 8 flows to the ozone water generation unit 9 via the dissolved water supply pipe 3c, and the dissolved water is supplied to the ozone water generation unit 9. After starting the supply of the water to be dissolved, step ST001 is periodically carried out to check the water to be dissolved stored in the ozone water generation unit 9. When a predetermined amount of water to be dissolved is stored in the ozone water generation unit 9, the process proceeds to step ST003.

オゾン水生成部9に所定量の被溶解水が貯留されている場合、被溶解水供給部8からオゾン水生成部9への被溶解水の供給を停止させた状態で、オゾンガス供給部10からオゾン水生成部9へのオゾンガスの供給を開始する(ステップST003)。具体的には、制御部12が送水停止の制御信号を被溶解水供給部8に送信し、被溶解水の送水を停止させる。また、制御部12が供給開始の制御信号をオゾンガス供給部10に送信し、オゾンガスの供給を開始させる。これにより、実施する工程がオゾンガス供給工程に切り替わり、半回分式によるオゾン水の生成が開始される。なお、ステップST002を経ていない場合のように、被溶解水の送水が行われていない場合、送水停止の動作は不要である。 When a predetermined amount of dissolved water is stored in the ozone water generation unit 9, the ozone gas supply unit 10 stops the supply of the dissolved water from the dissolved water supply unit 8 to the ozone water generation unit 9. The supply of ozone gas to the ozone water generation unit 9 is started (step ST003). Specifically, the control unit 12 transmits a control signal for stopping the water supply to the water to be dissolved supply unit 8 to stop the water supply to be dissolved. Further, the control unit 12 transmits a control signal for starting supply to the ozone gas supply unit 10 to start the supply of ozone gas. As a result, the process to be carried out is switched to the ozone gas supply process, and the generation of ozone water by the semi-batch method is started. When the water to be dissolved has not been supplied as in the case where the step ST002 has not been passed, the operation of stopping the water supply is unnecessary.

オゾンガス供給工程では、オゾン水生成部9に貯留されている被溶解水にオゾンガスを溶解させ、オゾン水を生成する(ステップST004)。オゾンガス供給部10から供給されるオゾンガスは、オゾンガス供給配管3dを介してオゾン水生成部9内の散気部9aに流れ、散気部9aから被溶解水にオゾンガスの気泡が注入される。オゾンガスの気泡は、散気部9aから上方の、被溶解水の水面に向かって流れる。オゾンガスの気泡は、被溶解水中を上方に流れる間に被溶解水と接触し、その一部が被溶解水に溶解する。溶解しなかったオゾンガスは、排オゾンガス配管3eを介して系外に排出される。上記のようにオゾンガスが被溶解水に溶解することにより、オゾン水が生成される。オゾンガス供給工程の間、溶存オゾンセンサ9bにより、オゾン水生成部9内のオゾン水の溶存オゾン濃度を連続的または断続的に測定し、測定結果を制御部12に送信する。 In the ozone gas supply step, ozone gas is dissolved in the dissolved water stored in the ozone water generation unit 9 to generate ozone water (step ST004). The ozone gas supplied from the ozone gas supply unit 10 flows to the air diffuser 9a in the ozone water generation unit 9 via the ozone gas supply pipe 3d, and bubbles of ozone gas are injected from the air diffuser 9a into the dissolved water. Bubbles of ozone gas flow from the diffuser portion 9a toward the surface of the water to be dissolved. The bubbles of ozone gas come into contact with the water to be dissolved while flowing upward in the water to be dissolved, and a part of them is dissolved in the water to be dissolved. The undissolved ozone gas is discharged to the outside of the system via the exhaust ozone gas pipe 3e. Ozone water is generated by dissolving ozone gas in the water to be dissolved as described above. During the ozone gas supply step, the dissolved ozone sensor 9b continuously or intermittently measures the dissolved ozone concentration of the ozone water in the ozone water generation unit 9, and transmits the measurement result to the control unit 12.

オゾンガス供給工程を実施中の所定のタイミングで、生成されたオゾン水の溶存オゾン濃度が予め定められた閾値以上であるかを判定し、実施する工程をオゾンガス供給工程から連続運転工程に切り替えるか否かを決定する(ステップST005)。制御部12の決定部15は、オゾン水生成部9内のオゾン水の溶存オゾン濃度の測定値と記憶部14に記憶されている閾値を比較し、溶存オゾン濃度の測定値が閾値未満である場合、オゾンガス供給工程を継続する(ステップST006)。以後、定期的にステップST005を実施し、溶存オゾン濃度の測定値と閾値との比較結果に基づいて実施する工程を切り替えるか否かを決定する。 At a predetermined timing during the ozone gas supply process, it is determined whether the dissolved ozone concentration of the generated ozone water is equal to or higher than a predetermined threshold value, and whether or not the process to be performed is switched from the ozone gas supply process to the continuous operation process. Is determined (step ST005). The determination unit 15 of the control unit 12 compares the measured value of the dissolved ozone concentration of ozone water in the ozone water generation unit 9 with the threshold value stored in the storage unit 14, and the measured value of the dissolved ozone concentration is less than the threshold value. If so, the ozone gas supply process is continued (step ST006). After that, step ST005 is periodically performed, and it is determined whether or not to switch the step to be performed based on the comparison result between the measured value of the dissolved ozone concentration and the threshold value.

溶存オゾン濃度の測定値が閾値以上である場合、オゾン水生成部9へのオゾンガスの供給を継続させながら、オゾン水生成部9への被溶解水の供給および分離膜2へのオゾン水の送水を開始する(ステップST007)。具体的には、制御部12が送水開始の制御信号を被溶解水供給部8およびオゾン水送水部11にそれぞれ送信し、被溶解水供給部8からオゾン水生成部9への被溶解水の供給およびオゾン水生成部9から分離膜2へのオゾン水の送水を開始させる。これにより、実施する工程がオゾンガス供給工程から連続運転工程に切り替わり、オゾン水による分離膜2の洗浄が開始されるとともに、オゾン水の生成が半回分式から連続式に切り替わる。オゾンガス供給部10からオゾン水生成部9へのオゾンガスの供給は、連続運転工程への切替後も継続される。 When the measured value of the dissolved ozone concentration is equal to or higher than the threshold value, the ozone water is supplied to the ozone water generation unit 9 and the ozone water is supplied to the separation membrane 2 while the ozone gas is continuously supplied to the ozone water generation unit 9. Is started (step ST007). Specifically, the control unit 12 transmits a control signal for starting water supply to the dissolved water supply unit 8 and the ozone water supply unit 11, respectively, and the dissolved water supply unit 8 sends the dissolved water to the ozone water generation unit 9. The supply and the supply of ozone water from the ozone water generation unit 9 to the separation membrane 2 are started. As a result, the step to be carried out is switched from the ozone gas supply step to the continuous operation step, the cleaning of the separation membrane 2 with ozone water is started, and the generation of ozone water is switched from the semi-batch type to the continuous type. The supply of ozone gas from the ozone gas supply unit 10 to the ozone water generation unit 9 is continued even after switching to the continuous operation process.

