JP2001286865A - Immersion type solid-liquid separator - Google Patents

Immersion type solid-liquid separator

Info

Publication number
JP2001286865A
JP2001286865A JP2000103753A JP2000103753A JP2001286865A JP 2001286865 A JP2001286865 A JP 2001286865A JP 2000103753 A JP2000103753 A JP 2000103753A JP 2000103753 A JP2000103753 A JP 2000103753A JP 2001286865 A JP2001286865 A JP 2001286865A
Authority
JP
Japan
Prior art keywords
membrane
liquid
tank
immersion tank
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000103753A
Other languages
Japanese (ja)
Other versions
JP3858562B2 (en
Inventor
Akishi Hori
晃士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000103753A priority Critical patent/JP3858562B2/en
Publication of JP2001286865A publication Critical patent/JP2001286865A/en
Application granted granted Critical
Publication of JP3858562B2 publication Critical patent/JP3858562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To enhance the effect of chemical washing to a filter membrane immersed into a membrane immersion tank, also to eliminate various troubles caused during chemical washing, and to facilitate operation control. SOLUTION: This membrane immersion type solid-liquid separator is provided with a liquid collecting part 6 on the bottom of the membrane immersion tank 1A, a taking-out means 13 for taking out the liquid in this liquid collecting part 6, and a sensor LS for detecting a liquid level of the liquid collecting part 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性汚泥に代表さ
れる、懸濁物質(SS)濃度500mg/L以上の有機
性懸濁物を含む原水中に濾過膜を浸漬し、該濾過膜によ
り膜濾過を行って濾過水を得る膜浸漬型固液分離装置に
係り、特に、膜浸漬槽に浸漬された濾過膜の薬品洗浄の
効果を高めると共に、薬品洗浄時に併発する種々のトラ
ブルを解決し、運転管理を容易にする膜浸漬型固液分離
装置に関する。
TECHNICAL FIELD The present invention relates to a method for immersing a filtration membrane in raw water containing an organic suspension having a concentration of suspended solids (SS) of 500 mg / L or more, represented by activated sludge. The present invention relates to a membrane immersion type solid-liquid separation device that obtains filtered water by performing membrane filtration, and in particular, enhances the effect of chemical cleaning of a filtration membrane immersed in a membrane immersion tank and solves various troubles that occur simultaneously during chemical cleaning. The present invention relates to a membrane immersion type solid-liquid separation device which facilitates operation management.

【0002】[0002]

【従来の技術】従来、高濃度の有機性懸濁物質を含む原
水を直接濾過する方法として、水槽内に濾過膜を浸漬
し、外圧式で濾過を行うことが有効であることが知られ
ている。これは、この方式によれば、槽内の被濾過液の
流路を広く取ることができるため、被濾過液が濃縮され
てゲル状又はケーク状となって、被濾過液流路や膜面を
閉塞する問題を軽減できるためである。
2. Description of the Related Art It has been known that, as a method for directly filtering raw water containing a high concentration of an organic suspended substance, it is effective to immerse a filtration membrane in a water tank and perform filtration by external pressure. I have. According to this method, since the flow path of the liquid to be filtered in the tank can be widened, the liquid to be filtered is concentrated into a gel or cake, and the flow path of the liquid to be filtered or the membrane surface is formed. This is because it is possible to reduce the problem of obstruction.

【0003】図3(a)は、従来の膜浸漬型固液分離装
置を示す断面図であり、図3(b)は同膜浸漬槽の平面
図である。
FIG. 3 (a) is a sectional view showing a conventional membrane immersion type solid-liquid separation apparatus, and FIG. 3 (b) is a plan view of the same membrane immersion tank.

【0004】図3において、1は膜浸漬槽であり、両側
に上下を開口する仕切り板2A,2Bを備えた膜モジュ
ール3A,3Bが、中央に浸漬されている。この仕切り
板2A,2Bは、膜モジュール3Bの下部に設けた曝気
管4により、ブロワBでその内部のみを曝気し、その曝
気による上昇流を促進させるためのものである。
In FIG. 3, reference numeral 1 denotes a membrane immersion tank, in which membrane modules 3A and 3B having partition plates 2A and 2B having upper and lower openings on both sides are immersed in the center. The partition plates 2A and 2B are for aerating only the inside thereof with a blower B by an aeration tube 4 provided below the membrane module 3B, thereby promoting an upward flow due to the aeration.

【0005】5は、オーバーフロー口であり、余剰の濃
縮された被濾過液をオーバーフローさせるためのもので
ある。
[0005] Reference numeral 5 denotes an overflow port, which is used to overflow an excessively concentrated liquid to be filtered.

【0006】原水はポンプP1を備える配管11より膜
浸漬槽1に供給され、膜濾過水(透過水)は処理水とし
て配管12より取り出される。この配管12は、自吸式
ポンプP2を備え、ポンプP2の吸引側には濾過圧力測
定用の圧力計PIが、また、吐出側には流量計FIが設
けられている。
[0006] Raw water is supplied to the membrane immersion tank 1 from a pipe 11 provided with a pump P1, and membrane filtered water (permeated water) is taken out from a pipe 12 as treated water. The pipe 12 includes a self-priming pump P2, and a pressure gauge PI for measuring a filtration pressure is provided on a suction side of the pump P2, and a flow meter FI is provided on a discharge side.

【0007】LSは液位検知計(レベルスイッチ)であ
り、3段階の液位L−1,L−2,L−3を検知する。
液位L−1は槽内液の抜き出し時に、液位L−2は薬液
の注入時に、液位L−3はポンプP2の異常停止条件に
それぞれ使用される。
LS is a liquid level detector (level switch), which detects three levels of liquid levels L-1, L-2 and L-3.
The liquid level L-1 is used for withdrawing the liquid in the tank, the liquid level L-2 is used for injecting the chemical, and the liquid level L-3 is used for the abnormal stop condition of the pump P2.

【0008】13は槽内液の抜き出し用配管であり、レ
ベルスイッチLSと連動するポンプP3を備える。14
は薬液供給用の配管であり、ポンプP4を備える。な
お、ポンプP3とP4を共用し、バルブの切り換えで槽
内液の抜き出しと、薬液の供給の流路切り換えを行うこ
ともできる。
Reference numeral 13 denotes a pipe for extracting the liquid in the tank, which is provided with a pump P3 interlocked with the level switch LS. 14
Is a pipe for supplying a chemical solution, and has a pump P4. It should be noted that the pumps P3 and P4 may be used in common, and the liquid in the tank may be extracted and the flow path for supplying the chemical solution may be switched by switching the valve.

【0009】このような膜浸漬型固液分離装置では、膜
モジュール3A,3Bの濾過膜として、通常、MF(精
密濾過)膜又はUF(限外濾過)膜が用いられ、特に、
MF膜の外圧型中空糸膜又は平膜が好適に用いられる。
In such a membrane immersion type solid-liquid separation device, an MF (microfiltration) membrane or a UF (ultrafiltration) membrane is usually used as a filtration membrane for the membrane modules 3A and 3B.
An external pressure type hollow fiber membrane or flat membrane of the MF membrane is suitably used.

【0010】膜濾過工程においては、膜浸漬槽1内の被
濾過液は曝気又は攪拌手段により攪拌することで、膜面
への被濾過物質(SS)の濃縮を抑制し、膜の閉塞を軽
減する。この場合、図3の如く、膜モジュール3A,3
Bの側面付近に上下を開口した仕切り板2A,2Bを設
け、仕切り板2A,2B内部の膜モジュール3A,3B
の下部のみ曝気することで、仕切り板2A,2B内にエ
アリフトによる上昇流を生じさせる方式が多く採用され
ている。
In the membrane filtration step, the liquid to be filtered in the membrane immersion tank 1 is aerated or agitated by a stirring means, whereby the concentration of the substance to be filtered (SS) on the membrane surface is suppressed and the clogging of the membrane is reduced. I do. In this case, as shown in FIG. 3, the membrane modules 3A, 3A
B, two partition plates 2A and 2B having upper and lower openings are provided in the vicinity of the side surface, and the membrane modules 3A and 3B inside the partition plates 2A and 2B are provided.
In many cases, a method is used in which only the lower part of the partition is aerated to generate an upward flow in the partition plates 2A and 2B by an air lift.