連続運転工程では、オゾン水生成部9へのオゾンガスの供給を継続させながら、被溶解水供給部8からオゾン水生成部9へ被溶解水を供給するとともに、オゾン水生成部9から分離膜2にオゾン水を送水し、オゾン水により分離膜2を洗浄する(ステップST008)。被溶解水の供給は、ステップST002の被溶解水供給工程の場合と同様である。オゾン水の送水は、オゾン水送水部11により行われる。まず、オゾン水送水配管3b1を介してオゾン水生成部9内のオゾン水をオゾン水生成部9からオゾン水送水部11に送水する。次に、オゾン水送水部11に送水されたオゾン水をオゾン水送水配管3b2を介してろ過水配管3aに送水し、ろ過水配管3aから分離膜2の内側にオゾン水を注入する。上述したように、分離膜2の内側にオゾン水が送水されると、分離膜2の内側から外側(ろ過方向とは逆方向)にオゾン水が流通し、逆洗により分離膜2が洗浄される。このように、すなわち、連続運転工程を実施中の制御部12は、オゾンガス供給部10からオゾン水生成部9へのオゾンガスの供給をオゾンガス供給部10にさせている状態で、被溶解水供給部8からオゾン水生成部9への被溶解水の供給を被溶解水供給部8にさせることで被溶解水供給工程を実施するとともに、オゾン水生成部9から分離膜2へのオゾン水の送水をオゾン水送水部11にさせることでオゾン水送水工程を実施する。なお、連続運転工程の実施中も、溶存オゾンセンサ9bによる溶存オゾン濃度の測定は継続される。 In the continuous operation step, the dissolved water is supplied from the dissolved water supply unit 8 to the ozone water generation unit 9 while the ozone gas is continuously supplied to the ozone water generation unit 9, and the separation membrane 2 is supplied from the ozone water generation unit 9. Ozone water is sent to the water, and the separation membrane 2 is washed with the ozone water (step ST008). The supply of the water to be dissolved is the same as in the case of the water supply step to be dissolved in step ST002. The ozone water is supplied by the ozone water supply unit 11. First, the ozone water in the ozone water generation unit 9 is supplied from the ozone water generation unit 9 to the ozone water supply unit 11 via the ozone water supply pipe 3b1. Next, the ozone water sent to the ozone water feeding unit 11 is sent to the filtered water pipe 3a via the ozone water feeding pipe 3b2, and the ozone water is injected from the filtered water pipe 3a into the inside of the separation membrane 2. As described above, when ozone water is sent to the inside of the separation membrane 2, ozone water flows from the inside to the outside of the separation membrane 2 (in the direction opposite to the filtration direction), and the separation membrane 2 is washed by backwashing. To. In this way, that is, the control unit 12 during the continuous operation process is in a state where the ozone gas supply unit 10 supplies the ozone gas from the ozone gas supply unit 10 to the ozone water generation unit 9, and the water to be dissolved unit 12 is supplied. The dissolved water supply step is carried out by causing the dissolved water supply unit 8 to supply the dissolved water from the 8 to the ozone water generation unit 9, and the ozone water is supplied from the ozone water generation unit 9 to the separation film 2. The ozone water feeding unit 11 is used to carry out the ozone water feeding step. The measurement of the dissolved ozone concentration by the dissolved ozone sensor 9b is continued even during the continuous operation step.

実施の形態1の連続運転工程では、オゾン水生成部9への被溶解水の供給とオゾン水生成部9からのオゾン水の送水の両方が行われるため、被溶解水の供給量とオゾン水の送水量を適切に設定することにより、オゾン水生成部9内の水量および水位は維持される。また、オゾンガスの供給も行われているので、溶存オゾン濃度の低下も抑制される。 In the continuous operation step of the first embodiment, both the dissolved water is supplied to the ozone water generating unit 9 and the ozone water is sent from the ozone water generating unit 9, so that the supplied amount of the dissolved water and the ozone water are performed. The amount of water and the water level in the ozone water generation unit 9 are maintained by appropriately setting the amount of water to be sent. In addition, since ozone gas is also supplied, a decrease in the dissolved ozone concentration is suppressed.

連続運転工程を実施中の所定のタイミングで、オゾン水生成部9内のオゾン水の溶存オゾン濃度が予め定められた閾値未満であるかを判定し、実施する工程を連続運転工程からオゾンガス供給工程に切り替えるか否かを決定する(ステップST009)。制御部12の決定部15は、オゾン水生成部9内のオゾン水の溶存オゾン濃度の測定値と記憶部14に記憶されている閾値を比較し、溶存オゾン濃度の測定値が閾値以上である場合、分離膜2の洗浄が完了したか否かを判定する(ステップST011)。洗浄完了の場合、オゾン水生成部9へのオゾンガスの供給、オゾン水生成部9への被溶解水の供給、および分離膜2へのオゾン水の送水を停止する(ステップST013)。具体的には、制御部12が送水停止の制御信号を被溶解水供給部8およびオゾン水送水部11にそれぞれ送信し、被溶解水供給部8からオゾン水生成部9への被溶解水の供給およびオゾン水生成部9から分離膜2へのオゾン水の送水を停止させるとともに、制御部12が供給停止の制御信号をオゾンガス供給部10に送信し、オゾンガス供給部10からオゾン水生成部9へのオゾンガスの供給を停止させる。分離膜2の洗浄を完了しない場合、連続運転工程を継続する(ステップST012)。以後、定期的にステップST009を実施し、溶存オゾン濃度の測定値と閾値との比較結果に基づいて実施する工程を切り替えるか否かを決定する。 At a predetermined timing during the continuous operation step, it is determined whether the dissolved ozone concentration of the ozone water in the ozone water generation unit 9 is less than a predetermined threshold, and the step to be carried out is from the continuous operation step to the ozone gas supply step. It is determined whether or not to switch to (step ST009). The determination unit 15 of the control unit 12 compares the measured value of the dissolved ozone concentration of ozone water in the ozone water generation unit 9 with the threshold value stored in the storage unit 14, and the measured value of the dissolved ozone concentration is equal to or higher than the threshold value. In this case, it is determined whether or not the cleaning of the separation membrane 2 is completed (step ST011). When the cleaning is completed, the supply of ozone gas to the ozone water generation unit 9, the supply of the dissolved water to the ozone water generation unit 9, and the supply of ozone water to the separation membrane 2 are stopped (step ST013). Specifically, the control unit 12 transmits a control signal for stopping water supply to the dissolved water supply unit 8 and the ozone water water supply unit 11, respectively, and the dissolved water supply unit 8 sends the dissolved water to the ozone water generation unit 9. The supply and the supply of ozone water from the ozone water generation unit 9 to the separation membrane 2 are stopped, the control unit 12 transmits a control signal for stopping the supply to the ozone gas supply unit 10, and the ozone gas supply unit 10 sends the ozone water generation unit 9 to the ozone water generation unit 9. Stop the supply of ozone gas to. If the cleaning of the separation membrane 2 is not completed, the continuous operation step is continued (step ST012). After that, step ST009 is periodically performed, and it is determined whether or not to switch the step to be performed based on the comparison result between the measured value of the dissolved ozone concentration and the threshold value.

溶存オゾン濃度の測定値が閾値未満である場合、オゾン水生成部9へのオゾンガスの供給を継続させながら、オゾン水生成部9への被溶解水の供給および分離膜2へのオゾン水の送水を停止する(ステップST010)。具体的には、制御部12が送水停止の制御信号を被溶解水供給部8およびオゾン水送水部11にそれぞれ送信し、被溶解水供給部8からオゾン水生成部9への被溶解水の供給およびオゾン水生成部9から分離膜2へのオゾン水の送水を停止させる。これにより、実施する工程が連続運転工程からオゾンガス供給工程に切り替わり、分離膜2の洗浄が停止するとともに、オゾン水の生成が連続式から半回分式に切り替わる。以降はステップST004に戻る。このように、制御部12は、オゾン水生成部9内のオゾン水の溶存オゾン濃度の測定値が閾値以上である場合は連続運転工程を実施し、オゾン水生成部9内のオゾン水の溶存オゾン濃度の測定値が閾値未満である場合はオゾンガス供給工程を実施するように、実施する工程を制御する。



When the measured value of the dissolved ozone concentration is less than the threshold value, the ozone water is supplied to the ozone water generation unit 9 and the ozone water is supplied to the separation membrane 2 while the ozone gas is continuously supplied to the ozone water generation unit 9. Is stopped (step ST010). Specifically, the control unit 12 transmits a control signal for stopping water supply to the dissolved water supply unit 8 and the ozone water water supply unit 11, respectively, and the dissolved water supply unit 8 sends the dissolved water to the ozone water generation unit 9. The supply and the supply of ozone water from the ozone water generation unit 9 to the separation membrane 2 are stopped. As a result, the step to be carried out is switched from the continuous operation step to the ozone gas supply step, the cleaning of the separation membrane 2 is stopped, and the generation of ozone water is switched from the continuous type to the half-time type. After that, the process returns to step ST004. As described above, the control unit 12 carries out a continuous operation step when the measured value of the dissolved ozone concentration of ozone water in the ozone water generation unit 9 is equal to or higher than the threshold value, and dissolves the ozone water in the ozone water generation unit 9. If the measured value of ozone concentration is less than the threshold value, the step to be carried out is controlled so that the ozone gas supply step is carried out.



なお、ステップST009とステップST011の順序を入れ替えてもよい、すなわち、連続運転工程において洗浄完了の判定を先に行い、完了しない場合にオゾンガス供給工程への切り替えの可否を判定してもよい。 The order of step ST009 and step ST011 may be exchanged, that is, the cleaning completion may be determined first in the continuous operation process, and if not completed, it may be determined whether or not the switching to the ozone gas supply process is possible.

また、ステップST005で用いる閾値、すなわちオゾンガス供給工程から連続運転工程への切り替えの可否を決める閾値と、ステップST009で用いる閾値、すなわち連続運転工程からオゾンガス供給工程への切り替えの可否を決める閾値とは、同じ値であってもよいし異なる値であってもよい。 Further, the threshold value used in step ST005, that is, the threshold value for determining whether or not to switch from the ozone gas supply process to the continuous operation process, and the threshold value used in step ST009, that is, the threshold value for determining whether or not to switch from the continuous operation process to the ozone gas supply process are , The same value or different values.

実施の形態1によれば、オゾンガスの溶解効率の低下を防ぐことができる。より具体的には、オゾンガス供給部からオゾン水生成部へのオゾンガスの供給をオゾンガス供給部にさせている状態で、被溶解水供給部からオゾン水生成部への被溶解水の供給を被溶解水供給部にさせるとともにオゾン水生成部から分離膜へのオゾン水の送水をオゾン水生成部にさせる連続運転工程によって分離膜の洗浄を行う。連続運転工程の実施中は、被溶解水供給部からオゾン水生成部への被溶解水の供給が行われるので、オゾン水の送水によるオゾン水生成部内の水量の減少および水位の低下、およびこれらに起因する気液接触時間の短縮が抑制される。このため、連続運転工程における連続式のオゾン水生成においては、オゾンガスの溶解効率の低下が防がれている。また、オゾンガス供給部からオゾン水生成部へのオゾンガスの供給も行うため、溶解しなかったオゾンガスが排オゾンガスとして系外に排出されたり、オゾンの自己分解が生じたりしても、オゾン水生成部内におけるオゾンガスの量は維持される。また、連続運転工程においてオゾン水生成部内の水量が維持されるため、再度オゾンガス供給工程を実施する際、改めて被溶解水を供給する必要が無い。このため、所定量のオゾン水を生成するために必要な時間を短縮することができる。 According to the first embodiment, it is possible to prevent a decrease in the dissolution efficiency of ozone gas. More specifically, the supply of dissolved water from the dissolved water supply unit to the ozone water generation unit is dissolved while the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit. The separation membrane is cleaned by a continuous operation step in which the water supply unit is made to feed the ozone water from the ozone water generation unit to the separation membrane to the ozone water generation unit. During the continuous operation process, the dissolved water is supplied from the dissolved water supply unit to the ozone water generation unit, so that the amount of water in the ozone water generation unit is reduced and the water level is lowered by the ozone water supply, and these The shortening of the gas-liquid contact time due to the above is suppressed. Therefore, in the continuous ozone water generation in the continuous operation process, the decrease in the dissolution efficiency of ozone gas is prevented. In addition, since ozone gas is also supplied from the ozone gas supply unit to the ozone water generation unit, even if undissolved ozone gas is discharged to the outside of the system as exhaust ozone gas or ozone is autolyzed, the ozone water generation unit is inside. The amount of ozone gas in is maintained. Further, since the amount of water in the ozone water generation unit is maintained in the continuous operation process, it is not necessary to supply the dissolved water again when the ozone gas supply process is performed again. Therefore, the time required to generate a predetermined amount of ozone water can be shortened.

また、オゾン水の溶存オゾン濃度が閾値以上である場合に連続運転工程を実施し、オゾン水の溶存オゾン濃度が閾値未満である場合にオゾンガス供給工程を実施するため、不十分な濃度のオゾン水による洗浄不良を抑制することができる。これは、水質が変動しやすい処理水などを被溶解水として用いる場合のように、連続式にてオゾン水を生成する際に水質が変化して溶存オゾン濃度が低下する虞がある場合に特に効果がある。 Further, since the continuous operation step is carried out when the dissolved ozone concentration of ozone water is equal to or higher than the threshold value and the ozone gas supply step is carried out when the dissolved ozone concentration of ozone water is less than the threshold value, the ozone water having an insufficient concentration is carried out. It is possible to suppress poor cleaning due to. This is especially true when there is a risk that the dissolved ozone concentration will decrease due to changes in the water quality when generating ozone water in a continuous manner, such as when treated water whose water quality is liable to fluctuate is used as the dissolved water. effective.

なお、実施の形態1における制御部は、オゾン水の水質、より具体的にはオゾン水の溶存オゾンの濃度に基づいてオゾンガス供給工程と連続運転工程との間の切替を行っているが、工程切替の判定基準とするオゾン水の水質として、オゾン水の水温、pH、有機物濃度を用いてもよい。これらの場合もオゾン水生成部内のオゾン水の水温、pH、または有機物濃度を測定し、測定値と閾値を比較することでオゾンガス供給工程と連続運転工程を切り替える。より具体的には、水温、pHまたは有機物濃度の測定値が閾値未満であった場合、オゾンガス供給工程から連続運転工程に切り替え、閾値以上であった場合、連続運転工程からオゾンガス供給工程に切り替えるように構成する。これにより、実施の形態1のように溶存オゾン濃度を用いた場合と同様の効果を得ることができる。 The control unit in the first embodiment switches between the ozone gas supply process and the continuous operation process based on the water quality of the ozone water, more specifically, the concentration of the dissolved ozone in the ozone water. As the water quality of ozone water as a criterion for switching, the water temperature, pH, and organic substance concentration of ozone water may be used. In these cases as well, the ozone water supply process and the continuous operation process are switched by measuring the water temperature, pH, or organic matter concentration of the ozone water in the ozone water generation unit and comparing the measured value with the threshold value. More specifically, if the measured value of water temperature, pH or organic matter concentration is less than the threshold value, the ozone gas supply process is switched to the continuous operation process, and if it is above the threshold value, the continuous operation process is switched to the ozone gas supply process. Configure to. As a result, the same effect as when the dissolved ozone concentration is used as in the first embodiment can be obtained.

また、オゾンガスの供給時間またはオゾンガスの供給量に基づいてオゾンガス供給工程から連続運転工程に切り替えてもよい。オゾンガスの供給時間に基づいて工程を切り替える場合、制御部にタイマーを設け、オゾンガス供給工程開始からの経過時間をオゾンガスの供給時間とみなし、工程切替の可否を決定する。またオゾンガスの供給量に基づいて工程を切り替える場合、制御部にオゾンガス供給量の演算器を設け、演算結果に基づいて工程切替の可否を決定する。オゾンガス供給量を用いる場合は、オゾンガス供給部あるいはオゾンガス供給配管においてオゾンガスの供給量を測定し、測定結果を制御部に送信する構成も考えられる。 Further, the ozone gas supply process may be switched to the continuous operation process based on the ozone gas supply time or the ozone gas supply amount. When the process is switched based on the ozone gas supply time, a timer is provided in the control unit, the elapsed time from the start of the ozone gas supply process is regarded as the ozone gas supply time, and whether or not the process can be switched is determined. When the process is switched based on the supply amount of ozone gas, a calculator for the supply amount of ozone gas is provided in the control unit, and whether or not the process can be switched is determined based on the calculation result. When the ozone gas supply amount is used, a configuration is also conceivable in which the ozone gas supply amount is measured in the ozone gas supply unit or the ozone gas supply pipe, and the measurement result is transmitted to the control unit.

オゾン水生成部には、水温、pHおよび有機物濃度等の水質を調整する水質調整部を設けてもよい。水質調整部により水質を積極的に調整することでオゾンガスの溶解効率の低下および分離膜の洗浄不良を防ぐことができ、洗浄効果の更なる向上が可能となる。 The ozone water generation unit may be provided with a water quality adjustment unit that adjusts the water quality such as water temperature, pH and organic matter concentration. By positively adjusting the water quality by the water quality adjusting unit, it is possible to prevent a decrease in the dissolution efficiency of ozone gas and a poor cleaning of the separation membrane, and it is possible to further improve the cleaning effect.