【0011】このような形式で膜濾過を行う場合、被濾
過液のいわゆるクロスフロー流束を高く取れないことか
ら、膜の目詰まりを防止するために、膜フラックスは1
/m/day以下に設定される。また、被濾過液
流路の閉塞を防止するため、膜と膜との間隔は比較的広
く取る必要がある。従って、この結果、膜モジュールは
比較的大きな占有面積が必要となり、膜浸漬槽も比較的
大容量となる。例えば、処理水100m/dayを得
るためには、通常、膜浸漬槽1の容積は10〜50m
(例えば、図3の如く、3000mm×3800mm×
4000mm)程度必要とされる。
When membrane filtration is performed in such a manner, since a so-called cross-flow flux of the liquid to be filtered cannot be made high, the membrane flux is set at 1 in order to prevent membrane clogging.
It is set to be not more than m 3 / m 2 / day. Further, in order to prevent the flow path of the liquid to be filtered from being blocked, it is necessary to provide a relatively large space between the membranes. Therefore, as a result, the membrane module requires a relatively large occupied area, and the membrane immersion tank also has a relatively large capacity. For example, in order to obtain treated water 100 m 3 / day are usually films volume of the immersion tank 1 10 to 50 m 3
(For example, as shown in FIG. 3, 3000 mm × 3800 mm ×
About 4000 mm).

【0012】ところで、このような膜浸漬型固液分離装
置では、濾過膜の表面に付着したSS等を除去するため
の膜洗浄を行う必要があるが、上述の如く、膜モジュー
ル3A,3Bが大きく、膜浸漬槽1が大容量となること
から、膜の薬品洗浄には、ポンプP1を停止して原水の
流入を停止し、膜浸漬槽1内の被濾過液を配管13より
槽外に抜き出した後、洗浄薬液を配管14より膜浸漬槽
1内に導入することで、膜を膜浸漬槽1内に設置したま
ま薬品洗浄する方式が提案されている(例えば特開平1
0−309595号公報)。この場合、膜浸漬槽1内の
被濾過液は、廃液として処理したり、別の水槽に退避さ
せておいたりする。特に、活性汚泥に適用する場合に
は、前段の生物処理槽のフリーボードを高く取り、その
生物処理槽に返送する方法が多く採用されている。
By the way, in such a membrane immersion type solid-liquid separation apparatus, it is necessary to perform membrane cleaning for removing SS and the like adhering to the surface of the filtration membrane. However, as described above, the membrane modules 3A and 3B are used. Since the membrane immersion tank 1 is large and has a large capacity, for chemical cleaning of the membrane, the pump P1 is stopped to stop the flow of the raw water, and the liquid to be filtered in the membrane immersion tank 1 is moved out of the tank from the pipe 13. A method has been proposed in which, after being extracted, a cleaning chemical is introduced into the membrane immersion tank 1 from the pipe 14 to perform chemical cleaning while the membrane is installed in the membrane immersion tank 1 (for example, Japanese Patent Application Laid-Open No. HEI 1-1990).
0-309595). In this case, the liquid to be filtered in the membrane immersion tank 1 is treated as a waste liquid, or is evacuated to another water tank. In particular, when applied to activated sludge, a method is often employed in which the free board of the preceding biological treatment tank is taken high and returned to the biological treatment tank.

【0013】この薬品洗浄中は、通常の膜濾過工程時と
同様に曝気又は攪拌手段を用いて膜面を攪拌し、膜面の
汚染物質を剥離させることが有効である。
During the chemical cleaning, it is effective to agitate the membrane surface by using aeration or agitating means in the same manner as in the ordinary membrane filtration step to remove contaminants on the membrane surface.

【0014】[0014]

【発明が解決しようとする課題】上記従来の薬品洗浄方
法を実施したところ、実用上次のような問題があること
が判明した。
When the above-mentioned conventional chemical cleaning method was carried out, it was found that there were practically the following problems.

【0015】〔課題1〕膜浸漬槽内から被濾過液を抜き
出したところ、水槽内に被濾過液が5%程度残留した。
この残留した被濾過液の液位(本明細書において、「液
位」とは槽底面からの高さを指す。)は約200mm程
度であり、これ以上液位を下げることは通常困難であ
る。これは、液位を感知することが難しく、また送液ポ
ンプが空気を吸い込み障害を起こす可能性があるためで
ある。即ち、槽内液の抜き出しに用いるポンプは、液を
全て吸い込み終わっても運転を続けると、いわゆる空引
きによりポンプが破損する危険があり、また破損に到ら
ない場合でも、ポンプ内部に空気溜まりができること
で、次回使用時に円滑に液を吸い込まず、起動に時間が
かかる問題がある。
[Problem 1] When the liquid to be filtered was extracted from the inside of the membrane immersion tank, about 5% of the liquid to be filtered remained in the water tank.
The liquid level of the remaining liquid to be filtered (in the present specification, “liquid level” refers to the height from the bottom of the tank) is about 200 mm, and it is usually difficult to lower the liquid level further. . This is because it is difficult to sense the liquid level, and the liquid feed pump may draw air and cause a failure. In other words, if the pump used to extract the liquid in the tank continues to operate even after all the liquid has been sucked, there is a risk that the pump will be damaged by so-called emptying, and even if damage does not occur, air will remain inside the pump. There is a problem that it takes a long time to start up because the liquid is not sucked in smoothly at the next use.

【0016】更に、膜浸漬槽の底面には沈降してヘドロ
状となった懸濁物質が残留した。この残留物を除去せず
に洗浄薬液を投入し、膜面を曝気したところ、次の問題
が生じた。 (1-1) 激しい発泡が生じ、数10mg/Lという多量
の消泡剤添加が必要となった。特に、被濾過液の残留が
10%程度と多い場合には、消泡剤では発泡を抑制しき
れず、泡が水槽から溢れたため、曝気を停止する必要が
生じた。この場合、消泡剤はコストの高い薬剤であり、
また消泡剤注入設備を設ける必要が生じることから、ラ
ンニングコスト、イニシャルコストが増加する。
Further, the suspended substance which settled and became sludge remained on the bottom surface of the membrane immersion tank. When the cleaning solution was introduced without removing the residue and the film surface was aerated, the following problem occurred. (1-1) Intense foaming occurred, and it was necessary to add a large amount of antifoaming agent of several tens mg / L. In particular, when the residual amount of the liquid to be filtered is as large as about 10%, the defoaming agent cannot completely suppress the foaming, and the foam overflows from the water tank, so that it is necessary to stop the aeration. In this case, the defoamer is a costly drug,
In addition, since it is necessary to provide an antifoaming agent injection facility, running costs and initial costs increase.

【0017】また、膜の洗浄薬剤には通常高濃度の苛性
ソーダを主体とした高アルカリの薬剤を用いるため、こ
れが発泡して溢れることは、作業の安全性を著しく悪化
させる。
Further, since a highly alkaline chemical mainly composed of a high concentration of caustic soda is usually used as a cleaning chemical for the membrane, the foaming and overflowing of the chemical significantly deteriorates the safety of work.

【0018】更に、曝気を停止する必要がたびたび生じ
ることにより、膜の薬品洗浄効果が低下し、洗浄時間を
延長することが必要となる。また、発泡の状態を監視
し、曝気量を制御する必要が生じるため、運転員の負担
が増大する。この作業を自動化するためには、発泡検知
センサと、曝気量制御弁と、これらの制御回路を設置す
る必要があり、建設費が増大する。
Further, the need to stop the aeration frequently arises, so that the chemical cleaning effect of the membrane is reduced, and it is necessary to extend the cleaning time. In addition, since it is necessary to monitor the state of foaming and control the amount of aeration, the burden on the operator increases. In order to automate this work, it is necessary to install a foaming detection sensor, an aeration amount control valve, and these control circuits, which increases construction costs.

【0019】(1-2) 活性汚泥を被濾過液としている膜
浸漬槽において、洗浄薬液として約2重量%の苛性ソー
ダと約700mg/Lの有効塩素(次亜塩素酸ソーダ)
を成分として含む溶液を使用したところ、洗浄開始直後
に有効塩素が消費され、有効塩素濃度が10mg/L以
下となった。膜の薬品洗浄に効果的な有効塩素濃度は5
00mg/L以上であり、この濃度を維持するために
は、3000mg/L相当の有効塩素を投入する必要が
あった。この量は、本来必要とする次亜塩素酸ソーダ量
の6倍に相当し、その分薬剤コストが増加した。
(1-2) In a membrane immersion tank using activated sludge as a liquid to be filtered, about 2% by weight of caustic soda and about 700 mg / L of available chlorine (sodium hypochlorite) are used as cleaning chemicals.
Was used, the available chlorine was consumed immediately after the start of washing, and the available chlorine concentration became 10 mg / L or less. Effective chlorine concentration effective for chemical cleaning of membrane is 5
The concentration was 00 mg / L or more. To maintain this concentration, it was necessary to supply 3000 mg / L of available chlorine. This amount was equivalent to six times the originally required amount of sodium hypochlorite, and the drug cost increased accordingly.

【0020】〔課題2〕薬品洗浄終了後、膜浸漬槽から
薬液を抜き出したところ、槽内に薬液が5%程度残留し
た。この残留物を除去せずに原水を投入し、濾過を再開
したところ、次のような問題が生じた。
[Problem 2] When the chemical cleaning is completed, the chemical is taken out of the film immersion tank, and about 5% of the chemical remains in the tank. Raw water was introduced without removing the residue, and filtration was resumed. As a result, the following problems occurred.

【0021】(2-1) 薬液と原水が混合することで、ア
ルカリ性の薬液を使った場合は被濾過液がアルカリ性に
なり、膜を透過して得られる処理水もアルカリとなっ
た。また酸性の薬液を使った場合は被濾過液が酸性とな
り、処理水も酸性となった。このため、処理水の次のプ
ロセスへの送水又は放流を中断し、膜浸漬槽内の液を中
和する必要が生じた。このため、運転員の負担が増大
し、特に酸又はアルカリによる危険性を伴う中和作業が
必要となった。なお、中性の薬液(界面活性剤等)であ
れば、このような問題は生じないが、中性の薬液では洗
浄効果が低く、実用的でない。
(2-1) By mixing the chemical solution and the raw water, when an alkaline chemical solution is used, the liquid to be filtered becomes alkaline, and the treated water obtained through the membrane becomes alkaline. When an acidic chemical was used, the liquid to be filtered became acidic and the treated water became acidic. For this reason, it has been necessary to interrupt the supply or discharge of the treated water to the next process, and to neutralize the liquid in the membrane immersion tank. For this reason, the burden on the operator has increased, and a neutralization operation involving a danger particularly due to acid or alkali has been required. It should be noted that such a problem does not occur with a neutral chemical solution (such as a surfactant). However, a neutral chemical solution has a low cleaning effect and is not practical.

【0022】(2-2) 特に、アルカリ性の薬液を用い、
被濾過液がアルカリ性となった場合には、被濾過液が激
しく発泡し、水槽から泡が溢れかけ、多量の消泡剤の添
加が必要となった。また、処理水が着色し、CODMn
も数10mg/L上昇し、後段のプロセスや、放流水質
規制によっては、放流不可能となる水質(CODMn
50mg/L)となった。
(2-2) In particular, using an alkaline chemical solution,
When the liquid to be filtered became alkaline, the liquid to be filtered foamed violently, and bubbles overflowed from the water tank, so that a large amount of antifoaming agent had to be added. Further, the treated water is colored and COD Mn
Also rises by several tens of mg / L, and water quality (COD Mn >
50 mg / L).

【0023】本発明は上記従来の問題点を解決し、膜浸
漬槽に浸漬された濾過膜の薬品洗浄の効果を高めると共
に、薬品洗浄時に併発する種々のトラブルを解決し、運
転管理を容易にする膜浸漬型固液分離装置を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems, enhances the effect of chemical cleaning of the filtration membrane immersed in the membrane immersion tank, and solves various troubles that occur simultaneously with chemical cleaning, thereby facilitating operation management. It is an object of the present invention to provide a membrane immersion type solid-liquid separation device that performs the following.

【0024】[0024]

【課題を解決するための手段】本発明の膜浸漬型固液分
離装置は、膜浸漬槽と、該膜浸漬槽内に設けられた濾過
膜と、該濾過膜の透過水を排出する手段と、該膜浸漬槽
に原水を供給する手段と、原水供給を停止する手段と、
該膜浸漬槽内の液を槽外へ移送する手段とを備え、有機
性懸濁物を含む原水中に浸漬された前記濾過膜により膜
濾過を行って透過水を得る膜浸漬型固液分離装置におい
て、該膜浸漬槽の底部の一部に設けられた液溜まり部
と、該液溜まり部の液を引き抜く手段と、該液溜まり部
の液位を検知するセンサとを備えたことを特徴とする。
According to the present invention, there is provided a membrane immersion type solid-liquid separation apparatus, comprising: a membrane immersion tank; a filtration membrane provided in the membrane immersion tank; and a means for discharging permeated water from the filtration membrane. Means for supplying raw water to the membrane immersion tank, means for stopping the supply of raw water,
Means for transferring the liquid in the membrane immersion tank to the outside of the tank, and membrane immersion type solid-liquid separation in which membrane filtration is performed by the filtration membrane immersed in raw water containing an organic suspension to obtain permeated water. In the apparatus, a liquid reservoir provided at a part of the bottom of the film immersion tank, a unit for extracting the liquid in the liquid reservoir, and a sensor for detecting a liquid level in the liquid reservoir are provided. And

【0025】本発明者は、薬品洗浄時に併発する前述の
種々のトラブルを解決すべく検討を重ね、これらのトラ
ブルを解決するためには、薬品洗浄に当たり、膜浸漬槽
内液の残留を極力なくすことが有効であるとの知見を得
た。
The present inventor has been studying to solve the above-mentioned various troubles which occur simultaneously during the chemical cleaning, and in order to solve these troubles, in the chemical cleaning, the residual liquid in the membrane immersion tank is minimized. Was found to be effective.

【0026】即ち、〔課題1〕に挙げたものは、次のよ
うな知見から、洗浄薬液を投入する前に膜浸漬槽内に残
留する被濾過液を減らすことで解決できることが判明し
た。
That is, it is clear from the following findings that the problem described in the [Problem 1] can be solved by reducing the amount of the liquid to be filtered remaining in the membrane immersion tank before the cleaning chemical is introduced.

【0027】課題1-1における発泡は、被濾過液中の微
生物が薬剤と接触したときに発泡性の物質を出すことが
原因と考えられる。特に、菌体が薬剤によって死滅する
ことにより放出される菌体の内容物が発泡の主原因と考
えられる。膜浸漬槽中では一般に微生物が濃縮されて高
濃度になっていること、また微生物が底部に堆積してヘ
ドロ状となっていることも、この現象を促進している。
It is considered that the foaming in the problem 1-1 is caused by the fact that microorganisms in the liquid to be filtered emit a foaming substance when coming into contact with the drug. In particular, it is considered that the content of the cells released by the killing of the cells by the drug is the main cause of the foaming. The fact that microorganisms are generally concentrated to a high concentration in a membrane immersion tank and that microorganisms are deposited on the bottom to form a sludge promotes this phenomenon.

【0028】また課題1-2における有効塩素の消費も、
槽内に残留した微生物と有効塩素が反応し、塩素が消費
されているために生じていると考えられる。
[0028] The consumption of available chlorine in Task 1-2 also
It is thought that the reaction occurred between the microorganisms remaining in the tank and the available chlorine, and the chlorine was consumed.

【0029】従って、被濾過液や底部のヘドロと共に膜
浸漬槽内の微生物を排出し、低濃度にすることで、これ
らの問題を軽減もしくは解決することができる。
Therefore, these problems can be reduced or solved by discharging the microorganisms in the membrane immersion tank together with the liquid to be filtered and the sludge at the bottom to make the concentration low.

【0030】また、〔課題2〕に挙げたものは、次のよ
うな知見から薬品洗浄後、被濾過液を投入する前に、膜
浸漬槽内に残留する薬液を減らすことで解決できること
が判明した。
In addition, the following problems can be solved by reducing the amount of the chemical remaining in the membrane immersion tank after chemical cleaning and before introducing the liquid to be filtered, based on the following findings. did.