また、連続運転工程の開始における被溶解水の供給開始とオゾン水の送水開始は、同じタイミングとする構成でもよいし、オゾン水の送水を先に開始し、オゾン水生成部内の水位が一定以下となった時に被溶解水の送水を開始する構成でもよい。 Further, the start of the supply of the dissolved water and the start of the ozone water supply at the start of the continuous operation process may be configured at the same timing, or the ozone water supply is started first and the water level in the ozone water generation unit is below a certain level. The configuration may be such that the water to be dissolved is started to be sent when

実施の形態2.
次に、実施の形態2を図4Aおよび図4Bに基づいて説明する。なお、図1Aから図3と同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態2は、オゾン水生成部を複数備えている点などが実施の形態1と異なる。図4Aおよび図4Bは、実施の形態2における膜分離活性汚泥システムおよび膜洗浄装置を示す構成図であり、図4Aがオゾンガス供給工程を、図4Bが連続運転工程をそれぞれ説明する図となっている。なお、被溶解水供給工程については、以下で特に説明する場合を除き実施の形態1と同様であるので図示省略している。膜分離活性汚泥システム200は、図4Aに示すように、膜分離槽1および分離膜2を有する膜分離活性汚泥装置20と、分離膜2を洗浄する膜洗浄装置401とを備える。
Embodiment 2.
Next, the second embodiment will be described with reference to FIGS. 4A and 4B. The same or corresponding parts as those in FIGS. 1A to 3 are designated by the same reference numerals, and the description thereof will be omitted. The second embodiment is different from the first embodiment in that a plurality of ozone water generating units are provided. 4A and 4B are block diagrams showing the membrane separation activated sludge system and the membrane cleaning device according to the second embodiment, FIG. 4A is a diagram for explaining an ozone gas supply process, and FIG. 4B is a diagram for explaining a continuous operation process. There is. The water to be dissolved supply step is the same as that of the first embodiment except for the case described below, and is not shown. As shown in FIG. 4A, the membrane separation active sludge system 200 includes a membrane separation active sludge device 20 having a membrane separation tank 1 and a separation membrane 2, and a membrane cleaning device 401 for cleaning the separation membrane 2.

膜洗浄装置401は、分離膜2を洗浄する洗浄装置である。膜洗浄装置401は、被溶解水を第1のオゾン水生成部91に供給する被溶解水供給部8と、被溶解水にオゾンガスを溶解させてオゾン水を生成する第1のオゾン水生成部91および第2のオゾン水生成部92と、オゾンガスを第2のオゾン水生成部92に供給するオゾンガス供給部10と、第2のオゾン水生成部92で生成されたオゾン水を分離膜2の内側に注入するオゾン水送水部11と、被溶解水供給部8、オゾンガス供給部10、およびオゾン水送水部11の動作を工程に応じて切り替える制御部12とを備えている。第2のオゾン水生成部92には、第2のオゾン水生成部92内のオゾン水の溶存オゾン濃度を測定する溶存オゾンセンサ9bが設けられ、制御部12は、溶存オゾンセンサ9bと信号線51を介して接続されている。 The membrane cleaning device 401 is a cleaning device that cleans the separation membrane 2. The membrane cleaning device 401 includes a water-dissolved water supply unit 8 that supplies the water to be dissolved to the first ozone water generation unit 91, and a first ozone water generation unit that generates ozone water by dissolving ozone gas in the water to be dissolved. 91, a second ozone water generation unit 92, an ozone gas supply unit 10 that supplies ozone gas to the second ozone water generation unit 92, and an ozone water generated by the second ozone water generation unit 92 are separated from each other. It includes an ozone water supply unit 11 for injecting into the inside, a water supply unit 8 to be dissolved, an ozone gas supply unit 10, and a control unit 12 for switching the operation of the ozone water supply unit 11 according to the process. The second ozone water generation unit 92 is provided with a dissolved ozone sensor 9b for measuring the dissolved ozone concentration of ozone water in the second ozone water generation unit 92, and the control unit 12 is provided with the dissolved ozone sensor 9b and a signal line. It is connected via 51.

被溶解水供給部8は、被溶解水供給配管3cを介して第1のオゾン水生成部91と接続されている。被溶解水は、第1のオゾン水生成部91および第2のオゾン水生成部92においてオゾンガスが溶解してオゾン水となるものであり、被溶解水供給配管3cを通って被溶解水供給部8から第1のオゾン水生成部91に供給される。 The water-dissolved water supply unit 8 is connected to the first ozone water generation unit 91 via the water-dissolved water supply pipe 3c. The water to be dissolved is one in which ozone gas is dissolved in the first ozone water generation unit 91 and the second ozone water generation unit 92 to become ozone water, and the water to be dissolved passes through the water supply pipe 3c to be dissolved. It is supplied from the 8th to the 1st ozone water generation unit 91.

第1のオゾン水生成部91は、被溶解水送水配管3fを介して第2のオゾン水生成部92と接続されており、第2のオゾン水生成部92は、オゾン水送水配管3b1を介してオゾン水送水部11と接続されている。第1のオゾン水生成部91および第2のオゾン水生成部92は、それぞれ内部に液体を貯留可能に構成されており、被溶解水供給部8から供給された被溶解水および被溶解水から生成されたオゾン水を貯留可能である。第1のオゾン水生成部91内に貯留された被溶解水は、被溶解水送水配管3fを介して第2のオゾン水生成部92に供給される。 The first ozone water generation unit 91 is connected to the second ozone water generation unit 92 via the dissolved water water supply pipe 3f, and the second ozone water generation unit 92 is connected to the second ozone water generation unit 92 via the ozone water water supply pipe 3b1. It is connected to the ozone water supply unit 11. The first ozone water generation unit 91 and the second ozone water generation unit 92 are configured to be capable of storing liquids therein, and are composed of the dissolved water and the dissolved water supplied from the dissolved water supply unit 8. The generated ozone water can be stored. The dissolved water stored in the first ozone water generation unit 91 is supplied to the second ozone water generation unit 92 via the dissolved water water supply pipe 3f.

第1のオゾン水生成部91の底部および第2のオゾン水生成部92の底部には、散気部91aおよび散気部92aがそれぞれ設けられている。散気部92aは、オゾンガス供給配管3dを介してオゾンガス供給部10に接続されており、オゾンガス供給部10から供給されるオゾンガスは、散気部92aから気泡として放出されることで第2のオゾン水生成部92内の被溶解水中に注入される。第2のオゾン水生成部92の上部には、第1のオゾン水生成部91の散気部91aに接続されたオゾンガス移送配管3gが接続されており、第2のオゾン水生成部92において溶解しなかったオゾンガスは、溶解オゾンガスとして、オゾンガス移送配管3gを介して第1のオゾン水生成部91に供給される。オゾンガス移送配管3gを介して供給される未溶解オゾンガスは、散気部91aから気泡として放出されることで第1のオゾン水生成部91内の被溶解水中に注入される。第1のオゾン水生成部91において溶解しなかったオゾンガスは、第1のオゾン水生成部91の上部に設けられた排オゾンガス配管3eを介して系外に排出される。 An air diffuser 91a and an air diffuser 92a are provided at the bottom of the first ozone water generation unit 91 and the bottom of the second ozone water generation unit 92, respectively. The air diffuser 92a is connected to the ozone gas supply unit 10 via the ozone gas supply pipe 3d, and the ozone gas supplied from the ozone gas supply unit 10 is released as bubbles from the air diffuser 92a to provide a second ozone. It is injected into the water to be dissolved in the water generating section 92. An ozone gas transfer pipe 3g connected to the air diffuser 91a of the first ozone water generation unit 91 is connected to the upper part of the second ozone water generation unit 92, and is dissolved in the second ozone water generation unit 92. The ozone gas that has not been used is supplied as dissolved ozone gas to the first ozone water generation unit 91 via the ozone gas transfer pipe 3 g. The undissolved ozone gas supplied through the ozone gas transfer pipe 3g is discharged as bubbles from the air diffuser 91a and injected into the dissolved water in the first ozone water generating unit 91. The ozone gas that has not been dissolved in the first ozone water generation unit 91 is discharged to the outside of the system via the exhaust ozone gas pipe 3e provided above the first ozone water generation unit 91.