【0031】課題2-1における、被濾過液の酸性化又は
アルカリ化は、膜浸漬槽内に残留している薬液の酸成分
又はアルカリ成分が膜浸漬槽に投入した原水の干渉能を
上回る場合に生ずる。従って、膜浸漬槽内に残留する薬
剤を減少させることにより、このpHの変動を抑制する
ことができる。
The acidification or alkalinization of the liquid to be filtered in the problem 2-1 is performed when the acid component or the alkali component of the chemical solution remaining in the membrane immersion tank exceeds the interference ability of the raw water charged into the membrane immersion tank. Occurs. Therefore, this fluctuation in pH can be suppressed by reducing the amount of the chemical remaining in the film immersion tank.

【0032】課題2-2における問題は、被濾過液中の微
生物がアルカリにより死滅し、これが着色成分やCOD
成分になっており、またその際菌体から放出される発泡
性の物質により、被濾過液が発泡していると考えられ
る。従って、この問題も膜浸漬槽内に残留する薬液量を
低減し、pH変動を抑制することで、軽減ないし解決す
ることが可能である。
The problem of the problem 2-2 is that the microorganisms in the liquid to be filtered are killed by the alkali, and this is
It is considered that the liquid to be filtered is foaming due to a foaming substance which is a component and is released from the cells at that time. Therefore, this problem can be reduced or solved by reducing the amount of the chemical solution remaining in the film immersion tank and suppressing the pH fluctuation.

【0033】以上より、薬品洗浄に当たり、膜浸漬槽内
に残留する液を極力減少させることが有効である。
As described above, it is effective to minimize the amount of liquid remaining in the film immersion tank during chemical cleaning.

【0034】本発明の膜浸漬型固液分離装置の如く、膜
浸漬槽の底面に液溜まり部と、液溜まり部内の液を引き
抜く手段と、液溜まり部の液位を検知するセンサとを設
け、これらを連動させることで、ポンプの空引きを防止
して、水深200mm以下までに槽内液を引き抜くこと
ができるようになる。これにより膜浸漬槽内の残留液を
極く少量とすることができるため、残留液に起因するト
ラブルを有効に解消ないし軽減することができる。
As in the membrane immersion type solid-liquid separation apparatus of the present invention, a liquid reservoir is provided on the bottom surface of the membrane immersion tank, means for extracting the liquid in the liquid reservoir, and a sensor for detecting the liquid level in the liquid reservoir. By interlocking these, the pump can be prevented from being emptied, and the liquid in the tank can be withdrawn to a depth of 200 mm or less. As a result, the amount of the residual liquid in the film immersion tank can be reduced to a very small amount, so that the trouble caused by the residual liquid can be effectively eliminated or reduced.

【0035】[0035]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0036】図1(a)は本発明の膜浸漬型固液分離装
置の実施の形態を示す断面図であり、図1(b)は同膜
浸漬槽の平面図である。図2は本発明の膜浸漬型固液分
離装置の他の実施の形態を示す断面図である。なお、図
1,2において、図3に示す部材と同一機能を奏する部
材には同一符号を付してある。
FIG. 1 (a) is a sectional view showing an embodiment of a membrane immersion type solid-liquid separation apparatus of the present invention, and FIG. 1 (b) is a plan view of the same membrane immersion tank. FIG. 2 is a sectional view showing another embodiment of the membrane immersion type solid-liquid separation device of the present invention. In FIGS. 1 and 2, members having the same functions as the members shown in FIG. 3 are denoted by the same reference numerals.

【0037】図1に示す膜浸漬型固液分離装置は、膜浸
漬槽1Aの底面の一隅部に液溜まり部6としての凹部を
設け、槽内液の抜き出し用の吸引ポンプP3を備える配
管13の先端開口をこの液溜まり部6の底面近傍に位置
させると共に、この液溜まり部6にエアパージ式の液位
検知計(レベルスイッチ)LSを設け、更にリンス液の
供給配管15を設けた点が図3に示す従来の膜浸漬型固
液分離装置と異なり、その他は同様の構成とされてい
る。
In the membrane immersion type solid-liquid separation apparatus shown in FIG. 1, a concave portion serving as a liquid reservoir 6 is provided at one corner of the bottom surface of the membrane immersion tank 1A, and a pipe 13 provided with a suction pump P3 for extracting liquid in the tank. Is located near the bottom surface of the liquid reservoir 6, an air purge type liquid level detector (level switch) LS is provided in the liquid reservoir 6, and a supply pipe 15 for rinsing liquid is further provided. Unlike the conventional membrane immersion type solid-liquid separation device shown in FIG. 3, the other components have the same configuration.

【0038】液溜まり部6内に設ける槽内液の引き抜き
手段は、図1に示す如く、吸引ポンプP3を備える配管
13の他、水中ポンプ等の従来公知のいずれの手段でも
良いが、膜の洗浄薬品に耐性を有することが必要であ
る。
The means for extracting the liquid in the tank provided in the liquid reservoir 6 may be any known means such as a submersible pump or the like in addition to the pipe 13 having the suction pump P3 as shown in FIG. It must be resistant to cleaning chemicals.

【0039】また、液溜まり部6に設ける液位検知セン
サは、従来公知のいずれの型式のものでも良いが、スカ
ムや泡の影響を受けないものが好ましい。また、液溜ま
り部6は膜浸漬槽1Aの底部にあり、ヘドロが堆積しが
ちなため、特に、常時空気を送給し、この空気の押し込
み圧により液位を検知するエアパージ式や、圧力検知式
のレベルスイッチが好ましい。その他、フリクト式のレ
ベルスイッチも好適に使用することができる。
The liquid level detecting sensor provided in the liquid reservoir 6 may be of any type known in the art, but is preferably one which is not affected by scum or bubbles. The liquid reservoir 6 is located at the bottom of the membrane immersion tank 1A and tends to accumulate sludge. In particular, air is constantly supplied and the air level is detected by the pressure of the air. An expression level switch is preferred. In addition, a friction type level switch can also be suitably used.

【0040】液溜まり部6は、このような液の引抜き手
段と、液位検知センサの動作を妨げないものであれば良
く、その形状は問わないが、過度に大きいと液溜まり部
内に残留した液が障害を起こすため、通常は250〜5
00mm角程度の大きさとするのが好ましい。また、液
溜まり部6を設置する位置は、液が滞留せずに流れてい
る部分が好ましい。具体的には、曝気管5の底面投影位
置から2000mm以内、特に1000mm以内とする
のが望ましい。
The liquid reservoir 6 may be of any type as long as it does not hinder the operation of such a liquid extracting means and the operation of the liquid level detecting sensor, and its shape is not limited. If it is excessively large, the liquid remains in the liquid reservoir. Normally 250-5
The size is preferably about 00 mm square. Further, the position where the liquid reservoir 6 is installed is preferably a portion where the liquid flows without stagnation. Specifically, it is desirable that the distance from the bottom projection position of the aeration tube 5 be within 2000 mm, particularly within 1000 mm.

【0041】また、図1に示す如く、旋回流上昇部と下
降部を仕切る仕切り板2A,2Bを設けた場合は、この
仕切り板2A,2Bの底面投影位置から1500mm以
内、特に600mm以内とするのが好ましい。
As shown in FIG. 1, when the partition plates 2A and 2B are provided to partition the swirling flow rising portion and the descending portion, the distance between the bottom surfaces of the partition plates 2A and 2B is 1500 mm or less, particularly 600 mm or less. Is preferred.

【0042】また、膜浸漬槽1Aの底面は完全に平坦で
あると、液が残留しやすくなるため、液溜まり部6に向
かって傾斜を付けることが好ましい。この傾斜の勾配は
3〜100パーミルとするのが好適であり、特に5〜2
0パーミルとするのが良い。
If the bottom surface of the film immersion tank 1A is completely flat, the liquid is likely to remain. The inclination of this inclination is preferably 3 to 100 per mil, particularly 5 to 2
It is good to use 0 per mil.

【0043】また、薬品洗浄に際しては、膜浸漬槽1A
内に残留する被濾過液やヘドロをできるだけ減少させる
ために、液位検知センサは膜浸漬槽1A内のなるべく下
方に設けるのが好ましく、また液位検知センサは槽内液
の引き抜き手段と連動させるのが好ましい。
In chemical cleaning, the film immersion tank 1A
The liquid level detection sensor is preferably provided as low as possible in the membrane immersion tank 1A in order to reduce as much as possible the liquid to be filtered and sludge remaining therein, and the liquid level detection sensor is interlocked with the liquid extracting means in the tank. Is preferred.