第1のオゾン水生成部91と被溶解水供給配管3cの接続部(図示なし)は第1のオゾン水生成部91の一方の側壁に設けられ、第1のオゾン水生成部91と被溶解水送水配管3fの接続部(図示なし)は第1のオゾン水生成部91の他方の側壁に設けられている。また、第1のオゾン水生成部91と被溶解水供給配管3cの接続部は、第1のオゾン水生成部91と被溶解水送水配管3fの接続部よりも高い位置に設けられている。これにより、高い位置から被溶解水が流入して被溶解水の流れが下降流となり、散気部91aからの上昇流であるオゾンガスの流れと被溶解水の流れとが対向流となる。この場合、被溶解水とオゾンガスとの間で対向流接触が起こり、第1のオゾン水生成部91における溶解効率が向上する。 A connection portion (not shown) between the first ozone water generation unit 91 and the water to be dissolved water supply pipe 3c is provided on one side wall of the first ozone water generation unit 91, and is dissolved with the first ozone water generation unit 91. A connection portion (not shown) of the water supply pipe 3f is provided on the other side wall of the first ozone water generation portion 91. Further, the connection portion between the first ozone water generation unit 91 and the dissolved water supply pipe 3c is provided at a position higher than the connection portion between the first ozone water generation unit 91 and the dissolved water water supply pipe 3f. As a result, the dissolved water flows in from a high position and the flow of the dissolved water becomes a downward flow, and the flow of ozone gas, which is an upward flow from the air diffuser 91a, and the flow of the dissolved water become countercurrents. In this case, countercurrent contact occurs between the water to be dissolved and the ozone gas, and the dissolution efficiency in the first ozone water generation unit 91 is improved.

第2のオゾン水生成部92と被溶解水送水配管3fの接続部(図示なし)は第2のオゾン水生成部92の一方の側壁に設けられ、第2のオゾン水生成部92とオゾン水送水配管3b1の接続部(図示なし)は第2のオゾン水生成部92の他方の側壁に設けられている。また、第2のオゾン水生成部92と被溶解水送水配管3fの接続部は、第2のオゾン水生成部92とオゾン水送水配管3b1の接続部よりも高い位置に設けられている。これにより、第2のオゾン水生成部92においても被溶解水の流れとオゾンガスの流れが対向流となり、対向流接触により第2のオゾン水生成部92における溶解効率が向上する。 A connection portion (not shown) between the second ozone water generation unit 92 and the water to be dissolved water supply pipe 3f is provided on one side wall of the second ozone water generation unit 92, and the second ozone water generation unit 92 and ozone water are provided. A connection portion (not shown) of the water supply pipe 3b1 is provided on the other side wall of the second ozone water generation portion 92. Further, the connection portion between the second ozone water generation unit 92 and the dissolved water water supply pipe 3f is provided at a position higher than the connection portion between the second ozone water generation unit 92 and the ozone water water supply pipe 3b1. As a result, the flow of the water to be dissolved and the flow of ozone gas also become countercurrents in the second ozone water generation unit 92, and the dissolution efficiency in the second ozone water generation unit 92 is improved by the countercurrent contact.

実施の形態2における「被溶解水供給工程」では、まず、被溶解水供給部8から第1のオゾン水生成部91に被溶解水が供給され、第1のオゾン水生成部91に供給された被溶解水が第2のオゾン水生成部92に供給される。この際、第1のオゾン水生成部91にて所定量の被溶解水を貯留させてから第2のオゾン水生成部92への被溶解水の供給を開始させてもよい。その他については実施の形態1における「被溶解水供給工程」と同様である。 In the "dissolved water supply step" in the second embodiment, first, the dissolved water is supplied from the dissolved water supply unit 8 to the first ozone water generation unit 91, and then supplied to the first ozone water generation unit 91. The dissolved water is supplied to the second ozone water generation unit 92. At this time, a predetermined amount of water to be dissolved may be stored in the first ozone water generation unit 91, and then the supply of the water to be dissolved to the second ozone water generation unit 92 may be started. Others are the same as the “water to be dissolved supply step” in the first embodiment.

実施の形態2における「オゾンガス供給工程」では、図4Aに示すように、第1のオゾン水生成部91から第2のオゾン水生成部92への被溶解水の供給が停止する。また、オゾンガス供給部10から供給されるオゾンガスを第2のオゾン水生成部92内の被溶解水に溶解させるとともに、第2のオゾン水生成部92で溶解しなかったオゾンガスを未溶解オゾンガスとして第1のオゾン水生成部91に供給し、第1のオゾン水生成部91内の被溶解水に未溶解オゾンガスを溶解させる。これにより、第1のオゾン水生成部91と第2のオゾン水生成部92の両方で半回分式によるオゾン水の生成が行われる。第1のオゾン水生成部91にて未溶解オゾンガスが溶解された被溶解水は、被溶解水送水配管3fを介して第2のオゾン水生成部92に供給され、第2のオゾン水生成部92内でさらにオゾンガスが溶解される。その他については実施の形態1における「オゾンガス供給工程」と同様である。 In the "ozone gas supply step" in the second embodiment, as shown in FIG. 4A, the supply of the dissolved water from the first ozone water generation unit 91 to the second ozone water generation unit 92 is stopped. Further, the ozone gas supplied from the ozone gas supply unit 10 is dissolved in the dissolved water in the second ozone water generation unit 92, and the ozone gas not dissolved in the second ozone water generation unit 92 is used as undissolved ozone gas. It is supplied to the ozone water generation unit 91 of No. 1, and the undissolved ozone gas is dissolved in the water to be dissolved in the first ozone water generation unit 91. As a result, both the first ozone water generation unit 91 and the second ozone water generation unit 92 generate ozone water by a semi-batch method. The dissolved water in which the undissolved ozone gas is dissolved in the first ozone water generation unit 91 is supplied to the second ozone water generation unit 92 via the dissolved water water supply pipe 3f, and is supplied to the second ozone water generation unit 92. Ozone gas is further dissolved in 92. Others are the same as the “ozone gas supply step” in the first embodiment.

実施の形態2における「オゾン水送水工程」は、第2のオゾン水生成部92が貯留するオゾン水を分離膜2へ送水して分離膜2の洗浄を行う工程である。また、実施の形態2における「連続運転工程」は、図4Bに示すように、被溶解水供給部8から第1のオゾン水生成部91への被溶解水の供給および第2のオゾン水生成部92からのオゾン水の送水に加え、第1のオゾン水生成部91から第2のオゾン水生成部92への被溶解水の供給も行われる。また、上記したオゾンガス供給工程の場合と同様に、第1のオゾン水生成部91と第2のオゾン水生成部92の両方で被溶解水にオゾンガスを溶解させる。これにより、第1のオゾン水生成部91と第2のオゾン水生成部92の両方で連続式によるオゾン水の生成が行われる。その他については実施の形態1における「連続運転工程」と同様である。 The "ozone water water supply step" in the second embodiment is a step of sending the ozone water stored in the second ozone water generation unit 92 to the separation membrane 2 to clean the separation membrane 2. Further, in the "continuous operation step" in the second embodiment, as shown in FIG. 4B, the dissolved water supply unit 8 supplies the dissolved water to the first ozone water generation unit 91 and the second ozone water generation unit 91. In addition to the supply of ozone water from the unit 92, the water to be dissolved is also supplied from the first ozone water generation unit 91 to the second ozone water generation unit 92. Further, as in the case of the ozone gas supply step described above, both the first ozone water generation unit 91 and the second ozone water generation unit 92 dissolve ozone gas in the water to be dissolved. As a result, both the first ozone water generation unit 91 and the second ozone water generation unit 92 continuously generate ozone water. Others are the same as the “continuous operation step” in the first embodiment.

なお、実施の形態2ではオゾン水生成部を2つとしたが、オゾン水生成部を3つ以上設けてもよい。あるオゾン水生成部で溶解しなかったオゾンガスを未溶解オゾンガスとして別のオゾン水生成部に供給し、当該別のオゾン水生成部に貯留された被溶解水に未溶解オゾンガスを注入する構成であればよい。また、当該別のオゾン水生成部でも溶解しなかった未溶解オゾンガスをさらに別のオゾン水生成部に供給してもよい。 In the second embodiment, the number of ozone water generating units is two, but three or more ozone water generating units may be provided. The configuration is such that the ozone gas that has not been dissolved in one ozone water generation unit is supplied as undissolved ozone gas to another ozone water generation unit, and the undissolved ozone gas is injected into the dissolved water stored in the other ozone water generation unit. Just do it. Further, undissolved ozone gas that has not been dissolved even in the other ozone water generation unit may be supplied to the other ozone water generation unit.