【0044】リンス液としては、通常、上水、中水、工
水、処理水等の清澄な水を用いる。SSが500mg/
L以下であれば原水でも代用が可能であるが、極力清澄
な水が好ましい。
As the rinsing liquid, clear water such as tap water, medium water, industrial water, or treated water is usually used. SS is 500mg /
If it is L or less, raw water can be substituted, but clear water is preferred as much as possible.

【0045】従って、リンス液供給手段には、上水、工
水等をバルブを介して配管しても良いし、必要に応じて
ポンプで昇圧した処理水を必要に応じてバルブを介して
供給するようにしても良い。リンス液は液位検知センサ
と連動し、リンス液位までリンス液を供給すると自動的
に停止するものが好ましい。この場合、リンス液供給手
段のバルブは自動弁を用いるのが好ましい。なお、リン
ス液供給手段は、薬液供給手段の配管14やポンプP4
とバルブを介して共用することもできる。また、リンス
液として原水を用いる場合には、原水供給手段を用いる
ことができ、この場合には別途リンス液供給手段を設け
ることが不要となる。
Accordingly, the rinsing liquid supply means may be provided with piping such as tap water or working water via a valve, or may supply treated water pressurized by a pump as needed via a valve. You may do it. Preferably, the rinsing liquid is interlocked with the liquid level detection sensor and automatically stops when the rinsing liquid is supplied to the rinsing liquid level. In this case, it is preferable to use an automatic valve as the valve of the rinsing liquid supply means. In addition, the rinsing liquid supply means includes the pipe 14 of the chemical liquid supply means and the pump P4.
And can be shared via a valve. When raw water is used as the rinsing liquid, a raw water supply unit can be used. In this case, it is not necessary to provide a separate rinsing liquid supply unit.

【0046】リンス液の供給手段は膜浸漬槽1Aの容量
の20%以上の水量を1時間以内に供給できるものが良
く、望ましくは20分以内に供給できるものがよい。ま
た、リンス液の供給量は、膜浸漬槽1A内に残留してい
る液量の3倍以上、特に7倍以上が好ましい。液位とし
ては、50〜700mm程度が好ましい。ただし、過剰
に投入すると、リンス液のコストが高騰したり、廃液が
増えたり、膜の洗浄工程に要する時間が長くなったりす
るため、多くとも膜浸漬槽の容量の半量以下とするのが
好ましい。膜浸漬槽内に投入した後に抜き出したリンス
液は、廃液として処理したり、原水槽に戻したり、前段
に活性汚泥処理槽がある場合には活性汚泥処理槽に投入
したりするのが良い。リンス液が薬液と混合されて希薄
な薬液となっているものは、この薬液の中和操作を行え
る工程に投入するか、膜浸漬槽内で予め中和してから排
出するのが良い。膜浸漬槽内で予め中和する場合は、水
位が低くなっているため、槽内液をポンプ循環しながら
循環ラインに中和薬剤を投入するのが好ましい。この時
に、中和を検知する計器(pH計、ORP計など)も循
環ライン中に設けておくのが好適である。循環に用いる
ポンプは、槽内液の抜き出しに用いるポンプと共有する
のが好適である。
The means for supplying the rinsing liquid is preferably one capable of supplying a water amount of 20% or more of the capacity of the membrane immersion tank 1A within one hour, and desirably one capable of supplying water within 20 minutes. Further, the supply amount of the rinsing liquid is preferably at least three times, particularly preferably at least seven times the amount of the liquid remaining in the film immersion tank 1A. The liquid level is preferably about 50 to 700 mm. However, if added excessively, the cost of the rinsing liquid rises, the amount of waste liquid increases, or the time required for the membrane cleaning step increases, so that it is preferable to set the volume at most to half or less of the capacity of the membrane immersion tank. . It is preferable that the rinsing liquid extracted after being put into the membrane immersion tank be treated as a waste liquid, returned to the raw water tank, or put into the activated sludge treatment tank if there is an activated sludge treatment tank in the preceding stage. It is preferable that the rinse solution mixed with the chemical solution to form a diluted chemical solution is introduced into a step in which the chemical solution can be neutralized or neutralized in advance in a film immersion tank and then discharged. When the neutralization is performed in advance in the membrane immersion tank, the water level is low. Therefore, it is preferable to introduce the neutralizing agent into the circulation line while circulating the liquid in the tank by pumping. At this time, it is preferable that an instrument (such as a pH meter or an ORP meter) for detecting neutralization is also provided in the circulation line. The pump used for circulation is preferably shared with the pump used for extracting the liquid in the tank.

【0047】図1に示す膜浸漬型固液分離装置におい
て、原水の膜濾過は、ブロワBによる曝気下、ポンプP
1を作動させて配管11より原水を膜浸漬槽1Aに供給
すると共に、ポンプP2により膜濾過水を処理水として
配管12を経て抜き出すことにより行われる。この膜濾
過工程後の薬品洗浄は、好ましくは次のような手順で実
施できる。
In the membrane immersion type solid-liquid separation apparatus shown in FIG.
1 is operated to supply raw water from the pipe 11 to the membrane immersion tank 1A, and the membrane P is extracted by the pump P2 through the pipe 12 as treated water. The chemical cleaning after the membrane filtration step can be preferably performed by the following procedure.

【0048】 ブロワBを停止して曝気を止めると共
に、ポンプP1及びポンプP2を停止して原水の供給と
処理水の取り出しを停止した後、ポンプP3を作動させ
て配管13より槽内液を抜き出す。この槽内液の抜き出
しに当り、本発明の膜浸漬型固液分離装置では、膜浸漬
槽1Aの底面に液溜まり部6が設けられているため、従
来に比べて相当に低い液位まで槽内液を抜き出すことが
できる。この槽内液の抜き出しはレベルスイッチLSと
の連動により、膜浸漬槽1Aの底面1aより100mm
以下にまで液位が下がるように行うのが好ましい。
After stopping the blower B to stop the aeration and stopping the pumps P1 and P2 to stop the supply of the raw water and the removal of the treated water, the pump P3 is operated to extract the liquid in the tank from the pipe 13. . In extracting the liquid in the tank, in the membrane-immersion type solid-liquid separation device of the present invention, since the liquid reservoir 6 is provided on the bottom surface of the membrane immersion tank 1A, the tank is lowered to a considerably lower liquid level than in the prior art. Internal fluid can be extracted. The extraction of the liquid in the tank is performed 100 mm from the bottom surface 1a of the membrane immersion tank 1A by interlocking with the level switch LS.
It is preferable to perform the process so that the liquid level drops to the following.

【0049】 槽内液を抜き出した後は、配管15よ
りリンス液を供給して膜浸漬槽1A内に残留する槽内液
と共に配管13より抜き出す。このときの抜き出しも、
膜浸漬槽1Aの底面1aより100mm以下にまで液位
が下がるように行うのが好ましい。このようにリンス液
を供給して抜き出すことにより、槽底部のヘドロを円滑
に抜き出して、薬品洗浄への悪影響を防止することがで
きる。なお、このリンス液の供給、抜き出しは、2回以
上行っても良い。
After the liquid in the tank is extracted, a rinsing liquid is supplied from the pipe 15 and extracted from the pipe 13 together with the liquid remaining in the tank 1A. At this time,
It is preferable to perform the process so that the liquid level drops to 100 mm or less from the bottom surface 1a of the membrane immersion tank 1A. By supplying and extracting the rinsing liquid in this manner, the sludge at the bottom of the tank can be smoothly extracted, and adverse effects on chemical cleaning can be prevented. The supply and withdrawal of the rinsing liquid may be performed twice or more.

【0050】 上記リンス後は、ポンプP4を作動さ
せて配管14より薬液を供給して薬品洗浄を行い、薬品
洗浄後、膜浸漬槽1内の薬液を配管13より抜き出す。
この薬品洗浄時は20〜100m/m/hr程度で
曝気を行うのが好ましい。
After the rinsing, the pump P 4 is operated to supply a chemical solution from the pipe 14 to perform chemical cleaning. After the chemical cleaning, the chemical solution in the film immersion tank 1 is extracted from the pipe 13.
At the time of this chemical cleaning, it is preferable to perform aeration at about 20 to 100 m 3 / m 2 / hr.