実施の形態2によれば、実施の形態1と同様の効果を得ることができる。
また、オゾン水生成部を複数備えるとともに、一方のオゾン水生成部で溶解しなかったオゾンガスを未溶解オゾンガスとして他方のオゾン水生成部に移送するオゾンガス移送配管を設けた。これにより、一方のオゾン水生成部で溶解しなかったオゾンガスを排オゾンガスとして排出することなく、他方のオゾン水生成部にて再度溶解させることができるので、オゾンガスの溶解効率をさらに向上させることができる。
According to the second embodiment, the same effect as that of the first embodiment can be obtained.
In addition, a plurality of ozone water generation units are provided, and an ozone gas transfer pipe for transferring ozone gas that has not been dissolved in one ozone water generation unit to the other ozone water generation unit as undissolved ozone gas is provided. As a result, the ozone gas that was not dissolved in one ozone water generation unit can be dissolved again in the other ozone water generation unit without being discharged as exhaust ozone gas, so that the dissolution efficiency of ozone gas can be further improved. it can.

本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 膜分離槽、2 分離膜、3b1、3b2 オゾン水送水配管、3c 被溶解水供給配管、3d オゾンガス供給配管、3f 被溶解水送水配管、3g オゾンガス移送配管、8 被溶解水供給部、9 オゾン水生成部、9b 溶存オゾンセンサ、91 第1のオゾン水生成部、92 第2のオゾン水生成部、10 オゾンガス供給部、11 オゾン水送水部、12 制御部、13 オゾン濃度受信部、14 記憶部、15 決定部、20 膜分離活性汚泥装置、40、401 膜洗浄装置、100、200 膜分離活性汚泥システム 1 Membrane separation tank, 2 Separation membrane, 3b1, 3b2 Ozone water supply pipe, 3c Dissolved water supply pipe, 3d Ozone gas supply pipe, 3f Dissolved water water supply pipe, 3g Ozone gas transfer pipe, 8 Dissolved water supply part, 9 Ozone Water generation unit, 9b dissolved ozone sensor, 91 1st ozone water generation unit, 92 2nd ozone water generation unit, 10 ozone gas supply unit, 11 ozone water supply unit, 12 control unit, 13 ozone concentration receiver, 14 memory Part, 15 Determining part, 20 Membrane separation active sludge device, 40, 401 Membrane cleaning device, 100, 200 Membrane separation active sludge system

Claims (9)

被処理水に含まれる汚濁物質を前記被処理水から分離する分離膜を、オゾン水生成部に貯留したオゾン水で洗浄する膜洗浄装置において、
オゾンガスを前記オゾン水生成部に供給するオゾンガス供給部と、
外部から導入される水、または前記分離膜で処理された処理水を被溶解水として、前記被溶解水を前記オゾン水生成部に供給する被溶解水供給部と、
前記オゾン水生成部が貯留する前記オゾン水を前記分離膜へ送水するオゾン水送水部と、
前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせる制御を行う制御部と、
を備え、
前記制御部は、前記オゾン水の溶存オゾン濃度を取得するオゾン濃度取得部と、予め定められた第1の閾値および予め定められた第2の閾値を記憶する記憶部と、前記被溶解水および前記オゾン水の送水の可否を決定する決定部とを備え、前記決定部は、
前記溶存オゾン濃度が前記予め定められた第1の閾値以上である場合に、
前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせ、かつ、
前記溶存オゾン濃度が前記予め定められた第2の閾値未満である場合に、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部に停止させるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部に停止させ
前記決定部は、前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給、および前記オゾン水生成部から前記分離膜への前記オゾン水の送水を停止させた状態で、前記オゾンガス供給部から前記オゾン水生成部に前記オゾンガスを供給して前記オゾン水を生成する工程において、前記溶存オゾン濃度が前記予め定められた第1の閾値以上であるか否かを判定し、
前記決定部は、前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせる工程において、前記溶存オゾン濃度が前記予め定められた第2の閾値未満であるか否かを判定することを特徴とする膜洗浄装置。
In a membrane cleaning device that cleans a separation film that separates pollutants contained in water to be treated from the water to be treated with ozone water stored in an ozone water generation unit.
An ozone gas supply unit that supplies ozone gas to the ozone water generation unit, and
A water-dissolved water supply unit that supplies the dissolved water to the ozone water generation unit , using water introduced from the outside or treated water treated with the separation membrane as the dissolved water.
An ozone water supply unit that sends the ozone water stored in the ozone water generation unit to the separation membrane, and an ozone water supply unit.
In a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is made to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. A control unit that controls the water supply unit and
With
The control unit includes an ozone concentration acquisition unit that acquires the dissolved ozone concentration of the ozone water, a storage unit that stores a predetermined first threshold value and a predetermined second threshold value, the dissolved water, and the solution unit. The determination unit includes a determination unit for determining whether or not the ozone water can be sent.
When the dissolved ozone concentration is equal to or higher than the predetermined first threshold value,
In a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is made to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. Let the water supply section and
When the dissolved ozone concentration is less than the predetermined second threshold value,
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is stopped by the dissolved water supply unit, and the ozone water is supplied from the ozone water generation unit to the separation membrane. stops the ozone water supply unit,
The determination unit is in a state in which the supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit and the supply of the ozone water from the ozone water generation unit to the separation membrane are stopped. In the step of supplying the ozone gas from the ozone gas supply unit to the ozone water generation unit to generate the ozone water, it is determined whether or not the dissolved ozone concentration is equal to or higher than the predetermined first threshold value.
The determination unit is in a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is made to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. in the step of the water water unit, membrane cleaning apparatus in which the dissolved ozone concentration is characterized that you determine whether the is less than a second predetermined threshold value.
前記オゾン水生成部は、前記被溶解水供給部と接続された第1のオゾン水生成部と、前記オゾンガス供給部および前記オゾン水送水部と接続された第2のオゾン水生成部と、前記第2のオゾン水生成部で溶解しなかったオゾンガスを未溶解オゾンガスとして前記第1のオゾン水生成部に移送するオゾンガス移送配管と、前記第1のオゾン水生成部から前記第2のオゾン水生成部に被溶解水を送水する被溶解水送水配管とを備え、
前記未溶解オゾンガスは、前記第1のオゾン水生成部にて前記被溶解水に溶解され、前記未溶解オゾンガスが溶解された被溶解水は、前記第1のオゾン水生成部から前記第2のオゾン水生成部に送水される請求項1に記載の膜洗浄装置。
The ozone water generation unit includes a first ozone water generation unit connected to the dissolved water supply unit, a second ozone water generation unit connected to the ozone gas supply unit and the ozone water supply unit, and the above. An ozone gas transfer pipe that transfers ozone gas that has not been dissolved in the second ozone water generation unit as undissolved ozone gas to the first ozone water generation unit, and the second ozone water generation from the first ozone water generation unit. Equipped with a water supply pipe for water to be dissolved, which feeds water to be dissolved.
The undissolved ozone gas is dissolved in the dissolved water in the first ozone water generation unit, and the dissolved water in which the undissolved ozone gas is dissolved is the second ozone water generation unit from the first ozone water generation unit. The film cleaning device according to claim 1, wherein water is sent to the ozone water generation unit.
前記予め定められた第1の閾値と前記予め定められた第2の閾値とは、異なる値である請求項1または2に記載の膜洗浄装置。 The membrane cleaning apparatus according to claim 1 or 2, wherein the predetermined first threshold value and the predetermined second threshold value are different values. 被処理水に含まれる汚濁物質を前記被処理水から分離する分離膜を、オゾン水生成部に貯留したオゾン水で洗浄する膜洗浄装置において、
オゾンガスを前記オゾン水生成部に供給するオゾンガス供給部と、
外部から導入される水、または前記分離膜で処理された処理水を被溶解水として、前記被溶解水を前記オゾン水生成部に供給する被溶解水供給部と、
前記オゾン水生成部が貯留する前記オゾン水を前記分離膜へ送水するオゾン水送水部と、
実施する工程を切り替える制御部と、
を備え、
前記制御部は、
前記オゾン水生成部への前記被溶解水の供給、および前記オゾン水生成部から前記分離膜への前記オゾン水の送水を停止させた状態で、前記オゾン水生成部にオゾンガスを供給するオゾンガス供給工程と、
前記オゾン水生成部にオゾンガスを供給し、かつ、前記被溶解水を前記オゾン水生成部に供給し、かつ、前記オゾン水を前記分離膜へ送水する連続運転工程と、を切り替える制御部であって、
前記制御部は、前記オゾン水の溶存オゾン濃度を取得するオゾン濃度取得部と、予め定められた第1の閾値および予め定められた第2の閾値を記憶する記憶部とを有し、
前記オゾンガス供給工程を実施中に前記オゾン水の溶存オゾン濃度が前記予め定められた第1の閾値以上となった場合に、前記分離膜への前記オゾン水の送水を開始させて、実施する工程を前記連続運転工程に切り替え、かつ、前記連続運転工程を実施中に前記オゾン水の溶存オゾン濃度が予め定められた第2の閾値未満となった場合に、前記オゾン水生成部への前記被溶解水の供給と前記分離膜への前記オゾン水の送水を停止して、実施する工程を前記オゾンガス供給工程に切り替えることを特徴とする膜洗浄装置。
In a membrane cleaning device that cleans a separation film that separates pollutants contained in water to be treated from the water to be treated with ozone water stored in an ozone water generation unit.
An ozone gas supply unit that supplies ozone gas to the ozone water generation unit, and
A water-dissolved water supply unit that supplies the dissolved water to the ozone water generation unit , using water introduced from the outside or treated water treated with the separation membrane as the dissolved water.
An ozone water supply unit that sends the ozone water stored in the ozone water generation unit to the separation membrane, and an ozone water supply unit.
A control unit that switches the process to be executed, and
With
The control unit
Ozone gas supply to supply ozone gas to the ozone water generation unit in a state where the supply of the dissolved water to the ozone water generation unit and the supply of the ozone water from the ozone water generation unit to the separation membrane are stopped. Process and
A control unit that switches between a continuous operation step of supplying ozone gas to the ozone water generation unit, supplying the dissolved water to the ozone water generation unit, and sending the ozone water to the separation membrane. hand,
The control unit has an ozone concentration acquisition unit that acquires the dissolved ozone concentration of the ozone water, and a storage unit that stores a predetermined first threshold value and a predetermined second threshold value.
When the dissolved ozone concentration of the ozone water becomes equal to or higher than the predetermined first threshold value during the ozone gas supply step, the ozone water supply to the separation membrane is started and carried out. Is switched to the continuous operation step, and when the dissolved ozone concentration of the ozone water becomes less than a predetermined second threshold value during the continuous operation step, the subject to the ozone water generation unit is covered. A membrane cleaning apparatus characterized in that the supply of dissolved water and the supply of the ozone water to the separation membrane are stopped, and the step to be carried out is switched to the ozone gas supply step.
前記予め定められた第1の閾値と前記予め定められた第2の閾値とは、異なる値である請求項4に記載の膜洗浄装置。 The membrane cleaning apparatus according to claim 4, wherein the predetermined first threshold value and the predetermined second threshold value are different values. 膜分離槽および該膜分離槽の内部に配置された分離膜を有し、汚濁物質を含んだ被処理水を前記分離膜に対してろ過方向に流通させ、前記被処理水から前記汚濁物質を除去して処理水を取得する膜分離活性汚泥装置と、オゾン水生成部に貯留したオゾン水で前記分離膜を洗浄する膜洗浄装置を備えた膜分離活性汚泥システムであって、
前記膜洗浄装置は、
オゾンガスを前記オゾン水生成部に供給するオゾンガス供給部と、
外部から導入される水、または前記分離膜で処理された処理水を被溶解水として、前記被溶解水を前記オゾン水生成部に供給する被溶解水供給部と、
前記オゾン水生成部が貯留する前記オゾン水を前記分離膜へ送水するオゾン水送水部と、
前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせる制御を行う制御部と、
を備え、
前記制御部は、前記オゾン水の溶存オゾン濃度を取得するオゾン濃度取得部と、予め定められた第1の閾値および予め定められた第2の閾値を記憶する記憶部と、前記被溶解水および前記オゾン水の送水の可否を決定する決定部とを備え、前記決定部は、
前記溶存オゾン濃度が前記予め定められた第1の閾値以上である場合に、
前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせ、かつ、
前記溶存オゾン濃度が前記予め定められた第2の閾値未満である場合に、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部に停止させるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部に停止させ
前記決定部は、前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給、および前記オゾン水生成部から前記分離膜への前記オゾン水の送水を停止させた状態で、前記オゾンガス供給部から前記オゾン水生成部に前記オゾンガスを供給して前記オゾン水を生成する工程において、前記溶存オゾン濃度が前記予め定められた第1の閾値以上であるか否かを判定し、
前記決定部は、前記オゾンガス供給部から前記オゾン水生成部への前記オゾンガスの供給を前記オゾンガス供給部にさせている状態で、
前記被溶解水供給部から前記オゾン水生成部への前記被溶解水の供給を前記被溶解水供給部にさせるとともに、前記オゾン水生成部から前記分離膜への前記オゾン水の送水を前記オゾン水送水部にさせる工程において、前記溶存オゾン濃度が前記予め定められた第2の閾値未満であるか否かを判定することを特徴とする膜分離活性汚泥システム。
It has a membrane separation tank and a separation membrane arranged inside the membrane separation tank, and water to be treated containing a pollutant is circulated through the separation membrane in the filtration direction, and the pollutant is removed from the water to be treated. A membrane separation active sludge system equipped with a membrane separation active sludge device for removing and acquiring treated water and a membrane cleaning device for cleaning the separation membrane with ozone water stored in an ozone water generation unit.
The membrane cleaning device is
An ozone gas supply unit that supplies ozone gas to the ozone water generation unit, and
A water-dissolved water supply unit that supplies the dissolved water to the ozone water generation unit , using water introduced from the outside or treated water treated with the separation membrane as the dissolved water.
An ozone water supply unit that sends the ozone water stored in the ozone water generation unit to the separation membrane, and an ozone water supply unit.
In a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is made to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. A control unit that controls the water supply unit and
With
The control unit includes an ozone concentration acquisition unit that acquires the dissolved ozone concentration of the ozone water, a storage unit that stores a predetermined first threshold value and a predetermined second threshold value, the dissolved water, and the solution unit. The determination unit includes a determination unit for determining whether or not the ozone water can be sent.
When the dissolved ozone concentration is equal to or higher than the predetermined first threshold value,
In a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is made to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. Let the water supply section and
When the dissolved ozone concentration is less than the predetermined second threshold value,
The supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit is stopped by the dissolved water supply unit, and the ozone water is supplied from the ozone water generation unit to the separation membrane. stops the ozone water supply unit,
The determination unit is in a state in which the supply of the dissolved water from the dissolved water supply unit to the ozone water generation unit and the supply of the ozone water from the ozone water generation unit to the separation membrane are stopped. In the step of supplying the ozone gas from the ozone gas supply unit to the ozone water generation unit to generate the ozone water, it is determined whether or not the dissolved ozone concentration is equal to or higher than the predetermined first threshold value.
The determination unit is in a state where the ozone gas supply unit supplies the ozone gas from the ozone gas supply unit to the ozone water generation unit.
The solutionized water is supplied from the dissolved water supply unit to the ozone water generation unit to the dissolved water supply unit, and the ozone water is sent from the ozone water generation unit to the separation membrane to the ozone. in the step of the water water unit, membrane separation activated sludge system in which the dissolved ozone concentration is characterized that it determines whether the is less than a second predetermined threshold value.
被処理水に含まれる汚濁物質を前記被処理水から分離する分離膜を、オゾン水生成部に貯留したオゾン水で洗浄する膜洗浄方法において、
前記オゾン水生成部への被溶解水の供給、および前記オゾン水生成部から前記分離膜への前記オゾン水の送水を停止させた状態で、オゾンガスを前記オゾン水生成部に供給するオゾンガス供給工程と、
外部から導入される水、または前記分離膜で処理された処理水を前記被溶解水として、前記被溶解水を前記オゾン水生成部に供給する被溶解水供給工程と、
前記オゾン水生成部が貯留する前記オゾン水を前記分離膜へ送水するオゾン水送水工程と、
前記オゾンガスを前記オゾン水生成部に供給しながら、前記被溶解水供給工程および前記オゾン水送水工程を実施する連続運転工程と、
を備え、前記オゾンガス供給工程を実施中に前記オゾン水の溶存オゾン濃度が予め定められた第1の閾値以上となった場合に、前記オゾン水送水工程を開始して、実施する工程を前記連続運転工程に切り替え、かつ、前記連続運転工程を実施中に前記オゾン水の溶存オゾン濃度が予め定められた第2の閾値未満となった場合に、前記オゾン水生成部への前記被溶解水の供給と前記分離膜への前記オゾン水の送水を停止して、実施する工程を前記オゾンガス供給工程に切り替えることを特徴とする膜洗浄方法。
In a film cleaning method in which a separation film that separates pollutants contained in water to be treated from the water to be treated is washed with ozone water stored in an ozone water generation unit.
Ozone gas supply step of supplying ozone gas to the ozone water generation unit in a state where the supply of dissolved water to the ozone water generation unit and the supply of the ozone water from the ozone water generation unit to the separation membrane are stopped. When,
A water to be dissolved supply step of supplying the water to be dissolved to the ozone water generation unit , using water introduced from the outside or treated water treated with the separation membrane as the water to be dissolved.
An ozone water supply step of supplying the ozone water stored in the ozone water generation unit to the separation membrane, and
A continuous operation step of carrying out the dissolved water supply step and the ozone water supply step while supplying the ozone gas to the ozone water generation unit, and
When the dissolved ozone concentration of the ozone water becomes equal to or higher than a predetermined first threshold value during the execution of the ozone gas supply step , the ozone water supply step is started and the steps to be carried out are continuously performed. When the ozone water is switched to the operation process and the dissolved ozone concentration of the ozone water becomes less than a predetermined second threshold value during the continuous operation process, the dissolved water in the ozone water generation unit is subjected to the operation process. A film cleaning method characterized in that the supply and the supply of the ozone water to the separation film are stopped, and the step to be carried out is switched to the ozone gas supply step.
前記オゾン水生成部は、前記被溶解水が供給される第1のオゾン水生成部と、前記オゾンガスが供給される第2のオゾン水生成部とを備え、
前記第2のオゾン水生成部で溶解しなかったオゾンガスを未溶解オゾンガスとして前記第1のオゾン水生成部に移送し、前記未溶解オゾンガスを前記第1のオゾン水生成部内の前記被溶解水に溶解させ、前記未溶解オゾンガスが溶解された被溶解水を前記第1のオゾン水生成部から前記第2のオゾン水生成部に送水する請求項7に記載の膜洗浄方法。
The ozone water generation unit includes a first ozone water generation unit to which the dissolved water is supplied and a second ozone water generation unit to which the ozone gas is supplied.
The ozone gas that was not dissolved in the second ozone water generation unit is transferred to the first ozone water generation unit as undissolved ozone gas, and the undissolved ozone gas is transferred to the dissolved water in the first ozone water generation unit. The film cleaning method according to claim 7, wherein the dissolved water in which the undissolved ozone gas is dissolved is sent from the first ozone water generation unit to the second ozone water generation unit.
前記予め定められた第1の閾値と前記予め定められた第2の閾値とは、異なる値である請求項7または8に記載の膜洗浄方法。 The membrane cleaning method according to claim 7 or 8, wherein the predetermined first threshold value and the predetermined second threshold value are different values.
JP2020552050A 2020-03-24 2020-03-24 Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method Active JP6887574B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012852 WO2021191997A1 (en) 2020-03-24 2020-03-24 Membrane cleaning device, membrane bioreactor system, and membrane cleaning method