【0051】 薬品洗浄後、上記と同様にしてリン
ス液を供給し、膜浸漬槽1A内に残留する薬液と共に配
管13より抜き出す。この際、必要に応じて前述の如
く、薬液の中和を行う。このようにリンス液を供給して
薬液と共に抜き出すことにより、膜浸漬槽1A内に残留
する薬液量を著しく低減して、膜濾過工程への悪影響を
防止できる。
After the chemical cleaning, a rinse liquid is supplied in the same manner as described above, and the rinse liquid is extracted from the pipe 13 together with the chemical liquid remaining in the film immersion tank 1A. At this time, if necessary, the chemical is neutralized as described above. By supplying the rinsing liquid and extracting the rinsing liquid together with the chemical liquid in this manner, the amount of the chemical liquid remaining in the membrane immersion tank 1A can be significantly reduced, and adverse effects on the membrane filtration step can be prevented.

【0052】 上記リンス後、配管11より原水を導
入して膜濾過を再開する。この際、膜浸漬槽1Aに原水
を投入した後、曝気をしながら一定時間の経過を待っ
て、濾過を開始するのが好ましい。即ち、色度やCOD
は時間の経過と共に増加する場合があり、特に原水が活
性汚泥の場合に顕著であるが、これら着色成分やCOD
成分は、曝気を継続することにより一部を再び生物的に
分解することができる。また、洗浄薬液がアルカリであ
り、原水がアルカリ性になった場合には、曝気により大
気中の二酸化炭素が溶解し、アルカリを中和する効果が
ある。また、原水が活性汚泥であり、前段に設けた曝気
槽との間で活性汚泥を循環している場合には、拡散効果
によりpHの正常化、色度、CODの低減を図ることが
できる。ここで、待機する時間としては30分〜1週間
程度が好ましく、特に1時間〜1日間が好ましい。特
に、他の処理槽との間に循環を行っている場合には、循
環水量に対する膜浸漬槽の滞留時間の1〜6倍、特に2
〜3倍が好ましい。
After the above rinsing, raw water is introduced from the pipe 11 and the membrane filtration is restarted. At this time, it is preferable that after supplying raw water into the membrane immersion tank 1A, filtration is started after elapse of a certain time while aeration is performed. That is, chromaticity and COD
May increase with the passage of time, particularly when the raw water is activated sludge.
The components can be partially biodegraded again by continuing the aeration. Further, when the cleaning liquid is alkaline and the raw water becomes alkaline, the aeration dissolves carbon dioxide in the atmosphere and has an effect of neutralizing the alkali. In addition, when the raw water is activated sludge and the activated sludge is circulated to and from the aeration tank provided at the preceding stage, normalization of pH, chromaticity, and COD can be reduced by the diffusion effect. Here, the waiting time is preferably about 30 minutes to 1 week, particularly preferably 1 hour to 1 day. In particular, when circulation is performed with another treatment tank, the residence time of the membrane immersion tank with respect to the amount of circulating water is 1 to 6 times, particularly 2 times.
~ 3 times is preferred.

【0053】なお、図1に示す膜浸漬型固液分離装置
は、本発明の実施の形態の一例であって、本発明はその
要旨を超えない限り、図示のものに何ら限定されない。
例えば、液溜まり部の形状や位置等に特に制限はなく、
図2に示す如く、膜浸漬槽1Bの底面を傾斜面として液
溜まり部6Aを形成することもできる。
The membrane-immersion type solid-liquid separation device shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist.
For example, there is no particular limitation on the shape and position of the liquid pool,
As shown in FIG. 2, the liquid pool 6A can be formed with the bottom surface of the film immersion tank 1B as an inclined surface.

【0054】[0054]

【実施例】以下に比較例及び実施例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically with reference to comparative examples and examples.

【0055】比較例1 曝気槽(容量380m)1槽と、図3に示す従来の膜
浸漬槽(容量45m)3槽により、処理水量約300
/dayで膜式活性汚泥処理を行っている系におい
て、膜の薬品洗浄を行った。曝気槽から各膜浸漬槽へ
は、約750m/dayの活性汚泥をポンプで送液
し、膜浸漬槽からは約650m/dayの活性汚泥を
オーバーフローさせて曝気槽へ返送した。
Comparative Example 1 The amount of treated water was about 300 by using one aeration tank (capacity: 380 m 3 ) and three conventional membrane immersion tanks (capacity: 45 m 3 ) shown in FIG.
In a system in which a membrane activated sludge treatment was performed at m 3 / day, chemical cleaning of the membrane was performed. About 750 m 3 / day of activated sludge was pumped from the aeration tank to each membrane immersion tank by a pump, and about 650 m 3 / day of activated sludge was overflowed from the membrane immersion tank and returned to the aeration tank.

【0056】膜浸漬槽のうちの1槽(仮にA槽とする)
への活性汚泥送液を一時停止し、次の手順で薬品洗浄を
行った。
One of the membrane immersion tanks (tentatively referred to as tank A)
The activated sludge solution was temporarily stopped, and chemical cleaning was performed in the following procedure.

【0057】まず、A槽内にある活性汚泥を自吸式スラ
リーポンプ(以下、「薬洗用ポンプ」と称す。)を用い
て抜き出し、曝気槽へ投入した。この工程はA槽下方に
設けられたフリクト式レベルスイッチが水位低を検知す
ることで自動停止させており、動作自体は問題なかった
が、底部に300mm程度、活性汚泥が抜き出せずに残
留した。
First, the activated sludge in the A tank was withdrawn using a self-priming slurry pump (hereinafter, referred to as a “pump for chemical washing”), and charged into an aeration tank. In this step, the friction type level switch provided below the tank A was automatically stopped by detecting a low water level, and there was no problem with the operation itself. However, about 300 mm of activated sludge remained at the bottom without being extracted.

【0058】汚泥が残留したまま、A槽に苛性ソーダ2
重量%、有効塩素濃度1000mg/L(次亜塩素酸ソ
ーダを使用)からなる膜洗浄薬液を投入し、65m
/hrで曝気を開始したところ、30分程度で泡の
高さが2m以上となり、水槽のヘリより泡が溢れ始めた
ため、曝気を一時停止し、消泡剤を10mg/L相当投
入した。この後、曝気を再開したが、再び30分程度で
水槽のヘリまで泡が盛り上がり、再び曝気を停止した。
この後、50mg/L相当まで消泡剤を投入しても、発
泡を抑制することができなかった。
Caustic soda 2 was added to tank A while sludge remained.
% By weight, and a membrane cleaning solution consisting of an effective chlorine concentration of 1000 mg / L (using sodium hypochlorite) was introduced, and 65 m 3 /
When the aeration was started at m 2 / hr, the height of the foam became 2 m or more in about 30 minutes, and the foam began to overflow from the helicopter in the water tank. Therefore, the aeration was temporarily stopped, and an antifoaming agent equivalent to 10 mg / L was charged. . Thereafter, the aeration was restarted, but the foam rose to the helicopter in the water tank again in about 30 minutes, and the aeration was stopped again.
Thereafter, even if an antifoaming agent was added up to 50 mg / L, foaming could not be suppressed.

【0059】このため、曝気量を膜設置部底面積当たり
30m/m/hr以下まで低減し、洗浄を継続した
が、間欠的に曝気を中断し、泡が水槽から溢れるのを抑
制する必要があった。
For this reason, the aeration amount was reduced to 30 m 3 / m 2 / hr or less per the bottom area of the membrane installation part, and the washing was continued. However, the aeration was interrupted intermittently, and the overflow of bubbles from the water tank was suppressed. Needed.

【0060】また、洗浄薬液の有効塩素濃度を測定する
と、10mg/L以下まで低下していたため、再度有効
塩素濃度2000mg/L相当の次亜塩素酸ソーダを投
入し、30分後に再び残留塩素濃度を測定したところ、
約700mg/Lであった。この後も徐々に有効塩素濃
度は低下したが、洗浄終了時も500mg/L以上を保
つことができた。
When the effective chlorine concentration of the cleaning solution was measured, it was found to have dropped to 10 mg / L or less. Sodium hypochlorite equivalent to the effective chlorine concentration of 2000 mg / L was added again, and after 30 minutes, the residual chlorine concentration was again measured. Was measured,
It was about 700 mg / L. After this, the effective chlorine concentration gradually decreased, but 500 mg / L or more could be maintained at the end of the washing.