Publications (2)

Publication Number Publication Date
JP6887574B1 true JP6887574B1 (en) 2021-06-16
JPWO2021191997A1 JPWO2021191997A1 (en) 2021-09-30

Family

ID=76310238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020552050A Active JP6887574B1 (en) 2020-03-24 2020-03-24 Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method

Country Status (3)

Country Link
JP (1) JP6887574B1 (en)
CN (1) CN115297951B (en)
WO (1) WO2021191997A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319375A (en) * 2004-05-07 2005-11-17 Suido Kiko Kaisha Ltd Membrane treatment method and membrane treatment apparatus
JP6430091B1 (en) * 2018-05-30 2018-11-28 三菱電機株式会社 Membrane cleaning apparatus and membrane cleaning method
WO2019039155A1 (en) * 2017-08-23 2019-02-28 三菱電機株式会社 Water treatment membrane cleaning apparatus and cleaning method membrane

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523751B2 (en) * 1996-04-18 2004-04-26 株式会社明電舎 Pressurized downward injection type ozone contact tank and its control method
WO2003033402A2 (en) * 2001-10-15 2003-04-24 Pure O3 Tech, Inc. Dissolved ozone generation and delivery system
JP5126153B2 (en) * 2009-04-22 2013-01-23 住友電気工業株式会社 Membrane separation activated sludge treatment equipment
CN104159852A (en) * 2012-01-17 2014-11-19 电解臭氧股份有限公司 Water purification system
CN103435218B (en) * 2013-08-09 2015-03-18 中持水务股份有限公司 Comprehensive emergency treatment method and device for ozone-BAF (Biological Aerated Filter)
JP2015054996A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Ozone water generator
CN106132518B (en) * 2014-04-10 2020-01-21 三菱电机株式会社 Water treatment method and water treatment device using membrane
JP6103794B1 (en) * 2015-08-27 2017-03-29 三菱電機株式会社 Water treatment method and water treatment apparatus
WO2018225186A1 (en) * 2017-06-07 2018-12-13 三菱電機株式会社 Device for cleaning and method for cleaning water treatment membrane, and water treatment system
CN209829737U (en) * 2019-05-08 2019-12-24 中实泰广(北京)环保科技有限公司 Full-digital sea sand purification monitoring control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319375A (en) * 2004-05-07 2005-11-17 Suido Kiko Kaisha Ltd Membrane treatment method and membrane treatment apparatus
WO2019039155A1 (en) * 2017-08-23 2019-02-28 三菱電機株式会社 Water treatment membrane cleaning apparatus and cleaning method membrane
JP6430091B1 (en) * 2018-05-30 2018-11-28 三菱電機株式会社 Membrane cleaning apparatus and membrane cleaning method

Also Published As

Publication number Publication date
JPWO2021191997A1 (en) 2021-09-30
CN115297951A (en) 2022-11-04
WO2021191997A1 (en) 2021-09-30
CN115297951B (en) 2023-02-28

Similar Documents

Publication Publication Date Title
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP6865836B2 (en) Water treatment membrane cleaning device and cleaning method
JP6432914B2 (en) Water treatment method and water treatment apparatus
JP2008539054A (en) Chemical cleaning for membrane filters
AU2009354303B2 (en) Method for immersion-type washing of separation membrane device and system for immersion-type washing of separation membrane device
JP6271109B1 (en) Water treatment membrane cleaning apparatus and method, and water treatment system
JP4850467B2 (en) Cleaning method for membrane deaerator
JP6887574B1 (en) Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method
KR101926857B1 (en) Automatic cleaning system of separation membrane and method using the same
TWI717743B (en) Membrane clean device and method for cleaning membrane
JP6617860B1 (en) Membrane separation activated sludge system and membrane cleaning device
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2009082858A (en) Cleaning method for filter membrane
JP3514187B2 (en) Filtration device
JP2013034938A (en) Method for washing membrane module
JP2007152193A (en) Water purification device and method
JP2015192937A (en) Immersion type membrane separation unit and operational method thereof
JP2008246281A (en) Operation method of water treatment system
JP7120496B1 (en) Filtration membrane cleaning device, water treatment device, and filtration membrane cleaning method
WO2022157926A1 (en) Cleaning device for filtration membrane, water treatment device, and cleaning method for filtration membrane
JPH11244893A (en) Operation method of organic sewage treating device
JP2016137469A (en) Method and device for cleaning air diffusion pipe, and activated sludge treatment method and activated sludge treatment system
JP2007098321A (en) Membrane filtration apparatus and its operation method
JPH02157086A (en) Preparation of ultrapure water
JP2001286865A (en) Immersion type solid-liquid separator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210518

R151 Written notification of patent or utility model registration

Ref document number: 6887574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151