【0061】このようにして計16時間薬品洗浄を行っ
たが、洗浄終了後も膜面への汚泥ケークの付着が認めら
れ、濾過差圧の回復率は新膜の80%程度であった。
The chemical cleaning was carried out for a total of 16 hours in this manner. Even after the completion of the cleaning, adhesion of the sludge cake to the membrane surface was recognized, and the recovery rate of the filtration pressure difference was about 80% of that of the new membrane.

【0062】洗浄終了後は曝気を停止し、A槽内の薬液
を薬洗ポンプで抜き出し、再びフリクト式レベルスイッ
チで自動停止させたところ、槽底部にはやはり300m
m程度の薬液が残留した。
After the washing was completed, the aeration was stopped, and the chemical in the tank A was drawn out by a chemical washing pump, and again stopped automatically by a friction type level switch.
About m of the drug solution remained.

【0063】A槽内に薬液が残留したまま、曝気槽から
活性汚泥の供給を再開し、再びA槽からオーバーフロー
するレベルに達した後、膜濾過を再開したところ、膜透
過水のpHが12付近に達しており、液は茶色に着色
し、CODMnは60mg/L程度となった。このた
め、濾過を停止し、活性汚泥の供給とオーバーフローの
み3時間程度継続した。その後に膜濾過を再開したとこ
ろ、膜透過水のpHは7.6となり、着色はわずかとな
り、CODMnは20mg/L程度となった。なお、曝
気槽では自動制御によるpHコントロールを行った。
When the supply of the activated sludge was resumed from the aeration tank while the chemical liquid remained in the tank A, and the membrane overflowed again from the tank A, the membrane filtration was resumed. The solution had reached the vicinity, the solution was colored brown, and COD Mn was about 60 mg / L. Therefore, the filtration was stopped, and only the supply and the overflow of the activated sludge were continued for about 3 hours. After that, when the filtration of the membrane was restarted, the pH of the permeated water became 7.6, the coloring became slight, and the COD Mn became about 20 mg / L. In the aeration tank, pH control was performed by automatic control.

【0064】実施例1 比較例1において、A槽として図1に示す膜浸漬槽1A
を用いて同様の操作を行った。この液溜まり部6は40
0mm×400mm×400mmの大きさであり、散気
管4の底面投影位置から700mm、仕切り板2Bの底
面投影位置から400mmの位置に設けられている。
Example 1 In Comparative Example 1, the film immersion tank 1A shown in FIG.
The same operation was performed using. This pool 6 is 40
It has a size of 0 mm × 400 mm × 400 mm, and is provided at a position 700 mm from the bottom projection position of the diffuser tube 4 and 400 mm from the bottom projection position of the partition plate 2B.

【0065】この膜浸漬槽では、400mm角の液溜ま
り部6の下端から100mmの位置に、吸引ポンプP3
の吸引側に連通するパイプ13の先端開口を配置し、こ
の下端から350mmの位置にフリクト式レベルスイッ
チLSを設置し、吸引ポンプP3と連動させた。
In this membrane immersion tank, the suction pump P3 was placed at a position 100 mm from the lower end of the 400 mm square liquid reservoir 6.
The opening of the tip of the pipe 13 communicating with the suction side of the above was arranged, and a friction type level switch LS was installed at a position 350 mm from the lower end thereof, and was linked with the suction pump P3.

【0066】この結果、活性汚泥は槽底部1aから50
mm以下まで抜き出すことができ、薬品洗浄時の発泡も
激減した。ただし、消泡剤は10mg/L程度添加する
方が好ましかった。また、有効塩素濃度も、初期濃度1
000mg/Lに対し、投入直後600mg/L、洗浄
終了時400mg/Lであった。
As a result, the activated sludge was removed from the tank bottom 1a by 50%.
mm or less, and the foaming during chemical cleaning was drastically reduced. However, it was preferable to add about 10 mg / L of the antifoaming agent. The effective chlorine concentration is also the initial concentration 1
000 mg / L, 600 mg / L immediately after introduction, and 400 mg / L at the end of washing.

【0067】また、曝気量は削減する必要がなく、65
/m/hr程度でも問題がなかった。
It is not necessary to reduce the amount of aeration.
There was no problem even at about m 3 / m 2 / hr.

【0068】この状態で16時間薬品洗浄を行ったとこ
ろ、膜面に付着している汚泥ケークはほぼ全て剥離し、
差圧は新膜の90%強まで回復した。
When chemical cleaning was performed in this state for 16 hours, almost all of the sludge cake adhering to the membrane surface was peeled off.
The pressure difference recovered to over 90% of the new membrane.

【0069】薬品洗浄後、槽内の薬液を吸引ポンプP3
により抜き出し、フリクト式レベルスイッチLSと連動
して停止させたところ、底部から50mm以下まで薬液
を抜き出すことができた。
After the chemical cleaning, the chemical in the tank is pumped by the suction pump P3.
, And stopped in conjunction with the friction type level switch LS. As a result, the chemical solution could be extracted from the bottom to 50 mm or less.

【0070】その後、活性汚泥の投入を開始し、膜浸漬
槽1Aからオーバーフローし始めたのを確認してから膜
濾過を開始したところ、膜透過水のpHは8.4であ
り、放流可能であった。ただし、やや着色が認められ、
CODMn値は35mg/Lまで上昇した。
After that, the activated sludge was started to be introduced, and it was confirmed that overflow had started from the membrane immersion tank 1A. Then, the membrane filtration was started. As a result, the pH of the membrane permeated water was 8.4. there were. However, some coloring is recognized,
COD Mn values rose to 35 mg / L.

【0071】実施例2 実施例1において、薬品洗浄の前後で、原水を用いるリ
ンス工程を行ったこと以外は同様にして操作を行った。
Example 2 An operation was performed in the same manner as in Example 1 except that a rinsing step using raw water was performed before and after the chemical cleaning.

【0072】即ち、膜浸漬槽から活性汚泥を抜き出した
後、約300mmの液位となるまでリンス水として原水
を投入し、再び50mmの位置まで抜き出した。原水の
流量は約10m3/hrとし、約20分間で供給した。
その後に膜浸漬槽内から抜き出したリンス用原水は曝気
槽に返送した後、薬液を供給した。なお、原水はBOD
800mg/L、SS150mg/L、ノルマルヘキサ
ン抽出物質50mg/L程度の水質であった。原水を抜
き出した後の状況は、実施例1とほぼ同様であったが、
水槽底面を目視したところ、ヘドロの排出状況が良好だ
った。また、薬液投入直後の有効塩素濃度は約750m
g/L、洗浄終了後は約550mg/Lであったことか
ら、実施例1よりも良好であると判断された。
That is, after the activated sludge was extracted from the membrane immersion tank, raw water was introduced as rinsing water until the liquid level reached about 300 mm, and was again extracted to the 50 mm position. The flow rate of the raw water was about 10 m3 / hr, and the raw water was supplied for about 20 minutes.
Thereafter, the raw water for rinsing extracted from the inside of the membrane immersion tank was returned to the aeration tank, and then a chemical solution was supplied. Raw water is BOD
The water quality was about 800 mg / L, SS 150 mg / L, and normal hexane extracted substance 50 mg / L. The situation after extracting the raw water was almost the same as in Example 1,
Visual inspection of the bottom of the aquarium showed that the sludge was well discharged. The effective chlorine concentration immediately after the introduction of the chemical is about 750 m
g / L and about 550 mg / L after the completion of washing, it was judged to be better than Example 1.

【0073】薬品洗浄終了後、薬液を抜き出し、再度原
水を300mmの水位まで投入し、残留していた薬液と
混ざった原水を50mmの水位まで抜き出した。このと
きの薬液混じりの原水は、曝気槽の前段にある500m
容量の原水槽へ排出した。
After the completion of the chemical cleaning, the chemical was taken out, raw water was again charged to a water level of 300 mm, and raw water mixed with the remaining chemical was drawn to a water level of 50 mm. At this time, the raw water mixed with the chemical is 500m in front of the aeration tank.
It was discharged to a three- volume raw water tank.

【0074】その後、膜浸漬槽への活性汚泥の投入を開
始し、オーバーフローを待って膜濾過を開始したとこ
ろ、膜透過水のpHは7.6であった。曝気槽の活性汚
泥のpHが7.4であったため、pHの上昇は0.2程
度に抑制されたことが分った。この膜透過水のCOD値
は20mg/L程度であり、有意な着色は認められなか
った。なお、通常時の膜透過水のCOD値は15〜20
mg/L程度であるので、薬品洗浄による膜透過水の水
質の悪化は殆どないと判断された。
After that, the introduction of activated sludge into the membrane immersion tank was started, and the membrane filtration was started after the overflow. The pH of the permeated water was 7.6. Since the pH of the activated sludge in the aeration tank was 7.4, it was found that the increase in pH was suppressed to about 0.2. The COD value of the permeated water was about 20 mg / L, and no significant coloring was observed. In addition, the COD value of the membrane permeated water at normal time is 15 to 20.
Since it was about mg / L, it was determined that there was almost no deterioration in water quality of the membrane permeated water due to chemical cleaning.

【0075】[0075]

【発明の効果】以上詳述した通り、本発明の膜浸漬型固
液分離装置によれば、次のような効果のもとに、膜浸漬
型固液分離装置における膜の薬品洗浄を容易な操作で低
コストにて効率的に行うことができ、良好な薬品洗浄効
果を得ることができる。 膜の薬品洗浄時及び薬品洗浄後の膜濾過工程再開時
の発泡を抑制できる。 により、薬品洗浄時に曝気を停止する必要がなく
なり、効率的な薬品洗浄を行える。 薬剤使用量を低減できるため薬品洗浄コストを削減
できる。 薬品洗浄後、膜濾過工程再開時の水質悪化が防止さ
れ、膜濾過工程再開後、早期に処理水を採水することが
できる。
As described above in detail, according to the membrane immersion type solid-liquid separation device of the present invention, chemical cleaning of the membrane in the membrane immersion type solid-liquid separation device is facilitated under the following effects. Operation can be performed efficiently at low cost, and a good chemical cleaning effect can be obtained. Foaming at the time of chemical cleaning of the membrane and at the time of restarting the membrane filtration step after chemical cleaning can be suppressed. Accordingly, it is not necessary to stop the aeration at the time of chemical cleaning, and efficient chemical cleaning can be performed. Since the amount of chemicals used can be reduced, the cost for chemical cleaning can be reduced. After chemical cleaning, deterioration of water quality at the time of resuming the membrane filtration step is prevented, and treated water can be collected early after the resumption of the membrane filtration step.

【0076】このような本発明の膜浸漬型固液分離装置
は、活性汚泥等の微生物を含有する水、有機廃水を凝集
処理した水、タンパク質やデンプン等の有機懸濁物質を
含有する水等の処理に有効であり、特に活性汚泥を対象
として濾過操作を行っている装置に適用することにより
著しく良好な効果を得ることができる。
The solid-liquid separation device of the membrane immersion type according to the present invention comprises water containing microorganisms such as activated sludge, water obtained by coagulating organic wastewater, water containing organic suspended substances such as proteins and starch, and the like. This is particularly effective for the treatment of activated sludge, and a remarkably good effect can be obtained by applying the present invention to an apparatus that performs a filtration operation on activated sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の膜浸漬型固液分離装置の
実施の形態を示す断面図であり、図1(b)は同膜浸漬
槽の平面図である。
FIG. 1 (a) is a sectional view showing an embodiment of a membrane immersion type solid-liquid separation device of the present invention, and FIG. 1 (b) is a plan view of the same membrane immersion tank.

【図2】本発明の膜浸漬型固液分離装置の他の実施の形
態を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the membrane immersion type solid-liquid separation device of the present invention.

【図3】図3(a)は、従来の膜浸漬型固液分離装置を
示す断面図であり、図3(b)は同膜浸漬槽の平面図で
ある。
FIG. 3 (a) is a cross-sectional view showing a conventional membrane immersion type solid-liquid separation device, and FIG. 3 (b) is a plan view of the same membrane immersion tank.

【符号の説明】[Explanation of symbols]

1,1A,1B 膜浸漬槽 2A,2B 仕切り板 3A,3B 膜モジュール 4 曝気管 5 オーバーフロー口 6,6A 液溜まり部 1,1A, 1B Membrane immersion tank 2A, 2B Partition plate 3A, 3B Membrane module 4 Aeration tube 5 Overflow port 6,6A Liquid reservoir

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 膜浸漬槽と、 該膜浸漬槽内に設けられた濾過膜と、 該濾過膜の透過水を排出する手段と、 該膜浸漬槽に原水を供給する手段と、 原水供給を停止する手段と、 該膜浸漬槽内の液を槽外へ移送する手段とを備え、有機
性懸濁物を含む原水中に浸漬された前記濾過膜により膜
濾過を行って透過水を得る膜浸漬型固液分離装置におい
て、 該膜浸漬槽の底部の一部に設けられた液溜まり部と、 該液溜まり部の液を引き抜く手段と、 該液溜まり部の液位を検知するセンサとを備えたことを
特徴とする膜浸漬型固液分離装置。
1. A membrane immersion tank, a filtration membrane provided in the membrane immersion tank, means for discharging permeated water of the filtration membrane, means for supplying raw water to the membrane immersion tank, and supply of raw water A means for stopping, and a means for transferring the liquid in the membrane immersion tank to the outside of the tank, wherein the membrane is filtered by the filtration membrane immersed in raw water containing an organic suspension to obtain permeated water. In the immersion-type solid-liquid separation device, a liquid pool provided at a part of the bottom of the membrane immersion tank, a means for extracting the liquid in the liquid pool, and a sensor for detecting a liquid level in the liquid pool are provided. A membrane immersion type solid-liquid separation device, comprising:
JP2000103753A 2000-04-05 2000-04-05 Membrane immersion type solid-liquid separator Expired - Fee Related JP3858562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103753A JP3858562B2 (en) 2000-04-05 2000-04-05 Membrane immersion type solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103753A JP3858562B2 (en) 2000-04-05 2000-04-05 Membrane immersion type solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2001286865A true JP2001286865A (en) 2001-10-16
JP3858562B2 JP3858562B2 (en) 2006-12-13

Family

ID=18617400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103753A Expired - Fee Related JP3858562B2 (en) 2000-04-05 2000-04-05 Membrane immersion type solid-liquid separator

Country Status (1)

Country Link
JP (1) JP3858562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022236B2 (en) * 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022236B2 (en) * 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator

Also Published As

Publication number Publication date
JP3858562B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US6878282B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
EP1189683B1 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
EP1704911A1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
US7833420B2 (en) Method for cleaning reclaimed water reuse device
CN107349793B (en) System and method for off-line chemical cleaning of MBR (membrane bioreactor) membrane group device on line
JP3994620B2 (en) Membrane immersion type solid-liquid separation apparatus and method
JP4385483B2 (en) Wastewater treatment method
KR101926857B1 (en) Automatic cleaning system of separation membrane and method using the same
JP3514187B2 (en) Filtration device
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP3858562B2 (en) Membrane immersion type solid-liquid separator
JP3290558B2 (en) Cleaning method for immersion type membrane cartridge
JP6411051B2 (en) Immersion membrane separator and method for operating the same
JP3419257B2 (en) Immersion membrane solid-liquid separator
JPH11147098A (en) Anaerobic treatment apparatus
JP3105140B2 (en) Sewage treatment equipment
JP2005279495A (en) Immersed membrane separator, washing method for diffuser, and membrane separation method
EP3725393A1 (en) Filtering membrane cleaning method
JP3282445B2 (en) Biological treatment equipment
JP3684825B2 (en) Chemical cleaning method for membrane
JPH03249995A (en) Sewage treating device
JPH11244893A (en) Operation method of organic sewage treating device
JPH0957074A (en) Method for cleaning immersion-type membrane separator
JP2000042587A (en) Biological waste water treating device
JP2016137469A (en) Method and device for cleaning air diffusion pipe, and activated sludge treatment method and activated sludge treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140929

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees